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ABSTRACT
Recent software systems usually feature an automated fail-
ure reporting system, with which a huge number of failing
traces are collected every day. In order to prioritize fault
diagnosis, failing traces due to the same fault are expected
to be grouped together. Previous methods, by hypothesiz-
ing that similar failing traces imply the same fault, cluster
failing traces based on the literal trace similarity, which we
call trace proximity. However, since a fault can be trig-
gered in many ways, failing traces due to the same fault
can be quite different. Therefore, previous methods actu-
ally group together traces exhibiting similar behaviors, like
similar branch coverage, rather than traces due to the same
fault. In this paper, we propose a new type of failure prox-
imity, called R-Proximity, which regards two failing traces
as similar if they suggest roughly the same fault location.
The fault location each failing case suggests is automati-
cally obtained with Sober, an existing statistical debugging
tool. We show that with R-Proximity, failing traces due
to the same fault can be grouped together. In addition, we
find that R-Proximity is helpful for statistical debugging:
It can help developers interpret and utilize the statistical
debugging result. We illustrate the usage of R-Proximity
with a case study on the grep program and some experiments
on the Siemens suite, and the result clearly demonstrates the
advantage of R-Proximity over trace proximity.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging –
Debugging aids, Diagnostics, Testing tools, Tracing
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1. INTRODUCTION
Recent complex software systems, like Netscape/Mozilla,

Microsoft Windows and GNOME, usually feature an auto-
mated failure reporting component. When a software crash
is detected, related information, like the stack trace, is col-
lected, and with the user’s permission, sent back to devel-
opers for diagnosis. Besides crash scenes, in the cooperative
debugging framework, whole execution traces can be also
collected at runtime (with sampling), and sent back to de-
velopers with low overhead [11,12].

In principle, these collected failing traces can assist devel-
opers in prioritizing and diagnosing faults. However, it has
never been as straightforward as one would expect. In the
first place, a developer needs to group failures into clusters
such that failing traces due to the same fault are grouped
together. Since failing traces mainly contain dynamic be-
haviors, like branch or statement coverage, identifying traces
due to the same fault is in general hard. In the second place,
for each grouped cluster, one needs to manually investigate
and guess about the fault location, and assign failing traces
to developers who are responsible for the (guessed) fault
location. Finally, as failure reporting has been fully auto-
mated, the sheer number of collected reports has increased
dramatically, which has ultimately rendered manual process-
ing infeasible.

Because manual processing is unrealistic, techniques have
been developed to automate failure analysis. These tech-
niques typically hypothesize that similar failing cases imply
the same fault, and consequently, group together similar fail-
ing traces. For example, Podgurski et al. calculate the Eu-
clidean distance between failing traces, and then cluster and
visualize these failures based on the pair-wise distance [16].
As one can see, a proper definition of the failure proximity is
the central question for automated analysis of failing traces.
Subsequent clustering and visualization only serve as a ve-
hicle for presentation. We denote this proximity defined in
terms of trace similarity as trace-proximity, or T-Proximity
for short.

Although T-Proximity is widely adopted to measure the
proximity between executions [4, 5, 16], it is nevertheless
weak in characterizing the semantic proximity between fail-



f1

p1

f2

fm

p2

pn

F

P
SOBER τ

SOBER

SOBER

SOBER 1τ

2τ

mτ

T-Proximity:
Similar execution
traces imply the
same fault

R-Proximity:
Similar fault localizations
imply the same fault

Figure 1: T-Proximity and R-Proximity

ing cases. First, because a fault can be triggered with dif-
ferent inputs, failing traces due to the same fault can be,
and usually are, divergent. This suggests that clustering
based on T-Proximity tends to group similar executions,
rather than the failing cases due to the same fault. Secondly,
clustering based on T-Proximity does not provide any in-
formation about the possible fault location. In consequence,
a developer needs to manually investigate each cluster, and
assign failing traces to responsible developers.

In order to circumvent the above weakness of T-Proximity,
a new definition of failure proximity is proposed in this pa-
per: Instead of relying on trace similarity, we regard two
failures as similar if they suggest roughly the same fault lo-
cation. The fault location each failing trace suggests is ob-
tained with a statistical debugging tool Sober [13] in this
paper whereas other automated debugging could be simi-
larly employed. We now illustrate the idea in the following.

Suppose m failing traces, F = {f1, f2, · · · , fm}, and n

passing traces, P = {p1, p2, · · · , pn}, are collected, and each
trace is represented by the evaluation history of instrumented
predicates. Conventionally, Sober takes F and P as the
inputs, and generates a ranked list τ of instrumented pred-
icates, i.e., τ = Sober(F, P ). The predicate ranking τ is
the fault localization result, and its top predicates usually
point to the fault location. We note that Sober is not re-
quired to take F and P in their entirety; instead, any sub-
sets of F and P can be fed into Sober for fault localization.
Therefore, by contrasting each failing trace fi against P , the
fault location each fi suggests is automatically obtained, i.e.,
τi = Sober({fi}, P ), ∀fi ∈ F . In this way, failure prox-
imity can be measured by examining how τi’s agree with
each other: Two failing cases are similar, if their induced
predicate rankings roughly agree. Because this failure prox-
imity is defined in terms of predicate rankings, we denote it
as “rank-proximity”, or R-Proximity in short. A weighted
form of the Kendall’s tau distance is developed in this paper
(Section 3.2) to measure the agreement between rankings.
The connection and difference between R-Proximity and
T-Proximity are illustrated in Figure 1.

In comparison with T-Proximity, R-Proximity is se-
mantically closer to the underlying faults. Ideally, we want
to partition failing cases such that failures due to the same
fault are grouped together. However, since the “due-to”
relationship between failing cases and underlying faults is
unknown without expensive manual investigation, this ideal
partition is generally unachievable. Here, we use Sober to
substitute for the manual investigation, and consequently,

the fault location each failing case suggests is an approxi-
mation to the real “due-to” relationship. Therefore, under
R-Proximity, failing traces whose induced fault localiza-
tion agree with each other are regarded near to each other.
This is fundamentally different from T-Proximity, which
defines failure proximity in terms of the literal similarity
between traces.

