
Efficient Program Execution Indexing

Bin Xin William N. Sumner Xiangyu Zhang
Department of Computer Science, Purdue University, West Lafayette, Indiana 47907

{xinb,wsumner,xyzhang}@cs.purdue.edu

Abstract
Execution indexing uniquely identifies a point in an execution. De-
sirable execution indices reveal correlations between points in an
execution and establish correspondence between points across mul-
tiple executions. Therefore, execution indexing is essential for a
wide variety of dynamic program analyses, for example, it can be
used to organize program profiles; it can precisely identifythe point
in a re-execution that corresponds to a given point in an original ex-
ecution and thus facilitate debugging or dynamic instrumentation.
In this paper, we formally define the concept of execution index and
propose an indexing scheme based on execution structure andpro-
gram state. We present a highly optimized online implementation
of the technique. We also perform a client study, which targets pro-
ducing a failure inducing schedule for a data race by verifying the
two alternative happens-before orderings of a racing pair.Index-
ing is used to precisely locate corresponding points acrossmultiple
executions in the presence of non-determinism so that no heavy-
weight tracing/replay system is needed.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—Debugging aids, Diagnostics, Mon-
itors; D.3.4 [Programming Languages]: Processors—Debuggers

General Terms Algorithms, Measurement, Reliability

Keywords Execution indexing, Execution alignment, Control de-
pendence, Structural indexing, Semantic Augmentation, Data race

1. Introduction
During program execution, a static program statement couldbe ex-
ecuted multiple times, resulting in different execution points. A
fundamental challenge in dynamic program analysis is to uniquely
identify individual execution points so that thecorrelationbetween
points in one execution can be inferred and thecorrespondencebe-
tween execution points across multiple executions can be estab-
lished. Solving this problem is significant for a wide range of ap-
plications.
Profiling. Program profiling collects information about program
executions such as frequently executed paths, referenced addresses,
produced values, and exercised dependences. Such information can
be used in program optimizations, debugging, testing, paralleliza-
tion, and so on. Currently, most program profiling techniques in-
dex profiles through static program points [7] and can effectively

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’08 June 7–13, 2008, Tucson, Arizona, USA.
Copyright c© 2008 ACM 978-1-59593-860-2/08/06. . . $5.00

answer queries such asfinding the set of addresses referenced at
program pointx. Such an indexing scheme merges the information
of individual execution instances ofx and thus is insufficient for
some applications. For example, in order to study the available con-
currency in program execution, it is essential to distinguish com-
putation performed in different iterations of a loop. Moreover, we
should only compare the iterations that have similar dynamic con-
texts because two iterations of a loop, although processingdisjoint
datasets, may be nested in completely different calling contexts so
that parallelizing them requires significant code restructuring. In
other words, applications like parallelization require more expres-
sive indexing techniques to organize execution profiles so that the
correlation between points can be unveiled.
Debugging.A debugging practice often entails setting breakpoints,
re-running the program, and inspecting program state when the ex-
ecution is trapped. In many situations, the need of setting break-
points at a particular executioninstanceof a static program point
arises. Although many debuggers support skipping a certainnum-
ber of instances of a breakpoint, it is known to be insufficient as the
ith instance of a statements in the re-execution might not be the
sameith instance in the original execution, due to nondeterminism
or program state perturbations performed at earlier breakpoints. An
indexing scheme that tolerates nondeterminism and execution per-
turbations is highly desirable.
Dynamic Instrumentation. The recent advances of program in-
strumentation techniques allow instrumentation to be arbitrarily
turned on and off at runtime, which provides flexibility for many
dynamic program analysis. For example, execution omissionerrors
(EOE) result in failures through not executing certain statements.
While any statements that are not executed cannot be traced,EOEs
are difficult for most trace-based techniques. In [23], EOEsare
tackled by identifying implicit dependence between a predicate ex-
ecution instance and a memory reference point. This is achieved by
forcing the predicate instance to take its opposite branch and then
observing the value change at the memory reference point. Switch-
ing the predicate instance requires the instrumentation toprecisely
locate the instance. Furthermore, switching the predicateinstance
perturbs the execution and thus the instrumentation needs to find
the corresponding memory reference point in the perturbed execu-
tion. Similarly, generating failure inducing scheduling for a data-
race is often achieved by forcing the two alternative happens-before
relations between the two racing execution points. Identifying the
same two points in the two executions in the presence of nondeter-
minism demands accurate indexing techniques.
Execution Comparison. Execution comparison focuses on the
similarity between executions. It has been used in debugging and
testing. In [22], the minimal differences between the program states
of two executions, one is passing and the other is failing, are com-
posed as the failure inducing chain from the root cause to thefailure
symptom. The comparison entails a highly complex procedureof
establishing matches between memory states in the two executions.
An indexing that can establish correspondence between two differ-

ent executions can significantly reduce the complexity. In testing,
the similarity between executions can be used as a criterionto re-
duce redundancy and prioritize test cases.

Despite the great need for execution indexing, to the best ofour
knowledge, it has not been studied as a stand-alone problem.Some
research has been carried out in related fields. Many existing pro-
gram trace related techniques [24] usesi, which denotes theith
instance of statements or the instances at time stampi, to iden-
tify an execution point. While it uniquely identifies an execution
point, it does not contain any information to represent the relations
between points and lacks the power of establishing correspondence
between executions. In [23, 9], offline algorithms are proposed to
align multiple executions or regions in multiple executions for their
own purposes. An ideal execution indexing technique shouldbe on-
line with low overhead such that indices can be queried any time
during execution like querying calling contexts. With indices, ex-
ecution alignment becomes trivial as two points in two different
executions must align if they have the same index. In the context of
aspect-oriented programming [18, 3] and security [13], event pat-
terns are described by regular languages or automata to locate ex-
ecution points where certain interesting states have been reached.
These techniques are not general in the sense that they are only in-
terested in some execution points and the user needs to definethe
set of events and their patterns.

In this paper, we propose a general execution indexing scheme
that is based on execution structure and program state. The ba-
sic idea is to parse program executions according to their nesting
structure, which is expressed as a set of grammar rules. The set of
rules that have been used to parse a given execution point reveals
its structure and thus constitutes its index. To improve theflexibility
and expressiveness of our indexing scheme, the grammar rules can
be augmented with semantic information such as values at particu-
lar execution points. Our technique features a cost-effective online
implementation with a set of optimizations. Our contributions are
highlighted as follows:

• We formally define the problem of execution indexing.

• We propose to describe program execution by a context free
language. The set of rules are constructed based on the nesting
structure of the program, which can be inferred from program
control dependence. An algorithm is given to explicitly derive
the set of rules.

• We present an efficient online algorithm to compute indices
without requiring explicit construction of the grammar rules.
A few optimizations further reduce the overhead to 42% on
average.

• We propose semantic augmentation to the structure based exe-
cution indexing. With the augmentation, program state can be
incorporated into the grammar rules and thus become part of an
index. As a result, users’ insights of program behavior can be
leveraged in index construction.

• We perform a client study of the indexing technique by apply-
ing it to lightweight generation of a failure inducing scheduling
for data races. Data races are benign if they can not lead to any
failure. For a pair of racing program points, two executionsare
emitted to verify the two alternative orderings. The indices are
used to precisely locate the corresponding points in these exe-
cutions. Our experimentation shows that with indexing, failure
inducing schedules can be easily generated without relyingon
an expensive tracing and replay system.

