Efficient Program Execution Indexing

Bin Xin

William N. Sumner

Xiangyu Zhang

Department of Computer Science, Purdue University, Weftyledte, Indiana 47907
{xinb,wsumner,xyzhang}@cs.purdue.edu

Abstract

Execution indexing uniquely identifies a point in an exemutiDe-
sirable execution indices reveal correlations betweentpon an
execution and establish correspondence between poinissatiul-
tiple executions. Therefore, execution indexing is esakfdr a
wide variety of dynamic program analyses, for example, iit loa
used to organize program profiles; it can precisely idethiépoint
in a re-execution that corresponds to a given point in ariralgx-
ecution and thus facilitate debugging or dynamic instrutagon.
In this paper, we formally define the concept of executiorinahd
propose an indexing scheme based on execution structungrand
gram state. We present a highly optimized online implententa
of the technique. We also perform a client study, which tergeo-
ducing a failure inducing schedule for a data race by varifithe
two alternative happens-before orderings of a racing fadex-
ing is used to precisely locate corresponding points acragsple
executions in the presence of non-determinism so that neyhea
weight tracing/replay system is needed.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—Debugging aids, Diagnostics, Mon
itors; D.3.4 Programming LanguagésProcessors—Debuggers

General Terms Algorithms, Measurement, Reliability

Keywords Execution indexing, Execution alignment, Control de-
pendence, Structural indexing, Semantic Augmentatiota Exce

1. Introduction

During program execution, a static program statement doellelx-
ecuted multiple times, resulting in different executionn®s. A
fundamental challenge in dynamic program analysis is tquely
identify individual execution points so that therrelationbetween
points in one execution can be inferred and¢berespondencée-
tween execution points across multiple executions can tebes
lished. Solving this problem is significant for a wide randeap-
plications.

Profiling. Program profiling collects information about program
executions such as frequently executed paths, refereddeesses,
produced values, and exercised dependences. Such inionman
be used in program optimizations, debugging, testing,ligtiza-
tion, and so on. Currently, most program profiling techngjure
dex profiles through static program points [7] and can effebt

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI'0O8 June 7-13, 2008, Tucson, Arizona, USA.
Copyright(© 2008 ACM 978-1-59593-860-2/08/06. . . $5.00

answer queries such &isding the set of addresses referenced at
program pointz. Such an indexing scheme merges the information
of individual execution instances af and thus is insufficient for
some applications. For example, in order to study the availzon-
currency in program execution, it is essential to distisgutom-
putation performed in different iterations of a loop. Moren we
should only compare the iterations that have similar dyeasoh-
texts because two iterations of a loop, although procestisjgint
datasets, may be nested in completely different callingecas so
that parallelizing them requires significant code restming. In
other words, applications like parallelization requirermexpres-
sive indexing techniques to organize execution profileshabthe
correlation between points can be unveiled.

Debugging.A debugging practice often entails setting breakpoints,
re-running the program, and inspecting program state wheex-
ecution is trapped. In many situations, the need of setthegs
points at a particular executidnstanceof a static program point
arises. Although many debuggers support skipping a cemtaim-
ber of instances of a breakpoint, it is known to be insufficésnthe
ith instance of a statemeatin the re-execution might not be the
sameith instance in the original execution, due to nondeterminis
or program state perturbations performed at earlier bi@atg An
indexing scheme that tolerates nondeterminism and execpér-
turbations is highly desirable.

Dynamic Instrumentation. The recent advances of program in-
strumentation techniques allow instrumentation to be tiatiiy
turned on and off at runtime, which provides flexibility foramy
dynamic program analysis. For example, execution omissimrs
(EOE) result in failures through not executing certainestants.
While any statements that are not executed cannot be traCHes
are difficult for most trace-based techniques. In [23], EQIEs
tackled by identifying implicit dependence between a prat ex-
ecution instance and a memory reference point. This is aethiby
forcing the predicate instance to take its opposite bramchtlaen
observing the value change at the memory reference pointctsw
ing the predicate instance requires the instrumentatigmeoisely
locate the instance. Furthermore, switching the predicestance
perturbs the execution and thus the instrumentation neetiad
the corresponding memory reference point in the perturBedwe
tion. Similarly, generating failure inducing schedulingy fa data-
race is often achieved by forcing the two alternative hapgmafore
relations between the two racing execution points. |dginiif the
same two points in the two executions in the presence of nende
minism demands accurate indexing techniques.

Execution Comparison. Execution comparison focuses on the
similarity between executions. It has been used in debggaimd
testing. In [22], the minimal differences between the paogstates
of two executions, one is passing and the other is failing ,cam-
posed as the failure inducing chain from the root cause ttathee
symptom. The comparison entails a highly complex procedfire
establishing matches between memory states in the two xesu
An indexing that can establish correspondence betweeniffes-d

ent executions can significantly reduce the complexityesting,
the similarity between executions can be used as a crittvioe-
duce redundancy and prioritize test cases.

Despite the great need for execution indexing, to the bestiof
knowledge, it has not been studied as a stand-alone proBleme
research has been carried out in related fields. Many egigtio-
gram trace related techniques [24] use which denotes théth
instance of statementor the instance at time stamp, to iden-
tify an execution point. While it uniquely identifies an exéon
point, it does not contain any information to represent tiations
between points and lacks the power of establishing corretpwe
between executions. In [23, 9], offline algorithms are pegubto
align multiple executions or regions in multiple execusidar their
own purposes. An ideal execution indexing technique shioeiloi-
line with low overhead such that indices can be queried ang ti
during execution like querying calling contexts. With ioe, ex-
ecution alignment becomes trivial as two points in two défe
executions must align if they have the same index. In thesotof
aspect-oriented programming [18, 3] and security [13]neyat-
terns are described by regular languages or automata telexa
ecution points where certain interesting states have besched.
These techniques are not general in the sense that theylgi@-on
terested in some execution points and the user needs to daéine
set of events and their patterns.

In this paper, we propose a general execution indexing sehem
that is based on execution structure and program state. &he b
sic idea is to parse program executions according to theitinge
structure, which is expressed as a set of grammar rules. &itaf s
rules that have been used to parse a given execution poidlsev
its structure and thus constitutes its index. To improvdlthebility
and expressiveness of our indexing scheme, the grammaraaie
be augmented with semantic information such as values atpar
lar execution points. Our technique features a cost-@ffecnline
implementation with a set of optimizations. Our contribug are
highlighted as follows:

¢ We formally define the problem of execution indexing.

¢ We propose to describe program execution by a context free
language. The set of rules are constructed based on thegesti
structure of the program, which can be inferred from program
control dependence. An algorithm is given to explicitlyider
the set of rules.

We present an efficient online algorithm to compute indices
without requiring explicit construction of the grammar sl

A few optimizations further reduce the overhead to 42% on
average.

cution indexing. With the augmentation, program state aan b
incorporated into the grammar rules and thus become part of a
index. As a result, users’ insights of program behavior can b
leveraged in index construction.

We perform a client study of the indexing technique by apply-
ing it to lightweight generation of a failure inducing schiédg

for data races. Data races are benign if they can not lead/to an
failure. For a pair of racing program points, two executians
emitted to verify the two alternative orderings. The indicee
used to precisely locate the corresponding points in these e
cutions. Our experimentation shows that with indexingufai
inducing schedules can be easily generated without relying
an expensive tracing and replay system.

