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Abstract

Brute force scanning of kernel memory images for find-

ing kernel data structure instances is an important func-

tion in many computer security and forensics applications.

Brute force scanning requires effective, robust signatures of

kernel data structures. Existing approaches often use the

value invariants of certain fields as data structure signa-

tures. However, they do not fully exploit the rich points-

to relations between kernel data structures. In this pa-

per, we show that such points-to relations can be lever-

aged to generate graph-based structural invariant signa-

tures. More specifically, we develop SigGraph, a frame-

work that systematically generates non-isomorphic signa-

tures for data structures in an OS kernel. Each signature

is a graph rooted at a subject data structure with its edges

reflecting the points-to relations with other data structures.

Our experiments with a range of Linux kernels show that

SigGraph-based signatures achieve high accuracy in recog-

nizing kernel data structure instances via brute force scan-

ning. We further show that SigGraph achieves better robust-

ness against pointer value anomalies and corruptions, with-

out requiring global memory mapping and object reachabil-

ity. We demonstrate that SigGraph can be applied to kernel

memory forensics, kernel rootkit detection, and kernel ver-

sion inference.

1 Introduction

Given a kernel data structure definition, identifying in-

stances of that data structure in a kernel memory image is

an important capability in memory image forensics [28, 11,

22, 37, 34], kernel integrity checking [26, 10, 13, 27, 8], and

virtual machine introspection [15, 18, 25]. Many state-of-

the-art solutions rely on the field value invariant exhibited

by a data structure (i.e., a field with either constant value

or value in a fixed range) as its signature [38, 35, 13, 9, 8].

Unfortunately, many kernel data structures cannot be cov-

ered by the value-invariant scheme. For example, some data

structures do not have fields with invariant values or value

ranges. It is also possible that an invariant-value field be

corrupted, making the corresponding data structure instance

un-recognizable. Furthermore, some value invariant-based

signatures may not be unique enough to distinguish them-

selves from others. For example, a signature that demands

the first field to have value 0 may generate a lot of false

positives.

We present a complementary scheme for kernel data

structure signatures. Different from the value-invariant-

based signatures, our approach, called SigGraph, uses a

graph structure rooted at a data structure as its signature.

More specifically, for a data structure with pointer field(s),

each pointer field – identified by its offset from the start of

the data structure – points to another data structure. Tran-

sitively, such points-to relations entail a graph structure

rooted at the original data structure. We observe that data

structures with pointer fields widely exist in OS kernels. For

example, when compiling the whole package of Linux ker-

nel 2.6.18-1, we found that over 40% of all data structures

have pointer field(s). Compared with the field values of data

structures, the “topology” of kernel data structures (formed

by “points-to” relations) is more stable. As such, SigGraph

has the promise to uniquely identify kernel data structures

with pointers.

A salient feature of SigGraph-based signatures is that

they can be used for brute force scanning: Given an arbi-

trary kernel memory address x, a signature (more precisely,

a memory scanner based on it) can decide if an instance

of the corresponding data structure exists in the memory

region starting at x. As such, SigGraph is different from

the global “top-down” scanning employed by many mem-

ory mapping techniques (e.g., the ones for software debug-

ging [30] and kernel integrity checking [26, 10]). Global

“top-down” scanning is enabled by building a global points-

to graph for a subject program – rooted at its global vari-

ables and expanding to its entire address space. Instances

of the program’s data structures can then be identified by

traversing the global graph starting from the root. On

the other hand, brute force scanning is based on multiple,

context-free points-to graphs – each rooted at a distinct data

structure. Unlike global scanning, brute force scanning



does not require that a data structure instance be “reach-

able” from a global variable in order to be recognized, hence

achieving higher robustness against attacks that tamper with

such global reachability (an example of such attack is pre-

sented in Section 8.1).

To enable brute force scanning, SigGraph faces the new

challenge of data structure isomorphism: The signatures of

different data structures, if not judiciously determined, may

be isomorphic, leading to false positives in data structure in-

stance recognition. To address this challenge, we formally

define data structure isomorphism and develop an algorithm

to compute unique, non-isomorphic signatures for kernel

data structures. From the signatures, data structure-specific

kernel memory scanners are automatically generated using

context-free grammars. To improve the practicality of our

solution, we propose a number of heuristics to handle prac-

tical issues (e.g., some pointers being null). Interestingly,

we obtain two important observations when developing Sig-

Graph: (1) The wealth of points-to relations between kernel

data structures allows us to generate multiple signatures for

the same data structure. This is particularly powerful when

operating under malicious pointer mutation attacks, thus

raising the bar to evade SigGraph. (2) The rich points-to

relations also allow us to avoid complex, expensive points-

to analysis of kernel source code for void pointer handling

(e.g., as proposed in [10]). Distinct data structure signatures

can be generated without involving the generic pointers.

We have performed extensive evaluation on SigGraph-

based signatures with several Linux kernels and verified the

uniqueness of the signatures. Our signatures achieve low

false positives and zero false negatives when applied to data

structure instance recognition in kernel memory images.

Furthermore, our experiments show that SigGraph works

without global memory maps and in the face of a range of

kernel attacks that manipulate pointer fields, demonstrating

its applicability to kernel rootkit detection. Finally, we show

that SigGraph can also be used to determine the version of

a guest OS kernel, a key pre-requisite of virtual machine

introspection.

2 Overview

2.1 Problem Statement and Challenges

SigGraph exploits the inter-data structure points-

to relations to generate non-isomorphic data struc-

ture signatures. Consider seven simplified Linux ker-

nel data structures, four of which are shown in Fig-

ure 1(a)-(d). In particular, task struct(TS) contains

four pointers to thread info(TI), mm struct(MS),

linux binfmt(LB), and TS, respectively. TI has a

pointer to TS whereas MS has two pointers: One points

to vm area struct(VA) (not shown in the figure) and

the other is a function pointer. LB has one pointer to

module(MD).

At runtime, if a pointer is not null, its target object

should have the type of the pointer. Let ST (x) denote a

boolean function that decides if the memory region starting

at x is an instance of type T and let ∗x denote the value

stored at x. Take task struct data structure as an ex-

ample, we have the following rule, assuming all pointers

are not null.

STS(x) → STI(∗(x + 0)) ∧ SMS(∗(x + 4)) ∧
SLB(∗(x + 8)) ∧ STS(∗(x + 12))

(1)

It means that if STS(x) is true, then the four pointer

fields must point to regions with the corresponding types

and hence the boolean functions regarding these fields must

be true. Similarly, we have the following

STI(x) → STS(∗(x + 0)) (2)

SMS(x) → SVA(∗(x + 0)) ∧ SFP(∗(x + 4)) (3)

SLB(x) → SMD(∗(x + 0)) (4)

for thread info, mm struct, and linux binfmt,

respectively. Substituting symbols in rule (1) using

rules (2), (3) and (4), we further have

STS(x) → STS(∗(∗(x + 0) + 0)) ∧ SVA(∗(∗(x + 4) + 0))∧
SFP(∗(∗(x + 4) + 4)) ∧ SMD(∗(∗(x + 8) + 0)))
∧STS(∗(x + 12))

(5)

The rule corresponds to the graph shown in Figure 1(e),

where the nodes represent pointer fields with their shapes

denoting pointer types; the edges represent the points-to

relations with their weights indicating the pointers’ off-

sets; and the triangles represent recursive occurrences of the

same pattern. It means that if the memory region starting at

x is an instance of task struct, the layout of the region

must follow the graph’s definition. Note that the inference

of rule (5) is from left to right. However, we observe that

the graph is so unique that the reverse inference (“bottom-

up”) tends to be true. In other words, we can use the graph

as the signature of task struct and perform the reverse

inference as follows.

STS(x) ← STS(∗(∗(x + 0) + 0)) ∧ SVA(∗(∗(x + 4) + 0))∧
SFP(∗(∗(x + 4) + 4)) ∧ SMD(∗(∗(x + 8) + 0)))
∧STS(∗(x + 12))

(6)

Different from the global memory mapping techniques

(e.g., [30, 26, 10, 28, 34, 11, 22]) SigGraph aims at deriv-

ing unique signatures for individual data structures for brute

force kernel memory scanning. Hence we face the follow-

ing new challenges:

• Avoiding signature isomorphism: Given a static data

structure definition, we aim to construct its points-to

graph as shown in the task struct example. How-

ever, it is possible that two distinct data structures may

lead to isomorphic graphs which cannot be used to dis-

tinguish instances of the two data structures. Hence

our new challenge is to identify the sufficient and nec-

essary conditions to avoid signature isomorphism be-

tween data structures.



Figure 1. A working example of kernel data structures and a graphbased data structure signature.

The triangles indicate recursive definitions

• Generating signatures: Meanwhile it is possible that

one data structure may have multiple unique signa-

tures, depending on how (especially, how deep) the

points-to edges are traversed when generating a sig-

nature. In particular, among the valid signatures of a

data structure, finding the minimal signature that has

the smallest size while retaining uniqueness (relative

to other data structures) is a combinatorial optimiza-

tion problem. Finally, it is desirable to automatically

generate a scanner for each signature that will perform

the corresponding data structure instance recognition

on a memory image.

• Improving recognition accuracy: Although stati-

cally a data structure may have a unique signature

graph, at runtime, pointers may be nullwhereas non-

pointer fields may have pointer-like values. As a result

the data structure instances in a memory image may

not fully match the signature. We need to handle such

issues to improve recognition accuracy.

2.2 System Overview

An overview of the SigGraph system is shown in Fig-

ure 2. It consists of four key components: (1) data structure

definition extractor, (2) dynamic profiler, (3) signature gen-

erator, and (4) scanner generator. To generate signatures,

SigGraph first extracts data structure definitions from the

OS source code. This is done automatically through a com-

piler pass (Section 3). To handle practical issues such as

null pointers and void* pointers, the profiler identifies

problematic pointer fields via dynamic analysis (Section 6).

