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Abstract

Software vulnerabilities are the root cause of a wide range
of attacks. Existing vulnerability scanning tools are able to
produce a set of suspects. However, they often suffer from
a high false positive rate. Convicting a suspect and vindi-
cating false positives are mostly a highly demanding manual
process, requiring a certain level of understanding of the soft-
ware. This limitation significantly thwarts the application of
these tools by system administrators or regular users who are
concerned about security but lack of understanding of, or even
access to, the source code. It is often the case that even devel-
opers are reluctant to inspect/fix these numerous suspects un-
less they are convicted by evidence. In this paper, we propose
a lightweight dynamic approach which generates evidence for
various security vulnerabilities in software, with the goal of
relieving the manual procedure. It is based on data lineage
tracing, a technique that associates each execution point pre-
cisely with a set of relevant input values. These input values
can be mutated by an offline analysis to generate exploits. We
overcome the efficiency challenge by using Binary Decision
Diagrams (BDD). Our tool successfully generates exploits for
all the known vulnerabilities we studied. We also use it to un-
cover a number of new vulnerabilities, proved by evidence.

1 Introduction
Vulnerabilities in software, especially those that are remote

exploitable, are the root cause of wave after wave of security
attacks, such as botnet, zero-day worms, non-control data cor-
ruptions, and even server-break-ins. Thus, analyzing and ex-
posing software vulnerabilities has become one of the most
active research areas today.

In the past, software vulnerability detection/exposing ap-
proaches could be divided into two categories: dynamic and
static. Dynamic approaches monitor program execution and
detect attempts of attacking a software system. Many promis-
ing approaches have been proposed in this category, such
as StackGuard [15], Program Shepherding [17], Taint-Check
[16], Control Flow Integrity [18], and Data Flow Integrity
[19]. However, most of these techniques are often active dur-
ing program execution, thereby incurring non-trivial runtime
overhead. Moreover, they aim to detect attacks, and thus vul-
nerabilities that are not under attack are invisible.

The second type of approaches are static analysis, and no-
table examples include BOON [20], Splint [21], and Archer
[23]. Static analysis is not bound to execution and thus often
capable of identifying potential vulnerabilities in a program,
and also it imposes no overhead at runtime. Thus, these tech-
niques are more desirable compared with dynamic approaches
if they can live to their promise. Unfortunately, most static
techniques suffer from a high false-positive rate and generate
a large volume of warnings. For example, the static analy-
sis tool Splint has nearly 50% false positive [22], and tools
like Flawfinder [1] and RATS [2] often produce hundreds of
warnings, in which only a few of them are the real defects.
The procedure of convicting real defects and vindicating false
positives remains a highly demanding manual effort, requir-
ing understanding of the source code. With respect to sys-
tem administrators and regular software users who are con-
cerned about security, the lack of the understanding of (even
the access to) source code significantly diminishes their en-
thusiasm about these techniques. With respect to developers,
confronted with a long list of suspects with only some being
true rapidly wears out their patience. Therefore, it becomes
a pressing need to develop new techniques to automatically
generate evidence to convict real vulnerabilities I may think
this is the trouble causing sentence –automatic.

Random test generation (e.g., fuzz testing [7, 8]) that ran-
domly mutates benign inputs has been used to construct ex-
ploits. However, it is known that random test generation is not
effective in many cases, e.g. it might take 232 tries to satisfy
a simple predicate as “P1:if (x==c)” because x is a 32
bit random value. Thus, recently, there has been significant
advance in combining static software verification principles
with symbolic execution in test generation to identify soft-
ware errors including vulnerabilities [9, 11, 10, 12, 13, 14].
These techniques aim to explore all feasible program paths to
expose potential defects. Such an ambitious goal with sym-
bolic execution incurs scalability issues. For instance, us-
ing symbolic execution an execution taking the true branch
of P1 is modeled by the constraint of C1:x==c. The tech-
nique tries to mutate a benign execution through negating con-
straints and resolve them by a solver, e.g., solving the negated
constraint ¬C1 provides a new input value satisfying x!=c,
which drives the execution to take the false branch of P1.
The state of the art [13] is capable of handling hundreds of
millions of instructions, which only accounts for a few sec-
onds of execution. Furthermore, it often requires the user to



annotate symbolic variables (e.g., EXE [9]), which implies
understanding of the program semantics.

