

Dragon Star 2017 Course: Program Analysis and Software Security

Project 2: Program equivalence checking using SMT

In this assignment, you are asked to convert two different implementations for the same task into SSA
form and prove that they are not semantically equivalent. Next, you will correct the buggy version of
the program (student.c) and prove that it is semantically equivalent to the correct version (teacher.c).
The code needed for this project as well as the documentation for z3py can be downloaded at:

http://web.ics.purdue.edu/~perry74/equivalence_assignment.zip

Program Descriptions:
In the project folder you will find two separate C programs: teacher.c, and student.c. Both of these
programs take in an integer as input and print out each digit in the number from least significant to
most significant. However, student.c is buggy and will not have the same output as teacher.c in many
cases. For this particular homework assume that all the inputs given to the programs are between 100
and 999 or between -999 and -100.

Part 1: Convert to SSA
Edit teacher.c and student.c so that variables in the programs are in SSA form. This will require the
creation of new variables and loops will have to be unrolled.

Part 2: Prove the Programs are Not Semantically Equivalent
Use the python wrapper for the Z3 theorem prover from Microsoft Research to model the semantic
behavior of the two programs. Additionally, add constraints that prove that the two programs do not
always behave the same way when given the same inputs. To accomplish this, it is important to have
the constraints for both programs in the same python script. Additionally, you'll need to place
constraints on the input variable to ensure correct bounds and constraints on both program's outputs to
perform the semantic comparison. Once you have completed the script Z3 will report a concrete
instance of when the programs differ in behavior.

Part 3: Correct student.c and Prove the Updated Version is Semantically Equivalent to teacher.c
Make modifications to student.c so that it always exhibits the same behavior as teacher.c on inputs
between 100 and 999 or between -999 and -100. After fixing the program, model the updated version
using Z3 and show that after your updates the two programs are semantically equivalent.

Suggested Steps:

1.) Install Z3 and the corresponding python wrapper. The source code and installation guide can be
found at: https://github.com/Z3Prover/z3 (Make sure to read the Python section in the README file
before starting the build process.)

2.) Make sure that Z3 has been correctly built and installed for python. To test this simply make a

python script that says: “from z3 import *”. If there are no complaints when running the script then z3
is installed correctly. (The default installation process makes is so the z3 api only works when running
python scripts in the z3/build directory. If you are having trouble making it work make sure you are in
this directory when running your scripts)

3.) Read through the z3py documents included in the examples directory. In particular, read through the
files guide-examples.htm and advanced-examples.htm (open them in a browser). These files describe
the syntax of the various features available in z3 and also have some interesting example problems.

4.) Experiment with the z3py tool by creating integer variables with constraints involving conditionals
and basic arithmetic and find solutions to them using the solver. This should allow you to get an
understanding of how the tool works and give you a better idea of what you'll need to do for the
project. An example of doing so is given in the attachment.

5.) Begin modeling the programs!

Important Notes:

1.) Use the If(condition, then, else) construct when modeling the program. For some reason this syntax
is not included in the original z3py documentation. However, it is quite useful when modeling
programs.

2.) When modeling variables and their corresponding updates be careful. Remember that the variables
for z3 can only be assigned to once. (HINT: Think about SSA)

3.) Modeling loops can often be difficult. Think carefully about how you can handle them. (HINT:
what do the bounds on program inputs infer about each loop's behavior?)

4.) Some internal Z3 functions may not behave in a C like fashion. To handle this, simply use Z3
constraints to model the desired behavior.

5.) Your scripts for semantic comparison must consider all inputs within the bounds. This is the only
way to perform the analysis and have the solver find a buggy input. Setting the input variable to a value
you know is buggy is not sufficient!

6.) Do not worry about modeling printf. Simply model the output of the program as the digit which can
be stored as an integer variable.

7.) Unroll loops in the program enough times to cover the input bounds. Loops can be modeled as
nested if-then-else conditions.

Example:
Consider the following simple C program:

And this z3py script that proves that if the value of the first input argument is greater than 10, y must
have a value of 3 at the point the program returns.

The returned solution from Z3 will be UNSAT. This is because we added conditions that stated when x
is greater than 10, y_1 (the version of y before the program returns) does not equal 3. Therefore, we are
able to prove that if the input argument is greater than 10 y must equal 3.

Grading:
Your grade will be based on four deliverables:
 1.) SSA form of student.c and teacher.c
 2.) Python script that uses z3 to prove student.c and teacher.c are not equivalent on the given
 bounds
 3.) Corrected version of student.c

4.) Python script that uses z3 to prove corrected_student.c and teacher.c are equivalent on the
given bounds

The first part will be graded based on how correct your SSA implementation is. The second and fourth
parts will be graded on how accurately your models represent the real programs and how well it
proves/disproves their semantic equivalence. The third part will be graded on how well you corrected
student.c