2. Execution Indexing
In this section, we first formally define the concept ofexecution
index. We then describe the structural indexing scheme.

DEFINITION 1. (Execution Index) Given a programP , the index
of an executionP(~i), denoted asEIP(~i) with ~i being the input
vector, is a function of execution points inP(~i) that satisfies the
following property:
∀ two execution pointsx 6= y, EIP(~i)(x) 6= EIP(~i)(y).

From the definition, any function that uniquely identifies an
execution point can serve as an index. A very important property
of an index function is that it establishes a correspondencerelation
between points in multiple executions.

DEFINITION 2. (Execution Correspondence)Two execution points,
x in executionE andy in E ′, correspond to each other iffEIE(x) ≡

EIE
′

(y).

E andE ′ may correspond to different inputs, or even though
they have the same input,E ′ is a perturbation ofE , caused by
nondeterministic scheduling and so on.

Original Execution (p1=TTF)

…

while (p1) {

 get_input (buf);

 ...

}

get_input (buf);

...

void get_input (char * buf)

{

 read (buf, 512);

}

Code:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

2. while (p1)

3. get_input (buf);

9. read (buf,512);

2. while (p1)

3. get_input (buf);

9. read (buf,512);

2. while (p1)

5. get_input(buf);

9. read (buf, …);

E1

E2

E3

2. while (p1)

5. get_input (buf);

9. read (buf, …);

Perturbed Execution (p1=F)

Ex

Figure 1. Log Based Replay with Perturbation

2.1 Motivating Example

As described in the introduction, constructing execution correspon-
dence is essential for a wide range of applications. Simple indexing
schemes are not sufficient in providing meaningful correspondence.
Consider the example in Figure 1. The program reads input from
a file within a loop and then reads another piece of input outside
the loop. Assume in the original execution,p1 takes the value se-
quence oftrue, true, andfalse. As a result, functionget input()
is called three times, twice from inside the loop. The loggedevents
are highlighted by boxes and labeled withE1, E2, andE3. Assume
a failure happens and the programmer tries to identify the correla-
tion betweenp1 and the failure by changing the branch outcome
of the first instance ofp1, i.e., from true to false, and observes
if the failure disappears. Such a switching process is also used in
handling execution omission errors [23] to automatically unveil im-
plicit dependence. The programmer replays the execution using the
event log and perturbs the replayed execution by switchingp1 at
its first evaluation. As the perturbed replay relies on the event log
collected in the original run, the challenge lies in correctly supply-
ing events during replay. In this case, it is to associate event E3
with statement 9 in the perturbed run. Note that we assumeE3 is
independent ofE1 and E2. This often occurs when the program
parsesE1 andE2 for one structure and then parsesE3 for another
structure. The simplest indexing scheme that uses the time order
fails because the first event in the original run isE1, whereas the
first event expected in the perturbed execution isE3. A smarter in-
dexing that represents an execution point assi, meaning theith
instance of statements, although has been widely used in existing
dynamic analyses [19, 24, 14], is not sufficient either.E1 has the

index of91, which is the same asEx’s. In other words,E1 is the
correspondence ofEx and thusE1 is supplied to statement 9 during
replay, which is wrong.

In this paper, we propose an indexing technique based on exe-
cution structure. In Figure 1, eventE1 is processed at statement 9,
which is nested in the method call made at 3, which in turn is nested
in the true branch of predicatep1 at 2. Other executed statements
such as the second and third calls at 3 are not related to the nesting
structure ofE1 and should not be part of the index. Therefore,E1
has the index of[2, 3, 9]. E2 has the index of[2, 2, 3, 9]. The two
consecutive 2s in the index indicate that the event is nestedin the
second iteration of the loop. BothE3 andEx have the same index
[5, 9], meaning the structures of these two events occur within the
calls made at 5 and are not related to other statements such as2 or
3. Based on the structural indices,E3 is provided as the expected
event. Note that using call stacks does not work becauseE1 andE2
have the same call stack. In other words, call stacks are not avalid
execution index function. This is due to call stacks only record-
ing a partial image of the nesting structure. The proposed indexing
scheme not only succeeds in establishing desired correspondence
for points across different executions in many cases, but also facil-
itates highly efficient online computation.

2.2 Structural Indexing

In this subsection, we present our design in detail. Implementation
will be discussed in the next section. The key observation ofour
technique is thatall possible executions of a program can be de-
scribed by a language called execution description language (EDL)
based on structure. An execution is a string of the language.

Code

1 s1;
2 s2;
3 s3;
4 s4;

1 if (...)
2 s1;
3 else
4 s2;

1 while (...){
2 s1;
3 }
4 s2;

1 void A() {
2 B();
3 }
4 void B(){
5 s1;
6 }

EDL S −→e1 e2 e3 e4 S −→ e1 R1
R1−→ e2 | e4

S −→ e1 R1e4
R1−→ e2 e1 R1 | ǫ

S −→ e2 RB
RB−→ e5

Str. 1 2 3 4
1 2
1 4

1 2 1 4
1 2 1 2 1 4

2 5

Table 1. EDLs for Simple Constructs.

Table 1 presents the EDLs for a list of basic programming lan-
guage constructs. The first column shows sequential code without
nesting, whose execution is described by a grammar rule thatlists
all the statements. Note that a terminal symbols is denoted ases
in this paper. In the second column, theif-else construct in-
troduces a level of nesting and thus the EDL has two rules, one
expressing the top level structure that contains statement1 and
the intermediate symbolR1 representing the substructure led by
1. The two alternative rules ofR1 denote the substructure of the
construct. The self recursion in the grammar rule for thewhile
loop in the third column expresses the indefinite iterationsof the
the loop. From these examples, we can see thatEDLs are different
from programming languages. The strings of EDLs are executions
whereas the strings of programming languages are programs.The
alphabet of an EDL contains all the statement ids in the program,
whereas that of a programming language contains program con-
structs, variable identifiers, and so on. The second observation is
thatprogram control dependence perfectly reflects execution struc-
ture. A statementx control depends on another statementy, usually
a predicate or a method call statement, ify directly decidesthe ex-
ecution ofx. The formal definition can be found in the seminal
paper [8]. For example in the second column of Table 1, statement
2 is control dependent on statement 1. The statements that share

the same control dependence are present on the right hand side of
the same rule, representing the same level of nesting. Consider the
rules for thewhile construct. Statements 1 and 4 have the same
dependence and they are listed on the right hand side of the first
rule; the body of ruleR1 lists the statements that are dependent on
statement 1. Note that statement 1 control depends on itselfas the
execution of a loop iteration is decided by its previous iteration.

We define the EDL of a program as follows.

DEFINITION 3. (Execution Description Language)Given a pro-
gramP , its execution description language, denoted asEDL(P),
is the language described by the grammar rules generated by Al-
gorithm 1.

Algorithm 1 Grammar Construction

Input: a programP .
Output:a set of grammar rules that describe the executions ofP .