Moreover, as R-Proximity is defined based on the
fault location each failing trace suggests, clustering with
R-Proximity automatically provides a guess about the
fault location for each cluster. Specifically, because only
failures agreeing on the fault location are grouped together,
their agreement just represents the fault location they sug-
gest. With such information, failing cases can be assigned
to responsible developers without manual fault investiga-
tion. This, however, cannot be achieved by clustering with
T-Proximity.

Finally, R-Proximity can also help developers interpret
statistical debugging results, and this, again, cannot be ac-
complished with T-Proximity. Statistical debugging was
proposed recently [11], and has been shown to be one of
the most accurate techniques for fault localization [13]. Al-
though statistical debugging could be accurate, developers
usually complain about its interpretability. Statistical de-
bugging produces a predicate ranking τ as its localization
result, but without a concrete failing case to illustrate why
certain predicates are ranked high in τ , a developer may
find the result hard to interpret. Under R-Proximity, we
can select a failing case ti whose corresponding τi mostly
agrees with τ , and this selected case can help the developer
understand and utilize the statistical debugging result. In
section 4, we report on a case study with the program grep,
which exemplifies how R-Proximity helps developers diag-
nose multiple faults with Sober.

Certainly, the approximation of R-Proximity to the real
“due-to” relationship depends on the quality of fault local-
ization. The statistical debugging tool Sober used in this
study is known as one of the most accurate [13], and it indeed
performs very well in our case study. In the future, when
better statistical debugging tools become available, Sober
can be safely replaced without changing the definition of
R-Proximity. In general, the idea of defining failure prox-
imity based on fault localization should be compatible with
other automated debugging tools, like delta debugging [18]
and Tarantula [9]. The key point is that we try to find the
fault each failing trace suggests in an automated way, and
then define failure proximity based on the fault, rather than
the literal trace similarity.

In summary, this study makes the following contributions:

1. We propose a new approach R-Proximity to assess-
ing the proximity between failing traces. It is defined
based on the fault location each failing trace suggests,
and is hence more suitable to cluster failing traces than
existing trace-similarity based approaches.

2. R-Proximity is defined by fingerprinting each failing
trace into a predicate ranking. To the best of our
knowledge, this is the first piece of work using fault
localization tools for failing trace exploration. This
work suggests that automated debugging techniques
are not restricted to fault localization.

3. R-Proximity helps alleviate the interpretation prob-
lem of statistical debugging. We report on a case



study with grep in Section 4, which exemplifies this
usage. We also complement the case study with
a systematic evaluation of R-Proximity with the
Siemens programs, which confirms the advantages of
R-Proximity in characterizing the failure proximity.

The rest of the paper is organized as follows. Section 2
provides some background knowledge which is used in fol-
lowing sections. The detail of R-Proximity is discussed in
Section 3. We discuss the advantages of R-Proximity in
Section 4, and illustrate them with a case study. Experi-
ments complementing the case study are presented in Sec-
tion 5. With related work and threats to validity discussed
in Section 6, Section 7 concludes this study.

2. BACKGROUND
Failure proximity is not a new topic in software engineer-

ing research. In fact, the problem of how to define and
measure the proximity between executions is one of the cen-
tral questions in many researches related to dynamic analy-
sis [2,4,8,16].

Before a proximity (or similarity) measure is defined, ex-
ecutions need to be profiled first. An execution is usually
profiled according to the runtime behavior, such as control
flows and statement coverage. Because most runtime behav-
iors can be expressed in terms of predicates, we assume that
an execution is profiled as a predicate vector in this study,
and the predicate vector is referred to as the execution trace.

Suppose a program P is instrumented with L predi-
cates, then the execution with input t is profiled as an L-
dimensional vector vt, where the ith dimension vt(i) records
how many times the ith predicate Pi evaluates true during
the execution. Depending on the need and overhead toler-
ance, many kinds of predicates can be instrumented. In this
study, we instrument programs with the following two kinds
of predicates, which are shown effective in characterizing
executions [12,13].

• [boolean]: For each boolean expression B, a predi-
cate, “B=true”, is instrumented.

• [return]: For each function return site R, three pred-
icates, “R>0”, “R=0” and “R<0”are instrumented.

With executions profiled as predicate vectors, existing dis-
tance metric, like the Euclidian distance or Manhattan block
distance, can be used to define a proximity measure between
executions. In fact, a one-to-one correspondence exists be-
tween distance and proximity: a small distance means prox-
imity. When a distance is calculated from execution traces
directly, the resultant proximity is called “trace-proximity”,
or T-Proximity in short. In particular, as the Euclidean
distance is used in this study, T-Proximity also refers to the
proximity defined with the Euclidean distance. In the next
section, we introduce “rank-proximity”, which, in contrast,
calculates the execution distance indirectly from execution
traces.

3. R-PROXIMITY: FAILURE PROXIMITY
BASED ON FAULT LOCALIZATION

In this section, we examine R-Proximity, which better
characterizes the proximity between failing cases. We first
discuss how to fingerprint each failing case into a predicate

ranking in Section 3.1, and then study how to assess failure
proximity based on the ranking presentation in the rest of
this section.

3.1 Fingerprint Failing Cases
Given m failing cases F = {f1, f2, · · · , fm} that are due

to k faults (or bugs) B = {b1, b2, · · · , bk}, the “due-to” rela-
tionship between failures and faults is an injective function
F : F → B. Ideally, the optimal proximity assigns a small
distance to fi’s due to the same fault, and a large distance
to ones due to different faults.

Apparently, the optimal proximity is hard to obtain be-
cause the “due-to” function F is unavailable without expen-
sive manual investigation. But inspired by recent progress
on fault localization, we wonder whether it is possible to
approximate the “due-to” function with existing automated
debugging tools, i.e., substituting the manual investigation
with automated fault localization. If it is, a sub-optimal
proximity measure can be naturally defined.

