
Efficient Diagnostic Tracing for Wireless Sensor Networks

Vinaitheerthan Sundaram
School of Electrical and Computer

Engineering
Purdue University

vsundar@purdue.edu

Patrick Eugster
Department of Computer Science

Purdue University

peugster@purdue.edu

Xiangyu Zhang
Department of Computer Science

Purdue University

xyzhang@purdue.edu

Abstract
Wireless sensor networks (WSNs) are hard to program

due to unconventional programming models used to satisfy
stringent resource constraints. The common event-driven
concurrent programming model and lack of kernel protec-
tion in these systems introduce the possibility of several sub-
tle faults such as race conditions. These faults are often trig-
gered by unexpected interleavings of events in the real world,
and can occur long after their causes. Reproducing a fault
from the trace of the past events can play a crucial role in de-
bugging such faults. The same tight constraints that motivate
the specific programming model however make tracing chal-
lenging. This paper proposes an efficient intra-procedural
and inter-procedural control-flow tracing algorithm that gen-
erates the traces of all interleaving concurrent events. Our
approach enables reproducing faults at a later stage, allow-
ing the programmer to identify them effectively. We argue
for the accuracy of our approach through case studies, and
illustrate its low overhead through measurements and simu-
lations.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Testing and Debug-

ging—debugging-aids, tracing

General Terms
Design, Experimentation, Reliability

Keywords
Embedded Debugging, Tracing, Wireless Sensor Net-

works, Diagnosis

1 Introduction
Wireless sensor networks (WSNs) require unconven-

tional programming models to satisfy stringent resource con-
straints. This makes WSNs hard to program. For example,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is premitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee.
SenSys’10, November 3–5, 2010, Zurich, Switzerland.
Copyright 2010 ACM 978-1-4503-0344-6/10/11 ...$10.00

TinyOS/nesC proposes an event-driven concurrent program-
ming model; together with the lack of kernel protection the
model makes corresponding WSN applications prone to race
conditions. Such defects are often triggered by unexpected
interleavings of events in the real world. Therefore, run-time
debugging tools are required to detect and diagnose these de-
fects in the post-deployment phase.

There have been several debugging solutions proposed for
WSNs. (a) Automated debugging tools [19, 13, 11, 15, 6, 8]
mostly monitor the network and thus, do not provide much
help for programmer errors because causes and symptoms
may be far apart. These tools may also impose expensive
synchronization to achieve good resilience, or require pro-
grammers to express invariants or SQL-like queries to guide
run-time monitoring and debugging. (b) “Remote control”
approaches [22, 23] try to provide insight into — and con-
trol of — remote sensor nodes. These approaches incur a
substantial overhead and put much load on the programmer
who has to navigate though the program at run-time. Finally,
(c) program analysis based tools [18, 9] provide higher-level
understanding of programs but fail to quickly pinpoint the
exact causes of faults, or exhibit high complexity.

Replay debugging is a powerful run-time debugging tech-
nique to diagnose complex faults as it allows reproducing
defects by replaying from traces recorded during real execu-
tion. It is especially useful for debugging distributed appli-
cations because of the inherent non-determinism [4] [14] and
has been shown to be effective in WSN macro programming
environments [21]. Replaying requires obtaining the trace
of the ordered sequence of events or control-flow path taken
and the external input values, which may not present insur-
mountable issues in a wired setting; obtaining it in a WSN
can however be prohibitively expensive in terms of band-
width required to transfer it from a node to the base station.
Tight constraints do not only exist on bandwidth, but simi-
larly also on storage resources, which makes it challenging to
devise an efficient tracing scheme altogether. The key prob-
lem in WSN replay debugging is to decide what information
to record while satisfying resource constraints.

For WSN settings, we argue for recording the control-
flow information. On the one hand, this information can
be effective in fault diagnosis. Despite sophisticated tech-
niques and tools described before, one of the commonly used
debugging is LED debugging [20] in which the developer
switches LEDs on and off to notify the success or failure of

169

the events of interest. This is similar to printf debugging on
commodity desktops/laptops. In fact, printf capability is
one of the most requested features in user mailing lists [20].
The most important information the developer is trying to
get by this type of debugging is the control-flow path taken.
Knowledge of control-flow exercised when a fault happens
can help a great deal in diagnosis for a large number of im-
plementation faults.

Yet, on the other hand, the control-flow information can
be captured in a resource-efficient way. One of the important
characteristics of WSN applications is the repeated execution
of same sequences of actions with occasional occurrences of
unusual events. If the control-flow path is properly encoded
and recorded, the repetitive sequences of actions can be com-
pressed quite well.

In fact, control-flow traces also capture adequately some
of the effects of input values such as sensed values and net-
work messages. For example, if a network message repre-
sents a command to the sensor to send current sensed values
to the base station, then the control-flow captures the mes-
sage contents. Likewise, if the sensed value is beyond a
threshold, the action taken by the sensor is captured in the
control-flow. For other purposes, such as corrupting routing
table updates from malicious entities, recording input values
could be useful but impractical for WSN settings. Therefore,
recording control-flow trace offers a good trade-off that al-
lows partial replay of the execution.

In this paper, we propose a novel efficient tracing tech-
nique that encodes and records the control-flow including
all the interleaving of concurrent events. To deal with long-
running real-life programs, our technique has a low footprint,
which is achieved by statically analyzing the program and
instrumenting only a few statements inside an event handler.
At run-time, the trace is recorded in memory and compressed
before being committed to non-volatile external flash mem-
ory. When a fault is detected, upon request from a system
manager, or at selectively defined points in the program, the
trace is sent to the base station for analysis. The program-
mer can replay the trace in a controlled environment such as
a simulator or a debugger to reproduce the fault. In fact, the
traces enable reverse debugging of the program, thus allow-
ing the programmer to identify the defect effectively. Our
tracing method satisfies the stringent resource constraints of
WSNs, by exploiting the specific execution model and mak-
ing use of compression techniques. While explained and im-
plemented in the context of nesC, our techniques are gener-
alizable.

In summary, the main contributions of our paper are three-
fold: (1) We present an efficient tracing design that pre-
cisely captures the interleaving of concurrent events as well
as the control-flow path taken inside the events. (2) As part
of the tracing design, we present a novel technique that al-
lows modular computation of inter-procedural control-flow
paths. (3) We illustrate the effectiveness of our approach
through case studies including a previously unknown bug
and demonstrate the efficiency of our solution through per-
formance measurements.
Roadmap. The remainder of this paper is structured as fol-
lows. Section 2 presents background on the TinyOS execu-

tion model. Section 3 presents an overview of our efficient
tracing technique; the details are presented in the following
Sections 4, 5 and 6. Section 7 presents the implementation of
our tools. Section 8 illustrates the accuracy of our approach
through cases studies, and Section 9 dissects its overhead.
Section 10 discusses limitations, and Section 11 contrasts
our approach with related work. Section 12 concludes with
final remarks.

2 Background
The TinyOS event-driven execution model poses unique

challenges, but simultaneously allows for efficient solutions
compared to the execution model of general purpose pro-
gram environments allowing arbitrary thread interleavings.

2.1 TinyOS Execution Model
A TinyOS application is often composed of a set of

reusable components that are wired through configurations.
Components communicate through interfaces consisting of
commands and events. A component provides services to
others through commands. If a component requests a ser-
vice, the completion of the request is signaled to the compo-
nent through an event. Events are also the channels through
which the hardware communicates with components.

In TinyOS, there is no explicit thread abstraction be-
cause maintaining multiple threads needs precious RAM and
thread interleavings easily introduce subtle data race errors.
Nonetheless, TinyOS applications need a mechanism for par-
allel operations to ensure responsiveness and respect real-
time constraints. More particularly, low priority operations
should give way to critical operations, e.g., interrupts from
hardware. In general, there are two sources of concurrency in
TinyOS: tasks and event handlers (also simply called events
in the following). Tasks and events are normal functions with
special annotations. Tasks are a deferred computation mech-
anism. They run to completion and do not preempt each
other. Tasks are posted by components. The post request im-
mediately returns, deferring the computation until the sched-
uler executes the task later. To ensure low task execution
latency, individual tasks must be short. Lengthy operations
should be spread across multiple tasks. In contrast, events
also run to completion, but may preempt the execution of a
task or another event. An event signifies either completion of
a lengthy (and thus split) operation or an event from the en-
vironment (e.g., message reception, time passing). TinyOS
execution is ultimately driven by events representing hard-
ware interrupts.

For example, the operation to get a value from a sensor
is often split into multiple phases. First, a command call
(down-call) is made to a service component to start the op-
eration, which is carried out by multiple tasks. Later, when
the operation is completed, an interrupt occurs, generating
a callback (event/up-call) to the consumer component which
processes the result in the event handler. In such a process,
the tasks of the operation cannot be preempted by any other
tasks but can be preempted by events. A key observation is
that the executions of events and tasks are either disjoint or
nested. In contrast, a traditional thread-based concurrency
model allows arbitrary thread interleaving.