In this paper, we propose a practical dynamic approach that
is intended to use in combination with other static tools. We
observe that although the suspect pool produced by existing
static tools has a high false positive rate, it is nonetheless
much smaller than the whole population. Therefore, we use
existing static tools as the frontend to generate a set of sus-
pects. Our technique then tries to generate exploits for these
suspects. A suspect is convicted only when an exploit can
be acquired as the evidence. Such exploits significantly assist
regular users and administrators to evaluate the robustness of
their software and convince vendors to debug and patch. The
key idea is to use data lineage tracing to identify a set of input
values relevant to the execution of a vulnerable code location.
Exploit specific mutations are applied to the relevant input
values in order to trigger an attack, e.g., for example, chang-
ing an integer value to MAXUINT to induce an integer over-
flow. Since these inputs are usually a very small subset of the
whole input sequence, mutating the whole input, like in ran-
dom test generation, is avoided. Our technique does not rely
on symbolic execution and constraint solving and thus can
easily handle long execution. In case an execution that covers
a vulnerable code location cannot be found, our tool also al-
lows user interactions to mutate an input so that the execution
driven by the mutated input covers the vulnerable code loca-
tion. Our technique addresses a wide range of vulnerabilities
including buffer overflow, integer overflow, format string, etc.
Our dynamic analysis works at binary level, which greatly fa-
cilitates users that do not have the source code access but are
concerned about software vulnerabilities. Note that a static
analysis used as a frontend may or may not require source
code access. Using our system, we are able to reproduce ex-
ploits of all the known vulnerabilities we studied. We also
successfully identify a set of new vulnerabilities and prove
them by evidence. They were all promptly confirmed by the
developers.

The contributions of our paper are highlighted as follows.
• We propose a novel dynamic technique which generates

evidence to convict a wide range of real vulnerabilities.
Compared with the state of the art of test generation tech-
niques [9, 10, 11], it is less expensive. The output of our
tool is a runnable program input to the whole software
system instead of a module, and such an input can be eas-
ily turned into an exploit, which is an input that leads
to unsafe memory access and system compromise.

• The technique is built upon a dynamic program analysis
called data lineage tracing. It traces the set of input that
is relevant to a particular execution point. The lineage in-
formation is used to guide our evidence generation pro-
cedure. The challenge of efficiency is overcome by using
Reduced Ordered Binary Decision Diagrams (RoBDDs).

• Data lineage on its own is not sufficient in producing ev-
idence. We design a search algorithm that makes use of
lineage information and looks for a mutation of a benign
program input that triggers a suspicious vulnerability.

• We apply our technique on a set of real software applica-
tions and our results show that we are able to reproduce

all the known vulnerabilities that we collected for our
experimentation. Our case study also presents the effec-
tiveness of our tool by convicting suspects which have
not been brought to “justice” before.

• Our performance evaluation indicates that our technique
has reasonable overhead.
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Figure 1. System Overview.

The overview of our system is presented in Figure 1. It
consists of four components with the shaded ones being our
contributions. The system relies on static analysis to produce
a set of suspects, which are potential vulnerable code, rep-
resented in terms of instruction address at binary level, or
the source code locations. Benign program inputs are needed
to begin with, which may come from a random test case gen-
erator or from the test suite shipped with the software. Pro-
vided with a program input and a suspect, the data lineage
tracing component computes lineage for the execution. Such
information is consumed by the input mutation component
that searches for a way to mutate the previous program input
such that the vulnerability is triggered. The runtime detector
is to check if the vulnerability is triggered. If so, the suspect
is convicted. Otherwise, the suspect is considered innocent.
Note the runtime detector is not our contribution, and in
our current system, we just use the segmentation fault as
an indication of attack. Users could integrate other detec-
tor, like TaintCheck [16] to get higher accuracy.

Our technique does not rely on a specific static analysis
tool, which provides flexibility to the system. More specif-
ically, it can be easily shaped into a system handling buffer
overflow, format string, integer overflow, or other attacks, de-
pending on the frontend analysis. Although the static and run-
time detectors may need source code, our lineage tracing and
input mutation components only require binary. The preci-
sion of the static analysis is not a major concern as well. For
example, the user may choose to subject all buffer accesses to
the conviction procedure.

Next we use a real example to demonstrate the working
of our system. Figure 2 shows one of the integer overflow
vulnerabilities in CVE-2004-0994. By providing a malicious
gif file header, remote attackers can exploit the integer over-
flow at line 494 and eventually launch a heap overflow attack.