1: ConstructGrammar(P)
2: {

rules = ∅;
3: for each methodM {
4: /* CD denotes control dependence*/
5: T = statements inM in flow order

satisfyingCD = STARTM;
6: rules ∪ = RM → T ;
7: for each statements in M{
8: if (s is a predicate){
9: T = statements in flow order s.t.CD = strue;

10: F = statements in flow order s.t.CD = sfalse;
11: rules ∪ = Rs → T | F ;
12: }
13: }
14: }
15: /*post processing to complete the rules */
16: for each ruler → X
17: for each symbols ∈ X {
18: if (s is a predicate)
19: replaces with “s Rs” in X;
20: if (s is a call toM)
21: replaces with “s RM” in X;
22: }
23: }

While there exist different grammar rules that describe thesame
language, we rely on the rules generated by Algorithm 1 as they
lead to a clear and concise definition of execution index, which will
be discussed later in this subsection. Algorithm 1 is based on pro-
gram control dependence: a grammar rule is created for statements
that share the same control dependence. It consists of two major
steps. Lines 3-14 describe the first step, in which statements in in-
dividual methods are clustered based on their control dependences.
Here we consider all statements in a method that have empty con-
trol dependence to be control dependent on the method. In the
second step (lines 16-22), the rules generated in the first step are
scanned and symbols that have control dependents are appended
with the grammar rules that describe the substructures of their con-
trol dependents.

To demonstrate the algorithm, we use a more complete example
in Figure 2. The code contains a recursive call (line 9) and non-
structural control flow (line 5). The first rule in Figure 3 repre-
sents the top level structure of methodA. Due to thereturn at
line 5, as shown by the CFG, only statements 2 and 3 are control
dependent on the start node ofA, STARTA. The second step of

1: A () {
2: s1;
3: if (C1) {
4: B();
5: return;
6: }
7: while (C2) {
8: if (C3)
9: A();

10: s2;
11: }
12: B();
13: }
14:
15: B () {
16: s3

17: }
push () pop ()

2. s1

3. if (C1)

4. B()

7. while(C2) 5. return

8. if (C3)

9. A()

10. s2

STARTA

EXITA

STARTB

16. s3

EXITB

12. B()

interproc. flow

Figure 2. A Running Example

RA −→ e2 e3 R3
R3 −→ e4 RBe5 | e7 R7 e12 RB
R7 −→ e8 R8 e10 e7 R7 | ǫ

RB −→ e16
R8 −→ e9 RA | ǫ

Figure 3. The Grammar Generated by Algorithm 1 for Figure 2.

2 3 7 8 9 2 3 4 16 5 10 7 8 10 7 12 16 2 3 7 8 10 7 8 9 2 3 7 12 16 10 7 12 16

RA

R3

R7 RB

R8

RA

R3

RB

R7

R8 R7

R3

R7 RB

R8

RA

R3

R7

R8 R7

R7

RB

ε ε

ε

RA

E: E’:

ε

ε

Figure 4. Indexing Two Executions of The Program In Figure 2.

the algorithm insertsR3 right behind symbol 3 in the rule, denot-
ing the lower level composition that are control dependent on 3.
Note that the top level ruleRAdoes not reflect the syntactic struc-
ture of methodA as a rule derived from the syntactic structure, i.e.,
RA → e2 e3 R3 e7 R7 e12 , fails to describe executions, e.g., “2 3 4
16 5”. Statements 4 and 5 are control dependent on the true branch
of 3 and statements 7 and 12 are dependent on the false branch.
Adding the intermediate symbols denoting the substructures led by
4, 7, and 12 results in the second rule in Figure 3. The remaining
rules are similarly derived.

Recall that our goal is to design an execution indexing tech-
nique. Based on EDLs, we are ready to introduce our indexing
scheme. As illustrated earlier, any execution of a programP is a
string ofEDL(P). The index of an execution point can be defined
based on the derivation tree of the string.

DEFINITION 4. (Structural Indexing) Given a programP and
its EDL(P), the structural index of a pointx in executionP(~i),
denoted asSEIP(~i)(x), is the path from the root of the derivation
tree to the leaf node representingx.

According to the definition of EDL, each grammar rule cap-
tures the statements at the same nesting level. Therefore, the path
in the derivation tree, which leads from the root to a terminal sym-
bol and contains all the intermediate symbols, denotes the top-
down nesting structure and serves as a perfect structural index.
Figure 4 shows the indices for two executions of the code in Fig-
ure 2. ExecutionE recursively callsA() in the first iteration of
the while loop, whereas the recursive call happens in the second
iteration inE′. We can seeSEIE(21) = SEIE′

(21) = [RA],
in which 21 denotes the first instance of statement 2 in the traces.
Thus, the first executed statement 2s correspond to each other in
the two executions, as linked by the dotted line.SEIE(161) =
[RA, R3, R7, R8, ...], which clearly expresses the nesting structure
of the first executed 16. In contrast, the index of161 in the second
execution isSEIE′

(161) = [RA, R3, R7, R7, ...], different from
SEIE(161). The indices imply that the161 in E′ is nested in the
second iteration of the while loop while the161 in E is nested in
the first iteration. Therefore, the two161s do not structurally cor-
respond. In some situations, the structural correspondence differs
from the desired correspondence, we will discuss how we handle
these cases in Section 4.

We have defined what is structural indexing. However, we are
yet to show that structural indexing is a valid indexing scheme.

THEOREM1. The structural indexing function defined in Defini-
tion 4 is a valid execution indexing function.

To prove this theorem, we need to show that no two different
execution points in an execution have identical structuralindices.
The proof is omitted for brevity.

3. Implementation and Optimizations
A faithful implementation of structural indexing according to the
definition is not practical because it requires collecting the whole
execution trace and then parsing the trace. However, our goal can
be interpreted as maintaining the current index for each execution
point on the fly, just like maintaining the calling context. In this
way, we avoid any form of logging. The user has the freedom to
collect the indices for any interesting points such as breakpoints
and perturbation points. This interpretation entails highly efficient
implementation.

3.1 Indexing Stack

The basic idea is to use an indexing stack (IS) to keep track of
the index, which is the set of rules used in parsing the current
nesting structure. More specifically, an entry is pushed to IS once
a predicate statement or a method call is executed, implyinga
new rule representing the lower level nesting structure is taken to
parse the following execution. The entry is popped if the immediate
postdominator of the predicate is executed or the method call is
returned, indicating that parsing based on the current grammar rule
is finished and the following execution should be parsed based on
the parent rule, which is now found in the top entry of the current
IS. The algorithm is presented in Algorithm 2.

According to the algorithm, only predicates and method calls
and their immediate postdominators are instrumented. The circles
and triangles in the CFG in Figure 2 illustrate the instrumentation
of calls toenter () andexit (). For instance, statement 3
is instrumented with anenter () call, meaning ruleR3 is em-
ployed to parse the following execution. AtEXITA, the statement

Algorithm 2 Maintaining Indexing Stack.
s is an executed predicate or a executed method call;
b is the entry of a basic block;
IPD(s) denotes the immediate postdominator ofs;
Each stack entry is a pair, with the first element being the rule and
the second element being the terminating IPD.