2. Execution Indexing

In this section, we first formally define the conceptexfecution
index We then describe the structural indexing scheme.

DEFINITION 1. (Execution Index) Given a progranfP, the index
of an executior(7), denoted asE1”® with 7 being the input

vector, is a function of execution points () that satisfies the
following property:

¥ two execution points # y, EI”®(z) £ EI7® (y).

From the definition, any function that uniquely identifies an
execution point can serve as an index. A very important ptgpe
of an index function is that it establishes a correspondeeiegion
between points in multiple executions.

DEFINITION 2. (Execution Correspondencewo execution points,
x in executiorf andy in £’, correspond to each other i I ()

EI¥ (y).

& and &’ may correspond to different inputs, or even though
they have the same inpuf; is a perturbation of, caused by
nondeterministic scheduling and so on.

Code: Original Execution (p1=TTF)
1. ... 2. while (pl)
while (p1) { 3. get input (buf); El
get_input (buf); 9. read (buf,512); |
2. while (pl)
3. get_input (buf); E2
5
2. while (pl)
void get_input (char * buf) 5. get_input(buf);
{ o O[read (buf;) |F
read (buf, 512); .
{ Perturbed Execution (p1=F)
‘ 2. while (pl)
5. get input (buf);
9.[read (buf, ...);

Figure 1. Log Based Replay with Perturbation

el

get_input (buf);

SwoeNoLe

0.}

Ex

2.1 Motivating Example

As described in the introduction, constructing executiomespon-
dence is essential for a wide range of applications. Sinmglexing
schemes are not sufficient in providing meaningful corraspace.
Consider the example in Figure 1. The program reads inpuat fro
a file within a loop and then reads another piece of input datsi
the loop. Assume in the original executign, takes the value se-
guence ofrue, true, andfalse As a result, functioget _i nput ()

is called three times, twice from inside the loop. The loggeents
are highlighted by boxes and labeled wih, E2, andE3. Assume

We propose semantic augmentation to the structure based exea failure happens and the programmer tries to identify theeta>

tion betweerpl and the failure by changing the branch outcome
of the first instance opl, i.e., fromtrue to false and observes
if the failure disappears. Such a switching process is atgal in
handling execution omission errors [23] to automaticatiyail im-
plicit dependence. The programmer replays the executioig tise
event log and perturbs the replayed execution by switchingt

its first evaluation. As the perturbed replay relies on thenévog
collected in the original run, the challenge lies in coryestipply-
ing events during replay. In this case, it is to associatetelz8
with statement 9 in the perturbed run. Note that we asshfis
independent oE1 and E2. This often occurs when the program
parses1 andE2 for one structure and then parde3 for another
structure. The simplest indexing scheme that uses the tmter o
fails because the first event in the original rurkis, whereas the
first event expected in the perturbed executioB3sA smarter in-
dexing that represents an execution pointsgsmeaning theith
instance of statement although has been widely used in existing
dynamic analyses [19, 24, 14], is not sufficient eitliet.has the

index of 91, which is the same a8x’s. In other wordsE1 is the
correspondence &x and thusEl is supplied to statement 9 during
replay, which is wrong.

In this paper, we propose an indexing technique based on exe-

cution structure. In Figure 1, eveRtl is processed at statement 9,
which is nested in the method call made at 3, which in turn stede

in the true branch of predicaje at 2. Other executed statements
such as the second and third calls at 3 are not related to stiege
structure ofE1l and should not be part of the index. Therefdzé,
has the index 0f2, 3, 9]. E2 has the index 0f2, 2, 3, 9]. The two
consecutive 2s in the index indicate that the event is nestéte
second iteration of the loop. Bot3 andEx have the same index
[5, 9], meaning the structures of these two events occur within the
calls made at 5 and are not related to other statements sizcbras
3. Based on the structural indicds3 is provided as the expected
event. Note that using call stacks does not work becBdssndE2
have the same call stack. In other words, call stacks are valich
execution index function. This is due to call stacks onlyoree
ing a partial image of the nesting structure. The proposéeximg
scheme not only succeeds in establishing desired corrdepoa
for points across different executions in many cases, lsatfakil-
itates highly efficient online computation.

2.2 Structural Indexing

In this subsection, we present our design in detail. Implgaten
will be discussed in the next section. The key observatioouf

technique is thaall possible executions of a program can be de-
scribed by a language called execution description langu@&bL)
based on structureAn execution is a string of the language.
1 s 1 () 1 while (.){ 1 void AQ {
! . : 2 B():;
2 s3; 2 s1; 2 S1; 3}
Codg 3 s3; 3 else 3} .
4 s4; 4 52; 4 s2; g void B().{
S1,
6 }
EDL| §—123%| S— 1Rl | S —1R14 S — 2RB
RI—2|4 | Rl—21R1|e | RB—5
12 1214
Str. 1234 14 121214 25

Table 1. EDLs for Simple Constructs.

Table 1 presents the EDLSs for a list of basic programming lan-
guage constructs. The first column shows sequential codmutit
nesting, whose execution is described by a grammar ruldigist
all the statements. Note that a terminal symbad$ denoted as
in this paper. In the second column, thé- el se construct in-

the same control dependence are present on the right handfsid
the same rule, representing the same level of nesting. Gamitie
rules for thewhi | e construct. Statements 1 and 4 have the same
dependence and they are listed on the right hand side of 8te fir
rule; the body of ruleR1 lists the statements that are dependent on
statement 1. Note that statement 1 control depends on @selfe
execution of a loop iteration is decided by its previousatien.

We define the EDL of a program as follows.

DEFINITION 3. (Execution Description Language)Given a pro-
gramP, its execution description language, denoted?d3 L(P),

is the language described by the grammar rules generatedi-by A
gorithm 1.

Algorithm 1 Grammar Construction
Input: a prograniP.
Output: a set of grammar rules that describe the executiori®. of

1. ConstructGramma(P)

2. {
rules = 0;

3. for each method\t {

4: /* CD denotes control dependence*/

5: T = statements ioM in flow order

satisfyingCD = START m;

6: rules U= RM — T,

7 for each statementin M {

8: if (s is a predicate]

9: T = statements in flow order s€D = s?"%¢;
10: F = statements in flow order s@ D = s/**¢;
11: rulesU=Rs — T | F;

12: }

13: }

14}

15: [*post processing to complete the rules */
16: for each ruler — X

17: for each symbok € X {

18: if (s is a predicate)

19: replaces with “s Rs" in X
20: if (s is a call toM)

21: replaces with “s RM”in X;
22:

23}

While there exist different grammar rules that describesdrae
language, we rely on the rules generated by Algorithm 1 ag the

troduces a level of nesting and thus the EDL has two rules, one lead to a clear and concise definition of execution indexctvhiill

expressing the top level structure that contains staterhesmd
the intermediate symbaR1 representing the substructure led by
1. The two alternative rules dR1 denote the substructure of the
construct. The self recursion in the grammar rule forwheé | e
loop in the third column expresses the indefinite iteratiohthe
the loop. From these examples, we can seeEts are different
from programming languaged he strings of EDLs are executions
whereas the strings of programming languages are progiEmes.
alphabet of an EDL contains all the statement ids in the pirogr
whereas that of a programming language contains program con
structs, variable identifiers, and so on. The second obisenves
thatprogram control dependence perfectly reflects executime-st
ture. A statement: control depends on another statemgnisually

a predicate or a method call statemeny; directly decideghe ex-
ecution ofz. The formal definition can be found in the seminal
paper [8]. For example in the second column of Table 1, statém
2 is control dependent on statement 1. The statements theg sh

be discussed later in this subsection. Algorithm 1 is basegro-
gram control dependence: a grammar rule is created fonsezs
that share the same control dependence. It consists of tjar ma
steps. Lines 3-14 describe the first step, in which statesvienn-
dividual methods are clustered based on their control cigrases.
Here we consider all statements in a method that have empty co
trol dependence to be control dependent on the method. In the
second step (lines 16-22), the rules generated in the feptate
scanned and symbols that have control dependents are agpend
with the grammar rules that describe the substructureseaftbn-

trol dependents.