In our system, suppose static analysis tools are able to
point out that there is an overflow suspect at line 494. Note
that many static tools can generate such warnings. Now
given a benign test input (in this case, any gif file input
touches line 494), a normal gif image with the size of
256 × 128, our system traces the lineage of the execution
of line 494 and identifies that the value of width comes
from “0x00 0x01”, and the value of height comes from



fread(&imagehed,sizeof(imagehed),1,in);

...

width=(imagehed.wide_lo+256*imagehed.wide_hi)

height=(imagehed.high_lo+256*imagehed.high_hi);

...

if((...(byte *)malloc(width*height))...)

 {

       fclose(in);

       return(_PICERR_NOMEM);

  }

  ...
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Figure 2. An Motivation Example.

“0x80 0x00”, as shown in the figure. Followed, our muta-
tion algorithm eventually finds that replacing these input val-
ues with large numbers triggers this integer overflow vulner-
ability. Such a mutated input is provided as the evidence for
the conviction.

In order to realize the idea, we have to overcome several
technical challenges such as scalable lineage tracing, input
mutation, and test generation to cover suspects. In the next
two sections, we will present our solutions to these issues.

3 Data Lineage Tracing
The first problem that confronts us is to identify the set of

input values that are relevant to a particular execution point.
Although one can say that all the inputs are related to each
point of execution in general, we observe that given a partic-
ular execution point, part of the inputs are much more closely
related than others. A more formal definition of “closely re-
lated” will be given in later discussion, but intuitive examples
can be found in Figure 2. As we can see from this figure, the
binary strings in the rectangles have one-one mappings to the
values at line 494. The code excerpt clearly explains how the
input values are propagated to line 4941.

Next, let us formalize our definition of data lineage. The
definition is based on the concept of data dependence in the
field of program slicing [25]. Given a program execution E,
si denotes the ith execution instance of a statement s. Note
that a statement can be executed multiple times in one execu-
tion.

Definition 1 A statement execution instance si data depends
on another statement execution instance tj if and only if a
variable is defined at tj and then used at si.

For example in Figure 2, assuming all the statements exe-
cute only once, 4941, the first instance of statement 494, data
depends on 2451 and 2461.

Definition 2 The data lineage of a variable v at an execution
point of si, denoted as DL(v@si), is the set of input bytes that
are directly or indirectly involved in computation of the value
of v at si through data dependence.

In some places of this paper, we also use DL(si) to de-
note the data lineage of the statement instance si. For exam-

1Note that although we present the example in its source code form for
readability, our analysis works directly on binary.

ple, DL(width@4941) = {6, 7}, with the numbers denot-
ing the values’ indices in the input sequence2. DL(4941) =
{6, 7, 8, 9}. One may raise the question whether control de-
pendence [24] needs to be considered. Our experience shows
that simply including control dependence in lineage computa-
tion often leads to undesirably oversized lineage sets. There-
fore, we consider control dependence in the search procedure
for mutation (Section 4 instead of in lineage computation. In
practice, our strategy is sufficient for the cases we studied.

Given the definition, we develop a run-time algorithm to
compute data lineage. The basic rule is that the set of input
elements relevant to a statement instance si is the union of
the relevant input sets of all the statement instances which si

data depends on. In other words, all the input values that are
relevant to some operand of si are considered as relevant to si

as well.
For the simplicity of explanation, let

si : def = f(use0,use1, ...,usen)

be an executed statement instance, in which si defines
variable def by using the variables of use0,use1, ..., and
usen.

For example, the statement instance 2451 can be repre-
sented as

2451 : width = f(imagehed.wide lo,imagehed.wide hi)

Let DEF (x) be the latest statement instance that defines
variable x. The computation of data lineage can be repre-
sented by the following equations:

DL(si) = DL(def@si)

DL(def@si) =

8>>>>>>><>>>>>>>:

get new id()
if def is an input value;

(
S
∀x

DL(usex@si)

= (
S

∀x.DEF (usex)6=φ

DL(usex@DEF (usex))

otherwise.

(1)

As shown by the equations, the lineage of si is equivalent
to the lineage of the variable def defined at si. If def is con-
sidered as an input, function get new id() is called to assign
a unique id for the input instance. If def does not represent an
input value, its lineage is computed as the union of the lineage
sets of usexs. If a variable usex was previously defined,
DL(usex@si) = DL(usex@DEF (usex)).
Otherwise, it is treated as having an empty lineage set, corre-
sponding to statically initialized variables.