170

Ti – Tasks Ei ‐ Events

T1 T2
E3

E4
E3

T2
E3

E1
E2

E1

Time

T2
(a)

Time

T3 T3
E5 E5

(c)

T3
T4

T3
(b) Time

Time

Figure 1. TinyOS Model. Boxes depict execution of tasks
or events. The y-axis represents the preemption level.

Figure 1 shows a snapshot of how tasks and events exe-
cute in the TinyOS concurrency model. Boxes with the same
color in Figure 1 represent the execution of a task/event and
their labels denote the name of the task/event. Observe that
a task or an event may be preempted, giving rise to multiple
boxes with the same color. The level of nesting involved
in preemption is shown vertically for clarity. Figure 1(a)
presents a legal execution. Task T1 is executed without pre-
emption. E1 occurs sometime after T1 and is preempted by
event E2. Once event E2 finishes, event E1 resumes and runs
to completion. Task T2 and events E3 and E4 represent a
more complex case in which multiple event preemptions oc-
cur. When task T2 is running, event E3 occurs and preempts
task T2. Event E4 occurs and preempts event E3 and runs to
completion, upon which E3 resumes and runs to completion
too. Task T2 resumes and gets preempted by another invoca-
tion of event E3, which may correspond to another instance
of the same hardware interrupt is received by the handler E3.
Once E3 completes, T2 again resumes and runs to comple-
tion without further preemption. Figures 1(b) and (c) rep-
resent impossible sequences of executions. In Figure 1(b),
a task cannot preempt another one. In Figure 1(c), the exe-
cutions of a task and an event cannot interleave as illustrated
because the preempting execution has to complete before the
preempted execution gains control.

Finally, the executions of tasks and events are not simply
the instantiations of the functions with the task/event anno-
tations as they can invoke other functions. Invoked functions
may even be recursive. These cases need to be handled.

3 Efficient Tracing Design Overview
We propose an efficient tracing technique that is suit-

able to resource-constrained event-driven systems such as
TinyOS applications. Our key idea is to represent the inter-
procedural control-flow of tasks and events with few bytes
and record them as they are executed. Since TinyOS ap-
plications execute the same tasks and events repeatedly, our
representation enables significant compression of the traces.

We present our technique in several steps starting with
recording at the level of tasks and events and then, go down
gradually to reveal the full design. In Section 4, we describe
our method to record interleaving of tasks and events by ex-
ploiting the concurrency model outlined earlier. In Section
5, we first motivate the need to record control-flow paths.
Then, we describe our method to record the intra-procedural
paths within a task or event, assuming there are no func-

Trace→ EUnit∗ EUnit → Id Event ∗ end | ε
Id → Tid | Eid Event → Eid Event ∗ end | ε

Figure 2. Task/event level grammar. Tid and Eid are
identifiers for tasks and events, respectively. EUnit repre-
sents an execution unit, i.e. an instance of a task or event.
end is a special symbol denoting the end of a task or an
event.

tion calls in tasks or events. We then relax that assumption
and describe a novel modular technique to compute inter-
procedural paths which reduces the trace size and CPU cy-
cles used. We also compare it to the state-of-the-art tech-
niques. In Section 6, we describe our generic compression
algorithm.

4 Task- and Event-Level Tracing
We are first interested in the tasks and events that are ex-

ecuted and their interleavings but not the detailed execution
paths inside those. Complex failures of TinyOS applications
are often due to unexpected interaction of different interrupt
handlers. For example, the receiver buffer being simultane-
ously modified by an application and the network layer is a
common but difficult to diagnose fault in WSN programs [8].
To diagnose such complex failures, information on interleav-
ing is essential.

4.1 Challenges
The event-based concurrency and deferred execution of

tasks present unique challenges in recording interleavings
as interrupts can occur at any time in a program and the
handling of interrupts can create tasks. Furthermore, sen-
sors feature very limited computation resources, mandating
a cost-effective design.

A naı̈ve design is to record the identifiers of each executed
code block. For example, the execution in Figure 1(a) can be
represented by the following trace:

T1 E1 E2 E1 T2 E3 E4 E3 T2 E3 T2

This has severe limitations. First, the nesting structure
is not properly captured. One can not tell that the first two
E3’s belong to the same instance and the third E3 is a stand-
alone one, whereas the three T2 blocks belong to the same
instance. Second, the trace is redundant as encodings can be
inferred. For instance, the second T2 is unnecessary as when
E3 completes, the execution preempted by E3 is supposed to
resume so that T2 must be the continuation of E3.

4.2 Approach
The nesting structure of TinyOS application execution

can be exploited such that traces can be described by a
context-free grammar. The grammar is presented in Figure 2.

The intuition of the grammar is as follows. A trace is
composed as a sequence of execution units (EUnit), which
could be a task or an event. An EUnit is delimited by its
identifier Id and a universal end symbol. The fact that a task
and an event can be preempted by events is represented by
the Event Kleene-closure in the rule of EUnit.

The execution in Figure 1 can be depicted by the follow-
ing string of the grammar. Overbraces represent the nestings.

171

︷ ︸︸ ︷
T1 end

︷ ︸︸ ︷
E1

︷ ︸︸ ︷
E2 end end

︷ ︸︸ ︷
T2

︷ ︸︸ ︷
E3

︷ ︸︸ ︷
E4 end end

︷ ︸︸ ︷
E3 endend

The encoding not only captures the nesting, which allows
understanding of interleavings, but also needs fewer iden-
tifiers (reduced from 11 to 7) than the naı̈ve approach de-
scribed earlier. Although a number of end symbols are re-
quired, the symbol is universal so that much fewer bits are
needed to encode compared to task/event identifiers.

Context-free grammars can be parsed by push-down au-
tomata. Thus, the trace can be received and then parsed by
the base station that has more computational resources, using
a stack. The nesting structure of the trace is naturally con-
structed by the parse tree. The redundant identifiers that are
removed from the naı̈ve trace, e.g., the second and third T2
blocks, can be reproduced during parsing by inspecting the
stack’s state. The parsing algorithm is omitted for brevity.

5 Tracing Inside Tasks and Events
Task- and event-level interleavings are insufficient for de-

bugging in most cases. In this section, we motivate the need
to record instruction-level control-flow information. We also
present a design that can cost-effectively achieve this goal.
We first discuss how to record the control-flow path in the
simple case in which tasks and events do not have function
calls. Then, we allow function calls and present a novel mod-
ular technique to compute inter-procedural paths which re-
duces the trace size and CPU cycles used compared to the
state-of-the-art techniques.

5.1 Challenges
The task- and event-level traces generated in Section 4

capture high-level interleavings. However, they are insuffi-
cient because they do not have fine-grained control-flow in-
formation within the tasks/events and also, do not contain the
exact preemption points. Different preemption points often
lead to different program state and hence different control-
flow if the interleaved executions access some shared vari-
ables. As reported in [8], a large portion of TinyOS applica-
tion faults fall into this category of incorrect shared access.
In Section 8.2.1, we discuss one such fault.

Preemptions are directly supported by hardware and thus,
transparent to TinyOS. By contrast, in regular systems with
a different concurrency model, the OS is aware of con-
text switches as the switches are performed by utilizing OS
services. One possible solution is to instrument all inter-
rupt handlers to read the return address off the stack and
record it into the trace. This approach is platform-specific
as ATMEL’s ATMEGA128 and TI’s MSP430 store return
addresses at different stack offsets. Another possible solu-
tion is to instrument TinyOS applications so that the pro-
gram counter of each executed instruction can be recorded.
Hence, a preemption can be identified from the trace as an
unexpected program counter alternation. Clearly, such a so-
lution is very expensive as a non-trivial instrumentation has
to be inserted for each instruction.

5.2 Approach
We propose a technique to trace inside tasks and events

and record the control paths of their executions. In our de-
sign, the preemption points can be more precisely located.
More importantly, by knowing the exact sequence of exe-
cuted instructions, the effects of taking these preemptions are
recorded, which is often sufficient for debugging. For exam-
ple, in the case where different interleaving induce differ-
ent conditional branches being taken, the control-flow trace
precisely captures the effect of the interleaving by retaining
which branch was taken. The challenge of our design thus
lies in efficiently representing control-flow paths.

One may think that it is better to record input values such
as messages received or sensed values. In other words, re-
play could be achieved by using the recorded input values
and the high-level interleaving trace. However, in such a de-
sign, neither preemption points nor their effects are recorded
such that the execution cannot be easily and faithfully re-
produced. Furthermore, compared to our efficient control-
flow path tracing design, precisely recording inputs could be
much more expensive as some inputs such as network mes-
sages are long and are not as highly compressible as control-
flow paths.

5.3 Intra-procedural Control-flow Tracing
For the sake of presentation, we first explain our design

without considering function calls. In other words, we as-
sume that execution units do not have function calls. The
basic idea is to encode intra-procedural control-flow paths.
More specifically, we represent a control-flow path with an
integer from 0 to n−1 with n being the total number of intra-
procedural paths of a given procedure [1].