1: Enter(s) {
2: if (s is a predicate)
3: IS.push(< Rs, IPD(s) >);
4: if (s is a method call toM)
5: IS.push(< RM, IPD(s) >);
6: }
7: Exit (b) {
8: while (IS.top().second≡ b)
9: IS.pop();

10: }

3’s immediate postdominator, a call toexit () is inserted. Note
that a statement may serve as the immediate postdominator ofmul-
tiple predicates or method calls. For example, statement 10is the
IPD of both 8 and 9. As a result, multiple entries in IS may have
the same terminating IPD. The property of dynamic control depen-
dence further dictates that multiple entries with the same terminat-
ing IPD must be consecutive in IS [20]. This explains why Algo-
rithm 2 needs to push the terminating IPD to the stack and in lines
8-9 uses a loop to pop all entries withs being the terminating IPD.

trace instrumentation indexing stack
2. s1 - [RAXA]
3. if (C1) ↓ (R3XA) [RAXA R3XA]

7.while(C2) ↓ (R712) [RAXA R3XA R712]

8. if (C3) ↓ (R810) [RAXA R3XA R712 R810]
...
10.s2 ↑ (∗10) [RAXA R3XA R712]

7.while(C2) ↓ (R712) [RAXA R3XA R712 R712]
...
7.while(C2) ↓ (R712) [RAXA R3XA R712 R712 R712]

12.B() ↑ (∗12) [RAXA R3XA RBXB]
↓ (RBXB)

...

Figure 5. The Maintenance of IS for ExecutionE in Figure 4. A
stack entry(rule, ipd) is represented asruleipd to save space.↓
and↑ stand forpushandpop; XA stands forEXITA.

Table 5 shows the partial computation of IS for the execution
E in Figure 4. At the first step, the IS inherits the entry ofRAXA

from the preceding call site toA() beyond the trace, meaning the
current parsing rule isRAand the its terminating IPD isEXITA.
The statement executions of 3, 7 and 8 lead to push operationsas
they are predicates. The instrumentation at 10 pops the entry R810,
indicating the current rule ofR8 terminates. The next two steps
of 7 push twoR712 entries, representing two loop iterations. The
execution of 12 terminates all entries that have 12 as their IPD and
pushes a new entry. We want to point out thatthe sequence of rules
recorded in the IS is exactly the index of the current execution point.

Algorithm 2 is extended to handle recursive functions and irreg-
ular control flow caused bysetjmp/longjmp. The extension is
similar to our prior work [20] and thus not the focus of this paper.

3.2 Optimizations

Algorithm 2 entails easy implementation. However, the algorithm
incurs significant runtime overhead as it requires stack operations
upon execution of predicates and their immediate postdominators.

In this subsection, we discuss how to optimize the algorithmso that
it becomes more affordable.

1 if (...) {
2 s1;
3 if (...) {
4 if (...)
5 s2;
6 else
7 s3;

}
}

1 if (C1) {
2 s1;
3 goto 8;
4 }
5 if (C1 ||
6 C2) {
7 s2;
8 s3

}

2. s1

1. if (C1)

5. if (C2)

3. goto 86. if (C3)

7. s2

EXIT

8. s3

id=1

id=2

id=3

(a) (b) (c)

Figure 6. Rule Inference.

Rule Inference.The key to reduce runtime overhead is to reduce
the number of stack operations. The first optimization is rule infer-
ence, which removes stack operations for non-loop predicates and
their postdominators. The first observation is that some of the pred-
icate rules can be inferred from the current execution pointsuch
that it is not necessary to explicitly record them onto IS. Consider
an example in Figure 6 (a). At the moments1 is executed, it must
be the case thatR1 → e2 e3 R3 is the active grammar rule because
it is the only rule to parses1. Similarly, whens2 is the current ex-
ecution point, it can be inferred that [R1 R3 R4] must be the top
three entries on IS. The case fors3 is similar. In other words,a
predicate and its postdominator are not instrumented if andonly if
any statements that ever appear in the body of the predicate’s rules
do not appear in rules of any other predicates. It is equivalent to
not instrumenting a predicate and its postdominator if and only if
the predicate’s control dependents have only one static controlling
predicate.

The second observation is that even the above mentioned con-
dition is not satisfied, the stack operations for non-loop predicates
can still be replaced with simple counter operations. Consider the
example in Figure 6 (b), whose CFG is presented in Figure 6 (c).
Due to theORoperation at line 5 and the jump at line 3, statement
8 has three control dependence predecessors: predicates atline 1,
5, and 6. In other words, it appears in the following rules of these
three different predicates:

R1 −→ e2 e3 e8 | e5 R5
R5 −→ e6 R6 | e7 e8
R6 −→ e7 e8 | ǫ

In this case, the parsing rule cannot be inferred from the execution
of 8 as it is not unique. To handle this situation, we enumerate
the possible rules and use the number as the identification ofa
rule. Consider the CFG in Figure 6 (c). The instrumentation is
highlighted on the flow edges. A variableid is used to enumerate
the three possible rules. Different flow edges being taken implies
different parsing rules, identified by differentid values. Note that
at runtime, only one out of these three edges can be taken.

The optimized instrumentation algorithm is presented in Algo-
rithm 3. AssumeCD(s) is the ordered set of predicates on which
s is control dependent. It implies thats is parsed by the rule of
one of these predicates. Here the code order is used. In lines4-
7, the algorithm first identifies the set of non-singletonCDs that
are maximum, namely, they are not subsets of any otherCD sets.
These maximum sets are stored inMAX. We use a counteridj for
setMAX[j] to identify which predicate out of the set is exercised
at runtime, In lines 8-11, the control flow edges that correspond to
the predicates inMAX[j] are instrumented by settingidj to a con-
stant that uniquely identifies the predicate. Here the constant is the

order of the predicate in the set. It is worth noting that control de-
pendence is indeed defined between one of the two branch outcome
(True/False) of a predicatep and a statements even though we
often say the dependence is betweenp ands for brevity [8]. That
explains the superscript at line 10.

Consider the example in Figure 6 (b). The control dependences
for 7 and 8 are computed asCD(7) = [5T , 6T], andCD(8) =
[1T , 5T , 6T]. The vectorMAX has only one element, which is the
maximum set[1T , 5T , 6T]. According to the algorithm, a counter
id is assigned to the set. All the predicates in the set are instru-
mented with assignments toid. The resulting instrumentations are
exactly those presented in Figure 6 (c).

We can see that (a) counters are not assigned to singletonCDs
at runtime and thus the rules can be inferred as discussed earlier;
(b) counters are not assigned toCD sets that are subsets of some
other sets. Assumex andy are twoCD sets, andx ⊂ y andy is
maximum, the instrumentations caused byy are able to distinguish
the exercised predicate inx at runtime. For instance,CD(7) ⊂
CD(8) and thus it is not necessary to associate another counter to
CD(7) as the instrumentions ofid = 2 andid = 3 on edges5T

and6T are able to identify which rule should be used to parse an
executed instance of7.

THEOREM 2. Algorithm 3 is correct, i.e., the parsing rule of a
statement executions can be always decided by the value of a
counter.

Theorem 2 asserts the correctness of Algorithm 3. We can easily
derive the decoding algorithm that reconstruct the full execution
index from the values of counters. The proof of Theorem 2 and the
decoding algorithm are omitted due to the space limit.

Algorithm 3 Instrumentation For Non-Loop Predicates.
M is a method.
CD(s) denotes the ordered set of non-loop predicates on whichs
is control dependent.
MAX is a vector storing the maximum CD sets.
order(cd, p) returns the position ofp in the ordered setcd.