To demonstrate the algorithm, we use a more complete example
in Figure 2. The code contains a recursive call (line 9) anal no
structural control flow (line 5). The first rule in Figure 3 rep
sents the top level structure of methAdDue to ther et ur n at
line 5, as shown by the CFG, only statements 2 and 3 are control
dependent on the start node &f ST ART 4. The second step of

tA0 L

1
2 oy === START, | rr[STARTgy
. L ! ! ¥
3: if (C1) { ! r
4: B(); I b
5: return; | '
6} | |
7: while (C2) { ! :
8: if (C3) ! '
9: A(); I |
10: s9; L !
1} !
12: B() |
13: } |
14:
15: B () {
i?) 53 @ push () Apop () - interproc. flow
Figure 2. A Running Example
RA — 23R3
R3 — 4RB5|7R712RB
R7 — 8R8107R7]¢
RB —];6
R8 — 9RA|e€

Figure 3. The Grammar Generated by Algorithm 1 for Figure 2.

the algorithm insert®3right behind symbol 3 in the rule, denot-
ing the lower level composition that are control dependen3o
Note that the top level rulRAdoes not reflect the syntactic struc-
ture of methodA as aNruIe derived from the syntactic structure, i.e.,
RA — 2 3 R37 R7 12, fails to describe executions, e.g., “2 3 4
16 5”. Statements 4 and 5 are control dependent on the trnetbra latol O C
of 3 and statements 7 and 12 are dependent on the false branchf€turned, indicating that parsing based on the current gramnnule

Adding the intermediate symbols denoting the substrustiee by
4, 7, and 12 results in the second rule in Figure 3. The remgini
rules are similarly derived.

Recall that our goal is to design an execution indexing tech-

DEFINITION 4. (Structural Indexing) Given a programP and

its EDL(P), the structural index of a point in executionP(z),

denoted ass EI”) (z), is the path from the root of the derivation
tree to the leaf node representing

According to the definition of EDL, each grammar rule cap-
tures the statements at the same nesting level. Therefier@ath
in the derivation tree, which leads from the root to a termayan-
bol and contains all the intermediate symbols, denotes dpe t
down nesting structure and serves as a perfect structudak.in
Figure 4 shows the indices for two executions of the code @n Fi
ure 2. ExecutionE recursively callsA() in the first iteration of
the while loop, whereas the recursive call happens in thersec
iteration in £. We can se&SEI”(2,) = SEI” (2,) = [RA,
in which 2, denotes the first instance of statement 2 in the traces.
Thus, the first executed statement 2s correspond to eachinthe
the two executions, as linked by the dotted lisd21% (161) =
[RA R3 R7, R8..], which clearly expresses the nesting structure
of the first execut(/ed 16. In contrast, the indexi6f in the second
execution isSET® (161) = [RA R3 R7, R7, ..], different from
SEI”(161). The indices imply that the6; in E’ is nested in the
second iteration of the while loop while thé; in E is nested in
the first iteration. Therefore, the twi®; s do not structurally cor-
respond. In some situations, the structural corresporddiffers
from the desired correspondence, we will discuss how welband
these cases in Section 4.

We have defined what is structural indexing. However, we are
yet to show that structural indexing is a valid indexing soke

THEOREM1. The structural indexing function defined in Defini-
tion 4 is a valid execution indexing function.

To prove this theorem, we need to show that no two different
execution points in an execution have identical structindices.
The proof is omitted for brevity.

3. Implementation and Optimizations

A faithful implementation of structural indexing accordito the
definition is not practical because it requires collecting thole
execution trace and then parsing the trace. However, ourcgoa
be interpreted as maintaining the current index for eaclgian
point on the fly, just like maintaining the calling context this
way, we avoid any form of logging. The user has the freedom to
collect the indices for any interesting points such as lpeits
and perturbation points. This interpretation entails higdfficient
implementation.

3.1 Indexing Stack

The basic idea is to use an indexing stack (IS) to keep track of
the index, which is the set of rules used in parsing the ctrren
nesting structure. More specifically, an entry is pushedtorice

a predicate statement or a method call is executed, implging
new rule representing the lower level nesting structuraken to
parse the following execution. The entry is popped if the ediate
postdominator of the predicate is executed or the methddscal

is finished and the following execution should be parseddase
the parent rule, which is now found in the top entry of the entr
IS. The algorithm is presented in Algorithm 2.

According to the algorithm, only predicates and methodscall
and their immediate postdominators are instrumented. Thies

nique. Based on EDLs, we are ready to introduce our indexing and triangles in the CFG in Figure 2 illustrate the instrutagan

scheme. As illustrated earlier, any execution of a progfams a
string of ED L(’P). The index of an execution point can be defined
based on the derivation tree of the string.

of calls toenter () andexit (). For instance, statement 3
is instrumented with aent er () call, meaning rul€R3is em-
ployed to parse the following execution. AtX 1T, the statement

Algorithm 2 Maintaining Indexing Stack.

s is an executed predicate or a executed method call;

b is the entry of a basic block;

IPD(s) denotes the immediate postdominatospf

Each stack entry is a pair, with the first element being the anid
the second element being the terminating IPD.

. Enter(s) {
if (s is a predicate)
IS.pushk Rs, IPD(s) >);
if (s is a method call to\)
IS.pushk RM, IPD(s) >);

1

2

3

4

5
6: }
7: Exit(b) {

8 while (IS.top().seconekE b)
9 IS.pop();

0

1-:}

3's immediate postdominator, a calléxi t () is inserted. Note
that a statement may serve as the immediate postdominataulef
tiple predicates or method calls. For example, statemeris ile
IPD of both 8 and 9. As a result, multiple entries in IS may have
the same terminating IPD. The property of dynamic contrplae
dence further dictates that multiple entries with the seenminat-

ing IPD must be consecutive in IS [20]. This explains why Algo
rithm 2 needs to push the terminating IPD to the stack andhesli
8-9 uses a loop to pop all entries wittbeing the terminating IPD.

trace instrumentatior] indexing stack
2.s1 - [RATA
3.if (C1) | (R3%4) | [RAXA R3X4]
7.while(C2) | | (R7™) [RAXA R3XA R7'7]
8.if (C3) 1 (R8T [RAXA R3XA R7'Z R8IV
10. 52 1 (+19) [RAXA R3XA R717]
7.while(Co) | | (R7'2) [RAXA R3X4 R712 R717
7.while(C2) | | (R7™) [RAXA R3XA R7'?Z R7'Z R7'?]
12.B() T (%2) [RAXA R3XA RBXE)

| (RBX%)

Figure 5. The Maintenance of IS for Executiali in Figure 4. A
stack entry(rule, ipd) is represented asule’™ to save space,
and? stand forpushandpop X A stands forE X IT .