5.3.1 Background
In their seminal paper, Ball and Larus [1] proposed an ef-

ficient algorithm (referred to as the BL algorithm) to com-
pute the optimally encoded intra-procedural control-flow
path identifier taken during execution. The BL algorithm
features translating acyclic path encoding to instrumenta-
tions on control-flow edges. At run-time, a sequence of these
instrumentations are executed following a control-flow path,
resulting in the path identifier being computed. All these in-
strumentations involve only simple additions. The idea can
be illustrated by the example in Figure 3. The code is shown
on the left and the control-flow graph is shown on the right.
The instrumentations are marked on control-flow edges. Be-
fore the first statement, lcount is initialized to 0. If the false
branch is taken at line 1, lcount is incremented by 2. If the
false branch is taken at line 5, lcount is incremented by 1.
As shown on left bottom, executions taking different paths
lead to different values in lcount. In other words, lcount
encodes the path.

The basic algorithm is presented in Algorithm 1. The al-
gorithm first annotates each node with the number of paths
that lead from that node to the Exit of the procedure. In an
acyclic graph, the annotation of a node can be computed by
summing the annotations of its children. For instance in Fig-
ure 3, node 1 has the annotation of 4, which is the sum of the
annotations of nodes 2 and 4, meaning there are 4 paths lead-
ing from 1 to Exit. The instrumentation on an edge n→ m

172

1. if (p1)

2. s1 4. s2

5. if (p2)

6. s3

Entry

Exit

lcount=0

lcount+=2

lcount+=1

if (p1)

 s1;

else

 s2;

if (p2)

 s3;

1.

2.

3.

4.

5.

6.

Path lcount

1256 0

125 1

1456 2

145 3

4

4

2 2

2

1

1

Figure 3. Example for Ball-Larus path encoding. Instru-
mentations are marked on control-flow edges. Node an-
notations (rounded boxes at the corners) represent the
number of paths leading to Exit.

Algorithm 1 The BL Algorithm.
annotate each node with the number of paths rooted at the node
for each edge n→ m do

s← 0
for each edge n→ t and t precedes m in n’s edge list do

s← s+t’s annotation
end for
instrument n→ m with “lcount+= s”

end for
instrument the exit node with “trace.print(lcount)”

is computed as increasing the path id counter lcount by the
sum s of the annotations of all the children of n that precede
m. Intuitively, it means the encoding space from lcount
to lcount+s-1 is allocated for the paths following the edge
from n to some child before m. Note that there are s such
paths. The paths following edge n→ m use the encoding
space that is greater than lcount+s-1. For example, the in-
strumentation on 1→ 4 is “lcount+=2” as the annotation
of 1’s preceding child 2 is 2, meaning the range lcount ∈
[0,2) is allocated to the paths following the edge 1→ 2 and
lcount ∈ [2,4) is allocated to the paths following 1→ 4.
Finally, the algorithm instruments the end of a function by
emitting the path id to the trace.

B

C

Exit

A

lc=0

lc+=1

Entry

output(lc)

lc=0

lc+=2

B

C

Exit

A

+1

Entry +2

output(lc)

2

1

1

1

Path lc

EnAEx 0

EnABC 1

AEx 2

ABC 3

Figure 4. Example for loop path encoding. Variable
lc holds the path identifier, which is emitted at back-
edge and procedure exit. The subgraph on the left shows
the program and the instrumentation, which is computed
from the transformed graph on the right. In the trans-
formed graph, the back-edge is replaced by two dummy
edges as highlighted.

Loop paths are handled by dividing them into acyclic
paths that end at a back-edge. More particularly, the cyclic
control-flow graph is transformed into an acyclic one by
removing back-edges and introducing dummy edges from
Entry to the loop head and the last node in the loop body
to Exit. Figure 4 shows an example. The original graph
is shown on the left and the transformed (acyclic) graph is
shown on the right. Note that the transformed graph is only
used for computing path id increments, the program itself is
not transformed. The path id increments are computed in the
same way as before. The key idea is that the increments on
the dummy edges are translated to instrumentations on the
back-edge in the original program as shown on the left. In
the example, the back-edge instrumentation first emits the
current path id to the trace as it encounters the end of a loop
path. It then resets the counter. The increment by 2 after that
is due to the increment on the dummy edge from Entry to
A. One can observe that these instrumentations generate the
encodings of acyclic paths on the right. In other words, the
trace of “Entry A B C A B C A Exit” is encoded as “1 3
2”. The detailed algorithm can be found in [1]. Note that the
existence of loop paths leads to the control-flow of an exe-
cution unit being represented by a sequence of ids instead of
just one id.
5.3.2 Bit Tracing Comparison

It is possible to trace the control-flow by recording one bit
for every branch. However, this has several disadvantages.
As mentioned in [1], such a tracing is not optimal in terms
of encoding space (a counter-example can be easily con-
structed) and requires instrumentation on every branch edge.
In addition, bit-tracing requires the trace from the beginning
of the execution if we need to replay the trace and does not
handle concurrency unless special symbols are recorded.
5.3.3 Intra-procedural Control-flow Trace Grammar

Now, we extend our high-level execution trace grammar
to include the control-flow information using the BL encod-
ing. We call this intra-procedural control-flow tracing. In
this trace, the control-flow path traversed is recorded in be-
tween the execution unit id and the corresponding end sym-
bol. Note that the execution units that have loops would
record a sequence of ids representing the paths during each
iteration. For example, let task T1 and event E2 have no
loops and E1 be the program in Figure 4 and have a loop. In
the following intra-procedural control-flow trace recorded,
we show the paths traversed in the task T1 and events E1 and
E2. The end symbol is omitted from the trace for clarity. We
note that the event E1 has executed three loop iterations and
the interrupt happened after the second iteration. Observe
that the trace not only records the detailed paths taken, which
may be the consequence of the interleavings, but also nar-
rows down the places where the preemption occurs, which
must be inside the third iteration.

︷︸︸︷
T1 2

︷ ︸︸ ︷
E1 1 3

︷︸︸︷
E2 1 3 2

We observe that the intra-procedural control-flow trace
still retains the nested structure in TinyOS applications and
can be described by a context- free grammar. The grammar

173

Trace → EUnit∗
EUnit → Id (Event|Path)∗ Path end | ε

Id → Tid | Eid
Path → Pid

Event → Eid (Event|Path)∗ Path end | ε

Figure 5. Intra-procedural control-flow trace grammar.
Pid is identifier for paths

Trace → EUnit∗
EUnit → Id (Func|Event|Path)∗ Path end | ε

Id → Tid | Eid
Path → Pid

Func → Fid (Func|Event|Path)∗ Path end | ε
Event → Eid (Event|Path)∗ Path end | ε

Figure 6. Inter-procedural control-flow trace grammar.
Fid is identifier for functions. A new nonterminal Func is
introduced to represent function calls.

is presented in Figure 5. The intuition of the extension to our
earlier grammar is as follows. An EUnit, delimited by its
Id and an universal end symbol, must include a control-flow
path just before the end and can include any number of events
that preempt the EUint or any number of loop paths. Since
events can be preempted and can have loops, Event has the
same RHS. Observe that a similar predictive top-down parser
can be constructed for the grammar as earlier.
5.4 Inter-procedural Control-Flow Tracing

The primary execution units (tasks/events) may call func-
tions and the control-flow path of an execution unit should
include the control-flow path taken inside the called func-
tions. Note that tasks and events can be viewed as functions
that are not invoked by a caller. In order to make the dis-
tinction though, we refer to them as execution units and all
others as function calls.
5.4.1 Challenges

Since function calls exhibit the same nesting property as
execution units, i.e., a called function’s execution is com-
pletely nested within the caller’s execution, a straightforward
solution consists in treating function calls the same way as
execution units. More particularly, as shown by the context-
free grammar in Figure 6, a function call, denoted by Func,
can reside in the EUnit, Event, or Func itself. The last case
describes a function calling another function.

For example, consider the following string of the gram-
mar in Figure 6. In this trace, we see that the event E1 calls
function F which in turn calls function G. Event E2 preempts
F’s execution. The nested structure of execution units and
function calls are correctly captured in the trace.

︷︸︸︷
T1 2

︷ ︸︸ ︷
E1

︷ ︸︸ ︷
F

︷︸︸︷
G 1

︷︸︸︷
E2 1 1 0

The problem with the simple approach is that TinyOS ap-
plications often have a large number of small functions. Ac-
cording to the grammar in Figure 6, a function id, a spe-
cial end symbol and at least, one path id are needed for

each function invocation even though the invocation execu-
tion may be very short. One possible solution is to inline
small functions. However, this will substantially increase
the code size, which is especially not affordable in resource-
constrained WSNs.
5.4.2 Approach

Our approach focuses on representing the inter-
procedural control-flow path of the entire execution unit with
a single id instead of a sequence of ids for individual func-
tion calls. This approach can reduce the number of bytes
recorded in the trace significantly as only one id is needed to
encode the exact path being traversed through multiple func-
tion calls.

The challenge lies in that the different invocation points of
a function demand different versions of instrumentation for
the function in order to produce the correct inter-procedural
path encoding, which depends on the invocation points. For
instance, in Figure 7, there are two invocation sites of func-
tion Foo. They are B and F. In order to produce correct inter-
procedural encoding regarding call site F, the path id counter
should be increased by 1 along the edge J→ L because there
is only one path leading from L’s left sibling K to the end
of the inter-procedural path, which is G. However, when the
call site B is considered, since in the context node K has 4
paths (partially induced by the predicate inside Foo called
at F), the instrumentation should increase the path id by 4
along the edge J→ L. Such context-sensitive instrumenta-
tion is hard to achieve.