1: EncodePredicate(M) {
2: Compute control dependence forM;
3: i = 0;
4: for each statements in M
5: if (6 ∃t.(t ∈ M∧ t! = s ∧ CD(s) ⊆ CD(t)))
6: if (CD(s) 6∈ MAX && |CD(s)| > 1)
7: MAX[i + +] = CD(s);
8: for each non-loop predicatep in M
9: for j=0 to (i-1)

10: if (pb=True/F alse ∈ MAX[j])
11: instrument theb = True/False edge ofp with

“ idj = order(MAX[j], p)”;
12: }

Loop Optimization. As many hot program paths reside in loops,
optimizing the instrumentation for loop predicates is alsoessential
to bringing down the cost. A loop predicate decides the execution
of an iteration and thus a loop predicate instance at runtimeis di-
rectly/indirectly control dependent on its previous instance. A loop
predicate is different from a predicate inside a loop, whichoften
does not decide the execution of an iteration. Therefore, the EDL
grammar rule for a loop always contains a recursion, for example,
the rule in the 3rd column in Table 1. Optimization opportunities

arise if a loop has a unique predicate1 as consecutive iterations are
thus parsed by a sequence of the same rule that corresponds tothe
loop predicate. A counter can be used to compress the sequence on
IS. Consider the unique loop predicate 7 inE of Figure 4. Sym-
bol R7s of consecutive iterations are always consecutive along any
paths from the root to a leaf. The optimization is to assign a unique
counter to each loop that has one loop predicate. The counteris
initialized to zero before entering the loop and then incremented
whenever the back edge is taken. Therefore, push operationscan
be avoided for the loop predicate instances. Even in the presence
of multiple loop predicates, we can still use a counter on IS to en-
code a sequence of identical predicates. Pushes are conducted upon
encountering a different predicate.
Packing Multiple Counters. Let us consider counters for non-loop
predicates first. Our experience shows that the sizes ofCD sets
tend to be small. The majority ofCD sets are singleton and most
of the non-singletonCD sets have the cardinality of 2. The reason
is that non-singleton sets are mostly caused by BooleanOR opera-
tions or nonstructural control flow. In other words, the value range
of a counter we need for non-loop predicates tends to be smallbe-
cause they only need to distinguish elements in small sets. There-
fore, we further optimize our implementation by packing multiple
counters into one word. We treat each bit of a word as a conceptual
register. These bit-registers are allocated to a counter asneeded.
For instance, a counter with the range of [0-3] is allocated 2bit-
registers. These registers have a live range delimited by the predi-
cates that are associated with the counter and their postdominators.
Eventually, the counter packing problem is reduced to register allo-
cation problem and we use standard algorithm to solve the problem.

In our current implementation, we do not analyze the ranges
of loop iterators. We conservatively assign a word to each loop
counter.

After the above optimizations, most remaining stack operations
occur on function boundaries as we need to maintain the IS state
across multiple functions. The information that is pushed to the
stack usually contains only a few active loop counters and one or
two words that contain multiple packed non-loop counters. Finally,
handling multi-threading is straightforward, each spawned thread
inherits the IS state from its parent.

6: ...
7: while (C2) {
8: c=getc();
9: switch (c) {

10: case ’a’:
11: F (c); break;
12: case ’b’:
13: G(c); break;
14: case ’c’:
15: H(c); break;
16: }
17: }
18: ...

R7 −→ e8 e9 R9e7 R7 | ǫ

R9 −→ e11 RF | e13 RG | e15 RH

is augmented to
R7 −→ e8 | ǫ

S8a −→ e9 R9e7 R7
S8b −→ e9 R9e7 R7
S8c −→ e9 R9e7 R7
R9 −→ e11 RF | e13 RG | e15 RH

Figure 7. Indexing with Semantic Anchor Points.

4. Semantic-Augmented Indexing
One of the most important aims of execution indexing is to estab-
lish meaningful correspondence among points across multiple exe-
cutions. However, ascorrespondenceis essentially a semantic con-
cept. It is machine undecidable to conclude if two executionpoints

1 Note that a loop may have multiple loop predicates especially when
break statements are used.

R7

R9 R7

RF R9 R7

R9 R7RH

RG ε

… 8 9 11 7 8 9 15 7 8 9 13 7 …

‘a’ ‘c’ ‘b’

S8a

R9

RF

R7

S8c

R9

RH

R7

S8b

R9

RG

R7R7

ε

… 8 9 11 7 8 9 13 7 …

‘a’ ‘b’

S8a

R9

RF

R7

S8b

R9

RG

R7R7

ε

R7

R9 R7

RF R9 R7

RG ε

… 8 9 11 7 8 9 15 7 8 9 13 7 …

‘a’ ‘c’ ‘b’

… 8 9 11 7 8 9 13 7 …

‘a’ ‘b’

(a) (b)

(c) (d)

Figure 8. Indexing Executions with Input “acb” and “ab”.

in two respective executions correspond to each other. In practice,
programmers often decide the correspondence according to their
understanding of the executions. For example, if the two executions
have their inputs overlapped, the sub-executions driven bythe over-
lapping input elements should correspond. The proposed technique
so far constructs indices from execution structure. The advantage
of structural indexing is the capability given by the execution de-
scription language, which is to confine perturbation in its nesting
regions while sustaining correspondence in the remaining part of
the execution. However, the technique parses an execution starting
from a single point, namely, the beginning of the execution.We
call the point ananchor point. In many applications, due to non-
deterministic scheduling, mis-aligned inputs, executionperturba-
tion, etc., the singleanchor pointis often insufficient to harness the
whole execution and thus the technique fails to sustain meaningful
correspondence.

An example is presented in Figure 7 and 8. The code is shown
on the left hand side of Figure 7 and it is modified from our previ-
ous running example in Figure 2. Inside the while loop, the compu-
tation is replaced with a statement that gets input and a following
switch-case statement that calls different functions according
to the incoming input values. The EDL grammars are presentedon
the upper half of the right hand side. Given two executions: one
with input “acb” and the other with “ab”, their indices are shown
in Figure 8 (a) and (c). The calls to functionG() at 13 in the two
executions do not correspond to each other as they have different
indices although the programmer might intend to align them.Such
misalignment will lead to no correspondence being identified inside
the method body of the two respectiveG() calls. Further inspection
shows that structure based indexing decides the second iterations in
the two executions correspond to each other while one calls method
H() and the other callsG().

To overcome this problem, the technique has to acquire help
from the programmer. We further extend our technique to incorpo-
rate the programmer’s knowledge by introducing semantic-based
anchor points to harness the whole execution. The idea is to incor-
porate the values at semantic anchor points into the EDL grammar
rules so that different rules are selected to parse execution accord-
ing to different anchor point values, resulting in semantic-based

indices. Consider the previous example, the EDL grammar rules
are enhanced as shown on the lower half of the right hand side of
Figure 7. RuleR7 is altered to only parse statement 8. Based on
the input values at 8, three different root level rules are introduced.
As a result, the derivation tree is transformed to a derivation forest
as shown in Figure 8. With the semantic-augmented indexing,the
calls toG() are successfully aligned.

The semantic-augmented indexing requires the programmer to
annotate their intended anchor points by using our predefined C
macroes. If aggregate data (e.g. arrays) are used to select aparsing
rule, the programmer also need to provide a hash function to map
the aggregate data to a single value (see the TSP client study
in Section 6.2 for an example). In practice, the places that the
programmer needs to annotate tend to be few. They are usually
input points such as those reading values from a file or receiving
external events.