Identifying Input Values. It is non-trivial to label input val-
ues. In EXE [9], users are required to annotate input variables.
We had considered such a strategy. However, since we are
working at binary level and we handle whole system inputs
such as those read from files or network packets, we found
that it was hard to adopt. We took a different path by inter-
cepting input relevant system calls such as system reads and
assign unique ids to each input value. More precisely, after
each system read, we scan the input buffer, and assign unique

2We store the input sequence into a global buffer so that input values can
be indexed and accessed.



ids to each byte in the input buffer. Such an id serves as the
lineage for that input byte. The fseek-like operations for
local file read were a challenge for us because a single byte
may be read multiple times due to this kind of operations and
we have to avoid generating multiple ids for the same byte.
Our solution is to intercept other system calls besides reads
such as lseek to synchronize the state of cursors between
input files and our id marking. For network packet, it does
not have such issues since every single byte are sequentially
received/processed upon entering the system. We should note
there exist some special cases of user-input which cannot be
caught via system calls, e.g., the command line option inputs
(i.e., argv), for which we mark all data from the bottom of
stack to the frame just before main with ids upon entering
function main.

An Example Of Lineage Tracing. We use the example in
Figure 2 to illustrate lineage computation. The procedure is
presented in Table 1. The first column presents the control
flow trace. To disclose the complete computation, we extend
the excerpt in Figure 2 to include some code in library, labeled
with pc1 and pc2. Inside the function call fread, system
call READ is first issued to load in the gif file to buf with the
input length of size. The values in buf is then copied to the
structure imagehed.

In Table 1, the column labeled def indicates the variables
that are defined at the statement instance. Columns usex

and DEF(usex) represent the variables used and the previ-
ous statement instances that define these variables, respec-
tively. The last column shows the data lineage. According
to Equation 1, after the system call READ, each byte is as-
signed a unique id at pc11. Then, at pc27,8,9,10, the lineages of
corresponding bytes are propagated to variables wide hi,
wide lo, high hi, high lo. Note that *p points to
these variables at the various instances of pc2. At 2451,
wide hi and wide lo are used to define width, accord-
ing to the equation, the lineage of width at 2451 is the union
of the lineages of wide hi and wide lo. Eventually, at
4941, we acquire the exact lineage as demonstrated earlier in
Figure 2.

Efficient Lineage Representation. Compared with exist-
ing techniques with similar functions such as Taint-Check
[16], in which one bit is required for one byte, we are fac-
ing a much harder space problem because we are computing
a set for each byte, which potentially has the same cardinality
of the entire input set. Moreover, set operations are performed
at each step of execution. Therefore, an efficient set represen-
tation is critical to the system performance. A naive link-list
based implementation may be devastating. For example, sets
with thousands of elements may have to be traversed for the
execution of a single instruction. Fortunately, recent research
on dynamic slicing [26] reveals that reduced ordered Binary
Decision Diagram (roBDD) [4] can be used to achieve both
space and time efficiency in representing sets, especially when
these sets have the characteristics of overlapping, clustering,
and reappearing. Data lineage possesses exactly these char-
acteristics. For example, the execution of statement “y=x+1”
gives rise to reappearing lineages because both x and y have
the same lineage. A statement like “z=y+x” introduces sig-
nificantly amount of overlap between the lineages of x, y

and z, due to the union operation. The detailed study of these
properties is not the focus of this paper.

As RoBDD is capable of efficiently representing the power
set domain of a universal set (here the universal set is the
set of input values), it benefits us in the following respects.
First, each unique lineage set is indexed by a unique integer in
roBDD. In other words, two sets are represented by the same
integer number if and only if they are identical. This is critical
to our system, because instead of storing a set for each byte in
memory to represent its lineage, we only need to store an inte-
ger. Furthermore, performing the equivalence test on two sets
can be achieved in O(1) time by comparing the correspond-
ing integers. Second, roBDD also promises time efficiency
because set operations can be translated into roBDD opera-
tions. For instance, binary operations (e.g., union) of two sets
whose roBDD representations contain n and m roBDD nodes
can be performed in time O(n ×m) [5]. Note that the num-
ber of roBDD nodes is often much smaller than the number of
elements in the represented set.

Binary Instrumentation. In order to trace lineage, we have
to instrument the binary of the program such that lineage in-
formation is updated during program execution. According to
Equation 1, we need to update the DL set of the left hand side
variable at every step of the execution and store it somewhere.
In our system, we use shadow space to store lineage sets.
Specifically, if the variable is stored at a specific stack/heap
location, a corresponding shadow memory (SM) is allocated
and used to store the set associated with the variable. Simi-
larly, we use the shadow register file (SRF) to store the sets
for variables in registers. Both shadow memory and shadow
registers are implemented by software.