Our solution is presented as follows. Let n and p denote
the total number of paths inside the callee function and the
exact path taken inside the callee function at run-time, re-
spectively. Let x refer to the number of paths to exit from
the call site’s successor in the caller function. Note that the
value of n and x can be obtained statically and the value p
is returned by the function at run-time. The key idea of our
technique is to have only one version of instrumentation for
a function. The context-sensitivity is handled by adjusting
the caller’s run-time path id by leveraging the values of n,
p, and x. More particularly, we annotate the call-site node
with the product of n and x (n× x) because there are n× x
(inter-procedural) paths leading from the call-site to the end
as every path inside the called function can be followed by
any one of the x paths after the function call.

The edge between the call-site node and the successor is
annotated with the product of p and x (p×x). Intuitively, the
multiplication amplifies the encoding space from the callee
by a factor of x to allow encoding the x paths following the
call site. More particularly, if the path inside the callee is p,
then the interval [p× x, (p + 1)× x) is used to encode the
inter-procedural paths led by the callee path p and trailed by
one of the x paths in the caller.

The inter-procedural instrumentation algorithm is pre-
sented in Algorithm 2. The algorithm instruments a given
function F , taking care of the encoding of the functions
called by F .

We assume that the functions called inside F , referred as
G in Algorithm 2, do not have loops or recursions. Oth-
erwise, the simple individual function encoding will be em-
ployed. Note that F itself can have loops. We explain the

174

benefits of using individual function encoding when there are
loops and recursion in the called functions in Section 5.4.4.

Algorithm 2 Instrumenting a function F without loops or re-
cursion. Assume all function invocations have been made in-
dependent statements instead of sub-expressions as in a low-
level intermediate representation, i.e., each call site has only
one successor. Function retrievePath retrieves the path id
of the callee at run-time.

for each node s in F’s CFG in the reverse topological order do
x← the sum of the annotations of s’s successors
if s is a function invocation then

G← the function invoked at s
if G does not have loops or recursion then

n← the number of static paths of G
s.annotation← s× x
instrument edge s→ s.succ[0] with “lc+=x×retrievePath(G)”

else
s.annotation← x

end if
else

s.annotation← x
for i = 1 to the number of s’s successors do

sum← the sum of s.succ[0− (i−1)].annotation.
instrument s→ s.succ[i] with “lc+=sum”

end for
end if

end for
if F is a task or event then

instrument the entry node with “trace.print(id)”
instrument the exit node with “trace.print(lcount)”

end if

Similar to Algorithm 1, the annotation of a node repre-
sents the number of (inter-procedural) paths from the node to
the end of the function. The algorithm traverses each node in
the CFG in a reverse topological order. If the node represents
a function invocation and the function being called, denoted
as G, does not have loops or recursion, the paths inside G
will be encoded as part of the path id of F in a fashion as
explained earlier. The call to retrievePath in the instru-
mentation is provided as part of the tracing library to get the
aforementioned p, the run-time path inside G. More particu-
larly, the call retrieves the variable lc of G, which is a local
variable on G’s stack frame, encoding the path just taken in-
side G. Note that the value is not destroyed as the execution
just returns from G. At the end, the path id is emitted to the
trace if and only if F is a task/event, i.e., a top level function
invocation. Otherwise, the path id is expected to be retrieved
by the caller of F .
5.4.3 Illustration

We use the example in Figure 7 to illustrate the idea. Each
node is annotated with the number of inter-procedural paths
from that node to the exit. The annotations are shown as
rounded boxes at the corners. The edges are annotated with
path id increments.

The function Foo has two paths namely α and β and the
value of n is 2. The number of paths to exit from F’s suc-
cessor is 1 (x = 1) and therefore, the number of paths from
F to exit is 2 (n× x = 1× 2), which is shown as F’s anno-
tation. Now this value is propagated upwards in the control-
flow graph of Main. The number of paths to exit from B’s
successor, C is 4 (x = 4) which includes the two possible

Main ()

A

B
Foo()

C

D E

F
Foo()

G

I

J

K L

Foo ()

M

+1

+1*p

+4*p
(=+2n*p)

+2
(=+n)

1

2
(=n)

n
(=1*n)

8
(=2n*n)

2
(=n)

4
(=n+n)

8
(=2n*n)

AαBCDαFG = 0
AαBCDβFG = 1
AαBCEαFG = 2
AαBCEβFG = 3
AβBCEαFG = 4
AβBCEβFG = 5
AβBCEαFG = 6
AβBCEβFG = 7
where,
α=“IJKM” and
β=“IJLM”

1

1 1

2

2

Figure 7. Example for the modular inter-procedural
paths computation algorithm.

paths inside function Foo called at F. The annotation on call
site node B is therefore 8 (= 4× 2). The edge increments
for edges B→ C and F→ G are annotated with 4× p and
1× p, where p can be 0 or 1 depending on the path inside
Foo taken at run-time. The set of inter-procedural paths and
their encodings are shown in the figure.
5.4.4 Loops and Recursion

Let the loop path refer to the control-flow path that ends
at loop exit. We observe that the loop path can be inter-
procedural if the loop is in a called function. It is important
to use fewer bits to record the loop path, i.e., each iteration of
a loop, to reduce the trace size. Our approach to reduce the
number of bits to record loop paths is to capture the context
of the loop once and create a local namespace. The context is
captured by recording the start and end of the called function
that has loops. The idea of using a local namespaces for
logging has shown to be advantageous in the context of WSN
settings [20].

If we do not capture the context, the global namespace
has to be used for encoding all the loop paths in the pro-
gram. The advantage of this approach is that every path in-
cluding the loop path is globally unique. However, since
the inter-procedural paths include the transitive closure of
the called functions, the global namespace may become very
large. Larger namespaces mean using more bits per loop it-
eration recorded.

Melski and Reps [16] extended the BL algorithm, referred
to as the MR algorithm, to build a super graph, i.e., an inter-
procedural control-flow graph, and compute all edge incre-
ments in that super graph. However, unlike the BL algo-
rithm, the MR algorithm’s edge increments are linear func-
tions that involve multiplications because the edge incre-
ments inside a function depend on the call sites of the func-
tion. In order to handle such cases, the MR algorithm uses
function parameters to pass context-sensitive coefficients of
the linear functions. In other words, different coefficients are

175

used for different contexts.
In comparison, we have only one version of increments

for the function being called and only one multiplication is
needed to adjust the path id of the caller at the call site. Hav-
ing fewer expensive instructions is particularly important for
sensor programs. Our algorithm is much simpler to imple-
ment and also takes advantage of local identifiers for repeat-
ing loop paths, thus saving on bits required to encode the
paths and less CPU to calculate the identifiers. We show in
Section 9.4, that the trace size of the MR algorithm is 14%
to 35% more than that of our algorithm when the identifier
uses one more byte than ours.

A disadvantage of maintaining inter-procedural path in
the context of tracing or debugging is that if we do not record
the paths often to persistent storage we may lose the entire
execution if the node gets restarted.

In WSN applications developed using TinyOS, we found
that the number of iterations in most loops is small and the
control-flow paths inside the loops are trivial (like packet
copy, doing something for each neighbor or waiting for a
device). This indicates that we can apply optimizations such
as loop unrolling or compressing the loop entries if there is
only one path in the loop.

6 Generic Compression
In TinyOS application executions, a path is often exer-

cised many times, giving rise to a large number of repeated
subsequences in the trace. Such repetition is hardly exploited
by the encoding scheme we have presented so far, which re-
lies on program structure instead of run-time patterns. For
instance, our acyclic path encoding entails that a loop path
has to be divided into paths for individual iterations and then
recorded as a sequence of path ids, even though these ids
may be the same. For normal scenarios where the resources
are not so constrained, the repetition can be easily captured
by using zlib, which implements the LZW compression al-
gorithm, or Sequitur [12]. However, they are way too ex-
pensive for WSNs.

Fortunately, the repetition patterns are simpler in our case
because of the repeating sequences of events as well as the
small numbers of unique acyclic paths inside loops. There-
fore, we use a simple table lookup algorithm to further re-
duce the trace size. In particular, we trace the program offline
and identify the most frequent subsequence in that trace. In
our benchmarks, the size of the most frequent subsequence
varied from 8 to 26 entries. We replace the occurrences
of this subsequence with a special symbol in the trace and
identify the second-most frequent subsequence in the com-
pressed trace. This second-most frequent subsequence might
contain the special symbol of the most frequent subsequence.

We opted for this approach as opposed to mining patterns
on the go to reduce the run-time overhead and related mem-
ory overhead. As shown in Section 9.3, this compression
is quite effective and incurs much less overhead compared
to LZW or other similar compression techniques that mine
patterns on the go.