The extension can be implemented by creating a new stack
whenever an anchor point is executed and then pushing the value
at the executed anchor point to the new stack. The new stack is
maintained exactly as before. The old IS stack is restored once
the execution goes beyond the semantic rules. Finally, it isworth
mentioning that the same implementation provides the flexibility
of selectively indexing execution. More precisely, indexing can be
started at defined anchor points instead of from the beginning.

5. Discussion
The challenge of execution indexing has been lurking in a number
of prior research projects [9, 23] on dynamic program analysis that
require establishing correspondence among points across multiple
executions. Although this problem is in general machine undecid-
able as the correct answer only resides in the programmer’s mind,
our technique shows the promise of providing a practical solution.

To the best of our knowledge, this is the first work that formu-
lates and tackles the problem and thus it has its limitations. Our
technique heavily relies on execution structure based on the obser-
vation that execution control structure is a strong indicator of pro-
gram semantics. However, there exist applications whose control
structure is decoupled from the semantics. An example we have
encountered is LR parsers such as those generated byyacc. Our
technique fails to construct meaningful mappings between two ex-
ecutions with highly similar inputs, even with semantic-augmented
indexing. The main reason is that the execution of a LR parseris
driven by a DFA whose semantics are revealed more by data flow
than by control flow. This implies a different direction of execution
indexing - data flow based indexing, which we leave to our future
work.

6. Experiments
6.1 Overhead

The first experimentation is on the runtime overhead of our index-
ing technique. The implementation is based on Diablo/FIT [17],
a generator that produces customized ATOM-like binary instru-
mentation tools. Diablo has its own toolchain based on GCC-3.2.2,
which is used to compile the benchmarks, generate the desired post-
dominance information, as well as the final instrumented programs.
Instrumentation are inserted at the start and end of procedures,
at the beginning of a basic block that has multiple static CDs, at
and before loop head basic blocks, and at programmer defined se-
mantic indexing points. Macros are provided for programmers to
define semantic indexing points. Inlining is employed for instru-
mentation with a small number of instructions. We use a subset
of SPEC benchmarks from SPEC95 and SPEC2000. Some of the
SPEC benchmarks failed to get through Diablo/FIT infrastructure
and thus are not used in our evaluation. All data are collected on a

Benchmarks
Statistics on BBL’s CDs Runtime

Total 0 CD 1 CD 2 CDs (> 1 CDs) Base CDS OPT CDS Over-
head

OPT Over-
head

008.espresso 29059 3841 19588 4225 22% 0.9 3.2 1.5 256% 67%
124.m88ksim 28198 3173 19149 4288 23% 71.4 207.5 122.0 191% 71%
129.compress 21508 1877 14484 3774 26% 105.8 192.3 149.4 82% 41%
132.ijeg 26596 3370 17691 4112 24% 27.2 52.8 38.2 94% 40%
164.gzip 23179 2122 15713 3932 25% 3.3 9.2 4.6 179% 39%
175.vpr 28078 3257 19172 4194 23% 22.8 66.0 28.4 189% 25%
181.mcf 21743 1886 14689 3798 26% 54.5 76.4 64.6 40% 19%
197.parser 27636 3076 18849 4238 23% 13.3 30.4 21.7 129% 63%
256.bzip2 22740 2174 15283 3866 26% 23.5 45.6 31.3 94% 33%
300.twolf 31638 3120 22197 4640 22% 31.7 51.4 39.1 62% 23%
Average - - - - 24% - - - 132% 42%

Table 2. Runtime Overhead and Statistics on Control Dependences.

Pentium 4 (1.8GHz) platform with 500M of RAM, running Gentoo
Linux (kernel 2.6.22).

We have described therule inferenceoptimization in Sec-
tion 3.2. The premise for this optimization to work is that the
number of basic blocks that have more than one static controlde-
pendence is small. The statistics of how many static controldepen-
dences a basic block has are shown in Table 2. TheTotal column
represents the total number of basic blocks in each benchmark. The
next three columns show that number of basic blocks that has 0,
1, and 2 static control dependences, respectively. We can clearly
see that across all benchmarks, most of the basic blocks haveeither
0 or 1 static control dependence; for those basic blocks thathave
more then 1 static control dependence, majority of them have2.
On average, among the basic blocks that have at least 1 control
dependence, only about 24% have more than 1 CD, as shown in the
sixth column in the table.

Since FIT is an optimizing instrumentor, for comparison pur-
poses, theBaseversion of the benchmarks are generated through
a dummy instrumentor (No instrumentation code is added, butit
benefits from all the optimizations available from FIT. Thus, they
are actually faster than native runs, which are not shown here.). The
CDSversion corresponds to a faithful implementation of the stack-
based algorithm (Algorithm 2) and theOPT version corresponds
to the optimized implementation. The numbers are presentedin Ta-
ble 2. Both theCDS OverheadandOPT Overheadare relative to
theBaseruntimes. From the table, we can see that maintaining the
execution indices for programs incurs, on average, a 42% runtime
overhead. This cuts more than two thirds of the overhead of the
CDSimplementation.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

void run () {

 Node [] prefix;

 for (;;) {

 lock (a);

 prefix=next_prefix (minLen);

 unlock(a);

 remaining(prefix);

 }

}

void set_best (int best, …) {

 lock (a);

minLen=best;

 unlock (a);

}

void remaining (Node [] prefix) {

 …

 if (prefix.size == total) {

 if (len (prefix) < minLen)

 set_best(len(prefix), …);

 } else {

 … /*extend prefix*/

 remaining(prefix);

 …

 }

}

15.

16.

17.

18.

19.

20.

21.

22.

23

24.

Figure 9. The Abstract Code of TSP.

18. if (200< mL)

12. mL=200;

T1 : len(prefix) = 500, 300 T2 : len(prefix) = 200

18. if (300 < mL)

 notify (c1)

 wait (c2)

(a). Original Run

(b). A Second Run With The Happens-Before Switched

T1 : len(prefix) = 300 T2 : len(prefix) = 500, 200

18. if (500< mL)

18. if (300< mL)

18. if (500< mL)

12. mL=500;

18. if (200< mL)

 wait (c1)

12. mL=200;

 notify (c2)

12. mL=300;

Figure 10. Benign and Harmful Race Discretion by Happens-
before Switching.

6.2 Client Study - Lightweight Benign and Harmful Data
Race Classification

To show the effectiveness of our indexing technique, we apply it to
data race detection. One of the major challenges in data racedetec-
tion is determining whether a data race is benign or harmful,as data
race detection tools often produce many false positives, namely, be-
nign races. In [15], Satish et al. propose classifying confirmed, real
data races by switching the happens-before edge between thetwo
dynamic accesses involved. Although the technique is highly effec-
tive, their system also relies on a heavyweight tracing and replay
system because concurrent execution is nondeterministic.

We propose a lightweight race classification approach forpo-
tential racesbased on our indexing technique. The key idea is to
first use a lockset algorithm [16], which is lightweight, to identify
potentially racingaccesses. To produce a failure inducing schedule
for a pair of racing accesses, two more executions are performed
nondeterministically with the two happens-before alternatives en-
forced and the output is observed. As in [15], a race is classified as
harmful if different output is produced, otherwise it is benign, or,
in the case of deadlock, the race itself could not be confirmed. We
avoid tracing and replay by creating indices for the racing accesses,
which are points in the original execution, and identifyingthem in
the re-executions. As a lockset algorithm often produces a large
number of racing pairs, we heuristically select accesses toachieve

a reduced set of conflicting access pairs. In particular, we first prune
conflicts by thread segments [10] and keep track of the indices for
those conflicting accesses that occur furthest apart chronologically.
The goal is to perturb the computation in between as much as possi-
ble when enforcing the two happens-before alternatives to increase
the chance of a failure.