Table 5 shows the partial computation of IS for the execution
E in Figure 4. At the first step, the IS inherits the entryrafi X4
from the preceding call site t&() beyond the trace, meaning the
current parsing rule iRAand the its terminating IPD iE X IT 4.
The statement executions of 3, 7 and 8 lead to push opera®ns
they are predicates. The instrumentation at 10 pops the &st’,
indicating the current rule oR8 terminates. The next two steps
of 7 push twoR7'? entries, representing two loop iterations. The
execution of 12 terminates all entries that have 12 as tR&rdnd
pushes a new entry. We want to point out tthet sequence of rules
recorded in the IS is exactly the index of the current exeoyibint.

Algorithm 2 is extended to handle recursive functions arebir
ular control flow caused byget j np/ | ongj np. The extension is
similar to our prior work [20] and thus not the focus of thippa

3.2 Optimizations

Algorithm 2 entails easy implementation. However, the dtgm
incurs significant runtime overhead as it requires stackaifmns
upon execution of predicates and their immediate postdatois.

In this subsection, we discuss how to optimize the algorisbrthat
it becomes more affordable.

1if () { 1if(Ch) {
2 s1; 2 S1; ‘
3 if(.){ | 3 goto 8;
4 if(..) | 4}
5 S92, 5 if (01 ||
6 else | 6 (Cy){
7 S3, 7 52,
} 8 S3
} }
(@) (b)

Figure 6. Rule Inference.

Rule Inference. The key to reduce runtime overhead is to reduce
the number of stack operations. The first optimization ie iofer-
ence, which removes stack operations for non-loop presicand
their postdominators. The first observation is that sombepted-
icate rules can be inferred from the current execution psirch
that it is not necessary to explicitly record them onto ISn€ider
an example in Figure 6 (a). At the momentis executed, it must
be the case th&1 — 2 3 R3is the active grammar rule because
it is the only rule to parse;. Similarly, whens is the current ex-
ecution point, it can be inferred thaRl R3 R#must be the top
three entries on IS. The case for is similar. In other wordsa
predicate and its postdominator are not instrumented if anly if
any statements that ever appear in the body of the predgatés
do not appear in rules of any other predicatdfsis equivalent to
not instrumenting a predicate and its postdominator if amigt @
the predicate’s control dependents have only one staticalbng
predicate.

The second observation is that even the above mentioned con-
dition is not satisfied, the stack operations for non-loogdjrates
can still be replaced with simple counter operations. Glersihe
example in Figure 6 (b), whose CFG is presented in Figure.6 (c)
Due to theORoperation at line 5 and the jump at line 3, statement
8 has three control dependence predecessors: predicdites &t
5, and 6. In other words, it appears in the following ruleshafsie
three different predicates:

RL — 238|5R5
RS — 6R6|78
R6 — 78]e¢

In this case, the parsing rule cannot be inferred from thewian

of 8 as it is not unique. To handle this situation, we enuneerat
the possible rules and use the number as the identificatian of
rule. Consider the CFG in Figure 6 (c). The instrumentat®n i
highlighted on the flow edges. A variabi is used to enumerate
the three possible rules. Different flow edges being takeplién
different parsing rules, identified by differeiat values. Note that
at runtime, only one out of these three edges can be taken.

The optimized instrumentation algorithm is presented igAl
rithm 3. AssumeC' D(s) is the ordered set of predicates on which
s is control dependent. It implies thatis parsed by the rule of
one of these predicates. Here the code order is used. Indines
7, the algorithm first identifies the set of non-singlet@®s that
are maximum, namely, they are not subsets of any afhersets.
These maximum sets are storedVihA X . We use a countel; for
setM AX|j] to identify which predicate out of the set is exercised
at runtime, In lines 8-11, the control flow edges that coresito
the predicates il/ A X [j] are instrumented by settirid; to a con-
stant that uniquely identifies the predicate. Here the emiss the

order of the predicate in the set. It is worth noting that calrde-
pendence is indeed defined between one of the two branchmeetco
(T'rue/False) of a predicatep and a statement even though we
often say the dependence is betweeand s for brevity [8]. That
explains the superscript at line 10.

Consider the example in Figure 6 (b). The control dependence
for 7 and 8 are computed &&D(7) = [57,67], andCD(8) =
17,57 ,67]. The vectorM AX has only one element, which is the
maximum sef1”, 57 67]. According to the algorithm, a counter
id is assigned to the set. All the predicates in the set areuinstr
mented with assignments id. The resulting instrumentations are
exactly those presented in Figure 6 (c).

We can see that (a) counters are not assigned to singlefom
at runtime and thus the rules can be inferred as discusskdrgar
(b) counters are not assigned@ sets that are subsets of some
other sets. Assume andy are twoC'D sets, and: C y andy is
maximum, the instrumentations causedygre able to distinguish
the exercised predicate in at runtime. For instance&;D(7) C

arise if a loop has a unique predicatas consecutive iterations are
thus parsed by a sequence of the same rule that correspotiids to
loop predicate. A counter can be used to compress the sezjoanc
IS. Consider the unique loop predicate 7Ahof Figure 4. Sym-
bol R7s of consecutive iterations are always consecutive alopg an
paths from the root to a leaf. The optimization is to assignigue
counter to each loop that has one loop predicate. The coimter
initialized to zero before entering the loop and then inaetad
whenever the back edge is taken. Therefore, push operatams
be avoided for the loop predicate instances. Even in theepoes
of multiple loop predicates, we can still use a counter orpl8rt-
code a sequence of identical predicates. Pushes are ceddipzin
encountering a different predicate.

Packing Multiple Counters. Let us consider counters for non-loop
predicates first. Our experience shows that the sizeS Ofsets
tend to be small. The majority @' D sets are singleton and most
of the non-singletor D sets have the cardinality of 2. The reason
is that non-singleton sets are mostly caused by BoaleRropera-
tions or nonstructural control flow. In other words, the watange

CD(8) and thus it is not necessary to associate another counter toof a counter we need for non-loop predicates tends to be sreall

CD(7) as the instrumentions @fl = 2 andid = 3 on edges$”

cause they only need to distinguish elements in small sbexef

and6” are able to identify which rule should be used to parse an fore, we further optimize our implementation by packing tipl

executed instance Gt

THEOREM 2. Algorithm 3 is correct, i.e., the parsing rule of a
statement execution can be always decided by the value of a
counter.

Theorem 2 asserts the correctness of Algorithm 3. We calyeasi
derive the decoding algorithm that reconstruct the fullcexien
index from the values of counters. The proof of Theorem 2 hed t
decoding algorithm are omitted due to the space limit.

Algorithm 3 Instrumentation For Non-Loop Predicates.

M is a method.