The signature generator checks if non-isomorphic signa-

tures exist for the data structures and if so, generates such

signatures (Section 4). The generated signatures are then

automatically converted to the corresponding kernel mem-

ory scanners (Section 5), which are the “product” shipped

to users. A user will simply run these scanners to perform

brute-force scanning over a kernel memory image (either

memory dump or live memory), with the output being the

instances of the data structures in the image.

3 Data Structure Definition Extraction

SigGraph’s data structure definition extractor adopts a

compiler-based approach, where the compiler pass is de-

vised to walk through the source code and extract data struc-

ture definitions. It is robust as it is based on a full-fledged

language front-end. In particular, our development is in

gcc-4.2.4. The compiler pass takes abstract syntax trees

(ASTs) as input as they retain substantial symbolic infor-

mation [1]. The compiler-based approach also allows us to

handle data structure in-lining, which occurs when a data

structure has a field that is of the type of another structure;

After compilation, the fields in the inner structure become

fields in the outer structure. Furthermore, we can easily see

through type aliases introduced by typedef via ASTs.

The output of the compiler pass is the data structure def-

initions – with offset and type for each field – extracted

in a canonical form. The pass is inserted into the com-

pilation work-flow right after data structure layout is fin-

ished (in stor-layout.c). During the pass, the AST of

each data structure is traversed. If the data structure type is

struct or union, its field type, offset, and size informa-

tion is dumped to a file. To precisely reflect the field layout

after in-lining, we flatten the nested definitions and adjust

offsets.

We note that source code availability is not a fundamen-

tal requirement of SigGraph. For a close-source OS (e.g.,

Windows), if debugging information is provided along with

the binary, SigGraph can simply leverage the debugging

information to extract the data structure definitions. Oth-

erwise, data structure reverse engineering techniques (e.g.,

REWARDS [21] and TIE [20]) can be leveraged to extract

data structure definitions from binaries.

4 Signature Generation

Suppose a data structure T has n pointer fields with off-

sets f1, f2, ..., fn and types t1, t2, ..., tn. A predicate St(x)
determines if the region starting at address x is an instance

of t. The following production rule can be generated for T :

ST (x) → St1
(∗(x + f1)) ∧ St2

(∗(x + f2)) ∧ ...

∧Stn
(∗(x + fn))

(7)
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Figure 2. SigGraph system overview

Brute force memory scanning is based on the reverse of

the above rule: Given a kernel memory image, we hope

to identify instances of a data structure by trying to match

the right-hand side of the rule (as a signature) with mem-

ory content starting at any location. Although it is generally

difficult to infer the types of memory at individual locations

based on the memory content, it is more feasible to infer

if a memory location contains a pointer and hence to iden-

tify the layout of pointers with high confidence. This can

be done recursively by following the pointers to the destina-

tion data structures. As such, the core challenge in signature

generation is to find a finite graph induced by points-to re-

lations (including pointers, pointer field offsets, and pointer

types) that uniquely identifies a target data structure, which

will be the root of the graph. For convenience of discus-

sion, we assume for now that pointers are not null and

they each have an explicit type (i.e., not a void pointer).

We will address the cases where this assumption does not

hold in Section 6.

As noted earlier, two distinct data structures may have

isomorphic structural patterns. For example, if two data

structures have the same pointer field layout, we need to

further look into the “next-hop” data structures (we call

them lower layer data structures) via the points-to edges.

Moreover, we observe that even though the pointer field lay-

out of a data structure may be unique (different from any

other data structure), an instance of such layout in memory

is not necessary an instance of that data structure. Con-

sider Figure 3(a), data structures A and X have different lay-

outs for their pointer fields. If the program has only these

two data structures, it appears that we can use their one

level pointer structures as their signatures. However, this

is not true. Consider the memory segment at the bottom of

Figure 3(a), in which we detect three pointers (the boxed

bytes). It appears that SA(0xc80b20f0) is true because it

fits the one-level structure of struct A. But it is possible

that the three pointers are instead the instances of fields x2,

x3, and x4 in struct X and hence the region is part of

an instance of struct X. In other words, a pattern scan-

ner based on struct A will generate false positives on

struct X. The reason is that the structure of A coincides

with the sub-structure of X. As we will show later in Sec-

tion 7, such coincidences are very common.

To better model the isomorphism issue, we introduce the

concept of immediate pointer pattern (IPP) that describes

the one-level pointer structure as a string such that the afore-

mentioned problem can be detected by deciding if an IPP is

the substring of another IPP.

Definition 1. Given a data structure T , let its pointer field

offsets be f1, f2, ..., and fn, pointing to types t1, t2, ..., and

tn, resp. Its immediate pointer pattern, denoted as IPP (T ),
is defined as follows. IPP (T ) = f1 · t1 · (f2 − f1) · t2 ·
(f3 − f2) · t3 · ... · (fn − fn−1) · tn.

We say an IPP (T ) is a sub-pattern of IPP (R) if g1 ·
r1 · (f2 − f1) · r2 · (f3 − f2) · ... · (fn − fn−1) · rn is a

substring of IPP (R), with g1 >= f1 and r1, ..., rn being

any pointer type.

Intuitively, an IPP describes the types of the pointer

fields and their intervals. An IPP (T ) is a sub-pattern of

IPP (R) if the pattern of pointer field intervals of T is a

sub-pattern of R’s, disregarding the types of the pointers. It

also means that we cannot distinguish an instance of T from

an instance of R in memory if we do not look into the lower

layer structures. For instance in Figure 3(a), IPP (A) =
0·B·12·C·6·D and IPP (X) = 8·Y ·28·BB·12·CC·6·DD.

IPP (A) is a sub-pattern of IPP (X).

Definition 2. Replacing a type t in a pointer pattern with

“(IPP (t))” is called one pointer expansion, denoted as
t
−→.

A pointer pattern of a data structure T is a string generated

by a sequence of pointer expansions from IPP (T ).

For example, assume the definitions of B and D can be

found in Figure 3(b).

IPP (A) = 0 · B · 12 · C · 6 · D
B
−→ 0 · (0 · E · 4 · B) · 12 · C · 6 · D

(1)

D
−→ 0 · (0 · E · 4 · B) · 12 · C · 6 · (4 · I)

(2)

(8)

Strings (1) and (2) above are both pointer patterns of A.

The pointer patterns of a data structure are candidates for

its signature. As one data structure may have many pointer

patterns, the challenge becomes to algorithmically identify

the unique pointer patterns of a given data structure so that

instances of the data structure can be identified from mem-

ory by looking for satisfactions of the pattern without caus-

ing false positives. If efficiency is a concern, the minimal

pattern should be identified.



struct X {

    ...

  [8]  struct Y  * x1; 

    ...

  [36] struct BB * x2;

    ...

  [48] struct CC * x3;

    ...

  [54] struct DD * x4;

}

struct A {

  [0]  struct B * a1;

    ...

  [12] struct C * a2;

    ...

  [18] struct D * a3;

}

c80b20e0: 00 00 00 00 01 20 00 32 0a 00 00 00 00 ae ff 00

c80b20f0: c8 40 30 b0 00 00 00 00 00 10 00 00 c8 40 42 30

c80b2100: 00 00 c8 41 00 22 00 00 00 10 00 00 00 00 00 00

(a) Insufficiency of pointer layout uniqueness

struct B {

  [0]  E * b1;

  [4]  B * b2;

}

struct BB {

  [0]  EE * bb1;

  [4]  BB * bb2;

}

struct E {

    ...

  [12] G * e1;

    ...    

  [24] H * e3;

}

struct EE {

    ...

  [12] GG * ee1;

     ...    

  [24] HH * ee3;

}

0 +4

+12 +24

B/BB

B/BBE/EE

G/GG H/HH

struct D {

    ...

  [4]  I * d1;

}

struct DD {

    ...

  [8]  II * dd1;

}

(i) definitions (ii) structures of B and BB

(b) Data structure isomorphism

Figure 3. Examples illustrating the signature isomorphism problem

Existence of Signature. The first question we need to an-

swer is whether a unique pointer pattern exists for a given

data structure. According to the previous discussion, given

a data structure T , if its IPP is a sub-pattern of another data

structure’s IPP (including the case in which they are iden-

tical), we cannot use the one-layer structure as the signature

of T . We have to further use the lower-layer data structures

to distinguish it from the other data structure. However, it

is possible that T is not distinguishable from another data

structure R if their structures are isomorphic.

Definition 3. Given two data structures T and R, let the

pointer field offsets of T be f1, f2, ..., and fn, pointing to

types t1, t2, ..., and tn, resp.; the pointer field offsets of R

be g1, g2, ..., and gm, pointing to types r1, r2, ..., and rm,

resp.

T and R are isomorphic, denoted as T ⊲⊳ R, if and only

if

(1) n ≡ m;

(2) ∀1 ≤ i ≤ n fi ≡ gi

(2.1)
∧ ( ti ⊲⊳ ri

(2.2)

∨ a cycle is formed when deciding ti ⊲⊳ ri

(2.3)
).

Intuitively, two data structures are isomorphic, if they

have the same number of pointer fields (Condition (1)) at the

same offsets (2.1) and the types of the corresponding pointer

fields are also isomorphic (2.2) or the recursive definition

runs into cycles (2.3), e.g., when ti ≡ T ∧ ri ≡ R.

Figure 3(b) (i) shows the definitions of some data struc-

tures in Figure 3(a). The data structures whose definitions

are missing from the two figures do not have pointer fields.

According to Definition 3, B ⊲⊳ BB because they both have

two pointers at the same offsets; and the types of the pointer

fields are isomorphic either by the substructures (E ⊲⊳ EE)

or by the cycles (B ⊲⊳ BB).