4 Input Mutation
The lineage tracing component collects runtime informa-

tion about the random generated input (benign input). This
information is used to direct the other key component of our
system, the input mutator, to generate an exploit. In this pa-
per, an exploit refers to an input that leads to unsafe memory
writes; gaining control of the host program through these un-
safe writes is beyond the scope of this paper.

The overall procedure is illustrated by the algorithms pre-
sented in Algorithm 1. Method Driver serves as the driver.
It checks if the program execution with the benign input T
covers the suspect s. SCD contains the static control de-
pendence information, which is precomputed from the binary.
Readers who are interested in computing static control depen-
dence are referred to [24], and our SCD implementation is
discussed in Section 5. If s is not covered by the benign ex-
ecution, the driver calls the method DirectedTGen, which
is a directed input generation procedure that produces a Tx to
cover s. More details about the DirectedTGen procedure
will be disclosed at the end of this section.

Now, let us focus on the Searchmethod and the Mutate
method. These two methods aim to mutate the benign input
that covers the suspect s to generate an exploit. If they fail to
produce one, our system considers s innocent.

Given the suspect s and its last execution instance si in the
benign execution with input T , the Search method is called
in the Driver function to look for the lineage that is relevant



Table 1. Computation of Data Lineage

si def use0 DEF use1 DEF DL(def@si)/DL(si)
(use0) (use1)

2311 fread(...)
pc1∗1 READ (buf,size,...) ∀0 ≤ i < size buf[i] ∀0 ≤ i < size DL(buf [i]@pc11) = get new id()∗∗∗

pc2∗∗7 *p = buf[i] wide lo buf[6] pc11 DL(∗p@pc27) = DL(buf [6]@pc11) = {6}
pc28 *p = buf[i] wide hi buf[7] pc11 DL(∗p@pc28) = DL(buf [7]@pc11) = {7}
pc29 *p = buf[i] high lo buf[8] pc11 DL(∗p@pc29) = DL(buf [8]@pc11) = {8}
pc210 *p = buf[i] high hi buf[9] pc11 DL(∗p@pc210) = DL(buf [9]@pc11) = {9}
2451 width=... width wide hi pc28 wide lo pc27 DL(width@2451) = DL(wide hi@pc28)

∪DL(wide lo@pc27) = {6, 7}
2461 height=... height high hi pc210 high lo pc29 DL(height@2461) = DL(high hi@pc210)

∪DL(high lo@pc29) = {8, 9}
4941 ...width*height... width 2451 height 2461 DL(4941) = DL(width@2451) ∪DL(height@2461)

= {6, 7, 8, 9}
* pc1, pc2 are statements in libc functions.
** the input byte with offset 7, with the value “0x00”, is loaded to buf[6] by the 6th instance of pc2
*** since the input sequence starts with buf[0] and the id assignment starts at 0, DL(buf [i]@pc11) ≡ i.

to si and then automatically mutate it to generate an exploit.
The Searchmethod first checks if the current search point ti
has a non-empty lineage. If so, it calls Mutate to change the
DL(ti) part of input T . If not, or the mutation is not success-
ful, meaning the suspicious vulnerability is not triggered, the
search procedure looks for the predicate instance pj that con-
trols the definition of ti’s value. Line 39 makes use of SCD
information and looks for the control dependence of the defi-
nition of ti. The computation of control dependence is not our
contribution. Interested readers could be referred to [27]. Es-
sentially, the search algorithm takes into account the effect of
control dependence without incurring oversized lineage sets.

The Mutate method takes the benign test input T and the
lineage DL that is found by the Search method, and tries to
mutate T by replacing the DL with something else. As shown
in Lines 45−61. The mutation method applies several heuris-
tics in changing T . The first heuristic is to change the integer
values in DL to the maximum unsigned integer (MAXUINT,
i.e., 0xffffffff), several other boundary values such as
0,−10,−100,−1000, 1, 10, 1000, and ’%n’, etc. Changing
to a boundary integer is to exploit integer overflow or integer
value related vulnerabilities; changing to ’%n’ is to trigger
format-string vulnerability. The second heuristic is to change
the size of input, with the goal of triggering buffer overflows.
This is done by duplicating DL in T after each iteration till
a threshold is hit (we set the threshold as 16 since we seldom
find the buffer length is greater than 216). In other words, this
heuristic replaces DL in T with DL ·DL, DL ·DL ·DL ·DL,
and so on. Users also have the freedom to insert their own
heuristics. We observe that simple heuristics turn out to be
highly effective in producing exploits.