During run-time, we use two trace buffers. When one
trace buffer is full, the trace generated is recorded in another
buffer and a CompressAndStoreTrace task is posted on the

1 <OscilloscopeM__Timer__fired > start
2 <OscilloscopeM__Timer__fired > end 0
3 <OscilloscopeM__ADC__dataReady > start
4 <OscilloscopeM__ADC__dataReady > end 3
5 ... [the 4 lines above repeats 9 times]
6 <OscilloscopeM__dataTask > start
7 <LedsC__Leds__yellowToggle > start
8 <LedsC__Leds__yellowToggle > end 1
9 <OscilloscopeM__dataTask > end 0

10 <OscilloscopeM__DataMsg__sendDone > start
11 <OscilloscopeM__DataMsg__sendDone > end 0

Figure 8. Partial listing of pretty-printed trace

full buffer. This task replaces all the occurrences of the most
frequent subsequence with a special symbol. Then, it does
the same for the second-most frequent subsequence. After
replacing with the symbols, it does run-length encoding of
the repeating loop paths in the trace. Once the compression
is done, the buffer is written to flash.

7 Implementation
We implemented our algorithms in nesC compiler version

1.3 for mica2 motes running TinyOS1.x. We used the CIL
source-to-source transformation tool for C to instrument the
C code generated by the nesC compiler. The instrumented
code is then compiled with avr-gcc to create the executable
that can run on mica family of motes as well as on simulators
Atemu and Avrora. The trace is recorded in the flash at run-
time and can be retrieved for later use. We also developed
a trace parser using Python that can uncompress and pretty-
print the trace. An example of a pretty-printed trace is shown
in Figure 8.

Our implementation has two core components: a
compile-time CIL module that does inter-procedural analy-
sis and automatically instruments the code, and a run-time
TinyOS component, CFTracerM, that records the trace.

CFTracerM is implemented as a nesC component which
has two trace buffers, each of length 192 bytes and 16 flash
pages, each of length 16 bytes. CFTracerM has a task called
CompressAndStoreTrace that runs in the background, com-
presses the buffer, and stores the compressed buffer into
flash pages, which are drained by the EEPROM component. It
is important to implement this task as a state machine that
does some useful work and posts itself repeatedly, as we no-
ticed long-running tasks can starve other executions includ-
ing trace storage. Since the trace is constantly generated,
CFTracerM has to carefully coordinate the buffer usage with
locks. The buffer sizes are configurable and depend on the
application being instrumented. For most programs, a trace
buffer of size 96 bytes and 8 flash pages is enough to capture
all the trace generated by the application.

8 Case Studies of Common Faults
In this section, we identify four common faults that oc-

cur in TinyOS/NesC type of systems, namely, initialization
faults, split-phase faults, state machine faults, and task queue
overruns. These faults have been reported several times in
the literature [23, 7] as well as in mailing lists. They also
played a crucial role in the design of TinyOS2.x. We discuss
how our tracing scheme can aid in diagnosing these com-
mon faults and also share our experience in using our tool to

176

debug two of these faults which occurred in our implementa-
tion. We uncover one previously unknown bug in the widely
used flash/EEPROM component in TinyOS 1.x.

Wherever applies, spurious code statements contributing
to the defect are followed by “[delete]”; missing statements
to be inserted to repair the defect are headed by “[insert]’.
8.1 Initialization Faults

Forgetting to initialize the components is one of the top
faults in TinyOS 1.x and therefore, in TinyOS 2.x, the boot-
loader calls the initialization function on all components by
default. The manifestation of this fault can be subtle like we
discuss below through one such manifestation in TOSSIM.
8.1.1 TOSSIM Core Dump

This fault was experienced by us when we were develop-
ing and evaluating our tool. The bug was due to incorrect
usage of our tool. We forgot to wire the StdControl inter-
face provided by the EEPROM (flash) to the main compo-
nent and hence, EEPROM was not correctly initialized. The
flash component is referred to as EEPROM in the TinyOS
1.x code and documentation. The manifestation of this fault
was subtle and interestingly, causing the TOSSIM simulator
to crash instead of inducing a flash failure.
8.1.1.1 Fault Description

TOSSIM dumped core after running one of the bench-
mark program for a while and exited. Since TOSSIM is a
discrete event simulator, gdb stack trace shows only the func-
tions in the event loop and does not point to the function that
inserted the null simulator event. The debug output showed
that the program just finished executing the trace compres-
sion task and we could not find any problem with that task.
8.1.1.2 Tracing

We turned on tracing on all components used, including
radio and flash, and our tracing tool printed the trace to a file
in TOSSIM. The trace indicated that a write to EEPROM
was attempted just before the compression task execution
but was not completed. Interestingly, though, the EEPROM
startWrite and write functions took the successful control-
flow path but the writeDone was never executed. This raised
the suspicion on EEPROM write and we noticed that write
inserts a simulator event, which has a null handler. The han-
dler was assigned when the EEPROM was initialized. Since
we forgot the wiring of initialization of EEPROM, the han-
dler had the default null value in it.

Since the event inserted by the EEPROM executed in the
future, and in the meanwhile other events and the compres-
sion task executed, the debug/printf output did not point to
the error.

The diagnosis would have been simple had the EEPROM
failed at the startWrite, as the debug output would have
pointed to the EEPROM component directly. The diagnosis
became tricky because the EEPROM has a fault that has not
been uncovered as far as we know. The state machine used
in the EEPROM starts in the idle state instead of an unini-
tialized state as shown in Figure 9. The programmer has
checked for idle state before starting a write, however, did
not anticipate that the system could be in idle state bypass-
ing the regular initialization scheme. The problem is due to
the enum used to maintain state which by default assigned a

1 enum { // states
2 S_IDLE = 0, // <-- [delete]
3 S_UNINIT = 0, // <-- [insert]
4 S_IDLE = 5, // <-- [insert]
5 S_READ=1, S_WIDLE=2, S_WRITE=3,S_ENDWRITE = 4
6 };
7 command result_t StdControl.init() {
8 state = S_IDLE;
9 return call PageControl.init();

10 // [creates TOSSIM event]
11 } ...
12 command result_t EEPROMWrite.startWrite[uint8_t id]() {
13 if (state != S_IDLE) // [fault is executed]
14 return FAIL;
15 state = S_WIDLE;
16 ...
17 return SUCCESS;
18 }
19 command result_t EEPROMWrite.write[uint8_t id](uint16_t
20 line , uint8_t *buffer) {
21 if (state != S_WIDLE || id != currentWriter)
22 return FAIL;
23 if (call PageEEPROM.write(line ...)== FAIL)
24 return FAIL; ...
25 }

Figure 9. Partial listing of Flash/EEPROM component in
tos/platform/mica/eepromM.nc

value of zero. To fix the bug, an additional state uninitialized
has to be created as shown in the Figure 9, which prevents
any uninitialized access to the component.

Most of the state-of-the-art debugging techniques are not
applicable to this bug except for function tracing techniques
such as NodeMD [11] and LIS [20], which could have helped
with much programmer effort.
8.2 Split-Phase Faults

Split-phase operations are resource-efficient in stack us-
age but using such operations is tricky as the programmer
has to manage state across the start and end of the opera-
tion manually. This can lead to implementation faults such
as high-level data races despite the use of nesC atomic oper-
ations.
8.2.1 High-Level Data race

We describe a subtle fault due to a high-level data race
which occurred in an implementation of the LEACH proto-
col [5].
8.2.1.1 LEACH

LEACH is a TDMA-based dynamic clustering protocol.
The protocol runs in rounds. A round consists of a set of
TDMA slots. At the beginning of each round nodes arrange
themselves in clusters and one node in the cluster acts as a
cluster head for that round. For the rest of the round, the
nodes communicate with the base station through their clus-
ter head. The cluster formation protocol works as follows.
At the beginning of the round, each nodes elects itself as
a cluster head with some probability. If a node is a clus-
ter head, it sends an advertisement message out in the next
slot. The nodes that are not cluster heads on receiving the ad-
vertisement messages from multiple nodes, choose the node
closest to them based on the received signal strength as their
cluster head and send a join message to that chosen node in
the next slot. The cluster head, on receiving the join mes-
sage, sends a TDMA schedule message which contains slot

177

allocation information for the rest of the round, to the nodes
within its cluster. The cluster formation is complete and the
nodes use their TDMA slots to send messages to the base
station via the cluster head. After sending the TDMA sched-
ule message, each cluster head sends a debug message to the
base-station informing the nodes in its cluster.

8.2.1.2 Fault Description
The implementation of LEACH was using a finite state

machine, in which the state represents the stage the proto-
col was executing in, e.g., SEND_TDMA_SCHEDULE. The im-
plementation on TOSSIM was run using CC1000 bit-level
radio. When the number of nodes is small (less than 20), the
implementation worked well. However, once the number of
nodes exceeded 50, the amount of data received in the base
station started to go down significantly. When looking at the
debug logs printed, it became apparent that many nodes did
join the cluster but still did not receive a TDMA schedule
message from their cluster head and therefore, did not par-
ticipate in the rest of the round. However, the debug logs
at the cluster heads showed successful sending of TDMA
scheduling messages.