Given a data structure, we can now decide if it has a

unique signature. As mentioned earlier, we assume that

pointers are not null and are not of the void* type.

Theorem 1. Given a data structure T , if there does not

exist a data structure R such that

<1>IPP (T ) is a sub-pattern of IPP (R), and

<2> Assume the sub-pattern in IPP (R) is

g1 · r1 · (f2 − f1) · r2 · (f3 − f2) · ... · (fn − fn−1) · rn,

t1 ⊲⊳ r1, t2 ⊲⊳ r2, ... and tn ⊲⊳ rn.

T must have a unique pointer pattern, that is, the pattern

cannot be generated from any other individual data struc-

ture through expansions.

The proof of Theorem 1 is omitted for brevity. Intu-

itively, the theorem specifies that T must have a unique

pointer pattern (i.e., a signature) as long as there is not an

R such that IPP (T ) is a sub-pattern of IPP (R) and the

corresponding types are isomorphic.

If there is an R satisfying conditions <1> and <2> in

the theorem, no matter how many layers we inspect, the

structure of T remains identical to part of the structure of R,

which makes them indistinguishable. In Linux kernels, we

have found a few hundred such cases (about 12% of all data

structures). Fortunately, most of those are data structures

that are rarely used or not widely targeted according to OS

security and forensics literature.

Note that two isomorphic data structures may have dif-

ferent concrete pointer field types. But given a memory

image, it is unlikely for us to know the concrete types of

memory cells. Hence, such information cannot be used to

distinguish the two data structures. In fact, concrete type

information is not part of a pointer pattern. Their presence

is only for readability.

Consider the data structures in Figure 3(a) and Fig-

ure 3(b). Note all the data structures whose definitions are

not shown do not have pointer fields. IPP (A) is a sub-

pattern of IPP (X), B ⊲⊳ BB and C ⊲⊳ CC. But D is

not isomorphic to DD because of their different immediate

pointer patterns. According to Theorem 1, there must be a

unique signature for A. In this example, pointer pattern (2)

in Equation (8) is a unique signature. If we find pointers

that have such structure in memory, they must indicate an

instance of A.

Finding the Minimal Signature. Even though we can de-
cide if a data structure T has a unique signature using The-
orem 1, there may be multiple pointer patterns of T that can
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Figure 4. If the offset of field e1 (of type

struct G) in E is changed to 16, struct A

will have two possible signatures (detailed
data structure definitions in Figure 3)

distinguish T from other data structures. Ideally, we want
to find the minimal pattern as it incurs the minimal parsing
overhead during brute force scanning. For example, if the
offset of field e1 (of type struct G) in E is 16, struct
A will have two possible signatures as shown in Figure 4.
They correspond to the following pointer patterns:

0 · (0 · (16 · G · 8 · H) · 4 · B) · 12 · C · 6 · D

and
0 · B · 12 · C · 6 · (4 · I)

The first one is generated by expanding B and then E, and

the second one is generated by expanding D. Either one can

serve as a unique signature of A.

In general, finding the minimal unique signature is a

combinatorial optimization problem: Given a data struc-

ture T , find the minimal pointer pattern of T that cannot be

a sub-pattern of any other data structure R, that is, cannot

be generated by pointer expansions from a sub-pattern of

IPP (R). The complexity of a general solution is likely in

the NP category. In this paper, we propose an approximate

algorithm (Algorithm 1) that guarantees to find a unique sig-

nature if one exists, though the generated signature may not

be the minimal one. It is a breadth-first search algorithm

that performs expansions for all pointer symbols at the same

layer at one step until the pattern becomes unique.

The algorithm first identifies the set of data structures

that may have IPP (T ) as their sub-patterns (lines 3-5).

Such sub-patterns are stored in set distinct. Next, it per-

forms breadth-first expansions on the pointer pattern of T ,

stored in s, and the patterns in distinct, until all patterns

can be distinguished. It is easy to infer that the algorithm

will eventually find a unique pattern if one exists.

For the data structures in Figures 3(a) and 3(b), the pat-

tern generated for A by the algorithm is

0 · (0 · E · 4 · B) · 12 · C · 6 · (4 · I) (9)

It is produced by expanding B and D in IPP (A).

Generating Multiple Signatures. In some use scenarios,

it is highly desirable to generate multiple signatures for

the same data structure. A common scenario is that some

Algorithm 1 An approximate algorithm for signature gen-

eration
Input: Data structure T and set K of all kernel data structures considered

Output: The pointer pattern that serves as the signature of T .

1: s= IPP (T )
2: let IPP (T ) be f1 · t1 · (f2 − f1) · t2 · ... · (fn − fn−1) · tn

3: for each sub-pattern p=g1 ·r1 ·(f2−f1)·r2 ·(f3−f2)·...·(fn−fn−1)·rn

in IPP (R) of each structure R ∈ (K − {T}) with f1 <= g1 do

4: distinct=distinct ∪ {p}
5: end for

6: while distinct 6= φ do

7: s=expand(s)

8: for each p ∈ distinct do

9: p=expand(p)

10: if p is different from s disregarding type symbols then

11: distinct= distinct − p
12: end if

13: end for

14: end while

15: return s

expand(s)

1: for each type symbol t ∈ s do

2: s= replace t with “(IPP (t))”

3: end for

4: return s

pointer fields in a signature may not be dependable. For

example, certain kernel malware may corrupt the values of

some pointer fields and, as a result, the corresponding data

structure instance will not be recognized by a signature that

involves those pointers.

SigGraph mitigates such a problem by generating mul-

tiple unique signatures for the same data structure. In par-

ticular, if certain pointer fields in a data structure are poten-

tial targets of malicious manipulation, SigGraph will avoid

using such fields during signature generation in Algorithm

1. For example, if field e1’s offset in struct E is 16 and

field a3 (of type struct D) in struct A is not depend-

able, Algorithm 1 will adapt (not shown in the pseudo-code)

by pruning the sub-graph rooted at field a3 in Figure 4(a).

5 Scanner Generation

Given a data structure signature (i.e., a pointer pattern),

SigGraph will automatically generate the corresponding

memory scanner, which will be shipped to users for brute

force kernel memory scanning. To automatically generate

scanners, we describe all signatures using a context-free

grammar (CFG). Then we leverage yacc to generate the

scanners. The CFG is described as follows.

Signature := number · Pointer · Signature | ǫ
Pointer := type | (Signature)

(10)

In the above grammar, number and type are terminals

that represent numbers and type symbols, respectively. A

Signature is a sequence of number · Pointer, in which

Pointer describes either the type or the Signature of the

data structure being pointed to. It is easy to see that the

grammar describes all the pointer patterns in Section 4,

such as the signature of A generated by Algorithm 1 (Equa-

tion (9)).



Scanners can be generated based on the grammar rules.

Intuitively, when a number symbol is encountered, the field

offset should be incremented by number. If a type is en-

countered, the scanner asserts that the corresponding mem-

ory contain a pointer. If a ‘(’ symbol is encountered, a

pointer dereference is performed and the scanner starts to

parse the next-level memory region until the matching ‘)’

is encountered. A sample scanner generated for the sig-

nature in Equation (9) can be found in Figure 5. Func-

tion isInstanceOf A decides if a given address is an

instance of A; assertPointer asserts that the given ad-

dress must contain a pointer value, otherwise an exception

will be thrown and function isInstranceOf A will re-

turn 0. The yacc rules to generate scanners are elided for

brevity.

Considering Non-pointer Fields. So far, a scanner consid-

ers only the positive information from the signature, which

indicates the fields that are supposed to be pointers. But it

does not consider the implicit negative information, which

indicates the fields that are supposed to be non-pointers. In

many cases, such negative information is needed to con-

struct robust scanners.

For example, assume that a data structure T has a unique

signature 0 · A · 8 · B · 4 · C. If there is a pointer array

that stores a consecutive sequence of pointers, even though

T ’s signature is unique and has no structural conflict with

any other data structures, the scanner of T will mistakenly

identify part of the array as an instance of T .

To handle such cases, the scanner should also assert that

the non-pointer fields must not contain pointers. Hence the

scanner for T ’s signature becomes the following. Method

assertNonPointer asserts that the given address does

not contain a pointer. As such, the final scanner code for

identify data structure T will be:

1 int isInstanceOf_T(void *x){

2 x=x+0;

3 assertPointer(*x); // field of type "A *"

4 x=x+4;

5 assertNonPointer(*x); // field of non-pointer

6 x=x+4;

7 assertPointer(*x); // field of type "B *"

8 x=x+4;

9 assertPointer(*x); // field of type "C *"

10 }

6 Handling Practical Issues

We have so far assumed the ideal case for SigGraph.

However, when applied to large system software such as the

Linux kernel, SigGraph faces a number of practical chal-

lenges. In this section, we present our solutions to the fol-

lowing key problems.

1. Null pointers: It is possible that a pointer field have a

null value, which cannot be distinguished from other

non-pointer fields, such as integer or floating point

fields with value 0. If 0 is considered a pointer value,

a memory region with all 0s would satisfy any imme-

diate pointer patterns, which is clearly undesirable.

2. Void pointers: Some of the pointer fields may have

a void* type and they will be resolved to different

types at runtime. Obviously, our signature generation

algorithm cannot handle such case.

3. User-level pointers: It is also possible that a ker-

nel pointer point to the user space. For example, the

set child tid and clear child tid fields in

task struct, and the vdso field in mm struct

all point to user space. The difficulty is that user space

pointers have a very dynamic value range due to the

larger user space, which makes it hard to distinguish

them from non-pointer fields.

4. Special pointers: A pointer field may have non-

traditional pointer value. For example, for the

widely used list head data structure, Linux kernel

uses LIST POISON1 with value 0x00100100 and

LIST POISON2 with value 0x00200200 as two

special pointers to verify that no one uses un-initialized

list entries. Another special value SPINLOCK MAGIC

(0xdead4ead) also widely exists in some pointer

fields such as in data structure radix tree.