CD(s) denotes the ordered set of non-loop predicates on which
is control dependent.

M AX is a vector storing the maximum CD sets.

order(cd, p) returns the position gf in the ordered setd.

1: EncodePredicaté M) {

2 Compute control dependence

3 i=0;

4 for each statementin M

5: if (At.(t e MAtl=sACD(s) C CD(t)))

6: if (CD(s) € MAX && |CD(s)| > 1)

7: MAX[i++]=CD(s);

8 for each non-loop predicagein M

9 for j=0 to (-1)

0 if (pb:T'rue/False c MAX[]])

1 instrument thé = True/False edge ofp with
“id; = order(M AX[j],p)";

12: }

Loop Optimization. As many hot program paths reside in loops,
optimizing the instrumentation for loop predicates is aseential
to bringing down the cost. A loop predicate decides the ei@tu
of an iteration and thus a loop predicate instance at runisnoie-
rectly/indirectly control dependent on its previous ims@ A loop
predicate is different from a predicate inside a loop, wioften
does not decide the execution of an iteration. Therefoee HBL
grammar rule for a loop always contains a recursion, for g@tam
the rule in the 3rd column in Table 1. Optimization opportias

counters into one word. We treat each bit of a word as a conakpt
register. These bit-registers are allocated to a countereaded.
For instance, a counter with the range of [0-3] is allocateult2
registers. These registers have a live range delimited dytéadi-
cates that are associated with the counter and their posidtors.
Eventually, the counter packing problem is reduced to tegélo-
cation problem and we use standard algorithm to solve tHaqmo
In our current implementation, we do not analyze the ranges

of loop iterators. We conservatively assign a word to eacip lo
counter.

After the above optimizations, most remaining stack openat
occur on function boundaries as we need to maintain the I8 sta
across multiple functions. The information that is pushedhie
stack usually contains only a few active loop counters arelamn
two words that contain multiple packed non-loop counteirsalfy,
handling multi-threading is straightforward, each spawvtigead
inherits the IS state from its parent.

6: ..

7: while (C2) { e

8: c=getc(); R7 — 89RI97R7|e _

9: switch @) { R9 — 11RF|13RG|15RH
10: case’a’: ;

is augmented to

11: F(c); break; R7g 3
12: case’b’: — 8le_
13: G(c); break; S8a — 9RO7R7
14: case 'c": S8b — 9R97R7
15: H(c); break; S8c — 9R97R7 _
16} R9 — 11RF|13RG|15RH
17: }
18: ..

Figure 7. Indexing with Semantic Anchor Points.

4. Semantic-Augmented Indexing

One of the most important aims of execution indexing is talest
lish meaningful correspondence among points across rteuie-
cutions. However, asorrespondencé essentially a semantic con-
cept. Itis machine undecidable to conclude if two execupioimts

INote that a loop may have multiple loop predicates espgciatien
br eak statements are used.

e @:mw

891178915789137 891178915789137
2’ b b “

3

..8911789137.. ..89 1178913 7
£a! sbﬂ ‘a’ ‘b’ T

(c) (d
Figure 8. Indexing Executions with Input “acb” and “ab”.

in two respective executions correspond to each other.dctige,
programmers often decide the correspondence accordirfgeio t
understanding of the executions. For example, if the twowkens
have their inputs overlapped, the sub-executions drivehdpver-
lapping input elements should correspond. The proposéuhitpee
so far constructs indices from execution structure. Theaathge
of structural indexing is the capability given by the exéanitde-
scription language, which is to confine perturbation in iésting
regions while sustaining correspondence in the remainarg qf
the execution. However, the technique parses an executding
from a single point, namely, the beginning of the executife
call the point ananchor point In many applications, due to non-
deterministic scheduling, mis-aligned inputs, execuenturba-
tion, etc., the singlanchor pointis often insufficient to harness the
whole execution and thus the technique fails to sustain mghn
correspondence.

indices. Consider the previous example, the EDL grammaasrul
are enhanced as shown on the lower half of the right hand $ide o
Figure 7. RuleR7is altered to only parse statement 8. Based on
the input values at 8, three different root level rules ategiuced.

As a result, the derivation tree is transformed to a dedvetorest

as shown in Figure 8. With the semantic-augmented indexirgy,
callstoQ) are successfully aligned.

The semantic-augmented indexing requires the progranmmner t
annotate their intended anchor points by using our predkithe
macroes. If aggregate data (e.g. arrays) are used to seglacsiag
rule, the programmer also need to provide a hash functionajp m
the aggregate data to a single value (see the TSP client study
in Section 6.2 for an example). In practice, the places that t
programmer needs to annotate tend to be few. They are usually
input points such as those reading values from a file or regeiv
external events.

The extension can be implemented by creating a new stack
whenever an anchor point is executed and then pushing the val
at the executed anchor point to the new stack. The new stack is
maintained exactly as before. The old IS stack is restorex on
the execution goes beyond the semantic rules. Finally,itoh
mentioning that the same implementation provides the filéyib
of selectively indexing execution. More precisely, indgxican be
started at defined anchor points instead of from the beginnin

5. Discussion

The challenge of execution indexing has been lurking in abm
of prior research projects [9, 23] on dynamic program anslysmt
require establishing correspondence among points acrokpia
executions. Although this problem is in general machineeard}
able as the correct answer only resides in the programmaens, m
our technique shows the promise of providing a practicaltgmi.

To the best of our knowledge, this is the first work that formu-
lates and tackles the problem and thus it has its limitatiGng
technique heavily relies on execution structure based ewoliiser-
vation that execution control structure is a strong indicaf pro-
gram semantics. However, there exist applications whosé&rao
structure is decoupled from the semantics. An example we hav
encountered is LR parsers such as those generatg@dry Our
technique fails to construct meaningful mappings betweenex-
ecutions with highly similar inputs, even with semantigaented
indexing. The main reason is that the execution of a LR passer

An example is presented in Figure 7 and 8. The code is shown driven by a DFA whose semantics are revealed more by data flow

on the left hand side of Figure 7 and it is modified from our prev
ous running example in Figure 2. Inside the while loop, thego-
tation is replaced with a statement that gets input and aviirig
swi t ch- case statement that calls different functions according
to the incoming input values. The EDL grammars are presemted
the upper half of the right hand side. Given two executiome o
with input “acb’ and the other with &b”, their indices are shown
in Figure 8 (a) and (c). The calls to functi@{) at 13 in the two
executions do not correspond to each other as they haveetitfe
indices although the programmer might intend to align th8octh
misalignment will lead to no correspondence being idemtifiside
the method body of the two respecti@€) calls. Further inspection
shows that structure based indexing decides the secoatates in
the two executions correspond to each other while one catibod
H() and the other call&() .

than by control flow. This implies a different direction ofezxtion
indexing - data flow based indexing, which we leave to ourrtitu
work.