Since MAC layer acknowledgments were enabled, suc-
cessful sends indicated successful receipts. It was not clear
at that point why the network layer dropped the packet.

8.2.1.3 Tracing
When tracing was enabled on both the sender and the re-

ceiver components, the sender turned out to be the culprit.
When the load was high, the trace indicated that there was a
timer event fired between the TDMA schedule message send
and the corresponding sendDone event in the cluster head.
The timer corresponds to the state transition timer which fires
at the beginning of each slot. The cluster head moved into the
next state and tried to send a debug message but did not suc-
ceed as the radio send flag was busy indicating another send
being in progress. The trace discloses that before checking
the radio sending flag, it modified the message type. Since
the message buffer is shared, the TDMA schedule message
type was modified into a debug message type.

The nodes in the cluster dropped this message after see-
ing the type, which is intended only for the base station.
This error manifested only when the number of nodes was
increased because the increase in load caused the TDMA
schedule message to be retried several times and the orig-
inal timeslot was not enough for the message transmission.
This error would have been challenging to localize given that
it occurs only at high load with the particular interleaving.
It is not clear how the state-of-the-art debugging techniques
could have helped without capturing both nesC’s interleav-
ing of tasks and events as well as the control-flow inside
events.

This is a high-level data race and nesC cannot flag it. If
the application modifies the message through a pointer while
the message is being sent by the network layer, nesC cannot
detect the race because nesC’s static analysis does not find
racing variables that are accessed through pointers [3]. Thus,
tracing the control-flow can be very helpful in tracking high-
level data race conditions such as the one explained above.

8.3 Overrunning Task Queue
Task queue overruns represent a class of notorious de-

fects in TinyOS which has caused serious problems includ-
ing continuous soft resets [7] and deadlocking of the radio
stack [23]. Task queue overflow can happen if tasks are
starved from execution due to a long-running task [7] or high
rate of interrupts [23]. In the interest of space, we just de-
scribe how our technique could have helped diagnose the
problems.

8.3.1 PermaSense
The cause of the bug was a lookup task whose running

time increases with the data stored in the external flash mem-
ory. After several months of deployment, that task execution
time became large enough that starved other tasks from ex-
ecuting, resulting in a task queue overrun and causing a soft
reset, which reinitializes memory and restarts the applica-
tion. Since the task execution time depended on the external
flash, the fault survived a soft reset and continued to cause
more resets. It took several months before the fault was di-
agnosed. If the control-flow tracing were turned on after the
first soft reset and the trace were collected until the next soft
reset, the control-flow trace would contain the look up task
and the repeated interaction with the external flash device.
This would have hinted the problem.

The state-of-the-art of debugging techniques such as
Clairvoyant [23] could have helped diagnosing this fault but
it is not clear how much messaging overhead would have
been involved.

8.3.2 CC1000 Radio Deadlock
The CC1000 Radio Stack had a subtle fault that led to

deadlocking. This fault has been discussed in the mailing
lists, and Yang et al. [23] showed how Clairvoyant could
have helped diagnose this tricky fault. Essentially, the fault is
due to a small delay before posting tasks in the SPI interrupt
handler. The SPI interrupt handler rate was so high that the
interrupt handler starved the task queue. If we applied our
control-flow tracing technique to the CC1000 radio compo-
nent execution, the trace would contain the repeated invo-
cations to the SPI interrupt handler with the path traversed
denoting the task queue overrun.

8.4 Faulty State Machines Implementations
Event-driven programming relies heavily on finite state

machines to program sequences of actions. Programming
state machines that sprinkle state changes across functions
can be a source of implementation faults. There have been
several examples of faulty state transitions discussed in the
literature [9] and TinyOS mailing lists. Note that the fault we
discussed in Section 8.1 is also an instance of this type. We
note that it is easy to see that state transitions are captured by
the control-flow and hence, faulty transitions can be identi-
fied from a control-flow trace easily. We omit detailed case
studies in the interest of space. We note that the state-of-the-
art techniques such as deriving finite state machines [9] can
detect most of these faults at compile-time itself. However,
the faults such as in Section 8.1 could not have been detected
with [9] as the state itself was missing.

178

9 Performance Evaluation
In this section, we show that our tool incurs low run-time

and compile-time overheads and the trace sizes are viable.
The run-time overhead includes CPU cycles required for ex-
ecuting the instrumented instructions, writing to the exter-
nal flash storage and the amount of external storage or trace
size. We measure the energy consumed by CPU and external
flash to estimate the run-time overhead. We first discuss our
benchmark suite and then present the run-time overhead in
terms of energy consumption and trace size. Next, we show
our trace size compares favorably with the state-of-the-art
technique. Finally, we present the compile-time overhead in
terms of code size and RAM used by our tool.

9.1 Evaluation Benchmarks and Setup
Since there is no competing tracing solution available

for nesC programs (see Section 11) and benchmarks lack,
we chose four characteristic TinyOS applications that are
widely studied in other works [3] namely, Blink, Oscillo-
scope, Surge and CntToLedsAndRFM as well as a large
TinyOS application called LRX. LRX is a reliable large data
transfer module developed as part of the Golden Gate Bridge
monitoring project for our evaluation. We used the Single-
HopTest to drive the LRX module.

These benchmarks are included with TinyOS 1.x. The
Blink application toggles the red LED every second. The
Oscilloscope application records light sensor values every
125 milliseconds and sends the accumulated values as a mes-
sage to the base station periodically. Oscilloscope can gen-
erate large amounts of trace information because of high fre-
quency timer, thus stretching our technique. The Surge ap-
plication is similar in functionality to Oscilloscope but uses a
slower timer that ticks about every 2 seconds but sends mes-
sage every time it senses. CntToLedsAndRFM broadcasts
as well as displays the count every 250 milliseconds. LRX
source contains about 1350 lines of nesC code making it one
of the largest TinyOS application in the contributions direc-
tory. LRX benchmark stress-tests our implementation as it
has complex control-flow.

9.2 Energy Consumption
We used Atemu, a cycle-accurate emulator to record the

energy consumed per hour for each of the benchmarks in
our suite. We ran every benchmark for 1 hour on Atemu and
measured the CPU, flash, and total energy usage. We verified
the results for a few benchmarks from the simulator on our
mica2 motes testbed as direct energy measurement for all our
benchmarks is difficult and human error prone.

For each benchmark, we measured the overhead of both
inter-procedural and intra-procedural tracing. The inter-
procedural case is referred to as inter. For the intra-
procedural case, we noted that functions with trivial control-
flow need not be recorded if the callers of those functions are
traced. So, we split intra-procedural tracing into two types,
naive or intra-all, which records all traced functions, and in-
tra, that applies the above optimization. Observe that intra-
all can be thought of as function call tracer since function
call tracing need to trace all functions as it does not exploit
the control-flow. NodeMD [11] proposes function call trac-
ing and can be treated as intra-all.

Since the overhead of tracing depends on the components
included in the tracing, we traced the important nesC com-
ponents including the application component (e.g., SurgeM
for Surge) as well as the system components such as LEDs
(e.g., LedsC), sensor (e.g., PhotoTempM), single-hop network
layer (e.g., AMStandard) or multi-hop network layer (e.g.,
MultihopEngineM), and timer (e.g., TimerM). The order in
which the components were included in the simulation is ap-
plication, LED, sensor, network layer, and timer.

The results of our simulation are shown in Figure 10. The
energy consumed is divided into three parts: CPU, shown
as red vertical stripes, flash, shown as yellow slanting lines
and the other (such as network layer, LEDs), shown as blue
filled bars. The baseline case with no tracing is shown as the
first bar followed by energy consumed by a progressively
increasing number of traced components. For each of the
traced components category, the order of the three bars is
inter, intra and intra-all.

First, we observe that the flash overhead dominates the
CPU overhead in general as we add more components. Next,
we observe that inter clearly consumes much lower overhead
compared to both the intra and intra-all as less as 378% (for
Surge, 4comp). This is because fewer bytes are recorded in
the case of inter, and flash energy dominates. It’s interesting
to note that the intra-all (akin to naive function call tracing)
uses 39.9% (for Count, 2comp) to 378.4% (Surge, 4comp)
more energy than inter. Further, we observe that intra per-
forms much better than intra-all because of the presence of
large number of simple wrapper functions in nesC, which do
not have control-flow. Compared to inter, intra uses 0 % to
101.4% (for Blink, 2comp) more energy.