Let us consider the technique by observing its behavior on the
TSP (travelling salesman problem) benchmark. As our implemen-
tation works on C programs, we port the java TSP benchmark to
C and remove the double check in the thesetbest() function
to introduce a harmful race. Note that the original TSP does not
have any harmful races. The abstract code is shown in Figure 9.
As shown in methodrun(), the algorithm enumerates all pre-
fixes with a fixed length and assigns them to individual threads.
Each thread takes a prefix and finishes the traversal by calling
remaining(). Theremaining() method recursively checks
if the current path covers all the nodes. If so, it compares the path
length with the current minimum length and updates the minimum
length by callingsetbest() at lines 18-19. If the current prefix
is not a full path, it continues traversing. Data races happen between
execution instances of lines 12 and 18 as boxed in Figure 9.

The challenge is thatthe same thread in different executions
may pick up completely different sets of prefixes, which causes
simple indexing schemes to fail. As shown in Figure 10, in the
original execution, thread one is assigned the prefix that leads to
path lengths of 500 and 300 and thread two is assigned the prefix
that leads to the length of 200. In a separate execution with the
same input, thread one is assigned the 300 prefix and thread two
is assigned the 500 and 200 prefixes. We define 5 as the semantic
anchor point so that a new IS is started at line 5 and the current
prefix (hash) is pushed to the stack as part of the index, As a result,
we are able to locate the two conflicting accesses in the new run
and insert synchronization as shown in fig. 10. The synchronization
expresses both happens-before orderings of the racing accesses,
and eventually produces the correct output of 200 in one execution
and the faulty output of 300 in the other. Therefore, this is aharmful
race. Note that due to nondeterminism, the conflicting accesses may
not appear in the new run. It may be necessary to run the trial a
number of times in order to have both accesses occur; however,
because of the approach to selecting these conflicting pairsand
the small number of scheduling decisions that determine whether
or not they occur, their chances of omission are small, as seen by
the frequency of successfully detecting harmful races inTSP2 of
Table 3. Here we see that a large number of dynamic conflicts
can be reduced to a small set of representative conflicts thatare
more likely to be harmful when flipped. For TSP, exactly one of
these selected dynamic conflicts is harmful, and execution indexing
enables its consistent classification.

By comparison, nondeterminism adversely affects simpler in-
dexing schemes. Using the thread, instruction, and dynamicexecu-
tion count as an identifying tuple is susceptible tobothscheduling
differences and execution perturbation, as previously seen. Thus,
such an index may map one execution point to another in a different
run or even to a nonexistent execution point. Such indices are frail
and failure prone for this classification scheme, as seen by the low
frequency of properly classifying races inTSP1 of Table 3. Here
the reduced set is computed analogously by projecting accesses to
static instructions to get static conflict pairs from the dynamic ones.
In fact, the data race alone could not be detected in 56% of trials
using these tuples, much less classified.

We further examine how indexing contrasts to a simple tuple
identification scheme on real world races. In particular, weexamine
previously discovered races in the MySQL database server [2] and
the Apache HTTP server [1] as also explored in [21, 12].

MySQL. The MySQL server contained a data race where is-
suing aninsert command to the database could conflict with
log maintenance such that its log files would omit database modifi-
cations [2]. Namely, the log maintenance operation briefly made
server logs appear closed, preventing the insert command from
recording its operation. This lost update bug can be detected in the
trivial case where one client accesses the server on one thread to
perform an update and another client accesses the server on asec-
ond thread to instigate log maintenance.

Note that, apart from the race in question, thread scheduling
will not cause nondeterminism within the clients once they have
connected to the server, but the order in which clients themselves
connect to the server cannot strictly be guaranteed. Because of this,
it is not knowable which of the server’s threads must be instru-
mented using simple tuple identification; however, by semantically
anchoring execution indices to the precise requests of the client
threads, the threads pertaining to the database update and log main-
tenance can be distinguished and the appropriate accesses forced to
exhibit the race. Under one happens-before direction, a lost update
occurs, and under the other, the database operates normally. Thus
the race is harmful. Testing this by performing both of the client
requests in nondeterministic order confirms the results as reflected
in MySQL2 of Table 3. Here the frequency again tells us that the
race was consistently observed as being harmful. Again, simple tu-
ple identification cannot consistently classify this race,yielding the
lower frequency of successfully classifying the race inMySQL1 .

Apache HTTP Server. The Apache webserver contained a
data race where threads handling different client requestscould
simultaneously try to write to a buffered operation log, causing it
to become corrupted [1]. In the middle of one thread’s update, the
other can simultaneously write, and both threads can overwrite each
other’s information. This data corruption bug can be detected as a
potential data race in a simple scenario where two clients submit
different requests to the webserver.

In this example, thread nondeterminism influences the nature
of the resulting corruption, causing either invalid writesor a lost
update. Due to the nature of the signalling in our approach to
forcing race expression, a lost update is significantly morelikely.
The particular update that is lost is determined by which of the
two happens-before orders is enforced. In addition, because the
update is dependent upon the actual request made by a client,the
resulting output depends upon the happens-before orderingbeing
imposed. Thus, as in the MySQL example, under nondeterminism,
it becomes critical to identify the threads by the particular client
requests to which they respond. Otherwise, the same happens-
before ordering may be enforced twice, causing the same output to
be produced. When both happens-before orderings are successfully
imposed, the logs from the two executions differ, confirmingthat
the race is harmful. InApache2 andApache1 of Table 3, we see
that the frequencies of successful classification parallelthose of
MySQL, emphasizing the commonality of the difficulties theyface
under nondeterminism.

Thus, we see that execution indexing offers a tangible, real
world benefit over traditional identification approaches using in-
structions and dynamic execution counts. For the purposes of con-
sistently identifying execution points and identifying semantically
appropriate execution points, execution indexing succeeds while
traditional methods are prone to failure.

7. Related Work
Our work is related to [23], which tackles execution omission er-
rors. They decide if an implicit dependence exists between an exe-
cuted statement and a predicate by forcing the branch outcome of
the predicate to be its opposite. An execution alignment algorithm
was used to align the switched execution to the original so that in-

Test Dynamic
Conflicts

Reduced
Conflicts

Harmful
Conflicts

Success
Frequency

TSP1 399614390 13 1 1/50
MySQL1 4 4 1 23/50
Apache1 7 6 6 27/50

TSP2 478861017 19 1 50/50
MySQL2 4 4 1 50/50
Apache2 7 6 6 50/50

Table 3. Potential and detected harmful races. 1) Using tuple based
identification. 2) Using execution indices.

formation collected in the switched run can be migrated backto the
original run. The alignment algorithm is based on matching exe-
cution regions. It is offline and requires constructing the dynamic
program dependence graph. A similar offline algorithm was used
by Liang et al. in [9] to identify similar execution traces for fault
localization. Neither of these works realized that the challenges are
essentially an execution indexing problem, which indeed isa grand
challenge for dynamic program analysis and has the potential to im-
pact a wide range of applications. This work, for the first time, for-
malizes the problem, devises efficient online algorithms, and pro-
poses the concept of semantic anchor points to deliver flexibility.