6. Experiments
6.1 Overhead

The first experimentation is on the runtime overhead of odexa
ing technique. The implementation is based on Diablo/FIT],[1
a generator that produces customized ATOM-like binaryrinst
mentation tools. Diablo has its own toolchain based on GGA223
which is used to compile the benchmarks, generate the dgsis-
dominance information, as well as the final instrumentedzms.
Instrumentation are inserted at the start and end of preesdu
at the beginning of a basic block that has multiple static Gids

To overcome this problem, the technique has to acquire help and before loop head basic blocks, and at programmer defared s

from the programmer. We further extend our technique toripco
rate the programmer’s knowledge by introducing semaraged
anchor points to harness the whole execution. The idea r&to-i
porate the values at semantic anchor points into the EDL igiam
rules so that different rules are selected to parse execatioord-
ing to different anchor point values, resulting in semabtsed

mantic indexing points. Macros are provided for progransrter
define semantic indexing points. Inlining is employed fastin-
mentation with a small number of instructions. We use a dubse
of SPEC benchmarks from SPEC95 and SPEC2000. Some of the
SPEC benchmarks failed to get through Diablo/FIT infratrce

and thus are not used in our evaluation. All data are coliectea

Statistics on BBL's CDs Runtime
Benchmarks | —arr9Cco T TCD [2CDs [(5 TCDs) || Base| CDS| OPT [CDS Over-| OPT Over-
head head
008.espresso|| 29059 | 3841 | 19588 | 4225 2% 09| 32| 15| 256% 67%
124.m88ksim|| 28198 | 3173 | 19149 | 4288 23% || 71.4 | 207.5| 122.0 | 191% 1%
129.compress| 21508 | 1877 | 14484 | 3774 26% || 105.8 | 192.3 | 149.4| 82% 1%
132.jeg 26596 | 3370 | 17691 | 4112 24% || 27.2| 528 38.2] 94% 0%
164.9zip 23179 | 2122 | 15713 3932 25% 33| 92| 46 179% 39%
T75.vpr 28078 | 3257 | 19172 | 4194 23% || 22.8| 66.0| 28.4| 180% %%
18L.mcf 21743 | 1886 | 14689 | 3798 2% || 54.5| 76.4| 64.6] 40% 19%
197.parser || 27636 | 3076 | 18849 | 4238 2% (| 13.3| 30.4| 217 120% 63%
256.bzip2 22740 | 2174 | 15283 | 3866 2% || 235| 456 31.3| 94% 33%
300.twolf 31638 | 3120 | 22197 | 4640 2% || 31.7] 5L4| 39.1] 62% 23%
Average - - - - 24% - - -1 132% 42%

Table 2. Runtime Overhead and Statistics on Control Dependences.

Pentium 4 (1.8GHz) platform with 500M of RAM, running Gentoo
Linux (kernel 2.6.22).

We have described theule inferenceoptimization in Sec-
tion 3.2. The premise for this optimization to work is thaeth
number of basic blocks that have more than one static codérol
pendence is small. The statistics of how many static codgpen-
dences a basic block has are shown in Table 2. Tidtel column
represents the total number of basic blocks in each benéhfiae
next three columns show that number of basic blocks that has 0
1, and 2 static control dependences, respectively. We earlyl
see that across all benchmarks, most of the basic blockseitires
0 or 1 static control dependence; for those basic blockshias
more then 1 static control dependence, majority of them Rave
On average, among the basic blocks that have at least 1 tontro

dependence, only about 24% have more than 1 CD, as shown in the

sixth column in the table.

Since FIT is an optimizing instrumentor, for comparison-pur
poses, théBaseversion of the benchmarks are generated through
a dummy instrumentor (No instrumentation code is addedjtbut
benefits from all the optimizations available from FIT. Thtisey
are actually faster than native runs, which are not showa hérhe
CDSversion corresponds to a faithful implementation of thelsta
based algorithm (Algorithm 2) and tH@PT version corresponds
to the optimized implementation. The numbers are presentea
ble 2. Both theCDS Overheacand OPT Overheadare relative to
the Baseruntimes. From the table, we can see that maintaining the
execution indices for programs incurs, on average, a 42%nman
overhead. This cuts more than two thirds of the overhead ef th
CDSimplementation.

void run () { 15. void remaining (Node [] prefix) {

1.

2. Node [] prefix; 16. ...

3. for () { 17. if (prefix.size == total) {

4. lock (a); 18. [if (len (prefix) <minLen)
5. prefix=next_prefix (minLen); 19. set_best(len(prefix), ...);
6. unlock(a); 20. }else {

7. remaining(prefix); 21. ... I*extend prefix*/

8. } 22. remaining(prefix);

9. 23

10. void set_best (int best, ...) { 24. }

I1. lock (a); }

12

13. unlock (a);

14.

Figure 9. The Abstract Code of TSP.

T1 : len(prefix) = 500, 300 T2 : len(prefix) = 200

18. if (200< mL)

/— 12¢mL=200;

18. if (500< mL)
18. if (300< mL)

(a). Original Run

T2 : len(prefix) = 500, 200

18. if (500< mL)

T1 : len(prefix) = 300

12. mL=500;
18. if (200< mL)
— wait (¢;)
18. if (300 € mL) -«
notify (cl)i
wait (c;) N
T 2 00
| notify (c;)
2omizi0;, |

\j
(b). A Second Run With The Happens-Before Switched

Figure 10. Benign and Harmful Race Discretion by Happens-
before Switching.

6.2 Client Study - Lightweight Benign and Harmful Data
Race Classification

To show the effectiveness of our indexing technique, weyaipjpb
data race detection. One of the major challenges in datadetee-
tion is determining whether a data race is benign or harrafutlata
race detection tools often produce many false positivangha be-
nign races. In [15], Satish et al. propose classifying cordit, real
data races by switching the happens-before edge betwedwdhe
dynamic accesses involved. Although the technique is higffiec-
tive, their system also relies on a heavyweight tracing apday
system because concurrent execution is nondeterministic.

We propose a lightweight race classification approachpter
tential racesbased on our indexing technique. The key idea is to
first use a lockset algorithm [16], which is lightweight, tentify
potentially racingaccesses. To produce a failure inducing schedule
for a pair of racing accesses, two more executions are peefbr
nondeterministically with the two happens-before altéves en-
forced and the output is observed. As in [15], a race is diagsas
harmful if different output is produced, otherwise it is gm or,
in the case of deadlock, the race itself could not be confirriésl
avoid tracing and replay by creating indices for the racicgeases,
which are points in the original execution, and identifythgm in
the re-executions. As a lockset algorithm often producesrgel
number of racing pairs, we heuristically select accessesheve

areduced set of conflicting access pairs. In particular, ssgdfiune
conflicts by thread segments [10] and keep track of the isdioe
those conflicting accesses that occur furthest apart clogically.
The goal is to perturb the computation in between as muchss-po
ble when enforcing the two happens-before alternativesda®ase
the chance of a failure.

Let us consider the technique by observing its behavior en th
TSP (travelling salesman problem) benchmark. As our implem
tation works on C programs, we port the java TSP benchmark to
C and remove the double check in the #&t best () function
to introduce a harmful race. Note that the original TSP dass n
have any harmful races. The abstract code is shown in Figure 9
As shown in method un(), the algorithm enumerates all pre-
fixes with a fixed length and assigns them to individual thsead
Each thread takes a prefix and finishes the traversal by gallin
remai ni ng() . Ther emai ni ng() method recursively checks
if the current path covers all the nodes. If so, it comparespith
length with the current minimum length and updates the mimm
length by callingset best () at lines 18-19. If the current prefix
is not a full path, it continues traversing. Data races hajfygtween
execution instances of lines 12 and 18 as boxed in Figure 9.