Directed Input Generation. If the benign input T
does not cover the suspect s, the Driver function calls
DirectedTGen to generate a new program input to cover
s. Starting from s, the input generation procedure transitively
searches along s’s static control dependencies until it sees a
direct/indirect control dependence p that has been executed
with input T , then it tries to mutate the lineage of the first
execution instance p1 such that program execution with the
new input takes the edge p → t, which leads to s. In other
words, the new execution is one step closer to s. The proce-
dure repeats until s gets covered. Compared with the state of
the art of test generation techniques, our input generation is
more directed, meaning that we only try to cover a specific

program point instead of all feasible program paths. Another
difference is that our technique is facilitated by data lineage.

Currently, this procedure involves user interactions,
namely, the function MMutate requires the user to inspect
predicate conditions to construct a replacement of the rele-
vant lineage. Compared with the automated Mutate, the
possible mutations in MMutate (line 21) are not bounded by
the types of considered vunerabilities. While the access to
source code would be beneficial to MMutate, our experi-
ence shows that the desired mutation can also be inferred
from the binary predicate instruction and its lineage, such
as the evaluation case discussed in Section 6.1.4.

Input :...0x00 … aaaaaaaa\0 …

char buf[MAX_SIZE];

packettype=fgetc(in);

…

i=0;

if (packettype==0) 

      i = MAX_SIZE-1;

else 

     while (fgetc( in) ) i++;

buf[i]= ...

1.

2.

3.

4.

5.

6.

7.

8.

9.

Input :...0x00 0x01… 0x01 ……  0xFF …

char buf[MAX_SIZE];

fread(&size, sizeof(short),1,in);

…

i=0;

while (i < size) {

     buf[i++]= fgetc(in);

}   

...

1.

2.

3.

4.

5.

6.

 packetparser( )

256

(a) Real (b) Spurious

Figure 3. Correlations

Correlated Inputs. So far, we have presented our tech-
nique on trying to mutate a test case by replacing one lin-
eage. However, if the inputs have correlations, multiple lin-
eages may have to be mutated in order to successfully trigger
a vulnerability. Consider the example in Figure 4(a). The sus-
pect is at statement 9. Since variable packettype is set to
0 according to the lineage, variable i is set to MAX SIZE-1.
If our system only tries to mutate DL(packettype) to
generate the exploit, it would fail because the lineage of
fgetc(in), as shown inside the second rectangle, needs to
change simultaneously in order to trigger the attack. This is
due to input correlation. To handle such correlated input mu-
tations, a potential solution is to mutate the input in multiple
rounds, namely, recursively search for mutations of mutated
inputs.

Also sometimes, suspicious input correlations turned out
to be spurious. Consider the example in Figure 4(b), which
presents a packetparser function. Since the size of the



Algorithm 1 Input Mutation
1: /* s:suspect, T :benign input, SCD: static control dependence*/
2: Driver (s, T , SCD)
3: {
4: Tx = T ;
5: if (s is not executed with input T )
6: Tx = DirectedTGen (s,T , SCD);
7: if (Tx) {
8: si = the last execution instance of s;
9: return Search(s,si,T ,SCD);

10: }
11: return NULL;
12: }
13:
14: DirectedTGen (s, T ,SCD)
15: {
16: DL = TraceDL(T ); /* TraceDL () is the lineage tracing

procedure*/
17: if ((s is not executed with input T ) {
18: wl = {s}; /*wl is a worklist*/
19: while ((t = wl.removeNext()) {
20: for each p ∈ SCD(t), p is executed with T ) {
21: T ′ = MMutate(p1, t, T, DL);
22: if (T ′ and Tx=DirectedTGen(s,T ′,SCD))
23: return Tx;
24: }
25: wl.add(SCD(t));
26: }
27: } else return T ;
28: return NULL;
29: }
30:
31: /*s:suspect, ti:the execution point to start search*/
32: Search (s, ti, T , SCD)
33: {
34: DL = TraceDL(T );
35: if (DL(ti) 6= φ) {
36: if (T ′=Mutate (s, DL(ti), T ))
37: return T ′;
38: /* Facilitated by SCD*/
39: pj = a predicate instance that controls the definition of ti;
40: if (T ′=Search (s, pj , T , SCD))
41: return T ′;
42: return NULL;
43: }
44:
45: /* s:suspect, DL:the lineage relevant to the suspect */
46: Mutate (s, DL, T )
47: {
48: /*Heuristic One: change input values*/
49: for v in {MAXINT, ’%n’, 0, ...} {
50: T ′= replace DL part in T with v;
51: if (AttackDetected (s, T ′) return T ′

52: }
53: /*Heuristic Two: change input lengths*/
54: X = DL;
55: Threshold = 0;
56: while ( Threshold++ < 16) {
57: X = X ·X;
58: T ′= replace the DL part in T with X;
59: if (AttackDetected(s, T ′)) return T ′

60: }
61: /*More heuristics*/
62: ...
63: return NULL;
64: }

packet body, delimited by the second rectangle, is decided by
a value in the packet header, delimited by the first rectangle.
Although our system fails to generate an exploit by mutating
the lineage of buf[i++], it successfully generates an exploit
by solely changing the lineage of size because it results in
some bytes that were tailing the buf are now treated as part of
the buf. We call this type of correlation spurious correlation.