5. Pointer-like values: Some of the non-pointer fields

may have values that resemble pointers. For example,

it is not an uncommon coding style to cast a pointer to

an integer field and later cast it back to a pointer.

6. Undecided pointers: Union types allow multiple

fields with different types to share the same memory

location. This creates problems when pointer fields are

involved.

7. Rarely accessed data structures: Algorithm 1 in Sec-

tion 4 treats all data structures equally and tries to find

unique signatures for all kernel data structures. How-

ever, some of the data structures are rarely used and

hence the conflicts caused by them may not be so im-

portant.

We find that most of the problems above boil down to

the difficulty in deciding if a field is pointer or non-pointer.

Interestingly, the following observation leads to a simple

solution: Pruning a few noisy pointer fields does not degen-

erate the uniqueness of the graph-based signatures. Even

though a signature after pruning may conflict with some

other data structure signatures, we can often perform a few

more refinement steps to redeem the uniqueness. As such,

we devise a dynamic profiling phase to eliminate the unde-

pendable pointer/non-pointer fields.

Our profiler (Figure 2) relies on LiveDM [33], a dynamic

kernel memory mapping system, to keep track of dynamic

kernel data structures at runtime. Based on QEMU [3],

LiveDM tracks kernel memory allocation and dealloca-

tion events. More specifically, we focus on slab objects

by hooking the allocation and deallocation functions such

as kmem cache alloc and kmem cache free at the



1 int isInstanceOf_A(void *x){

2 x=x+0;

3 {

4 y=*x;

5 y=y+0’

6 assertPointer(*y);

7 y=y+4;

8 assertPointer(*y);

9 }

10 x=x+12;

11 assertPointer(*x);

12 x=x+6;

13 {

14 y=*x;

15 y=y+4;

16 assertPointer(*y);

17 }

18 return 1;

19 }

Figure 5. The generated scanner for struct A’s signature in Equation (9)

VMM level. The function arguments and return values are

retrieved to obtain memory ranges of these objects. Their

types are acquired by mapping allocation call sites to kernel

data types via static analysis. We then track the life time of

these objects and monitor their values.

We monitor the values of a kernel data structure’s fields

to collect the following information: (1) How often a

pointer field takes on a value different from a regular non-

null pointer value; (2) How often a non-pointer field takes

on a non-null pointer-like value; (3) How often a pointer has

a value that points to the user space. In our experiments, we

profile a number of kernel executions for long periods of

time (hours to tens of hours).

Based on the above profiles, we revise our signature gen-

eration algorithm with the following refinements: (1) ex-

cluding all the data structures that have never been allo-

cated in our profiling runs so that structural conflicts caused

by these data structures can be ignored; (2) excluding all

the pointer fields that have the void* type or fields of

union types that involve pointers – in other words, these

fields are declared undependable (Section 4), which is done

by annotating them with a special symbol. Note that they

should not be considered as non-pointer fields either and

method assertNonPointer discussed in Section 5 will

not be applied to such fields; (3) excluding all the pointer

fields that have ever had a null value1 or a non-pointer

value during profiling; as well as all non-pointer fields

that ever have a pointer value during profiling. Neither

assertPointer nor assertNonPointer will be ap-

plied to these fields; (4) allowing pointers to have special

value such as 0x00100100 or 0x00200200.

We point out that dynamic profiling and signature refine-

ment is performed only during the production of SigGraph-

based signatures/scanners. It is not performed by end-users,

who will simply run the scanners on memory images. We

do note that the SigGraph signatures/scanners are kernel-

specific, as different OS kernels may have different data

structure definitions and runtime access characteristics. In

fact, Section 8.2 shows that different versions of the same

OS kernel may have different signatures for the same data

structure.

1We note that such exclusion will not remove important pointer fields in

critical kernel data structures such as lists and trees, where non-zero magic

values are used to indicate list/tree termination or initialization.

7 Evaluation

We have implemented a prototype of SigGraph in C and

Python. More specifically, we instrument gcc-4.2.4 to

traverse ASTs and collect kernel data structure definitions.

Our scanner generator is lex/yacc based, and the generated

scanners are in C. The entire implementation has around

10K lines of C code and 6K lines of Python code.

7.1 Signature Uniqueness

We first test if unique signatures exist for kernel data

structures. We test 5 popular Linux distributions (from Fe-

dora Core 5 and 6; and Ubuntu 7.04, 8.04 and 9.10), with

the corresponding kernel version shown in the first column

of Table 1. We compile these kernels using our instru-

mented gcc. Observe that there are quite a large number

of data structures in different kernels, ranged from 8850 to

26799. Overall, we find nearly 40% of the data structures

have pointer fields, and nearly 88% (shown in the 5th col-

umn) of the data structures with pointer fields have unique

signatures. Because of graph isomorphism, there are data

structures that do not have any unique signature, and the

percentage for these data structures is around 12%. For the

average steps (S) performed in pointer pattern expansion to

generate the unique signatures, the numbers are shown in

the 6th column. Note that these are all static numbers be-

fore the dynamic refinement.

From the 7th to the 20th column in Table 1, we show the

number of unique signatures of various depths, obtained by

taking various number of expansion steps along the points-

to relations. For example, kernel 2.6.15-1 has 1355 data

structures that have unique one-level signatures and 823

data structures that have unique two-level signatures.

7.2 Signature Effectiveness

To test the effectiveness of SigGraph, we take Linux ker-

nel 2.6.18-1 as a working system, and show how the gen-

erated signatures can detect data structure instances. We

choose 23 widely used kernel data structures shown in the

2nd column of Table 2. We choose these data structures

because: (1) They are the most commonly examined data

structures in existing literature [28, 11, 22, 37, 34, 38, 35, 9];

(2) They are important data structures that can represent



Signature Statistics
Kernel #Total #Pointer #Unique Number of Signatures of Various Depths

version structs structs Sig. Percent S 1 2 3 4 5 6 7 8 9 10 11 12 13

2.6.15-1 8850 3597 3229 89.76% 2.31 1355 823 461 229 76 194 85 4 1 0 1 - -

2.6.18-1 11800 4882 4305 88.18% 2.45 1820 1057 382 410 159 337 121 9 3 5 1 1 -

2.6.20-15 14992 6096 5395 88.50% 2.54 2137 1311 680 236 407 501 106 9 1 5 1 1 -

2.6.24-26 15901 6427 5645 87.83% 2.47 2172 1316 761 475 624 248 37 7 1 0 3 1 -

2.6.31-1 26799 9957 8683 87.20% 2.73 3364 1951 696 319 1492 494 344 19 1 0 1 1 1

Table 1. Experimental results of signature uniqueness test

the status of the system in the aspects of process, mem-

ory, network and file system; from these data structures, we

can reach most other kernel objects; and (3) They contain

pointer fields. Note that when scanning for instances of

these data structures, other data structures – as part of the

pointer patterns – are also traversed.

To ease our presentation, we assign an ID to each data

structure, which is shown in the 3rd column of Table 2. We

use F to represent the set of fine-grained fields, and P to

represent the set of pointer fields. A fine-grained field is a

field with a primitive type (not a composite data type such as

a struct or an array). Then, we present the corresponding

total number of fields |F | and pointers |P | in the 5th and 6th

columns, respectively.

7.2.1 Experiment Setup

We perform two sets of experiments. We first use our pro-

filer to automatically prune the undependable pointer/non-

pointer fields, generate refined signatures, and then detect

the instances. After that we perform a comparison run with

value invariant-based signatures (Section 7.2.3) to further

confirm the effectiveness of SigGraph.

Memory snapshot collection: The first input of the effec-

tiveness test is the snapshots of physical memory, which are

acquired by instrumenting QEMU [3] to dump them on de-

mand. We set the size of the physical RAM to 256M.

Ground truth acquisition: The second input is the ground

truth data of the kernel objects under study. We leverage

and modify a kernel dump analysis tool, the RedHat crash

utility [2], to analyze our physical memory image and col-

lect the ground truth, through a data structure instance query

interface driven by our Python script. Note that to enable

crash’s dump analysis, the kernel needs to be rebuilt with

debugging information.

Profiling run: In all our profiling runs, the OS kernel is

executed under normal workload and monitored for hours,

with the goal of achieving good coverage of kernel data ac-

cess patterns. However, it is unlikely that the profiling runs

be able to capture the complete spectrum of patterns. As

our future work, we will leverage existing techniques for

software test generation to achieve better coverage.

7.2.2 Dynamic Refinement

In this experiment, we carry out the dynamic refinement

phase as described in Section 6. The depth and size of sig-

natures before and after pruning are presented in the “Sig-

Graph Signature” columns in Table 2, with D being the

depth and
∑

|P | the number of pointer fields. Note that

the signature generation algorithm has to be run again on

the pruned data structure definitions to ensure uniqueness.

Observe that since pointer fields are pruned and hence the

graph topology gets changed, our algorithm has to perform

a few more expansions to redeem uniqueness, and hence the

depth of signatures increases after pruning for some data

structures, such as task struct.

7.2.3 Value Invariant-based Signatures

To compare SigGraph-based signatures with value

invariant-based signatures [38, 35, 13, 9], we also imple-

ment a basic value-invariant signature generation system.

More specifically, we generally derive four types of

invariants for each field including (1) zero-subset: a field

is included if it is always zero across all instances during

training runs; (2) constant: a field is always constant; (3)

bitwise-AND: the bitwise AND of all values of a field is not

zero, that is, they have some non-zero common bits; and

(4) alignment: if all instances of a field are well-aligned at

a power-of-two (other than 1) number.