A spectrum of fault localization tools have been developed
in recent years [3, 9, 12, 13, 17–19]. These tools mainly con-
trast the set of failing cases F against a set of passing cases
P = {p1, p2, · · · , pn}. Through the contrast, a number of
program points are circled out as suspected fault locations.
In this study, we use Sober, an existing statistical debug-
ging tool, because (1) it takes the predicate representation
of execution traces, and (2) it has been shown effective in
fault localization [13].

Sober localizes underlying faults by contrasting the eval-
uation bias of each predicate in failing cases against that
in passing cases. The evaluation bias basically measures, for
each predicate, what percentage of evaluations are true. For
example, if one predicate P is evaluated 10 times during one
execution, and it evaluates true for three times, the evalu-
ation bias of P in this execution is 0.3. Readers interested
in more details about Sober are referred to [13].

Conventionally, Sober takes P and F as inputs, and pro-
duces a ranked list τ of the L instrumented predicates, i.e.,
τ = Sober(F, P ). The ranking τ is called the composite
ranking, and τ (Pi) is the rank (or position) of the predicate
Pi in τ . We say predicate Pi ranks higher or before predi-
cate Pj in τ if and only if τ (Pi) < τ (Pj). In general, higher
ranked predicates are more likely to be fault-relevant, i.e.,
pointing to the fault location or its vicinity.

As one may have noticed, Sober is not restricted to con-
trasting F against P as a whole. Instead, any subsets of F

and P can be contrasted. Now let us consider an extreme
scenario, where each failing case fi ∈ F is contrasted against
P with Sober. Specifically,

τi = Sober({fi}, P ) (i = 1, 2, · · · , m), (1)

and τi is the fault localization of fi with Sober. In paral-
lel with the composite ranking τ , τi’s are called individual
rankings.

Although τi may not necessarily pinpoint the fault loca-
tion (depending on the quality of Sober, fi and P ), it does
suggest which predicates fi regards as suspicious. In this
sense, τi embodies fi’s opinion about the fault(s). Therefore,
we can represent each failing case fi by its induced predicate
ranking τi, and measure the proximity between fi’s in terms
of the agreement between τi’s. Therefore, we need a proper
distance definition between rankings, which we will discuss
in the next three subsections. Because this proximity is de-
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fined on the ranking presentation of failing cases, it is called
“rank-proximity”, or R-Proximity for short.

3.2 Kendall’s tau Distance
Given the ranking presentation of the failing cases, some

standard rank distance, like the Kendall’s tau distance [10],
can be used. Let π and σ be two rankings of the L predi-
cates, the Kendall’s tau distance DK(π, σ) is defined as

DK(π, σ) =
X

1≤i<j≤L

K(Pi, Pj) (2)

where

K(Pi, Pj) =

(

1 if [π(Pi) − π(Pj)][σ(Pi) − σ(Pj)] < 0,

0 otherwise.

Predicates Pi and Pj constitute a discordant pair if their
relative orders in π and σ disagree, and the Kendall’s tau
distance essentially counts the number of discordant pairs
between π and σ.

Although the Kendall’s tau distance is a valid and rea-
sonable distance measure for rankings in general, it, at least
in its classic form (Eq. 2), fails to quantify the distance be-
tween predicate rankings. In the first place, we only need
to consider fault relevant predicates because predicates are
usually instrumented in a blind way and most predicates are
superfluous. We need to find the subset of relevant predi-
cates, and project original τi’s onto it. Specifically, let S be
the set of instrumented predicates (L = |S|), and Sr ⊆ S is
the subset of fault relevant predicates (l = |Sr|), a ranking τ

is projected onto Sr if all predicates not in Sr are excluded
from τ . We use τ ′ to denote the projected ranking of τ .
In the second place, even within Sr, not all predicates are
equally fault relevant. In general, we expect discordant pairs
of more relevant predicates contribute more to the ranking
distance. We use the following example to illustrate the two
points.

Example 1. Suppose a program P is instrumented with 6
predicates, i.e., S = {P1, P2, P3, P4, P5, P6}. Figure 2 shows
the composite ranking τ and individual ranking τ1, τ2, τ3.
For legibility, predicate indices are used in rankings. As we
can see, predicates are not equally fault relevant. For ex-
ample, P2 is more relevant than P5 because it ranks higher
in all rankings. Furthermore, it is easy to calculate that
DK(τ1, τ2) = DK(τ1, τ3) = 2, but intuitively, we would ex-
pect that τ1 is closer to τ3 than to τ2 because τ1 and τ3 only
disagree about the relative orders between less relevant pred-
icates, like P4, P5 and P6.

Therefore, predicates need to be first weighted based on
their fault relevance, and less relevant ones should be dis-
counted in distance calculation.

3.3 Predicate Weighting
Because no guidance is available to set predicate weights,

we choose to automatically derive the predicate weights from
the composite and individual rankings. Intuitively, top pred-
icates in these rankings are likely fault relevant.

First, the top-k1 predicates of τ are taken as relevant, and
the weight of predicate Pi is defined as

W
k1

1
(Pi) =

I(k1 − τ (Pi))

k1

, (3)

where I(x) is an indicator function that equals to 1 if x ≥ 0
and 0 otherwise. If a predicate ranks lower than k1 in τ ,
it gets a zero weight, and is not selected into Sr at this
step. For those selected predicates, equal weights are as-
signed although one could also assign decaying weights to
lower-ranked predicates.

Second, the individual rankings τi’s also suggest fault rel-
evant predicates. Intuitively, the m individual rankings are
like m votes for relevant predicates, and in consequence,
predicates favored by more rankings are more fault relevant.
Therefore, if the top-k2 predicates of each ranking are con-
sidered, the weight of predicate Pi is defined

W
k2

2
(Pi) =

Pm

j=1
I(k2 − τj(Pi))

mk2

, (4)

where I(x) is the same indicator function as that in Eq. 3.
This is called the frequency weighting because the weight is
proportional to in how many τi’s Pi ranks within the top-k2.

