
Input Provenance Tracking Tool

Contents

1 Part 0 : Setup environment 1

2 Part 1. memtrace: Memory read/write tracking tool 2
2.1 Project Description . 2
2.2 Instructions . 2
2.3 Examples . 3

3 Part 2. provenance: Input provenance tracking tool 4
3.1 Project Description . 4
3.2 Instructions . 5
3.3 Examples . 5

4 Useful resources 6
4.1 VEX IR . 6
4.2 Insert a function call statement 7
4.3 Standard C functions . 8
4.4 Sample Valgrind tool . 8
4.5 Valgrind OSet datastructure . 8

1 Part 0 : Setup environment

First, you need to download and install Valgrind. Valgrind 3.12.0, the latest
version, can support Mac OS X 10.10 but it is highly advised to use Linux. In
order to create a new Valgrind tool you can follow the instructions in http://

valgrind.org/docs/manual/manual-writing-tools.html. The project tem-
plate already contains the necessary files.

• Download Valgrind 3.12.0

$ curl -O http://valgrind.org/downloads/valgrind-3.12.0.tar.bz2

$ tar xjvf valgrind-3.12.0.tar.bz2

• Download project template.

$ cd valgrind-3.12.0/

$ curl -O https://www.cs.purdue.edu/homes/kim1051/valgrind/project.tar.gz

$ tar xzvf project.tar.gz

1

Dragon Star 2017 Course : Program Analysis and Software Security Project

http://valgrind.org/docs/manual/manual-writing-tools.html
http://valgrind.org/docs/manual/manual-writing-tools.html

• Configure and build Valgrind.

$ sh autogen.sh

$./configure --prefix=‘pwd‘/inst

$ make

$ make install

• Disable address space layout randomization.

If your linux kernel supports address space layout randomization, you
need to disable it to get similar results at different executions. You need
to repeat this step every time you reboot your machine.

$ echo "0" > /proc/sys/kernel/randomize va space

2 Part 1. memtrace: Memory read/write track-
ing tool

2.1 Project Description

In this part, you will build a memory read/write tracking tool with Valgrind.
Your tool will detect every memory operations at runtime and dump the address
being accessed.

Output Format At every memory read/write operation, your tool should
print the address in the following format:

[R/W] 0x####

• The first column indicates whether the operation is read or write.

• The second column shows the memory address of the operation.

2.2 Instructions

• The template code is in directory memtrace/

• Create helper functions mt log load() and mt log store() which will take
the address of the accessed memory and print the address and the access
type(R/W) at runtime.

• Read mt instrument() function in the template and identify the locations
where you should insert calls to helper functions.

Memory read operation is represented by Load expression and memory
write operation is represented by Store statements. For the basic under-
standing of the structure of the instrument function refer to slide 13 in [1]
and Sec. 4.1.

• At load expression, insert a call to mt log load() by using unsafeIRDirty 0 N()
function. Refer to the slide 14 and Sec. 4.2.

2

• At store expression, insert a call to mt log store().

• Execute the memtrace and check the results using the examples in the
next section.

$ valgrind --tool=memtrace ./ex1

2.3 Examples

Example 1 Code and the binaries are in examples/ directory.

int a , b ;
int main (void) {

a = 10 ;
b = a + 20 ;

}

Expected output 1 Note: your output should include the following items
but may also have other items.

W 804 a020
R 804 a020
W 804 a01c

Example 2 Code and the binaries are in examples/ directory.

int a , b ;
int array [] = {1 , 2 , 3 , 4} ;
int main (void) {

for (a = 0 ; a < 3 ; a++)
b += array [a] ;

}

Expected output 2 Note: your output should include the following items
but may also have other items.

W 804 a030
R 804 a030
R 804 a030
R 804 a018
R 804 a02c
W 804 a02c
R 804 a030
W 804 a030
R 804 a030
R 804 a030

3

R 804 a01c
R 804 a02c
W 804 a02c
R 804 a030
W 804 a030
R 804 a030
R 804 a030
R 804 a020
R 804 a02c
W 804 a02c
R 804 a030
W 804 a030
R 804 a030

3 Part 2. provenance: Input provenance track-
ing tool

3.1 Project Description

In this project, you are asked to build a provenance tracking tool for Valgrind.
Provenance tracking is a process of marking and tracking input data in a pro-
gram at runtime in order to identify all dependencies on those values at certain
execution points. This type of dynamic analysis is becoming increasingly pop-
ular in the context of software testing, debugging and system security.

Provenance sources Provenance sources are initial entry points of informa-
tion to your program. Depending on the application context, many different
types of sources could be defined. It includes standard input (stdin), files , and
network data, etc. In this project, we choose only the standard input (stdin)
and files as provenance sources. You must devise a forward dynamic algorithm
and maintain a proper data structure to keep track of data provenance in mem-
ory locations and registers. The goal is to trace back all provenance targets to
the specified provenance sources.