To derive such value invariants for the data structures,

we perform two types of profiling: one is access frequency

profiling (to prune out the fields that are never accessed by

the kernel) and the other is to sample their values and pro-

duce the signatures. The access frequency profiling is done

by instrumenting QEMU to track memory reads and writes.

Sampling is similar to the sampling method in our dynamic

refinement phase.

All the data structures under study turn out to have value

invariants. The statistics of these signatures are shown in

the last four column of Table 2. The total numbers of zero-

subset, constant, bitwise-AND, and alignment are denoted

as |Z|, |C|, |B|, and |A|, respectively.

7.2.4 Results

The final results for each signature when brute force scan-

ning a test image is shown in Table 3. The 3rd column

shows the total number of true instances of the data struc-

ture, which is acquired by the modified crash utility [2].



Static Properties of the Data Structure SigGraph Signature Value Invariant Signature

Category Statically Derived Dynamically Refined
Data Structure Name ID Size |F | |P | D

P

|P | D
P

|P | |Z| |C| |B| |A|

task struct 1 1408 354 81 1 81 2 233 269 17 55 244

Processes thread info 2 56 15 4 2 91 2 45 5 2 4 5

key 3 100 27 9 4 117 4 69 5 2 7 11

mm struct 4 488 121 23 1 23 2 26 39 41 62 68

vm area struct 5 84 21 10 4 1444 4 60 15 0 3 17
Memory

shmem inode info 6 544 135 51 1 51 2 147 32 24 51 41

kmem cache 7 204 51 39 3 295 3 36 8 0 4 9

files struct 8 384 50 41 3 3810 3 13 38 4 8 9

fs struct 9 48 12 7 2 121 2 68 2 7 8 7

file 10 164 40 11 5 17034 5 3699 15 4 12 17

File dentry 11 144 63 16 5 27270 5 1444 44 4 14 16

System proc inode 12 452 112 49 1 49 3 455 27 16 33 41

ext3 inode info 13 612 151 58 1 58 2 166 59 27 50 53

vfsmount 14 108 27 23 4 6690 4 1884 4 0 20 24

inode security struct 15 60 16 6 7 277992 7 8426 1 1 3 2

sysfs dirent 16 44 11 7 4 1134 4 61 3 0 4 8

socket alloc 17 488 121 54 1 54 2 142 28 8 21 37

Network socket 18 52 13 7 5 45907 5 2402 1 4 10 6

sock 19 436 114 48 1 48 2 149 21 42 59 34

bdev inode 20 568 141 65 1 65 2 166 22 13 31 39

mb cache entry 21 36 12 8 6 27848 6 6429 2 1 4 6

Others signal struct 22 412 99 25 2 395 2 90 41 30 38 44

user struct 23 52 13 4 6 586 6 394 1 0 1 2

Table 2. Summary of data structure signatures for Linux kernel 2.6.181

The |R| column shows the number of data structure in-

stances detected by the scanning. Due to the limitation of

crash, the ground-truth instances are live, namely reach-

able from global or stack variables. On the other hand,

brute force scanning can further identify freed-but-not-yet-

reallocated objects that are not reachable from global or

stack variables. Such freed objects detected would be

counted as false positives (FPs) when compared with the

ground truth from crash. As such, we present two FP

numbers: (1) |FP ′| for those false positives that include the

freed objects and (2) |FP | for those that do not include the

freed objects (hence |FP ′| ≥ |FP |). The false negative

FN indicates those missed by scanning but present among

the ground truth objects from crash.

Among the 23 data structures, SigGraph perfectly

(namely with accuracy and completeness) identifies all in-

stances of 16 of the data structures when freed objects are

considered FPs (i.e., both FP ′ and FN are zero); whereas

value invariant signatures perfectly identify only 5 of the

data structures. When freed objects are not considered

FPs, 20 data structures can be perfectly identified by Sig-

Graph whereas value invariant signatures perfectly identify

9. We also note that, with the exception of dentry, Sig-

Graph signatures achieve equal or (much) lower false posi-

tive rate than value invariant-based signatures. No FNs are

observed for SigGraph, while some are observed for the

value invariant-based approach.

False Positive Analysis. Table 3 shows that Sig-

Graph results in false positives (|FP |) for three of the

23 data structures: vm area struct, dentry, and

sysfs dirent. We carefully examine the memory snap-

shot and identify the reasons as follows.

struct vm_area_struct {

   [0] struct mm_struct *vm_mm;

   [4] long unsigned int vm_start;

   [8] long unsigned int vm_end;

  [12] struct vm_area_struct *vm_next;

  [16] pgprot_t vm_page_prot;

  [20] long unsigned int vm_flags;

  ...

}

0xc035dc9c <init_task+156>: 0xce8e04e0  0x00000000  0x00000000  0x00000000

0xc035dcac <init_task+172>: 0x00000000  0x00000000  0x00000000  0x00000000

0xc035dcbc <init_task+188>: 0x00000000  0x00000000  0xc035dc00  0xc035dc00

0xc035dccc <init_task+204>: 0xc12f1704  0xc12f1704  0xc035dcd4  0xc035dcd4

0xc035dcdc <init_task+220>: 0xc035dc00  0x00000000  0x00000000  0x00000000

0xc035dcec <init_task+236>: 0x00000000  0x00000000  0x00000000  0x00000000

0xc035dcfc <init_task+252>: 0x00000000  0x00000000  0x00000000  0x00000000

0xc035dd0c <init_task+268>: 0x00000000  0x00000000  0x00000000  0x00000000

0xc035dd1c <init_task+284>: 0x00000000  0x02bf54e4  0x00000000  0x002eff84

0xc035dd2c <init_task+300>: 0x00000000  0x00000000  0x00000000  0x00000000

0xc035dd3c <init_task+316>: 0x00000000  0x00000000  0x00000000  0x00000000

0xc035dd4c <init_task+332>: 0xc035dd4c  0xc035dd4c  0xc035dd54  0xc035dd54

struct task_struct{

   [156] struct mm_struct *active_mm;

   [160] struct linux_binfmt *binfmt; 

   [164] long int exit_state; 

   [168] int exit_code; 

   [172] int exit_signal; 

   [176] int pdeath_signal;

   [180] long unsigned int personalit;

}

Figure 6. False positive analysis of

vm area struct

• vm area struct We have 9 false positives (FPs)

among the 2233 detected instances. After dynamic re-

finement, some pointer fields are pruned, such as the

pointer field at offset 12 (as shown in Figure 6). The

resultant signature consists of a pointer field at offset 0

(mm struct), followed by a sequence of non-pointer

fields, and so on. However, field task struct start-

ing from offset 156 has the same pointer pattern as

that of vm area struct except that offset 160 is a

pointer. Unfortunately, in some rare cases that are not

captured by our profiler, the pointer field at offset 160

becomes 0, leading to the 9 FPs.

• dentry We have 2 FPs of dentry, which are

shown in Figure 7(a). We consider these two in-

stances as FPs because they cannot be found in ei-



SigGraph Signature Value Invariant Signature

ID Data Structure Name |I|
|R| FP ′ FP FN |R| FP ′ FP FN

1 task struct 88 88 0.00% 0.00% 0.00% 88 0.00% 0.00% 0.00%

2 thread info 88 88 0.00% 0.00% 0.00% 93 6.45% 6.45% 1.08%

3 key 22 22 0.00% 0.00% 0.00% 19 0.00% 0.00% 15.79%

4 mm struct 52 54 3.70% 0.00% 0.00% 55 5.45% 0.00% 0.00%

5 vm area struct 2174 2233 2.64% 0.40% 0.00% 2405 9.61% 7.52% 0.00%

6 shmem inode info 232 232 0.00% 0.00% 0.00% 226 0.00% 0.00% 2.65%

7 kmem cache 127 127 0.00% 0.00% 0.00% 5124 97.52% 97.52% 0.00%

8 files struct 53 53 0.00% 0.00% 0.00% 50 0.00% 0.00% 6.00%

9 fs struct 52 60 13.33% 0.00% 0.00% 60 13.33% 0.00% 0.00%

10 file 791 791 0.00% 0.00% 0.00% 791 0.00% 0.00% 0.00%

11 dentry 31816 38611 17.60% 0.01% 0.00% 31816 0.00% 0.00% 0.00%

12 proc inode 885 885 0.00% 0.00% 0.00% 470 0.00% 0.00% 88.30%

13 ext3 inode info 38153 38153 0.00% 0.00% 0.00% 38153 0.00% 0.00% 0.00%

14 vfsmount 28 28 0.00% 0.00% 0.00% 28 0.00% 0.00% 0.00%

15 inode security 40067 40365 0.74% 0.00% 0.00% 142290 71.84% 70.93% 0.00%

16 sysfs dirent 2105 2116 0.52% 0.52% 0.00% 88823 97.63% 97.63% 0.00%

17 socket alloc 75 75 0.00% 0.00% 0.00% 75 0.00% 0.00% 0.00%

18 socket 55 55 0.00% 0.00% 0.00% 49 0.00% 0.00% 12.24%

19 sock 55 55 0.00% 0.00% 0.00% 43 0.00% 0.00% 27.90%

20 bdev inode 25 25 0.00% 0.00% 0.00% 24 0.00% 0.00% 4.17%

21 mb cache entry 520 633 17.85% 0.00% 0.00% 638 18.50% 0.00% 0.00%

22 signal struct 73 73 0.00% 0.00% 0.00% 72 0.00% 0.00% 1.39%

23 user struct 10 10 0.00% 0.00% 0.00% 10591 99.91% 99.91% 0.00%

Table 3. Experimental results of SigGraph signatures and value invariantbased signatures

ther the pool of live objects or the pool of freed ob-

jects. However, if we carefully check each field’s

value, especially the boxed ones: 0xdead4ead

(SPINLOCK MAGIC at offset 12) and 0xcf91fe00

(a pointer to dentry operations at offset 88), we

cannot help but thinking that these are indeed dentry

instances instead of FPs. We believe that they belong

to the case where the slab allocator has freed the mem-

ory page of the destroyed dentry instances.