Combining these two components, the weight of predicate
Pi is

W (Pi) = (1 − α)W k1

1
(Pi) + αW

k2

2
(Pi), (5)

where α is the parameter balancing the two components. In
fact, predicates within neither the top-k1 of τ nor the top-
k2 of τi’s receive a zero weight, and are essentially excluded
from consideration in distance calculation (see Section 3.4).
Predicates with nonzero weights then constitute the relevant
predicate set Sr. In this study, we set k1 = 10, k2 = 1
and α = 0.1 by default. We discuss how to adjust these
parameters and their effects through experiments in Section
5.2.

Example 2. Continue Example 1. Taking k1 = 4, k2 = 1
and α = 0.1, W1 = (0.25, 0.25, 0, 0.25, 0.25, 0), W2 =
(0.67, 0.33, 0, 0, 0, 0), W = (0.292, 0.258, 0, 0.25, 0.25, 0).
Therefore, predicates P3 and P6 are excluded, and Sr =
{P1, P2, P4, P5}.

3.4 Weighted Kendall’s tau Distance
Based on the predicate weighting, we propose a weighted

form of the Kendall’s tau distance as below.

Definition 1 (Weighted Kendall’s tau Distance).
Given π and σ two rankings of the L predicates, the weighted
Kendall’s tau distance DW,K is defined as

DW,K(π, σ) =
X

1≤i<j≤L

K(Pi, Pj)W (Pi, Pj), (6)

where K(Pi, Pj) is the same as that in Eq. 2, and W (Pi, Pj)
= W (Pi)W (Pj).



Because the weighted Kendall’s distance is later used to
define R-Proximity, its validity as a distance metric is first
proved in the following theorem.

Theorem 1 (Metric Validity). The weighted
Kendall’s tau distance DW,K is a metric on the set of
L-predicate rankings if W (Pi, Pj) > 0 for 1 ≤ i < j ≤ L,
i.e., let π, σ, η be three rankings of L predicates, the following
four properties hold:
(1) DW,K(π, σ) ≥ 0,
(2) DW,K(π, σ) = 0 iff π = σ,
(3) DW,K(π, σ) = DW,K(σ, π),
(4) DW,K(π, σ) ≤ DW,K(π, η) + DW,K(η, σ).

Proof. The proofs for (1), (2) and (3) are trivial once
K(Pi, Pj) can only be either 0 or 1 and W (Pi, Pj) is positive
are recognized. In the following, we prove property (4), the
triangle inequality.

To prove the triangle inequality, it suffices to show that
for any nonzero term in DW,K(π, σ), the term also appears
in DW,K(π, η) + DW,K(η, σ). In fact, if K(Pi, Pj) = 1 in
DW,K(π, σ), we know that the relative order between Pi

and Pj are different in π and σ. Without loss of general-
ity, suppose π(Pi) < π(Pj) and σ(Pj) < σ(Pi). Because
there are only two possible orders between Pi and Pj in a
ranking, the relative order between Pi and Pj in η must
disagree with that in either π or σ. According to the defi-
nition of K(Pi, Pj), the term W (Pi, Pj) must also appear in
DW,K(π, η) + DW,K(η, σ). Therefore,

DW,K(π, σ) ≤ DW,K(π, η) + DW,K(η, σ) (7)

Meanwhile, if the relative order of Pi and Pj agrees between
π and σ, but disagrees with that in η, the right side of Eq. 7
is larger. The equal sign holds when no such predicate pairs
exist.

Based on Theorem 1, the weighted Kendall’s tau distance
is a valid metric for distances between the projected rank-
ings. And in consequence, R-Proximity is defined: the
distance between fi and fj is DW,K(τ ′

i , τ
′
j), which equals

to DW,K(τi, τj). Continuing Example 2. DW,K(τ1, τ2) =
0.07536 > 0.0625 = DW,K(τ1, τ3), which conforms to
what we expected. Finally, we note that the weighted
Kendall’s tau distance can be efficiently calculated, because
the time complexity of the classic Kendall’s tau distance is
O(n log(n)) [10], and the W (Pi, Pj)’s in Eq. 6 do not change
the complexity. In our case, the distance between two rank-
ings is calculated in O(l log(l)) time, where l = |Sr|. In the
next section, we discuss the advantages of R-Proximity
over the T-Proximity.

4. ADVANTAGES OF R-PROXIMITY
R-Proximity features a number of advantages over

T-Proximity. First, R-Proximity is semantically closer
to the underlying faults. Ideally, we want to partition fail-
ing cases such that failures due to the same fault are grouped
together. However, since the “due-to” relationship between
failing cases and underlying faults is unknown without ex-
pensive manual investigation, this ideal partition is gener-
ally unachievable. Here, we use Sober to substitute for the
manual investigation, and consequently, the fault location
each failing case suggests is an approximation to the real
“due-to” relationship. Therefore, under R-Proximity, fail-
ing traces whose induced fault localization agree with each

other are regarded near to each other. On the other hand,
T-Proximity approximates the “due-to” function by hy-
pothesizing that similar traces implies the same fault. As
we will see soon in the coming case study, failing cases due
to the same fault can actually exhibit quite divergent be-
haviors.

Secondly, as R-Proximity is defined based on the
fault location each failing trace suggests, clustering with
R-Proximity automatically provides a guess about the
fault location for each cluster. Specifically, because only
failures agreeing on the fault location are grouped together,
their agreement just represents the fault location they sug-
gest. With such information, failing cases can be assigned
to responsible developers accordingly. This, however, can-
not be achieved by clustering with T-Proximity.

Finally, R-Proximity can also help developers interpret
statistical debugging results, and this, again, cannot be ac-
complished with T-Proximity. Statistical debugging pro-
duces a predicate ranking τ as its localization result, but
without a concrete failing case to illustrate why certain pred-
icates are ranked high in τ , a developer may find the result
hard to interpret. With R-Proximity, we can find a failing
case ti whose corresponding τi mostly agrees with τ . This
selected case can help the developer understand and utilize
the statistical debugging result. In the rest of this section,
we illustrate the above three points through a case study
with the grep program.