We observe that the inter-procedural tracing overhead is
low (0.88% for Surge to 9.43% for count) when only appli-
cation component is traced. As we start tracing more system
components, the overhead increases. However, it is inter-
esting to note that including even most system components
(LEDs, sensors, and network layer) except Timer did not in-
crease the overhead (1.31% for Surge to 29.45% for Oscillo-
scope) that much. This is true even for LRX which has about
1350 lines of code. It is also interesting to note that tracing
overhead directly depends on how often the node is awake in
addition to the components traced. Hence, Oscilloscope has
more overhead than LRX or Surge, which are mostly asleep.
For real-world sensing applications that are awake only once
in a few minutes, our tracing would generate low overhead.
When Timer is included, the overhead increases noticably
and ranges from (26.78% for Count, 4comp to 81.76% for
Oscilloscope, 5comp). This is due to the presence of large
loops. From the results, we infer that control-flow tracing in-
deed incurs low overhead for tracing most of the application
and system components.
9.3 Trace Compression

We show that our compression scheme is effective and
generates smaller traces. We recorded the trace using Atemu,
which logs the flash in a file at the end of the simulation.
We parse the trace to uncompress it at the end of simulation.
The data compression ratio is the ratio of uncompressed size
to compressed size. The trace sizes and compression ratio
recorded for each of the benchmarks are shown in the Ta-

179

0
20
40
60
80

100

B
as

e

In
te

r

In
tra

In
tra

 a
ll

In
te

r

In
tra

In
tra

 a
ll

In
te

r

In
tra

In
tra

 a
ll

None One Comp Two Comp Three Comp

En
er

gy
 (

in
 J

ou
le

s
)

Flash CPU
Other

(a) Blink

0
50

100
150
200
250

B
as

e

In
te

r
In

tra

In
tra

 a
ll

In
te

r
In

tra

In
tra

 a
ll

In
te

r
In

tra

In
tra

 a
ll

In
te

r
In

tra

In
tra

 a
ll

None One Comp Two Comp Three Comp Four
Comp

En
er

gy
 (

in
 J

ou
le

s
) Flash CPU

Other

(b) CntToLedsAndRfm

0

50

100

150

200

B
as

e

In
te

r
In

tra

In
tra

 a
ll

In
te

r
In

tra

In
tra

 a
ll

In
te

r
In

tra

In
tra

 a
ll

In
te

r
In

tra

In
tra

 a
ll

In
te

r
In

tra

In
tra

 a
ll

None One Comp Two Comp Three
Comp

Four
Comp

Five
Comp

En
er

gy
 (

in
 J

ou
le

s
)

Flash CPU
Other

(c) Oscilloscope

0
50

100
150
200
250

B
as

e

In
te

r
In

tra

In
tra

 a
ll

In
te

r
In

tra

In
tra

 a
ll

In
te

r
In

tra

In
tra

 a
ll

In
te

r
In

tra

In
tra

 a
ll

In
te

r
In

tra

In
tra

 a
ll

None One Comp Two Comp Three
Comp

Four
Comp

Five
Comp

En
er

gy
 (

in
 J

ou
le

s
) Flash CPU

Other

(d) Surge

0
50

100
150
200
250
300

B
as

e

In
te

r
In

tra

In
tra

 a
ll

In
te

r
In

tra

In
tra

 a
ll

In
te

r
In

tra

In
tra

 a
ll

In
te

r
In

tra

In
tra

 a
ll

None One Comp Two Comp Three Comp Four
Comp

En
er

gy
 (

in
 J

ou
le

s
) Flash CPU

Other

(e) LRX

5

15

25

35

45

Blink Oscil Surge Count LRX

Pr
og

ra
m

M

em
or

y(
K

B
)

Unmodified
Traced

(f) Program Memory

Figure 10. Run-time overhead for control-flow tracing measured as total energy shown in three parts, namely, CPU,
flash and all others. Figure 10(f) shows program memory size comparison of unmodified and instrumented version of
benchmark programs. The y-axis units is kilobytes(KB).

ble 1. We observe that the amount of trace information gen-
erated in 30 minutes for a normal WSN application is less
than a KB (568 for Surge) and for a high-throughput appli-
cations is about a few KBs (4864 for Oscilloscope). For a
complex application like LRX that contain multiple loops
and several function calls, the trace size is still manageable
and can further be reduced by tracing only important parts of
the application.

Table 1. Trace size for 30 minutes run.
Benchmark Compressed Compression

trace size (B) Ratio
Blink 344 21.71

Oscilloscope 4864 11.99
Surge 568 14.11
Count 3664 4.625
LRX 93200 1.74

An alternative to our scheme is to capture the control-
flow using a simple instruction-level tracing scheme, which
records the program counter of every instruction executed
can be used. We assume that the program counter can be
encoded in a single byte, even though it would take more.
We used Avrora, a cycle-accurate simulator, to record the
actual number of instructions executed over a period of 30
minutes and this instruction-level trace size ranges from 2.12
MB (Blink) to 421.6 MB (Count) for our benchmarks. The
instruction-level scheme captures all concurrent event inter-
leavings exactly, but the size of the generated trace is pro-
hibitively large. The uncompressed trace generated by our
technique is much smaller than the instruction-level tracing.
9.4 Trace Size Comparison

In this section, we compare the size of the trace generated
by our algorithm with the MR algorithm and show that our
algorithm is comparable in size or better.

We, first, observe that the MR algorithm has to be adapted

to the concurrent environment similar to our algorithm, i.e.,
applying it to every execution unit (task/event). Since there
is no open implementation available of the MR algorithm
(there are no experimental results in the original paper [16]),
we estimate the trace size generated by the MR algorithm
using the trace generated by our algorithm.

The two algorithms differ in the way they handle non top-
level functions (functions other than tasks or events) contain-
ing loops. Both algorithms record the loop paths for every
iteration of a loop. In the MR algorithm, each loop path gets
a globally unique path identifier, thus increasing the global
identifier space significantly. However, in our algorithm, we
use locally unique identifiers for loop paths and use the func-
tion context to distinguish the loop paths across functions.
Since we record more entries than the MR algorithm for non
top-level functions with loops but use fewer bits per entry in
the trace, the actual trace size would depend on the number
of iterations of the loops inside non top-level functions.

Let n be the number of entries in the trace generated by
our algorithm. Let f be the number of non-top level func-
tions containing loops. Let o and t be the number of bits
used to encode an entry in the trace by our algorithm and the
MR algorithm respectively. Note that, t > o, o is 16 bits in
our case. Our trace size is n×o whereas the MR trace size is
(n−2× f)× t. The two entries created for the start and path
identifier of any non top-level function containing loops will
not exist in the trace generated by the MR algorithm and for
this reason, we subtract 2× f from the number of entries.

We obtained the values of n and f from the uncompressed
trace for each of the benchmarks. The results are shown in
Table 2. The columns in the table correspond to the size
of the trace generated by the MR algorithm normalized by
size of the trace generated by our algorithm. Since the value
of t depends on the implementation, we vary t from 17 bits

180

to 32 bits, which is 1 bit to 2 bytes more than o. We ob-
serve that the trace size generated by the two algorithms are
comparable even when the global identifier uses just 1 bit
more and this is because there are only few non top-level
functions with loops in the benchmark programs. When the
global identifier uses one byte or 2 bytes more, our algorithm
saves considerable space (14% to 83%). Therefore, we con-
clude that in WSN settings, our algorithm, which uses less
CPU cycles per instrumentation, simpler to implement and
saves trace size, is preferable over a direct adaptation of the
MR algorithm.

Table 2. Trace size comparison with the MR algorithm
Benchmark t = 32 bits t = 24 bits t = 20 bits t = 17 bits

Blink 1.526 1.145 0.954 0.811
Oscilloscope 1.809 1.357 1.131 0.961

Surge 1.82 1.367 1.140 0.968
Count 1.83 1.374 1.145 0.973
LRX 1.79 1.345 1.121 0.952

9.5 Memory Consumption
We discuss the program and data memory requirements

of our tracing scheme for our benchmarks. The program
memory represents the code size and the data memory rep-
resents the working memory/RAM size. We obtained these
values by compiling with default switches; that is, OS code-
optimization was turned on. We note that there are two com-
ponents to program memory overhead: fixed and variable.
The former component is due to the internal algorithms such
as the generic compression used by our tracing component
and the device driver code for flash component. The lat-
ter component corresponds to instrumentation. The program
memory used by unmodified and traced versions are shown
in Figure 10(f). For simple programs like Blink and Oscillo-
scope, the overhead is high because of the fixed components.
But for large programs such as Surge and LRX, the fixed
component increase is reduced because some device drivers
are already included as part of the program. Another reason
for smaller overhead in Surge and LRX is that the compiler
removes inlining of function calls in the traced version. The
effect of removal of inlining is not high as our energy over-
head results indicate. The increase in program size is modest
and for most programs well under the limits of 128 KB for
mica (mica2, micaz) family or 48 KB for telosb families of
motes. Since the nesC compiler aggressively inlines the pro-
gram, reducing the inlining can help large programs.

The data memory requirement is around 950 bytes and is
usually independent of the instrumented program. The major
contributor to the data memory are the internal buffers (640
bytes) used to store the trace for future compression and for
recording into flash while allowing the application to pro-
ceed. The internal buffer size is configurable and here we
show the highest configuration used for LRX. For most pro-
grams, half that size is enough. The split of the data memory
is shown in Table 3.

Table 3. Division of data memory overhead in bytes
Datastructure Memory size in bytes

Flash Pages(16) 256
Circular Buffer(2) 384

Miscellaneous 3̃00

10 Limitations
Our approach is a first step to creating a post-mortem re-

play debugger for WSNs. As with any tracing mechanism,
manual labor is involved in analyzing traces. We are working
on automating the trace collection from individual sensors.