• sysfs dirent We have 6 FPs of sysfs dirent

among the 2116 detected instances. The detailed mem-

ory dumps of the 6 FP cases are shown in Figure 7(b).

After our dynamic refinement, the fields at offsets 32

and 36 are pruned because they often contain null

pointers. And the final signature entails checking two

list head data structures followed by a void*

pointer (at offsets 4, 8, 12, 16 and 20, respectively)

and checking four non-pointer fields. Note that each

list head has only two fields: previous and next

pointer. There are 6 memory chunks that match our

signature in the test memory image. But the chunks

are not part of the ground truth. We suspect that these

chunks are aggregations of multiple data structures

and the aggregations coincidentally manifest the same

pattern.

Summary: In this experiment, SigGraph achieves zero FN

and (much) lower FP rates. Intuitively, the reasons are

the following: (1) SigGraph-base signatures are structure-

oriented and thus tend to be more stable than value-oriented

approaches. And their uniqueness can be algorithmically

determined – that is, we can expand a signature along avail-

able points-to edges to achieve uniqueness. (2) SigGraph-

based signatures are more “informative” as each signature

includes information about other data structures; whereas a

value-based signature only carries information about itself.

7.3 Multiple Signatures

One powerful feature of SigGraph is that multiple sig-

natures can be generated for the same data structure (Sec-

tion 4). We perform the following experiments with the

task struct data structure to verify that. In each

experiment, we exclude one of the 38 pointer fields of

task struct (considering that pointer corrupted) before

running Algorithm 1. In each of the 38 experiments, the

algorithm is still able to compute a unique, alternative sig-

nature for task struct. Next, we increase the number

of corrupted pointer fields from 1 to 2, and conduct
(

2
38

)

runs of Algorithm 1 (exhausting the combinations of the

two pointers excluded). The algorithm is still able to gener-

ate a valid signature for each run.

The above experiments indicate that SigGraph is robust

in the face of corrupted pointer fields. However, the robust-

ness does have its limit. At the other extreme, we exclude

37 of the 38 pointer fields of task struct and conduct
(

37
38

)

= 38 runs of Algorithm 1. Among the 38 runs, Al-

gorithm 1 only generates valid signatures in 4 runs, where

one of the following pointers is retained: fs struct,

files struct, namespace, and signal struct.

7.4 Performance Overhead

Since SigGraph may be used for online live memory

analysis, we measure the overhead of memory scanning us-

ing SigGraph signatures. We run both SigGraph-generated



fp1

0xc72bdf48: 0x00000000  0x00000010  0x00000001  0xdead4ead

0xc72bdf58: 0xffffffff  0xffffffff  0x00000000  0x00000000

0xc72bdf68: 0x00200200  0xc710e1c8  0x57409b84  0x00000009

0xc72bdf78: 0xc72bdfb4  0xc72bdf7c  0xc72bdf7c  0xc72bdef4

0xc72bdf88: 0xc017b72e  0xc72bdf8c  0xc72bdf8c  0xc72bdf94

0xc72bdf98: 0xc72bdf94  0x00000000  0x00000000  0xcf91fe00

fp2

0xcb1d5088: 0x00000000  0x00000010  0x00000001  0xdead4ead

0xcb1d5098: 0xffffffff  0xffffffff  0x00000000  0x00000000

0xcb1d50a8: 0x00200200  0xcb80ebc8  0xe50e3f24  0x0000000a

0xcb1d50b8: 0xcb1d50f4  0xcb1d50bc  0xcb1d50bc  0xcb1dcf84

0xcb1d50c8: 0xc017b72e  0xcb1d50cc  0xcb1d50cc  0xcb1d50d4

0xcb1d50d8: 0xcb1d50d4  0x026a0005  0x00000000  0xcf91fe00

true

0xc001c0a8: 0x00000000  0x00000000  0x00000001  0xdead4ead

0xc001c0b8: 0xffffffff  0xffffffff  0x00000000  0xc67617f4

0xc001c0c8: 0xc12a0e7c  0xc727faa8  0xbfbb9195  0x00000009

0xc001c0d8: 0xc001c114  0xc001c16c  0xc05b9f5c  0xc001c174

0xc001c0e8: 0xc727faec  0xc001c0ec  0xc001c0ec  0xc001c0f4

0xc001c0f8: 0xc001c0f4  0x8bfffff9  0x00000000  0xcf91fe00

struct dentry {

    [0] atomic_t d_count;

    [4] unsigned int d_flags;

    [8] raw_spinlock_t raw_lock;

   [12] unsigned int magic;

   [16] unsigned int owner_cpu;

   [20] void *owner;

   [24] struct inode *d_inode;

   [28] struct hlist_node d_hash;

   [36] struct dentry *d_parent;

   ...

   [84] long unsigned int d_time;

   [88] struct dentry_operations *d_op;

   ...

}

(a) False positives of dentry

struct sysfs_dirent {

   [0] atomic_t s_count;

   [4] struct list_head s_sibling;

  [12] struct list_head s_children;

  [20] void *s_element;

  [24] int s_type;

  [28] umode_t s_mode;

  [32] struct dentry *s_dentry;  [pruned]

  [36] struct iattr *s_iattr;    [pruned]

  [40] atomic_t s_event; }

fp1

0xcffaeffc: 0x00000000  0xcffa3800  0xcffaf800  0xcffa3808

0xcffaf00c: 0xcffaf808  0xcffc2800  0x00000000  0x00000000

0xcffaf01c: 0xcfd9bde0  0x00000008  0x70008086

fp2

0xcffaf7fc: 0x00000000  0xcffaf000  0xc03709a8  0xcffaf008

0xcffaf80c: 0xcffc2814  0xcffc2800  0x00000000  0x00000000

0xcffaf81c: 0xcfd9be60  0x00000000  0x12378086      

fp3

0xcffa37fc: 0x00000000  0xcffa3000  0xcffaf000  0xcffa3008

0xcffa380c: 0xcffaf008  0xcffc2800  0x00000000  0x00000000

0xcffa381c: 0xcfd9bd60  0x00000009  0x70108086  

fp4

0xcffa2ffc: 0x00000000  0xcffa2800  0xcffa3800  0xcffa2808

0xcffa300c: 0xcffa3808  0xcffc2800  0x00000000  0x00000000

0xcffa301c: 0xcfd9bce0  0x0000000b  0x71138086     

fp5

0xcffa27fc: 0x00000000  0xcffa2000  0xcffa3000  0xcffa2008

0xcffa280c: 0xcffa3008  0xcffc2800  0x00000000  0x00000000

0xcffa281c: 0xcfd9bc60  0x00000010  0x00b81013     

fp6

0xc037099c: 0x00000000  0xcffc2800  0xcffc2800  0xcffaf800

0xc03709ac: 0xcffa2000  0xc0327d79  0x00000000  0x00000124

0xc03709bc: 0xc01de4bc  0x00000000  0x00000000      

(b) False positives of sysfs dirent

Figure 7. False positive analysis of dentry and sysfs dirent

scanners and the value invariant-based scanners on the test-

ing image (256MB) in a machine with 3GB RAM and

an Intel Core 2 Quad CPU (2.4GHz) running Ubuntu-9.04

(Linux kernel 2.6.28-17). The final result of the normalized

overhead is shown in Figure 8.

As expected, value-invariant scanners always outper-

form SigGraph scanners. The main reason is that: A Sig-

Graph scanner needs to conduct address translation when-

ever there is a memory de-reference, which is not needed

by the value invariant scanner. If the depth of a SigGraph

signature is relatively low (e.g., D = 2), the SigGraph

scanner will be roughly 10-20 times slower than the cor-

responding value invariant scanner. Greater depth often

leads to higher overhead because more nodes will need to

be examined and more address translation needs to be per-

formed. The cases of inode security (D = 7) and

mb cache entry (D = 6) are such examples. Thus, for

data structures with low-depth signatures, their SigGraph

scanners can be used online. For example, in our exper-

iment, it takes only a few seconds to scan fs struct,

thread info, and files struct, and less than one

minute to scan task struct.

For data structures with a greater depth (due to iso-

morphism elimination) such as inode security and

mb cache entry, the scanning time is longer (e.g., about

15 minutes when we scan a 256MB memory image using

the scanner for inode security). However, we argue

that such cost is acceptable in the context of computer foren-

sics, where accuracy and completeness is more important

than efficiency. Moreover, the scanning time can be reduced

by various optimizations such as parallelization or having a

pre-scanning phase to preclude unlikely cases.

8 Security Applications

SigGraph is naturally applicable to memory image anal-

ysis/forensics. Besides, we have applied SigGraph to two

other security applications: kernel rootkit detection and ker-

nel version inference.

8.1 Kernel Rootkit Detection

By uncovering the kernel objects in a kernel memory im-

age, SigGraph provides the semantic view of kernel mem-

ory for kernel rootkit detection. We note the convenience

of using SigGraph: The user simply runs the data structure-

specific scanners on a subject memory image to uncover

kernel objects of interest.

Based on the kernel objects revealed by SigGraph, we

then follow the existing “view comparison” methodology

[10, 18, 33] for kernel rootkit detection: For a certain type

of kernel object (data structure), we compare (1) the num-

ber and values of its instances revealed by SigGraph with

(2) the relevant information returned by a corresponding

system utility (e.g., lsmod and ps for kernel modules and

processes, respectively). If a discrepancy between the two
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Figure 8. Memory scanning performance

views is observed, we know that certain kernel object(s) is

being hidden, indicating a kernel rootkit attack.