Provenance Targets We consider program variables or function pointers as
provenance targets. Therefore, we are interested in finding their dependency on
the specified provenance sources.

Output Format The output trace-file must be a list of log records in the
following format:

0x#### : [0x####:value] ...

• The first column specifies the memory address of a provenance target. You
have to repeat the log records to cover all provenance targets.

4

• The second column shows whether this memory location is dependent on
a provenance source due to a data dependency DD or control dependency
CD or both. This field is mandatory for those who work in teams.

• The remaining columns show pairs of memory addresses of provenance
sources and their corresponding values. These are the memory addresses
that keep the inputs from stdin or files.

3.2 Instructions

• The template for the part 2 is in provenance/ directory.

• Design your data structure to hold set of input provenances. You can
either use set data structure provided in the Valgrind (Sec. 4.5) or your
own set implementation.

• Implement 2-layer shadow memory as in slides 6-9. Also refer to slides 7
for shadow temp variables and shadow registers.

You don’t need to use shadow register function provided by Valgrind.
Instead, you can create an array for shadow registers similar to shadow
temp variables.

• Complete pv post call() which will be called after a system call is executed.
Please refer to the slide 16.

For a read system call, args[1] denotes the address of the buffer and args[2]
denotes the size of the buffer. After a read system call is executed, your
tool should mark each byte of the buffer as a provenance source.

• Create helper functions to copy the set of input provenances between
memory, temp variable and registers.

• Insert calls to the helper function in pv instrument().

For example, in a store statement if the data is RdTmp expression you
should copy the set of input provenances from the shadow temp variable to
the shadow memory. Complete all switch/case blocks in pv instrument().

• At the store statement, print the set of input provenances for the target
address.

3.3 Examples

Example 3 Code and the binaries are in examples/ directory.

int a , b , x , y , z ;
int main (void) {

read (0 , &a , s izeof (int)) ;
read (0 , &b , s izeof (int)) ;
x = 10 + a ;

5

y = x − b ;
z = y − a ;

}

Expected output 3 Note: your output should include the following items
but may also have other items.

0 x804a02c : 0x804a030 : 4
0x804a034 : 0x804a030 : 4 0x804a024 : 0
0x804a028 : 0x804a030 : 4 0x804a024 : 0

Example 4 Code and the binaries are in examples/ directory.

int a , b , x , y , z ;
int main (void) {

read (0 , &a , s izeof (int)) ;
read (0 , &b , s izeof (int)) ;
x = 10 + a ;
y = x − b ;
x = 20 ;
z = x − b ;

}

Expected output 4 Note: your output should include the following items
but may also have other items.

0 x804a02c : 0x804a030 : 4
0x804a034 : 0x804a030 : 4 0x804a024 : 0
0 x804a02c :
0x804a028 : 0x804a024 : 4

4 Useful resources

4.1 VEX IR

Please refer to [1] for the basic structure of Valgrind. Valgrind translates ma-
chine instructions into VEX IR which has 14 types of statements and 14 types of
expressions. During this project, you only need to handle 4 statements, IMark,
Put, WrTmp and Store statements, and 8 expressions, Get, RdTmp, Load,
Const, Unop, Binop, Triop and Qop expressions. In the following paragraph,
the statements and expressions are briefly explained. You can see more details
in valgrind-3.12.0/VEX/pub/libvex ir.h.

6

• IMark statement specifies the beginning of a machine instruction. In order
to start tracing from main function, refer to slides 13-14.

• Put statement stores a value into a register. st->Ist.Put.offset de-
notes the register number and st->Ist.Put.data is the value expression.
The value expression should be either Const or RdTmp expression.

• Store statement writes a value to a memory location. st->Ist.Store.addr
is the memory address expression and st->Ist.Store.data is the value
expression. Both the address expression and the value expression should
be either Const or RdTmp expression.

• WrTmp statement writes a value into a temp variable. All operands
in VEX IR are either Const expression or a temp variable. VEX IR is
SSA form and a temp variable is written only once inside a super block.
st->Ist.WrTmp.tmp denotes the temp variable number and st->Ist.WrTmp.data
is the value expression. The value expression can be any expression, but
its operands should be either Const or RdTmp expressions.

• Get expression reads a value from a register. expr->Iex.Get.offset
denotes the register number.

• RdTmp expression reads a value from a temp variable. expr->Iex.RdTmp.tmp
denotes the temp variable number.

• Load expression reads a value from a memory location. expr->Iex.Load.addr
is the memory address expression.