By capturing control-flow, our approach is generic
enough to diagnose a large class of errors that change the
control-flow including logical errors, high-level race condi-
tions, node reboots, network failures (node/link failures), and
memory errors with varying overhead. However, specific ap-
proaches can be less expensive for the respective targeted
classes of errors such as SafeTinyOS [3] for memory-specific
errors, or can require less manual intervention such as Sym-
pathy [19] or PAD [13] for network failures. There are cases
where control-flow tracing cannot distinguish the abnormal
from normal such as malicious entities corrupting function
return addresses in the stack or entries of the routing table.
These security errors are important and can be mitigated us-
ing authorization and authentication mechanisms.

Since our control-flow tracing is limited to the granularity
of basic blocks, reconstructing exact instruction-level execu-
tion is not directly possible. If multiple instructions inside
a basic block could race with an interrupt, any of the inter-
leavings between this basic block and the interrupt would
produce exactly the same control-flow trace. In the post-
mortem analysis, the developer would not be able to local-
ize the fault with the control-flow trace alone. We note that
during post-mortem analysis, tools such as Chess [17] that
try all possible interleavings of the interrupt with the basic
block instructions accessing shared data can be helpful. The
combination of our tracing technique with such an analysis
is a potential avenue of future research. The static data race
detection in nesC prevents low-level race conditions.

As noted earlier, the trace size can increase when many
components are traced. It is usually the case that the devel-
oper wants to trace only those application components that
are more likely to contain logical errors rather than well-
tested system components.

11 Related Work
Existing work in debugging for WSNs can be classified

into (1) tools that aid in automating debugging, (2) tools that
provide insight into the network, and (3) tools that analyze
programs for testing or extracting higher-level abstractions.
11.1 Automated Debugging

Ramanathan et al. propose Sympathy [19], which collects
network metrics such as connectivity and data flow, and node
metrics periodically for failure detection. The source of a
failure can be narrowed down to a node or sink or the com-
munication path itself. Liu et al. propose PAD [13], which
uses lightweight network monitoring and bayesian network-
based analysis to infer network failures and their causes.
Sympathy and PAD focus on network faults and do not han-
dle application implementation faults. Krunic et al. [11] pro-
pose NodeMD, a tool that can detect stack overflows, live-
locks, and deadlocks. NodeMD is similar to our work in that
it instruments the code and encodes high-level events with
small numbers of bits to record traces. However, a recorded
trace does not contain the exact control-flow path informa-

181

tion and hence, cannot be automatically replayed later to
reproduce faults. Moreover, the tracing is not designed for
event-based concurrent systems like ours. Shea et al. [20]
propose an optimized way for storing function call traces
similar to NodeMD but it lacks inter-procedural control-flow
tracing. Luo et al. [15] propose to record all events in a
given time period and replay them within the node at later
point in time. This solution is mainly proposed for in-field
post-deployment testing where trace sizes can be controlled
rather than for a post-deployment debugging tool. Herbert et
al. [6] present an invariant-based application-level run-time
monitoring tool that can be used to detect errors in WSN ap-
plications. This tool does not have the diagnostic framework
required to find the root cause of the error detected. Cao
et al. [2] propose Declarative TracePoints, which provides a
SQL-based language interface for debugging. Khan et al. [8]
propose Dustminer, a machine learning-based approach to
diagnosis. Dustminer uses the pattern mining algorithm to
distinguish good executions from bad executions in the logs
collected.
11.2 Visibility

Since motes do not include a user-friendly interface but
merely three LEDs, it is important to provide insights into
the state of the network to gain confidence that it is func-
tioning properly. Whitehouse et al. [22] propose Marionette,
a tool suite that supports function calls and memory reads
(“peeks”) and writes (“pokes”) on a remote node. This al-
lows a programmer to check the state of the network and al-
ter it if needed. Yang et al. [23] propose Clairvoyant, which
is a remote debugging tool that provides a gdb like debug-
ging and allows a programmer at the base station to control
the execution of the nodes in the network or to inspect the
state of the network. Kothari et al. [10] propose Hermes,
a lightweight framework and tool that provides fine-grained
and dynamic visibility without modification to end applica-
tions. While these tools provide an elegant way of inspecting
state of a WSN, we provide a complementary method in a
way like printf based debugging is complementary to gdb
debugging.
11.3 Tools Based on Program Analysis

Nguyen and Soffa [18] present an application graph ab-
straction to represent nesC programs. Kothari et al. [9] use
symbolic execution to extract the finite state machine implied
by the TinyOS code, which aids in better understanding of
the code. While these tools are helpful in development and
testing, they are not meant for run-time debugging.

12 Conclusions and Future Work
In this paper, we have shown that program tracing can be

performed efficiently and accurately in wireless sensor net-
works. To that end, we have introduced a novel trace encod-
ing scheme and a basic trace compression scheme. We have
applied our scheme to several case studies and applications.

Backed by this evidence of the viability of our approach,
we are exploring different improvements to our technique.
For instance, the unrolling of loops can potentially reduce
the number of entries into trace buffers. Furthermore, we are
working on modular computation of inter-procedural paths
which involve function calls with loops.

13 Acknowledgement
We thank the anonymous reviewers and Kamin White-

house for their insightful comments. This research is sup-
ported, in part, by the National Science Foundation (NSF)
under grant 0834529. Any opinions, findings, conclusions,
or recommendations in this paper are those of the authors
and do not necessarily reflect the views of NSF.
14 References

[1] T. Ball and J. R. Larus. Efficient path profiling. Micro ’96.

[2] Q. Cao, T. Abdelzaher, J. Stankovic, K. Whitehouse, and L. Luo.
Declarative tracepoints: A programmable and application indepen-
dent debugging system for wireless sensor networks. SenSys ’08.

[3] N. Cooprider, W. Archer, E. Eide, D. Gay, and J. Regehr. Efficient
memory safety for TinyOS. SenSys ’07.

[4] D. Geels, G. Altekar, P. Maniatis, and T. Roscoe. Friday: Global
comprehension for distributed replay. NSDI ’07.

[5] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan. An
application-specific protocol architecture for wireless microsensor
networks. IEEE TWC, 1(4):660–670, 2002.

[6] D. Herbert, V. Sundaram, Y. H. Lu, S. Bagchi, and Z. Li. Adaptive
correctness monitoring for wireless sensor networks using hierarchi-
cal distributed run-time invariant checking. ACM TAAS, 2(3):8, 2007.

[7] M. Keller, J. Beutel, A. Meier, R. Lim, and L. Thiele. Learning from
sensor network data. SenSys ’09.

[8] M. Khan, H. Le, H. Ahmadi, T. Abdelzaher, and J. Han. Dust-
miner: Troubleshooting interactive complexity bugs in sensor net-
works. SenSys ’08.

[9] N. Kothari, T. Millstein, and R. Govindan. Deriving state machines
from TinyOS programs using symbolic execution. IPSN ’08.

[10] N. Kothari, K. Nagaraja, V. Raghunathan, F. Sultan, and S. Chakrad-
har. Hermes: A software architecture for visibility and control in
wireless sensor network deployments. IPSN ’08.

[11] V. Krunic, E. Trumpler, and R. Han. NodeMD: Diagnosing node-
level faults in remote wireless sensor systems. MobiSys ’07.

[12] J. Larus. Whole program paths. PLDI ’99.

[13] K. Liu, M. Li, Y. Liu, M. Li, Z. Guo, and F. Hong. Pad: Passive
diagnosis for wireless sensor networks. SenSys ’08.

[14] X. Liu, Z. Guo, X. Wang, F. Chen, X. Lian, J. Tang, M. Wu, M. F.
Kaashoek, and Z. Zhang. D3s: Debugging deployed distributed sys-
tems. NSDI ’09.

[15] L. Luo, T. He, G. Zhou, L. Gu, T. F. Abdelzaher, and J. A. Stankovic.
Achieving repeatability of asynchronous events in wireless sensor
networks with envirolog. INFOCOM ’06.

[16] D. Melski and T. W. Reps. Interprocedural path profiling. CC ’99

[17] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu. Finding and reproducing heisenbugs in concurrent pro-
grams. OSDI ’08

[18] N. T. M. Nguyen and M. L. Soffa. Program representations for testing
wireless sensor network applications. DOSTA ’07.

[19] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and D. Es-
trin. Sympathy for the sensor network debugger. SenSys ’05.

[20] R. Shea, M. Srivastava, and Y. Cho. Scoped identifiers for efficient
bit aligned logging DATE ’10

[21] T. Sookoor, T. Hnat, P. Hooimeijer, W. Weimer, and K. Whitehouse.
Macrodebugging: global views of distributed program execution.
SenSys ’09.

[22] K. Whitehouse, G. Tolle, J. Taneja, C. Sharp, S. Kim, J. Jeong, J. Hui,
P. Dutta, and D. Culler. Marionette: using RPC for interactive devel-
opment and debugging of wireless embedded networks. IPSN ’06.

[23] J. Yang, M. L. Soffa, L. Selavo, and K. Whitehouse. Clairvoyant: a
comprehensive source-level debugger for wireless sensor networks.
SenSys ’07.

182