Many kernel rootkits engage in kernel data hiding at-

tacks [10, 18, 33]. Among those, we experiment with

8 representative real-world kernel rootkits (which cover

the spectrum of data hiding techniques) and the results

are presented in the first 8 rows in Table 4. Sig-

Graph helps detect all of them. Specifically, we use the

original samples of adore-ng-2.6, adore-ng-2.6’,

override, enyelkm 1.0 and port those of hp,

linuxfu, modhide, cleaner from Linux 2.4 to Linux

2.6 where our experiment is based on. All these rootk-

its except adore-ng-2.6’ and override hide tasks

or kernel modules by manipulating pointers. For example,

adore-ng changes the connecting pointers of neighbor-

ing modules to hide its own module; and enyelkm calls

a list function (list del) that separates its own module

from the module list. As a result, the number of the ker-

nel modules counted by lsmod is one less than the number

of corresponding kernel objects revealed by SigGraph, with

the missing one being the rootkit module itself.

We point out that the success of kernel rootkit detec-

tion in these experiments is attributed to SigGraph’s pro-

vision of multiple alternative signatures (Section 7.3) for

the same data structure. With the kernel rootkit’s presence,

some pointers from/to a kernel object may be corrupted

and can no longer be used for signature matching. For ex-

ample, kernel modules are connected by list.next and

list.prev pointers, which are manipulated by rootkits.

Fortunately, SigGraph is able to generate alternative sig-

natures that do not involve those pointers. With such sig-

natures, SigGraph scanners accurately recognize the kernel

objects that are being hidden.

Finally, rootkits adore-ng-2.6’ and override

have different attack mechanisms. They hide processes by

filtering out information about the hidden processes using

injected code – without manipulating kernel objects. Sig-

Graph recognizes these objects using the default signature

of task struct without resorting to the alternative ones,

which leads to the detection of such attacks via view com-

parison.

Comparison with techniques based on global memory

mapping. A number of existing kernel rootkit detection

techniques rely on building a graph that maps the entire live

memory through pointers. The state of the art is KOP [10].

Based on Windows, it builds a global memory graph and

resolves function pointers through an advanced points-to

analysis. Due to the lack of its Linux implementation, we

implement a basic system based on global memory map-

ping by extending the crash utility. As a core dump

analysis infrastructure that resolves memory regions based

on type information, crash is extendable for customized



Rootkit Target Inside view crash SigGraph

Name Object # of obj.s # of obj.s Detected # of obj.s Detected Description of the Rootkit Attack

adore-ng-2.6 module 23 23 7 24 X Hide its own module (self-hiding)

adore-ng-2.6’ task struct 62 63 X 63 X Hide one process using injected code

cleaner-2.6 module 22 22 7 23 X Hide the next module of the rootkit

enyelkm 1.0 module 23 23 7 24 X Hide its own module (self-hiding)

hp-2.6 task struct 56 57 X 57 X Hide one process with a given PID

linuxfu-2.6 task struct 59 60 X 60 X Hide one process with a given name

modhide-2.6 module 22 22 7 23 X Hide one module with a given name

override task struct 58 59 X 59 X Hide one process using injected code

rmroots task struct 56 N/A 7 55 X Destroy static data structures to hide

rmroots’ module 23 N/A 7 24 X Destroy static data structures to hide

Table 4. Experimental result on kernel rootkit detection

memory analysis. In particular, our extension involves a

Python script to build a global memory graph by exploring

the points-to relations. We consider a rootkit detected if the

hidden kernel object (module or task) is reachable in the

graph. Table 4 presents the results. The extended crash

detects 4 out of the 8 real-world rootkits. It is not a surprise

that crash detects adore-ng-2.6’ and override as

they do not manipulate kernel object pointers. For hp-2.6

and linuxfu-2.6, even though the rootkit tasks are hid-

den from the task list, they are still reachable via other

data structures in the memory graph (more specifically

via data structures for process scheduling). However,

such alternative reachability is not available when running

adore-ng-2.6, cleaner-2.6, enyelkm 1.0, and

modhide-2.6 and hence crash misses them.

We note that global memory graph-based techniques rely

on each object’s reachability from the root(s) of the graph.

In other words, an object cannot be properly typed if it is

not reachable from the root(s). As a result, it is conceivable

that future rootkits may try to destroy such reachability. For

example, a rootkit may identify a cut of the global mem-

ory graph and destroy (or obfuscate) the pointers along the

cut. Consequently, objects not reachable from the original

roots become un-recognizable. As an extreme example, we

construct two such rootkits: rmroots and rmroots’ (the

last two rows in Table 4). They hide task struct and

module instances, respectively and, to destroy evidence at

the end of the attack, they “wipe out” the static kernel data

structures listed in the kernel symbol table (system.map)

so that the rest of the memory becomes un-mappable.

In comparison, SigGraph shows better robustness

against such an attack. In our experiment with the

rmroots rootkit, there are 56 running processes right be-

fore the static kernel object wipe-out. Soon after the wipe-

out, the system crashes due to pointer corruption and a

kernel memory snapshot is taken. We run the extended

crash on the kernel memory image but it fails to construct

the global memory graph due to the absence of static ker-

nel objects. On the other hand, SigGraph is able to iden-

tify 55 instances of task struct, including the one that

was hidden before the wipe-out (The missing one is actu-

ally init task, an instance of task struct that has

been cleared). For our experiment with rmroots’, the Sig-

Graph scanner successfully identifies all 24 kernel modules

including the one being hidden.

8.2 Kernel Version Inference

Another application of SigGraph is the determination

of OS kernel version based on a kernel memory snap-

shot. Consider the following scenario: A public cloud com-

puting platform hosts virtual machines (VMs) with vari-

ous OS kernels. In order to perform virtual machine in-

trospection [15, 18, 25] on these guest VMs (e.g., for

intrusion/malware detection and usage auditing), a pre-

requisite is to know the specific version of a guest’s OS ker-

nel [16, 36, 5]. The kernel type/version is critical to accu-

rately interpreting the VM’s system state and events by the

VMM. However, such information is not always available

to the cloud provider (e.g., the cloud provider only knows

that a VM runs Linux but doesn’t know which version).

Currently guest kernel version can be determined via

value invariants (e.g., as adopted in [18]). We instead pro-

pose using SigGraph-based data structure signatures as a

more accurate kernel version indicator. To validate our pro-

posal, we take 9 more Linux kernels ending with an even

version number from 2.6.12 to 2.6.34. We select this range

because they all work with our gcc-4.2.4-based imple-

mentation. If a selected version has multiple sub versions,

we take the latest one. Together with the 5 Linux kernels

already tested (marked with *), we have a total of 14 kernel

versions, which are listed in the 1st column of Table 5.

Version indicator selection. We first compile these kernels

using the default configuration to get all their data struc-

ture definitions. We then derive SigGraph-based signatures

for all data structures. After that we try to select one data

structure whose signatures in different kernel versions can

be used to differentiate the kernel versions. The main re-

quirements for such a data structure D are: (1) It should

be commonly present in the execution of all kernels; and

(2) Its signatures should be distinctive across different ker-

nels. In other words, for each kernel version i, we shall

find a signature Si of D that will recognize instances of D

in and only in memory images of kernel version i. In the

end, we are not able to find a single data structure that can

differentiate all the 14 kernels due to the similarity among

them. (In fact, we find that two of the kernels share the

same data structure definitions.) However, we do find that



Linux mm struct task struct list head

kernel thread process active real ptrace ptrace Signature

version info name mm mm parent parent tasks children list children sibling uniqueness?

2.6.12-6 4 436 108 112 152 156 84 92 100 160 168 X

2.6.14-7 4 428 120 124 164 168 96 104 112 172 180 7

2.6.15-1* 4 428 120 124 164 168 96 104 112 172 180 7

2.6.16-62 4 432 120 124 164 168 96 104 112 172 180 X

2.6.18-1* 4 428 152 156 196 200 128 136 144 204 212 X

2.6.20-15* 4 404 128 132 172 176 104 112 120 180 188 X

2.6.22-19 4 408 132 136 176 180 108 116 124 184 192 X

2.6.24-26* 4 461 164 168 208 212 140 148 156 216 224 X

2.6.26-8 4 505 188 192 232 236 164 172 180 240 248 X

2.6.28-10 4 508 176 180 220 224 168 248 256 228 236 X

2.6.30-1 4 496 220 224 268 272 192 296 304 276 284 X

2.6.31-1* 4 500 220 224 268 272 192 296 304 276 284 X

2.6.32-17 4 504 228 232 268 272 200 296 304 276 284 X

2.6.34-2 4 512 220 224 276 280 192 304 312 284 292 X

Table 5. Detailed field offsets of task struct for kernel version inference

data structure task struct satisfies the above require-

ments for most of the kernels. The offsets and types of fields

in task struct involved in the signatures are presented

from the 2nd to 12th column in Table 5. We can see that

there are only two kernels (2.6.14-7 and 2.6.15-1) that can-

not be distinguished using task struct’s signatures. To

validate, we take snapshots of these kernels and then scan

the snapshots using the 13 distinct signatures. We succeed

in uniquely identifying 12 of the 14 kernels. The 2 kernels

that we cannot tell apart are two consecutive Linux kernels

with no significant differences in data structure definitions.

9 Discussion

While SigGraph-based signatures are capable of iden-

tifying kernel data structure instances as demonstrated in

Sections 7 and 8, we believe that there may be more so-

phisticated attempts to evade SigGraph in the future. In this

section, we discuss possible attacks against SigGraph, as-

suming that the attacker has knowledge about SigGraph and

has gained control of the kernel.

Malicious Pointer Value Manipulation. The first type of

attacks are to manipulate pointers as SigGraph relies on

inter-data structure topology induced by pointers. However,

compared to non-pointer values, pointers are more sensitive

to mutation as changes to a pointer value may very likely

lead to kernel crashes. Note that re-pointing a pointer to

another data structure instance of the same type may not af-

fect SigGraph in discovering the mutated instance. While

the attacker may try to manipulate pointer fields that are not

used, recall that SigGraph has a dynamic refinement phase

that gets rid of such unused or undependable fields before

signature generation.