The challenge is thathe same thread in different executions
may pick up completely different sets of prefixebich causes
simple indexing schemes to fail. As shown in Figure 10, in the
original execution, thread one is assigned the prefix tredddo
path lengths of 500 and 300 and thread two is assigned the prefi
that leads to the length of 200. In a separate execution \ih t
same input, thread one is assigned the 300 prefix and thread tw

MySQL. The MySQL server contained a data race where is-
suing ani nsert command to the database could conflict with
log maintenance such that its log files would omit databasdifino
cations [2]. Namely, the log maintenance operation briefgden
server logs appear closed, preventing the insert command fr
recording its operation. This lost update bug can be detentthe
trivial case where one client accesses the server on onadthoe
perform an update and another client accesses the servesem a
ond thread to instigate log maintenance.

Note that, apart from the race in question, thread scheglulin
will not cause nondeterminism within the clients once thayeh
connected to the server, but the order in which clients tebras
connect to the server cannot strictly be guaranteed. Bec#uhis,
it is not knowable which of the server’s threads must be instr
mented using simple tuple identification; however, by sermalty
anchoring execution indices to the precise requests of lteatc
threads, the threads pertaining to the database updategnmhin-
tenance can be distinguished and the appropriate accessed fo
exhibit the race. Under one happens-before direction,taifmiate
occurs, and under the other, the database operates naritaliy
the race is harmful. Testing this by performing both of therd
requests in nondeterministic order confirms the resultefected
in MySQL ? of Table 3. Here the frequency again tells us that the
race was consistently observed as being harmful. Agaimplsita-
ple identification cannot consistently classify this ragelding the
lower frequency of successfully classifying the racé/iySQL* .

Apache HTTP Server. The Apache webserver contained a
data race where threads handling different client requesttd

is assigned the 500 and 200 prefixes. We define 5 as the semanticimultaneously try to write to a buffered operation log, siag it

anchor point so that a new IS is started at line 5 and the durren
prefix (hash) is pushed to the stack as part of the index, Asudtre
we are able to locate the two conflicting accesses in the naw ru
and insert synchronization as shown in fig. 10. The synchatioin
expresses both happens-before orderings of the racingsese
and eventually produces the correct output of 200 in oneutiaet
and the faulty output of 300 in the other. Therefore, thishiaanful
race. Note that due to nondeterminism, the conflicting amemsay

to become corrupted [1]. In the middle of one thread’s updae
other can simultaneously write, and both threads can ovteraach
other’s information. This data corruption bug can be detdets a
potential data race in a simple scenario where two cliertisngu
different requests to the webserver.

In this example, thread nondeterminism influences the eatur
of the resulting corruption, causing either invalid writasa lost
update. Due to the nature of the signalling in our approach to

not appear in the new run. It may be necessary to run the trial a forcing race expression, a lost update is significantly niidesy.
number of times in order to have both accesses occur; however The particular update that is lost is determined by whichhef t

because of the approach to selecting these conflicting pails
the small number of scheduling decisions that determinetlivene

or not they occur, their chances of omission are small, as bge
the frequency of successfully detecting harmful race$$P? of
Table 3. Here we see that a large number of dynamic conflicts
can be reduced to a small set of representative conflictsatieat
more likely to be harmful when flipped. For TSP, exactly one of
these selected dynamic conflicts is harmful, and executidexing
enables its consistent classification.

By comparison, nondeterminism adversely affects simpler i
dexing schemes. Using the thread, instruction, and dynarecu-
tion count as an identifying tuple is susceptiblebtath scheduling
differences and execution perturbation, as previousiyn.s€bus,
such an index may map one execution point to another in a€liffe
run or even to a nonexistent execution point. Such indicedrail
and failure prone for this classification scheme, as seehdiotv
frequency of properly classifying races Ti&P! of Table 3. Here
the reduced set is computed analogously by projecting aesd¢e
static instructions to get static conflict pairs from the ayric ones.

In fact, the data race alone could not be detected in 56% al&tri
using these tuples, much less classified.

We further examine how indexing contrasts to a simple tuple
identification scheme on real world races. In particularewamine
previously discovered races in the MySQL database seryanf2
the Apache HTTP server [1] as also explored in [21, 12].

two happens-before orders is enforced. In addition, becdus
update is dependent upon the actual request made by a thient,
resulting output depends upon the happens-before ordbaimg
imposed. Thus, as in the MySQL example, under nondetermjnis

it becomes critical to identify the threads by the particudkent
requests to which they respond. Otherwise, the same happens
before ordering may be enforced twice, causing the sameibidp

be produced. When both happens-before orderings are sfgtes
imposed, the logs from the two executions differ, confirmiingt

the race is harmful. Ipache® and Apache' of Table 3, we see
that the frequencies of successful classification parttiete of
MySQL, emphasizing the commonality of the difficulties tHage
under nondeterminism.

Thus, we see that execution indexing offers a tangible,
world benefit over traditional identification approachemgsn-
structions and dynamic execution counts. For the purpdsesns
sistently identifying execution points and identifyingvsantically
appropriate execution points, execution indexing succeehile
traditional methods are prone to failure.

real

7. Related Work

Our work is related to [23], which tackles execution omigsas-
rors. They decide if an implicit dependence exists betweeexa-
cuted statement and a predicate by forcing the branch oetam
the predicate to be its opposite. An execution alignmerdrétym
was used to align the switched execution to the original abitt

Test | Dynamic [Reduced | Harmful | Success devise a highly optimized online algorithm, and conductiantl
e 3%%%”1'21359 ; C0”1ﬂ3'0t5 CO”E'CtS Fre‘if:(;‘cy study on applying execution indexing to a light weight mettio
MySQL! 4 4 1 23/50 produce a failure inducing schedule for a data race warnitigpwt
Agachel 7 6 6 57150 relying on a tracing and replay system.
TSP? |478861017 19 1 50/50
MySQL?2 4 4 1 50/50
Apache| 7 6 6 50/50 Acknowledgments

- - This work is supported by grants from NSF grants CNS-0720516
Table 3. Potential and detected harmful races. 1) Using tuple based gng CNS-0708464 to Purdue University.

identification. 2) Using execution indices.

References
[1] Apache bug. http://issues.apache.org/bugzilla/shog.cgi?id=25520.
[2] MySQL bug. http://bugs.mysqgl.com/bug.php?id=791.
[3] C. Allan, P. Avgustinov, A. S. Christensen, L. HendrenKszins,

formation collected in the switched run can be migrated batke
original run. The alignment algorithm is based on matchixeg-e
cution regions. It is offline and requires constructing tigaammic
program dependence graph. A similar offline algorithm wasdus

by Liang et al. in [9] to identify similar execution traces flault
localization. Neither of these works realized that the lemajes are
essentially an execution indexing problem, which indeedgsand
challenge for dynamic program analysis and has the poténtia-
pact a wide range of applications. This work, for the firstejrfor-
malizes the problem, devises efficient online algorithnmsl gro-
poses the concept of semantic anchor points to deliver fligxib

(4

0. Lhotak, O. de Moor, D. Sereni, G. Sittampalam, and J. [€ibb
Adding trace matching with free variables to AspectJPtaceedings
of the 20th Annual ACM SIGPLAN Conference on Object-orénte
Programming, Systems, Languages, and Applicatipages 345—
364, San Diego, CA, USA, 2005. ACM Press.