• Const expression denotes a constant.

• Unop, Binop, Triop and Qop denotes unary, binary, ternary and qua-
ternary operations respectively.

4.2 Insert a function call statement

To insert a function call into a super block, unsafeIRDirty 0 N function is used.
The following is an example that inserts a call to helper function().

void VG REGPARM(0) h e l p e r f u n c t i o n () {
/∗ do something at runtime ∗/

}

IRSB∗ mc instrument (. . .)
{

. . .
IRExpr∗∗ argv = mkIRExprVec 0 () ;
IRDirty∗ di =

unsafeIRDirty 0 N (0 , ” h e l p e r f u n c t i o n ” ,
VG (f n p t r t o f n e n t r y)(& h e l p e r f u n c t i o n) ,

7

argv) ;
addStmtToIRSB(sbOut , IRStmt Dirty (d i)) ;

}

The first argument is the number of register parameter and it should match
VG REGPARM(n) of helper function. It is safe to use ‘0’ for both unsafeIRDirty 0 N
and VG REGPARM. The second argument is the name of the called function
and third argument is the address of the called function. The forth argument
is the argument list that will be passed to the helper function. You can use
functions from mkIRExprVec 0() to generate a zero-length argument list to
mkIRExprVec 9() to generate an argument list of length 9.

In order to provide an constant value instead of VEX IR expression, you
can use mkIRExpr HWord(). The function takes a word as an parameter and
returns a VEX IR expression that will be evaluated to the value of the parameter
at runtime. Please refer to slide 14.

4.3 Standard C functions

Memory allocation To allocate and free memory dynamically, use VG (malloc)
and VG (free) instead of malloc and free.

void∗ b u f f e r = VG (mal loc) (” b u f f e r ” , s i z e) ;
VG (f r e e) (b u f f e r) ;

The first argument of VG (malloc) is a string that can identify allocation
point when debugging. The second argument is the allocation size.

Printing To print information to screen, VG (printf) function can be used.
The function is similar to printf except it uses standard error.

To use a file, you can use VG (fopen), VG (fclose), VG (fprintf) functions.
Refer to the project template for an usage example of VG (fopen).

4.4 Sample Valgrind tool

memcount in the project file is a small Valgrind tool that counts number of mem-
ory read/write operations executed during runtime. In mc instrument(), tool
inserts a call to mc load() and mc store at load expressions and store statements
respectively. mc load() function is called every load expressions and counts the
number of executed memory read operations at runtime. mc store() function
similarly counts the number of executed memory write operations.

4.5 Valgrind OSet datastructure

Set data structure is provided by Valgrind. The following code shows basic
usage of the set and you can find more details from include/pub tool oset.h

8

/∗ Create a s e t whose e lements are word ∗/
OSet∗ s e t = VG (OSetWord Create) (VG (mal loc) , ” s e t ” , VG (f r e e)) ;

/∗ In s e r t a word to the s e t ∗/
/∗ i f the va lue i s a l ready in the set , i t w i l l cause a f a i l u r e ∗/
VG (OSetWord Insert) (set , (UWord) value) ;

/∗ Check i f a word e x i s t s in the s e t ∗/
i f (VG (OSetWord Contains) (set , (UWord) value))

VG (p r i n t f) (” e x i s t s ”) ;

/∗ Remove a word from the s e t ∗/
i f (VG (OSetWord Remove) (set , (UWord) value))

VG (p r i n t f) (”removed”) ;

/∗ I t e r a t e s over the s e t ∗/
UWord value ;
VG (OSetWord ResetIter) (s e t) ;
while (VG (OSetWord Next) (set , &value)) {

/∗ do something with va lue ∗/
}

/∗ Destroy the crea ted s e t ∗/
VG (OSetWord Destroy) (s e t) ;

Note: The OSetWord can only holds words (32/64bit integers) as elements.
During the part 2, you can create an array that can hold provenance sources
including their address, value and other information and you can maintain only
the index to the array in the set.

References

[1] Implementing information flow system on Valgrind. http://www.cs.

purdue.edu/homes/xyzhang/spring17/5-slicing-IFS.updated.pdf.

9

http://www.cs.purdue.edu/ homes/xyzhang/spring17/5-slicing-IFS.updated.pdf
http://www.cs.purdue.edu/ homes/xyzhang/spring17/5-slicing-IFS.updated.pdf

	Part 0 : Setup environment
	Part 1. memtrace: Memory read/write tracking tool
	Project Description
	Instructions
	Examples

	Part 2. provenance: Input provenance tracking tool
	Project Description
	Instructions
	Examples

	Useful resources
	VEX IR
	Insert a function call statement
	Standard C functions
	Sample Valgrind tool
	Valgrind OSet datastructure