The attacker may try harder by destroying a pointer field

after a reference, and then restoring it before its next ref-

erence. As such, it is likely that a memory snapshot not

have the true pointer value. However, carrying out such

attacks is challenging as there may be many code sites in

the kernel that access the pointer field. All such sites need

to be patched in order to respect the original semantics of

the kernel, which would require a complex and expensive

static analysis on the kernel. To get an (under)-estimate of

the required efforts, we conduct a profiling experiment on

task struct. We collect the functions that access each

field, including both pointers and non-pointers. The results

are shown in Figure 9(a), We observe that most fields are

accessed by at least 6 functions. Some fields are accessed

by 70 functions (the statistics is shown in Figure 9(b)).

Note that these are only dynamic profiling numbers, the

static counterparts may be even higher. Even if the attacker

achieves some success, SigGraph can still leverage its mul-

tiple signature capability to avoid using those pointers that

are easily manipulatable.

Malicious Non-Pointer Value Manipulation. Another

possible way to confuse SigGraph is to mutate a non-pointer

value to resemble that of a pointer. SigGraph has built-in

protection against such attacks. First of all, the dynamic

refinement phase will get rid of most fields that are vul-

nerable to such mutation. Moreover, compared to mutation

within a domain, such as changing an integer field (with the

range from 1 to 100) from 55 to 56, cross-domain muta-

tion, such as changing the integer field to a pointer, has a

much higher chance to crash the system. Hence, we suspect

that not many non-pointer fields are susceptible. In the fu-

ture, we plan to use fuzzing, similar to [13], to study how

many fields allow such cross-domain value mutation. In

fact, we can effectively integrate SigGraph signatures with

the value-invariant signatures (e.g., those derived by [13])

for the same data structure, which is likely to achieve even

stronger robustness against malicious non-pointer manipu-

lation.

Other Possible Attacks. The attacker may change data

structure layout to evade SigGraph. Without knowledge

about the new layout, SigGraph will fail. However, such

attacks are challenging. The attacker needs to intercept the

corresponding kernel object allocations and de-allocations

to change layout at runtime. Furthermore, all accesses to

the affected fields need to be patched.

The attacker could also try to generate fake data struc-

ture instances to thwart the use of SigGraph. However, we



 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  20  40  60  80  100  120  140  160  180  200

K
e
rn

e
l 
F

u
n
c
ti
o
n
s

ith Field of Task Structure

Pointer Field
Non-pointer Field

(a) Detailed field access functions

 0

 10

 20

 30

 40

 50

 60

 70

 0  20  40  60  80  100  120  140  160  180  200

N
u
m

b
e
r 

o
f 
A

c
c
e
s
s
in

g
 F

u
n
c
ti
o
n
s

ith Field of Task Structure

Pointer Field
Non-pointer Field

(b) Statistics of field access functions

Figure 9. Profiling accesses to the fields of task struct

point out that fake data structure instance creation is a gen-

erally hard problem across all signature-based approaches,

including the value invariant-based approaches. In fact, Sig-

Graph makes such attacks harder as the attacker would have

to fake the multiple data structures involved in a graph sig-

nature and make sure that all the points-to relations among

these data structures are properly set up.

SigGraph can help detect kernel rootkit attacks by identi-

fying hidden kernel data structure instances in a given mem-

ory image. There are other types of kernel attacks that do

not involve data hiding (e.g., BluePill [19]). SigGraph, as

a kernel object scanner generator, is not applicable to the

detection of such kernel attacks.

10 Related Work

Kernel Memory Mapping and Analysis: There have

been efforts in developing kernel memory mapping and

data analysis techniques for kernel integrity checking (e.g.,

[26, 15]). Recent advances include the mapping and anal-

ysis of kernel memory images for control flow integrity

checking [29] and kernel data integrity checking [27, 10].

To facilitate kernel data integrity checking, techniques have

been proposed for deriving kernel data structure invariants

[8, 13].

SigGraph is inspired by, and hence closely related to the

above efforts [27, 8, 10, 13]. In particular, Petroni et al. [27]

proposed examining semantic invariants (such as “a process

must be on either the wait queue or the run queue.”) of ker-

nel data structures to detect kernel rootkits. The key ob-

servation is that any violations of semantic invariants indi-

cate kernel rootkit presence. But the semantic invariants

are manually specified. Baliga et al. [8] proposed using

the dynamic invariant detector Daikon [14] to extract kernel

data structure constraints. The invariants detected include

membership, non-zero, bounds, length, and subset relations.

Dolan-Gavitt et al. [13] proposed a scheme for generat-

ing robust value invariant-based kernel data structure signa-

tures. Complementing these efforts, SigGraph leverages the

points-to relations between kernel data structures for signa-

ture generation. As suggested in Section 9, SigGraph-based

and value invariant-based signatures can be integrated to

further improve brute force scanning accuracy.

Carbone et al. proposed KOP [10] which involves build-

ing a global points-to graph for kernel memory mapping

and kernel integrity checking. The global graph is con-

structed via an advanced inter-procedural points-to analy-

sis on OS source code. A few heuristics were proposed to

better resolve function pointers. KOP is a highly effective

system when the kernel source code and a powerful static

analysis infrastructure are available. The main differences

between SigGraph and KOP are the following: (1) Unlike

KOP, SigGraph does not require complex points-to analy-

sis (which often involves source code analysis) and instead

only requires kernel data structure definitions. (2) KOP

requires that data structure instances be reachable starting

from the root(s) of the global points-to graph; whereas Sig-

Graph does not require such global reachability and hence

supports brute force memory scanning that can start at any

kernel memory address. In particular, SigGraph may recog-

nize kernel objects that are unreachable from global/stack

variables. (3) To achieve robustness against pointer corrup-

tion, the global points-to graph heavily depends on a com-

plete revelation of points-to relations between data struc-

tures; whereas SigGraph can generate multiple signatures

for each data structure by excluding problematic pointers

(e.g., null and void* pointers).

Memory Forensics: Memory forensics is a process of ana-

lyzing a memory image to interpret the state of the system.



It has been evolving from basic techniques such as string

matching to more complex methods such as object traver-

sal (e.g., [28, 34, 11, 22, 10]) and signature-based scan-

ning (e.g., [38, 35, 13, 9, 4]). Signature-based scanning in-

volves directly parsing the memory image using signatures.

In particular, Schuster [35] presented PTfinder for linearly

searching Windows memory images to discover process and

thread structures, using manually created signatures. Simi-

lar to PTfinder, GREPEXEC [4], Volatility [38], and Mem-

parser [9] are related systems capable of searching for more

types of objects. Dolan-Gavitt et al. [13] further proposed

an automated technique to derive robust data structure sig-

natures. Sharing the same goal of providing robust signa-

tures for brute force memory scanning, SigGraph provides

graph-based, provably non-isomorphic signatures (as well

as the corresponding memory scanners) for individual ker-

nel data structures.

Malware Signature Derivation based on Data Structure

Pattern: Data structures are one of the important and intrin-

sic properties of a program. Recent advances have demon-

strated that data structure patterns can be used as a pro-

gram’s signature. In particular, Laika [12] shows a way

of inferring the layout of data structure from snapshot, and

uses the layout as signature. Their inference is based on

unsupervised Bayesian learning and they assume no prior

knowledge about program data structures. Laika and Sig-

Graph are substantially different in that: (1) Laika focuses

on deriving a program’s signature from data structure pat-

terns; whereas SigGraph focuses on deriving data struc-

tures’ signatures from the points-to relations among them.

(2) Laika, by its nature, does not assume availability of data

structure definitions. On the contrary, data structure defi-

nitions are the input of SigGraph to generate data structure

signatures.

Data Structure Type Inference: There is a large body

of research in program data structure type inference, such

as object oriented type inference [24], aggregate structure

identification [31], binary static analysis-based type infer-

ence [6, 7, 32], abstract type inference [23, 17], and dy-

namic heap type inference [30]. Most of these techniques

are static, aiming to infer types of unknown objects in a pro-

gram. SigGraph is more relevant to dynamic techniques.

Dynamic heap type inference by Polishchuk et al. [30]

focuses on typing heap objects in memory. SigGraph and

[30] do share some common insights such as leveraging

pointers. However, the latter focuses on type-inference of

heap objects (for debugging) by assuming known start ad-

dresses and sizes of all allocated heap blocks; whereas Sig-

Graph aims at uncovering all kernel objects (including heap,

stack, and global) from a raw memory image. To uncover

those objects, the user can simply execute the data structure-

specific scanners on the raw memory image – without any

runtime support; whereas techniques in [30] require collect-

ing runtime information. Moreover, the different purpose

of SigGraph raises the new challenge of avoiding structural

isomorphism among data structure signatures.

11 Conclusion

OS kernels are rich in data structures with points-to re-

lations between each other. We have presented SigGraph, a

framework that systematically generates graph-based, non-

isomorphic data structure signatures for brute force scan-

ning of kernel memory images. Each signature is a graph

rooted at the subject data structure with edges reflecting the

points-to relations with other data structures. SigGraph-

based signatures complement value invariant-based signa-

tures for more accurate recognition of kernel data structures

with pointer fields. Moreover, SigGraph differs from global

memory mapping-based approaches that have to start from

global variables and require reachability to all data structure

instances from them. Our experiments with a wide range of

Linux kernels show that SigGraph-based signatures achieve

zero false negative rate and very low false positive rate.

Moreover, the signatures are not affected by the absence of

global points-to graphs and are robust against pointer value

anomalies and corruptions. We demonstrate that SigGraph

can be applied to kernel memory forensics, kernel rootkit

detection, and kernel version inference.
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