4.1 Fault Injection
We obtained a copy of the grep-2.2 subject program from

the “Subject Infrastructure Repository” [6]. The program
has 15,633 lines of C code, and is accompanied with a test
suite of 470 test cases. We manually injected two faults into
the source code, which are shown in Figure 3.

The first fault (Fault 1) is an “off-by-one” error: We added
the “+1” at line 553. This fails 48 of the 470 test cases. The
second fault (Fault 2) is a “subclause-missing” error. We
commented out the subclause lcp[i] == rcp [i] at line
2270, and this incurs another 88 failing cases. We use F1

and F2 to denote the sets of failing cases due to Fault 1
and Fault 2, respectively. When both faults are present, all
cases in F1 and F2 fail, resulting a total of 136 failing cases.
Because F1 and F2 do not intersect, Fault 1 is the culprit
for the failing cases in F1, and Fault 2 for those in F2.

We note that although the two faults are manually in-
jected, they do mimic realistic faults. When developers are
unclear about the corner condition, logic errors like “off-by-
one” or “subclause-missing” usually sneak in. Logic errors,
like these two, generally do not incur segmentation faults,
so one cannot rely on crash scenes to categorize failing cases
and fix faults. Instead, the best that a developer can do
is to randomly pick one failing case and manually trace
its execution. With the grep subject program, for exam-
ple, the developer needs to hunt for the faults in more than
15k lines of code. In the next subsection, we illustrate how
R-Proximity can help developers handle this multiple-fault
case.

4.2 Analysis Results
We now illustrate the advantages of R-Proximity in the

following three subsections, which correspond to the three
aspects discussed at the beginning of this section.



    static int grep(int fd)
    {
     ...
541  for( ; ; )
542  {
      ...
548   lastnl = bufbeg;
549   if (lastout)
550     lastout = bufbeg;
551   if (buflim - bufbeg == save)
552     break;
553   beg = bufbeg + save - residue + 1 ; /* fault 1 */
554   for(lim = buflim; lim > beg && lim[-1] != '\n '; --lim)
555     ;
      ...
574   if (beg != lastout)
57 5     lastout = 0;
576   save = residue + lim - beg;
      ...
580  }
     ...
587  return nlines;
588 }

     Fault 1: An off-by-one error in grep.c

     static char ** comsubs(char* left, char* right )
     {
       ...
2264   for(lcp = left; *lcp != '\0'; ++lcp)
2265   {
2266     len = 0;
2267     rcp = index(right, *lcp);
2268     while (rcp != NULL)
2269     {
2270       for (i = 1; lcp[i] != '\0' /* && lcp[i] == rcp[i] */ ; ++i) /* fault 2 */
2271         continue;
2272       if (i > len)
2273         len = i;
2274       rcp = index(rcp + 1, *lcp);
2275     }
2276     if (len == 0)
2277       continue;
2278     if ((cpp = enlist(cpp, lcp, len)) == NULL)
2279       break;
2280    }
2281    return cpp;
2282 }

Fault 2: A subclause-missing error in dfa.c

P1

P2

P3

Figure 3: Two Injected Faults

4.2.1 Failure Grouping
In order to show the difference between R-Proximity and

T-Proximity, we visualize the pair-wise proximity between
the 136 failing cases in proximity graphs, using multidimen-
sional scaling (MDS) techniques [1]. MDS techniques take
the pair-wise distances between n points, and try to present
them in a much lower dimensional (here 2-D) space while
preserving the original pair-wise distances. When two points
overlap in the proximity graph, it does not mean they origi-
nally have a zero distance. Instead, it only suggests that the
distance between them is too small for MDS to visualize at
a given scale.

Figure 4 shows the proximity graphs for the 136 failing
cases with R-Proximity (left) and T-Proximity (right),
and the middle figure is the close-up of the rectangular re-
gion in the left figure. The red crosses and blue circles repre-
sent the failing cases in F1 and F2, respectively, and the red
cross bounded by a diamond symbol denotes the composite
ranking. Ideally, blue circles should cluster together and be
away from red crosses.

As we can see from the left figure, the failing cases in
F2 do form a cluster under R-Proximity, and the clus-
ter is also away from most red crosses. In comparison, the
grouping with T-Proximity is not as dense as that with
R-Proximity: The blue circles stretch in a line. This in-
dicates that failing cases due to the same fault can exhibit
quite divergent behaviors, which explicitly undermines the
hypothesis that T-Proximity relies on. On the other hand,
because Sober is nevertheless an alternative for manual in-
vestigation, the “due-to” function cannot be precisely un-
covered. In the left figure, a number of red crosses are near
to the blue cluster, and the close-up observation even shows
that a red cross is inside the blue cluster. This impurity
is understandable because one cannot expect an automated
tool to perform as accurately as human developers. More-
over, as we can see in the following, this impurity does not
impact the usage of R-Proximity.

4.2.2 Guided Assignment of Failing Traces
Besides providing denser groupings, R-Proximity also fa-

cilitates the assignment of failing cases to responsible devel-
opers. With R-Proximity, a cluster of failing cases natu-
rally suggests the fault location through the top predicates
most rankings agree on. For brevity in what follows, let us

denote the 21 cases in the ellipse as C1 (Cluster 1), and the
112 cases in the rectangular region as C2.

Ranks Filename Line Num. Predicate

P1 grep.c 549 (lastout) == true

P2 grep.c 574 (beg != lastout) == true

P3 dfa.c 2270 (lcp[i] != ‘\0’) == true

Table 1: Three Fault-relevant Predicates

A glance over the top predicates of the 21 rankings in C1

immediately identifies the fault location. Specifically, the
predicates P1 and P2 (see Table 1 and Figure 3) appear as
the top-2 predicates in 17 of the 21 rankings. Therefore,
predicates P1 and P2 are the clear indicator of fault loca-
tions. As a result, these 21 failing cases should be assigned
to developers responsible for the “grep.c” file, together with
suggestions on possible fault locations.