S. Bhansali, W.-K. Chen, S. de Jong, A. Edwards, R. Murray
M. Drinic, D. Mihocka, and J. Chau. Framework for instructio

level tracing and analysis of program executionsPtaceedings of
the 2nd International Conference on Virtual Execution Emwvinents
pages 154-163, Ottawa, Canada, June 2006. ACM.

M. Burtscher and M. Jeeradit. Compressing extendedrpradgraces
using value predictors. IRroceedings of the 12th International
Conference on Parallel Architectures and Compilation Teghes
pages 159-169, New Orleans, Louisiana, 2003.

[6] T. M. Chilimbi. Efficient representations and abstrans for
quantifying and exploiting data reference locality. Proceedings
of the 2001 ACM SIGPLAN Conference on Programming Language
Design and Implementatigmpages 191-202, Snowbird, UT, June
2001. ACM.

[7] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and>Brysos.
ProfileMe: hardware support for instruction-level profijion out-of-
order processors. |Rroceedings of the 30th annual ACM/IEEE
international symposium on Microarchitectyrpages 292-302,
Research Triangle Park, NC, 1997.

[8] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The progr
dependence graph and its use in optimizati®@CM Transactions
on Programming Languages and Syste@(8):319-349, 1987.

Execution monitoring detects patterns of events at runtime
the context of aspect oriented programming [18, 3], langeage
proposed to describe event patterns and automata areuwstigstto
parse these patterns at runtime. The goal is to addressdbrapr- [5
mer’s design concerns such as checking if the process of @mum
ation, comprising a sequence of access events to the entomera
object, is intervened by a modification to the underlyingleml
tion. PQL [13] designs a query language to provide similargoa
matching at runtime for the purposes of debugging and ggcuri
PQL is able to recognize non-regular languages. In compareur
work has a similar observation that describing executiondmtext
free languages provides the capability of ignoring irralgpart of
an execution. However, our work has a different goal and doés
require the programmer to pre-define pattern languages.

This work is tightly related to dynamic control dependence
detection. The existing work [14, 20] disclose that dynaauintrol
dependence has a stack-like structure at runtime so thatteoto
dependence stack is proposed to detect dependence. Onigtezh
is based on dynamic control dependence detection. Howaser,
our goal is to index program execution, which has a diffesait
of applications and higher requirement on runtime overheas
focus more on defining the concepts of execution indexing and
optimizing the algorithms.

This work is related to program trace representation, which
records program execution at a fine-grained level for latspec-
tion. Depending on applications, various information carirbced
such as control flow [11, 24], values [5, 4], addresses [&], m
on. Existing tracing techniques focus on compressing sra0er
technique focuses on providing meaningful identificationdxe-
cution points. It does not rely on traces. In particular, lehgro-
gram paths [11] represent traces with grammar rules. Haythe
rules are derived for the optimal compression performandean-
not be used for the purpose of indexing.

—_

[9] L. Guo, A. Roychoudhury, and T. Wang. Accurately chogsin
execution runs for software fault localization. 16th International
Conference on Compiler Constructigages 80-95, Vienna, Austria,
2006.

[10] J. J. Harrow. Runtime checking of multithreaded apilans
with visual threads. IrProceedings of the 7th International SPIN
Workshop on SPIN Model Checking and Software Verificapages
331-342, London, UK, 2000. Springer-Verlag.

[11] J. R. Larus. Whole program paths. Rroceedings of the 1999
ACM SIGPLAN Conference on Programming language Design and
Implementationpages 259-269, Atlanta, Georgia, May 1999. ACM.

[12] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: detecting atoity
violations via access interleaving invariants. Rroceedings of
the 12th International Conference on Architectural Supfor
Programming Languages and Operating Systegpages 37—48, San
Jose, CA, 2006.

[13] M. C. Martin, V. B. Livshits, and M. S. Lam. Finding apgdition
errors and security flaws using PQL: a program query language
In Proceedings of the 20th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, andicApp
tions pages 365-383, San Diego, CA, 2005.

[14] W. Masri, A. Podgurski, and D. Leon. Detecting and defing
insecure information flows. IRroceedings of the 15th International

8. Conclusion

We propose a novel dynamic analysis called execution imdexi
which provides a unique identification for an execution peothat
points in one execution can be correlated and points acrokipta
executions can be aligned. Execution indexing can servecas-a
nerstone in various applications such as profiling, demggspe-
cially in the presence of nondeterminism, dynamic instnotagon
and so on. We formally define the concepts of execution imdgxi

[15]

[16]

[17]

(18]

[19]

Symposium on Software Reliability Engineering (ISSRE'0dges
198-209, Saint-Malo, Bretagne, France, 2004.

S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and &8de3.
Automatically classifying benign and harmful data raceagiseplay
analysis. InProceedings of the ACM SIGPLAN 2007 Conference on
Programming Language Design and Implementatipages 22—31,
San Diego, CA, June 2007.

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, andrndeson.
Eraser: a dynamic data race detector for multithreadedraneg)
ACM Transactions on Computer Systetf(4):391-411, 1997.

L. Van Put, D. Chanet, B. De Bus, B. De Sutter, and K. Dedgbsre.
DIABLO: a reliable, retargetable and extensible link-timesvriting
framework. InProceedings of the 2005 IEEE International
Symposium On Signal Processing And Information Technpjges
7-12, Athens, Greece, December 2005. IEEE.

R. J. Walker and K. Viggers. Implementing protocols g&clarative
event patterns. IfProceedings of the 12th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineeniages
159-169, Newport Beach, CA, 2004.

T. Wang and A. Roychoudhury. Using compressed bytetmzs
for slicing Java programs. IRroceedings of the 26th International
Conference on Software Engineerimzages 512-521, Edinburgh,
United Kingdom, May 2004.

[20] B. Xin and X. Zhang. Efficient online detection of dynangiontrol
dependence. IProceedings of the ACM/SIGSOFT International
Symposium on Software Testing and Analypages 185-195,
London,UK, July 2007. ACM.

[21] M. Xu, R. Bodik, and M. D. Hill. A serializability violdon detector
for shared-memory server programs. Rroceedings of the ACM
SIGPLAN 2005 Conference on Programming Language Design and
Implementationpages 1-14, Chicago, IL, 2005. ACM.

[22] A. Zeller. Isolating cause-effect chains from compyieograms. In
Proceedings of the 10th ACM SIGSOFT Symposium on Foundation
of Software Engineeringpages 1-10, Charleston, SC, November
2002. ACM.

[23] X. Zhang, S. Tallam, N. Gupta, and R. Gupta. Towardstloga
execution omission errors. Proceedings of the ACM SIGPLAN 2007
Conference on Programming Language Design and Implementat
pages 415-424, San Diego, California, USA, June 2007. ACM.

[24] Y. Zhang and R. Gupta. Timestamped whole program path
representation and its applications. Pmoceedings of the 2001
ACM SIGPLAN Conference on Programming Language Design and
Implementationpages 180-190, Snowbird, UT, June 2001. ACM.