Discussion About Completeness. Our technique is not
complete, meaning we have false negatives. The reason is
multi-faceted. For instance, our directed input generation may
fail to generate an input to cover a suspect. There may ex-
ist real input correlations which fail our test mutation pro-
cedure. Our mutation procedure Mutate is heuristic-based
rather than exhaustive. As a result, we can not conclude a
suspect for which our system can not generate an exploit to be
surely innocent. However, we argue that the benefit of con-
victing some real vulnerabilities with evidence pays off the
loss of completeness.

5 Implementation
We have implemented the whole system in Linux. The

core part of our system includes the (1) lineage tracer module,
the (2) static control dependence (SCD) computation module,
and the (3) input mutator module.

Our data lineage tracer module is built on top of Valgrind-
2.2 [6] with roBDD [4] support. We instrument data move-
ment (e.g., LOAD, STORE, MOV), arithmetic operation, and
logic operation instructions (e.g., ADD, SUB, AND) to keep
track of data dependence and generate lineage information.
Lineage information for memory references and predicate in-
structions is dumped to a log file. The internal lineage rep-
resentation is roBDD as we have described in Section 3.
The format for each lineage entry in the log file is a quater-
nion containing Execution Context:Basic Block
Number:Predicate or not:Lineage.

We implement the SCD computation module on top
of Diablo-0.3 [3], a retargetable link-time binary rewriting
framework which has the capability of constructing the con-
trol flow graph of an x86 binary. Specifically, we imple-
ment an post-dominance analysis which facilitates computa-
tion of static control dependence for a given function. A static
call graph is also constructed such that the entire SCD infor-
mation is organized and thus can be indexed by a tuple of
function name:PC.

For the mutator, it is used to manipulate input data based
on lineage information and drive program re-execution with
the mutated input, and we just implemented it based on the
description of Algorithm 1.

6 Evaluation Experience
To verify the effectiveness and efficiency of our system,

we have conducted a number of experiments. The types of
vulnerability we studied include a wide range of possible
exploitable ones, i.e., stack overflow, heap overflow, format
string, and integer overflow. The benchmark programs and
their related vulnerabilities are described in Table 2. All the
experiments were performed on a machine with two 2.13Ghz
Pentium processors and 2G RAM running the Linux kernel
2.6.15, and the vulnerable programs were compiled with gcc



Table 2. Description of the Benchmarks
CVE# Program #LOC Vul. Description Convicted?

CVE-2001-1413 ncompress-4.2.4 1.9K Stack overflow
√

CVE-2001-1228 gzip-1.2.4 8.2K Stack overflow
√

CVE-2002-1549 bftpd-1.0.11 1.1K Stack overflow
√

CVE-2002-1496 nullhttpd-0.5.0 2.5K Heap overflow
√

CVE-2000-0573 wu-ftpd-2.6.0 23.7K Format string
√

CVE-2001-0609 cfingerd-1.4.3 5.1K Format string
√

CVE-2005-0226 ngircd-0.8.2 16.4K Format string
√

CVE-2004-0904 zgv-5.8 25.4K Integer overflow
√

CVE-2006-3082 gnuPG-1.4.3 79.3K Integer overflow
√

3.2.2 (because of some compatibility issues when compiling
some old programs), and linked with glibc 2.2.

6.1 Effectiveness
Since our major contribution is on the dynamic analysis,

the static frontend is not the focus of the evaluation. Thus,
in this subsection, we take on a perfect frontend by using the
real vulnerabilities reported by CVE and generate exploits for
them. Our experience on generating evidence for new (never-
reported) vulnerabilities are reported in a later subsection.

In our experimentation, we have successfully generated ex-
ploits to trigger all the vulnerabilities shown in Table 2. In-
deed we have tried a number of other reported vulnerabilities
as well and the result was consistent. Due to the space limit,
we are not going to present all the results we have.