Similarly, by examining the top predicates of the 112 rank-
ings in C2, we find that the predicate P3 is the highest in 44
of the 112 rankings, and the second most frequent predicate
appears as the highest in only 8 rankings. This renders the
predicate P3 as a good indicator of the fault location. In
consequence, one can assign the 112 failing cases to the de-
velopers who are in charge of the “dfa.c” file, and tell them
that line 2270 likely has some problems. Because 24 of the
112 failing cases are actually due to Fault 1, we see that the
impurity does not dilute the significance of P3 being fault
indicator.

The remaining three cases are left unassigned because not
all failing cases need to be assigned at one time, especially
when only a small number of cases are left. When some
faults are fixed based on assigned cases, some unassigned
cases may no longer fail. Therefore, with R-Proximity, we
identify groups of failing cases with clear indication of the
fault location, and assign them to responsible developers
accordingly. In contrast, because no fault information is
available with clusters under T-Proximity, developers need
to manually investigate, and assign failing cases accordingly.

4.2.3 Interpret Statistical Debugging
We now illustrate how R-Proximity helps developers in-

terpret the debugging result from Sober, and locate the two
faults in Figure 3. According to the instrumentation schema
in Section 2, the grep subject is instrumented with 1732
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Figure 4: Proximity Graphs with R-Proximity, close-up of the rectangular region and with T-Proximity

boolean and 1404 return predicates. A first run of Sober
on the 136 failing and 334 passing cases produces a pred-
icate ranking τ , whose top three predicates are P1, P2 and
P3 in order. As we can see, the predicates P1 and P2 point
to the faulty function, and P1 is only 4 lines above the real
fault location. The predicate P3, on the other hand, directly
points to the exact location of the second fault. Although
Sober is pretty accurate in this case, without a proper fail-
ing case, developers may have difficulty in figuring out why
the three predicates are related to the fault(s).

With R-Proximity, a failing case whose induced pred-
icate ranking mostly agrees with τ can be easily found.
In this case, the 10th failing case f10, which corresponds
to the 122nd test input, is the nearest one to τ under
R-Proximity, and in τ10, P1 and P2 are the top two predi-
cates. We now can explain why P1 and P2 are ranked high
based on the execution of f10.

In the execution of f10, the evaluation bias of predicate
P1 is 0.09. In contrast, the evaluation bias is above 0.9286
in all passing cases. So it seems that the evaluation of P1

is abnormally biased to false. Similarly, we find that the
evaluation of P2 is abnormally biased to true evaluations.
By tracing the execution of f10, we find that normally beg

is expected to be equal to lastout at line 574. However,
with the “+1” added at line 553, beg is no longer equal to
lastout for most cases. In consequence, the predicate P2

tends to evaluate true, and this makes the variable lastout

frequently reset to 0 at line 575. This reset of lastout finally
causes the predicate P1 at line 549 to evaluate as false.
Therefore, based on a proper case f10, the localization result
in Table 1 is interpreted in a concrete way, which can finally
guide developers to fix the fault.

In this case, f10 is a proper failing case that developers
can base debugging on. However, such proper cases can-
not be found under T-Proximity, because there is no way
one can judge whether a failing trace will suggest the same
fault predicates as τ . As an alterative, people may won-
der whether a randomly-chosen failing case would similarly
work. The answer is less likely. First, a random failing case
may be due to a different fault, other than the one sug-
gested by τ . In this example, one has a probability of 0.65
(88/136) to pick up a failing case due to Fault 2, whereas
the top predicates in τ are about Fault 1. Furthermore,
even if a failing case due to Fault 1 is selected, it may still
fail to explain τ . In this example, there are 25 failing cases
in F1 whose evaluation bias of P1 is 1. In these cases, P1

exhibits no abnormal symptoms, which renders these cases

inappropriate for debugging. In fact, the observation that
not all failing cases are equally effective for debugging holds
in general, and it conforms well to our debugging experi-
ence: In manual debugging, even for the same fault, some
failing cases are easy to trace whereas others can be pretty
unwieldy.
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Figure 5: Proximity Graphs with R-Proximity (left)
and T-Proximity (right)

After fixing the first fault, a second run of Sober with the
88 failing and 382 passing cases puts P3 at the top. Figure
5 plots the proximity graphs for the 88 failing cases with
R-Proximity (left) and T-Proximity (right) respectively.
Similarly, with R-Proximity, a proper failing case is easily
found, and tracing it immediately clears the second fault.

4.3 Time Efficiency
Because Sober needs to be invoked with every fail-

ing case, people may wonder whether computing the
R-Proximity distance will take a long time. In fact,
since Sober only carries numerical computation, it is light-
weighted even when invoked multiple times. For example, it
takes 13.6 seconds to fingerprint the 136 failing cases in the
first round, and takes 9.9 seconds for the 88 failing cases in
the second round.

Besides fingerprinting, the calculation time of the pair-
wise distance is also negligible. In the first round, pred-
icate rankings are projected into a subspace of 33 pred-
icates, and the calculation of the pair-wise distance with
R-Proximity and T-Proximity takes 0.345 and 0.101 sec-
onds, respectively. In the second round, the projected sub-
space has 26 predicates, and the time for R-Proximity and
T-Proximity distance is 0.245 and 0.042 seconds. All the
above time was recorded on a 3.2GHz Intel Pentium-4 PC
with 1GB physical memory, running Fedora Core 2.



Subjects Versions LOC Failings Excluded

schedule 9 397 4–294 4

schedule2 9 299 2–65 2

print tokens 7 539 6–186 4

print tokens2 10 489 3–518 0

tot info 23 398 2–199 6

replace 31 507 3–309 10

Table 2: Characteristics of Subject Programs

Figure 7: Colorbar for T -score Representation

5. PROPERTY EXPLORATION
In this section, we explore the properties of R-Proximity

with a set of subject programs, and verify whether the ob-
servations from the previous case study hold in general. The
Siemens suite [6] is taken as the subject, which consists of
130 faulty versions of seven subject programs. The program
tcas is excluded due to its small code size as the authors did
in [7]. Moreover, as we are interested in the grouping prop-
erty of failing cases under R-Proximity and T-Proximity,
versions with less than 30 failing cases are also excluded. Ta-
ble 2 shows the characteristics of the six subject programs
used in this study. The fourth column lists the range of fail-
ing cases each subject program has across different versions,
and the fifth column shows how many versions are excluded
due to the 30-failing-case cutoff. As a result, 63 versions are
used in this experimental study. In Section 5.1, we study
the correlation between R-Proximity and T-Proximity,
which indicates that R-Proximity is a new and different
proximity definition from T-Proximity. After that, we ex-
amine the design of the weighted Kendall’s tau distance in
Section 5.2, which demonstrates the necessity of both pred-
icate selection and weighting. Finally, Section 5.3 summa-
rizes this experiment study.