Execution monitoring detects patterns of events at runtime. In
the context of aspect oriented programming [18, 3], languages are
proposed to describe event patterns and automata are constructed to
parse these patterns at runtime. The goal is to address the program-
mer’s design concerns such as checking if the process of enumer-
ation, comprising a sequence of access events to the enumerator
object, is intervened by a modification to the underlying collec-
tion. PQL [13] designs a query language to provide similar pattern
matching at runtime for the purposes of debugging and security.
PQL is able to recognize non-regular languages. In comparison, our
work has a similar observation that describing execution bycontext
free languages provides the capability of ignoring irrelevant part of
an execution. However, our work has a different goal and doesnot
require the programmer to pre-define pattern languages.

This work is tightly related to dynamic control dependence
detection. The existing work [14, 20] disclose that dynamiccontrol
dependence has a stack-like structure at runtime so that a control
dependence stack is proposed to detect dependence. Our technique
is based on dynamic control dependence detection. However,as
our goal is to index program execution, which has a differentset
of applications and higher requirement on runtime overhead, we
focus more on defining the concepts of execution indexing and
optimizing the algorithms.

This work is related to program trace representation, which
records program execution at a fine-grained level for later inspec-
tion. Depending on applications, various information can be traced
such as control flow [11, 24], values [5, 4], addresses [6], and so
on. Existing tracing techniques focus on compressing traces. Our
technique focuses on providing meaningful identification for exe-
cution points. It does not rely on traces. In particular, whole pro-
gram paths [11] represent traces with grammar rules. However, the
rules are derived for the optimal compression performance and can-
not be used for the purpose of indexing.

8. Conclusion
We propose a novel dynamic analysis called execution indexing
which provides a unique identification for an execution point so that
points in one execution can be correlated and points across multiple
executions can be aligned. Execution indexing can serve as acor-
nerstone in various applications such as profiling, debugging espe-
cially in the presence of nondeterminism, dynamic instrumentation
and so on. We formally define the concepts of execution indexing,

devise a highly optimized online algorithm, and conduct a client
study on applying execution indexing to a light weight method to
produce a failure inducing schedule for a data race warning without
relying on a tracing and replay system.

Acknowledgments
This work is supported by grants from NSF grants CNS-0720516
and CNS-0708464 to Purdue University.

References
[1] Apache bug. http://issues.apache.org/bugzilla/showbug.cgi?id=25520.

[2] MySQL bug. http://bugs.mysql.com/bug.php?id=791.

[3] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,
O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble.
Adding trace matching with free variables to AspectJ. InProceedings
of the 20th Annual ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications, pages 345–
364, San Diego, CA, USA, 2005. ACM Press.

[4] S. Bhansali, W.-K. Chen, S. de Jong, A. Edwards, R. Murray,
M. Drinic, D. Mihocka, and J. Chau. Framework for instruction-
level tracing and analysis of program executions. InProceedings of
the 2nd International Conference on Virtual Execution Environments,
pages 154–163, Ottawa, Canada, June 2006. ACM.

[5] M. Burtscher and M. Jeeradit. Compressing extended program traces
using value predictors. InProceedings of the 12th International
Conference on Parallel Architectures and Compilation Techniques,
pages 159–169, New Orleans, Louisiana, 2003.

[6] T. M. Chilimbi. Efficient representations and abstractions for
quantifying and exploiting data reference locality. InProceedings
of the 2001 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 191–202, Snowbird, UT, June
2001. ACM.

[7] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and G.Chrysos.
ProfileMe: hardware support for instruction-level profiling on out-of-
order processors. InProceedings of the 30th annual ACM/IEEE
international symposium on Microarchitecture, pages 292–302,
Research Triangle Park, NC, 1997.

[8] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization.ACM Transactions
on Programming Languages and Systems, 9(3):319–349, 1987.

[9] L. Guo, A. Roychoudhury, and T. Wang. Accurately choosing
execution runs for software fault localization. In15th International
Conference on Compiler Construction, pages 80–95, Vienna, Austria,
2006.

[10] J. J. Harrow. Runtime checking of multithreaded applications
with visual threads. InProceedings of the 7th International SPIN
Workshop on SPIN Model Checking and Software Verification, pages
331–342, London, UK, 2000. Springer-Verlag.

[11] J. R. Larus. Whole program paths. InProceedings of the 1999
ACM SIGPLAN Conference on Programming language Design and
Implementation, pages 259–269, Atlanta, Georgia, May 1999. ACM.

[12] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: detecting atomicity
violations via access interleaving invariants. InProceedings of
the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 37–48, San
Jose, CA, 2006.

[13] M. C. Martin, V. B. Livshits, and M. S. Lam. Finding application
errors and security flaws using PQL: a program query language.
In Proceedings of the 20th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applica-
tions, pages 365–383, San Diego, CA, 2005.

[14] W. Masri, A. Podgurski, and D. Leon. Detecting and debugging
insecure information flows. InProceedings of the 15th International

Symposium on Software Reliability Engineering (ISSRE’04), pages
198–209, Saint-Malo, Bretagne, France, 2004.

[15] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and B. Calder.
Automatically classifying benign and harmful data races using replay
analysis. InProceedings of the ACM SIGPLAN 2007 Conference on
Programming Language Design and Implementation, pages 22–31,
San Diego, CA, June 2007.

[16] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: a dynamic data race detector for multithreaded programs.
ACM Transactions on Computer Systems, 15(4):391–411, 1997.

[17] L. Van Put, D. Chanet, B. De Bus, B. De Sutter, and K. De Bosschere.
DIABLO: a reliable, retargetable and extensible link-timerewriting
framework. In Proceedings of the 2005 IEEE International
Symposium On Signal Processing And Information Technology, pages
7–12, Athens, Greece, December 2005. IEEE.

[18] R. J. Walker and K. Viggers. Implementing protocols viadeclarative
event patterns. InProceedings of the 12th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, pages
159–169, Newport Beach, CA, 2004.

[19] T. Wang and A. Roychoudhury. Using compressed bytecodetraces
for slicing Java programs. InProceedings of the 26th International
Conference on Software Engineering, pages 512–521, Edinburgh,
United Kingdom, May 2004.

[20] B. Xin and X. Zhang. Efficient online detection of dynamic control
dependence. InProceedings of the ACM/SIGSOFT International
Symposium on Software Testing and Analysis, pages 185–195,
London,UK, July 2007. ACM.

[21] M. Xu, R. Bodı́k, and M. D. Hill. A serializability violation detector
for shared-memory server programs. InProceedings of the ACM
SIGPLAN 2005 Conference on Programming Language Design and
Implementation, pages 1–14, Chicago, IL, 2005. ACM.

[22] A. Zeller. Isolating cause-effect chains from computer programs. In
Proceedings of the 10th ACM SIGSOFT Symposium on Foundations
of Software Engineering, pages 1–10, Charleston, SC, November
2002. ACM.

[23] X. Zhang, S. Tallam, N. Gupta, and R. Gupta. Towards locating
execution omission errors. InProceedings of the ACM SIGPLAN 2007
Conference on Programming Language Design and Implementation,
pages 415–424, San Diego, California, USA, June 2007. ACM.

[24] Y. Zhang and R. Gupta. Timestamped whole program path
representation and its applications. InProceedings of the 2001
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 180–190, Snowbird, UT, June 2001. ACM.