5.1 Proximity Correlation
For R-Proximity to be a new proximity measure, we

need to verify that no strong correlation exists between
R-Proximity and T-Proximity. For this reason, we cal-
culate the proximity correlation between R-Proximity and
T-Proximity for each of the 63 faulty versions under study.
Specifically, for each faulty version, the distance between
each pair of failing cases is calculated under R-Proximity
and T-Proximity respectively, and then the Pearson’s cor-
relation coefficient ρ between the two kinds of distances is
obtained. Across the 63 versions under study, only one ver-
sion has a correlation larger than 0.9, and ρ is smaller than
0.7 in 50 of the 63 versions. Therefore, the correlation be-
tween these two proximities is weak. This weak correlation
is expected because R-Proximity uses Sober to fingerprint
failing traces into rankings, and then calculates the weighted
Kendall’s tau distance between rankings. In comparison,
T-Proximity calculates the Euclidean distance based on
failing traces directly.

The weak correlation between R-Proximity and
T-Proximity is also reflected on the proximity graphs. Fig-

Subjects min-T med-T max-T

schedule V4 0.0062 0.0099 0.066

schedule2 V5 0.0085 0.0106 0.018

print tokens V6 0.0649 0.9337 0.9982

print tokens2 V4 0.0362 0.2999 0.9328

tot info V23 0.1242 0.1863 0.8376

replace V13 0.0052 0.0069 0.0373

Table 3: Characteristics of Programs in Figure 6

ure 6 presents the proximity comparison on six faulty ver-
sions, one from each subject program.

An overview of Figure 6 reveals that failing cases tend to
form clusters under R-Proximity, but are loosely scattered
under T-Proximity. Such loose scattering should not be
shrugged off by saying that since failing cases are due to
the same fault, they are not supposed to form separate clus-
ters. In fact, as we have seen in the case study, not all
failing cases due to the same fault are equally appropriate
for debugging. In more general cases, because a fault can be
triggered with different inputs, the fault can incur abnormal
behaviors at various program locations. Figure 6, as well as
the case study, indicates that failing cases that incur abnor-
mality at different locations cannot be distinguished under
T-Proximity.

In order to verify that clusters under R-Proximity do
suggest different fault locations, we calculate the T -score
for each of the failing cases. The T -score was defined in [13]
to evaluate the fault localization quality. Intuitively, it mea-
sures how far away the suggested fault location is from the
real fault location. For clear visual inspection, points are
colored based on their T -scores, according to the colorbar
shown in Figure 7. Basically, all T -scores in a faulty ver-
sion are linearly mapped to colors in the colorbar, with the
minimum and maximum T -scores corresponding to the blue
and the red colors. The minimum, median and maximum
T -scores of the six programs are listed in Table 3. In this
way, failing cases suggesting similar fault locations should
be colored by similar colors.

From the coloring information, we can immediately see
that, for all the six subject programs shown in Figure 6,
clusters under R-Proximity are in consistent colors. In
contrast, points of different colors are mixed together un-
der T-Proximity. This contrast indicates that failing cases
that exhibit divergent behaviors can suggest similar fault lo-
cations, which reaffirms our observation from the case study.

5.2 Properties of Weighted Kendall’s Dis-
tance

In Section 3.4, we introduced the weighted Kendall’s tau
distance as the distance measure for the R-Proximity. The
weighted Kendall’s tau distance performs predicate selec-
tion and predicate weighting simultaneously with the mixed
weighting schema (Eq. 5). Here, we study whether predicate
selection and weighting are indeed necessary and critical.
The effect of those parameters in Eq. 5 is also illustrated in
this section.

5.2.1 Is Predicate Selection Critical?
In Eq. 5, setting α = 0 and k1 = L selects all predicates.

Figure 8 shows the grouping contrast when k1 = 24 ver-
sus when k1 = 10 on schedule V4. Specifically, Figure 8(a)
shows the grouping when no predicates are excluded. As we
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Figure 6: Grouping Contrast between R-Proximity (R) and T-Proximity (T) on Six Subject Programs
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Figure 8: Effect of Predicate Selection

can see, no clear grouping of the failing cases exists. On the
other hand, when the top-10 predicates of τ are selected,
cases are well separated with consistent colors. Therefore,
predicate selection is critical for R-Proximity to group to-
gether failing cases suggesting similar faults.

5.2.2 Is Predicate Weighting Critical?
The frequency weighting implemented by Eq. 4 is

also critical for proper groupings of failing cases under
R-Proximity. The intuition of frequency weighting is that
predicates favored by more individual rankings should speak
louder in deciding the distances between failing cases.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(a) Even Weighting
−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(b) Frequency Weighting

Figure 9: Effect of Predicate Weighting

Specifically, we set α = 1 to focus on the effect of fre-
quency weighting in W2, and Figure 9 shows the contrast.
In Figure 9(b), the predicate weights are calculated by Eq.
4, whereas in Figure 9(a), the above calculated weights are
wiped even. As we can see, without predicate weighting,
failing cases again are mixed together.

5.2.3 Parameter Effects
Now that both predicate selection and weighting are

shown critical, we now examine how the grouping of fail-
ing cases evolves when parameters k1 and α vary.

With α set as 0, Figure 10 shows how the grouping of
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Figure 10: Grouping of Failing Cases with Different k1
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Figure 11: Grouping of Failing Cases with Different α

the failing cases of schedule V4 changes when k1 varies
from 5 to 11. When k1 = 5, these cases are represented
by nine points because different rankings become identical
when they are projected onto a small subspace. When k1

increases, more details about the proximity between failing
cases become available, and the grouping becomes stable at
a certain stage, like k1 = 10 in this case. Certainly, when k1

reaches the maximum L, the grouping boundary is blurred,
as shown in Figure 8(a).

We now examine how the balancing parameter α affects
the grouping of failing cases. When α is small, the predicate
weight is mainly determined by the composite ranking τ . In
consequence, more points tend to cluster around τ . Figure
11 shows how the grouping changes when α varies from 0
to 1. As one can notice, the diamond point, which denotes
τ , moves to the group edge from inside when α increases.
Because one usage of R-Proximity is to help find a failing
case that explains τ for debugging, a small value of α, like
0.1, is generally preferred.

5.3 Experiment Summary
Experiments in subsection 5.1 clearly indicate that

R-Proximity is a different proximity measure from
T-Proximity, and failing cases tend to form dense and
meaningful clusters with R-Proximity. This observation
reaffirms our conclusion drawn from the case study in Sec-
tion 4. The study in subsection 5.2 suggests that both pred-
icate selection and weighting are necessary for the weighted
Kendall’s tau distance to measure the semantic similarity
between failing cases. As a final note, although only prox-
imity graphs for schedule V4 are provided in Section 5.2, the
conclusions drawn should hold in general.

6. DISCUSSIONS
Here we discuss the related work and potential threats to

validity.

6.1 Related Work
First, this work is closely related to fault localization.

Due to the high cost of manual debugging, numerous fault
localization techniques have been developed recently, like
Delta Debugging [18] and its derivatives [3, 7, 15], NN [17],
Liblit05 [12], Sober [13] and Tarantula [9]. This work re-
lates to fault localization in the following ways. First, a
statistical debugging tool (Sober) is used in this study to
fingerprint failing traces into predicate rankings, on which
R-Proximity is then defined. Conventionally, automated
debugging tools are used for fault localization purpose only.
To the best of our knowledge, this is the first piece of work
that uses statistical debugging to fingerprint executions. We
believe that the idea of representing failing traces by the
fault they each suggest is compatible with other fault lo-
calization techniques as long as a proper distance is defined
between localization results. Second, we demonstrate that
R-Proximity can in turn help developers interpret statis-
tical debugging results, which alleviates a plaguing problem
of statistical debugging.

Moreover, this study also relates to failing case explo-
ration. Dickinson et al. propose a technique called cluster
filtering to assist developers in finding failing cases from a
set of mostly passing executions [4, 5]. Later on, Podgurski
et al. report a study on clustering failure reports [16]. In
these studies, T-Proximity is used to assess the execu-
tion similarity. In comparison, in this paper, we propose
R-Proximity as another type of failure proximity, which is
shown to be more suitable for characterizing the semantic
proximity between failures. Moreover, similar to previous
work [4, 5, 16], multidimensional scaling (MDS) techniques
are used in this study to present the failure proximity. How-
ever, as the composite ranking τ can be visualized with other
executions under R-Proximity, our visualization also pro-
vides a convenient means for developers to find a proper case
for debugging. In previous studies, fault localization results



are not visualized together with failing traces. The Taran-
tula [9] tool visualizes the fault-relevance of each program
statement, but its visualization does not help developers find
a proper case to debug.

Finally, our work also relates to the analysis of rank
data [14]. In practice, many kinds of data, especially those
involving opinions and judgements like merchandize prefer-
ences and political elections, are represented as rank data.
In this study, we fingerprint failing cases into predicate rank-
ings, and this is the first time failing traces are represented
as rank data. In consequence, some interesting questions
can be explored. For example, in the future, we will in-
vestigate whether more accurate fault localization can be
achieved by aggregating individual rankings. Furthermore,
this work introduces a weighted form of the Kendall’s tau
distance, while the classic Kendall’s tau distance is a well-
studied metric for rankings [10]. We prove its validity as a
metric, and demonstrate the critical role weighting plays in
R-Proximity.

6.2 Threats to Validity
There are a number of threats to the validity of the case

study and experiments. First, although the two faults in
the grep subject program mimic realistic “off-by-one” and
“subclause-missing” errors, they are nevertheless injected by
our authors. For this reason, more case studies on large pro-
grams with multiple real faults need to be performed in the
future. In general, we expect that similar results will be ob-
served because the effectiveness of R-Proximity depends
on the fault localization quality, and statistical debugging
has been shown capable of locating real faults in large pro-
grams [11–13]. Nonetheless, more experiments are needed
to prove or disprove this expectation. Second, hand-crafted
test inputs, rather than operational traces collected from the
field, are used in this study. In general, operational failing
traces are more different from each other. As T-Proximity
relies on the literal trace similarity, divergent traces will ren-
der T-Proximity less effective in grouping failing traces due
to the same fault. In the case study, we have observed that
divergent traces can be fingerprinted into similar predicate
rankings by Sober, but it is yet unknown whether similar
things will happen with operational traces. Finally, the case
study illustrates how R-Proximity helps developers under-
stand and utilize the statistical debugging result, but the
ultimate evaluation should be carried out with end-users.
However, due to the difficulty (and expense) of controlled
user study, most fault localization researches are currently
evaluated by the authors [9,11–13,17,19].

7. CONCLUSION
In this paper, we proposed R-Proximity, as an alterna-

tive to T-Proximity, to assess the proximity between fail-
ing traces. We reason and experimentally validate that with
R-Proximity, failing traces due to the same fault tend to
be grouped together, but not with T-Proximity. In addi-
tion, R-Proximity features some exclusive advantages over
T-Proximity. For example, we show that R-Proximity
can help developers understand and utilize the statistical
debugging result. A number of interesting topics merit fur-
ther study, for example, it is interesting to explore whether
more accurate localization results can be achieved by aggre-
gating the predicate rankings from each failing trace.
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