6.1.1 Stack Overflow
Ncompress is a utility handling compression and de-
compression of Lempel-Ziv archives. The code in func-
tion comprexx of ncompress-4.2.4 does not properly
check bounds on user-supplied input, and thus contains a
stack buffer overflow vulnerability. For this benchmark, we
started with a benign input (a command line option) with
a filename of 4 bytes; our mutator found the lineage is not
empty at the buffer access in function strcpy which is at
line 893 in file compress42.c; then it doubled the in-
puts in every re-execution, and after repeating this process
for 10 times, the program was successfully crashed because
the buffer size of 1024 was exceeded. The vulnerabilities of
gzip and bftpd are very similar to ncompress, and they
took our mutator 10 and 4 re-executions, respectively, to gen-
erate the exploit.

Here, we did not encounter any path coverage issue for
these 3 stack overflow tests since all the vulnerable state-
ments are on some common program path. Our experience
with other stack-overflow vulnerabilities also certify this ob-
servation. This could be due to the nature of stack-overflow
vulnerabilities. Another explanation is that attackers/testers
rely on existing test cases to study vulnerabilities, just like
us, so that only those covered by the provided test cases are
reported.

6.1.2 Heap Overflow
We used nullhttpd-0.5.0, a multi-threaded web server,
to demonstrate how we can prove the existence of a heap over-
flow vulnerability. The vulnerable code is shown in Figure 4.

The heap overflow suspect is the recv at line 108. We
first provided a benign input reaching the suspect, which is
a http-POST packet with the content of 1024 bytes. The lin-
eage of pPostData at line 108 has the identical lineage of

91 void ReadPOSTData(int sid) {
92 char *pPostData;

...
100 conn[sid].PostData= \

calloc(conn[sid].dat->in_ContentLength+1024,\
sizeof(char));

101 if (conn[sid].PostData==NULL) {
102 logerror("Memory allocation error");
103 closeconnect(sid, 1);
104 }
105 pPostData=conn[sid].PostData;
106
107 do {
108 rc=recv(conn[sid].socket, pPostData,1024,0);

...
115 }while((rc==1024)|| \

(x<conn[sid].dat->in_ContentLength));
116 ...

Figure 4. Vulnerable Code in Httpd.c of
Nullhttpd-0.5.0

in_ContentLength at line 100, which contains the input
value of 10. Our mutator started off by changing the value
to MAXUINT (actually it equals to -1 in binary form) and
re-executed the program. Although an off-by-one heap over-
flow (1023 allocated and 1024 accessed) was triggered, our
detector, which relies on segment faults, was not able to de-
tect it. While a better runtime detector, such as the memcheck
in Valgrind would detect off-by-one overflows, we found that
it is not needed as our mutator eventually crashed the program
after it had tried changing the value to 0 and −10.

6.1.3 Format String
The root cause of format-string vulnerability lies in the for-
mat string, which is an argument to a function in the printf
family, (partly) comes from user input. The mutation heuris-
tics are to change values in the lineage set of the format string
to %n (%s also works), which typically leads to a segmenta-
tion fault as such operation is data dereference; if a crash does
not occur, we double the input size of %n, eventually result-
ing in an observable segmentation fault if the format string
vulnerability is real.

We have applied the above format string evidence
generation scheme to three real world applications,
i.e., cfingerd-1.4.3, wu-ftpd-2.6.0, and
ngircd-0.8.2, respectively. Due to the limited space, we
only describe how we caught the format string vulnerability
in cfingerd-1.4.3. The vulnerable code is at line 245
of file main.c, where syslog directly uses syslog str
as the format string argument, and part of the argument is
user-supplied input (e.g., username). In our experiment, we
started with a benign username (6 bytes long), and our mu-
tator found syslog called by main contains a non-empty
lineage. Then it directly changed all these 6 characters to %n,
and consequently, a segmentation fault occurred in syslog.
For this benchmark, we only re-executed the program once
and successfully generated the exploit. For wu-ftpd and
ngircd, our mutator also only used one re-execution based
on the benign input.

6.1.4 Integer Bugs
There are four types of integer bugs: overflow, underflow,
signedness error, and truncation [29]. Here we focus on in-
teger overflow, meaning the result of an integer expression
exceeds the maximum value regarding its type. The other 3



types are similar. The benchmark we used is gnupg-1.0.5,
which contains an integer overflow and eventually will cause
a heap out-of-bound access. The vulnerable code is shown in
Figure 5.

397 switch( pkttype ) {
...

422 case PKT_USER_ID: /* PKT_USER_ID = 13 */
423 rc = parse_user_id(inp, pkttype, pktlen, pkt );

...
1580 static int
1581 parse_user_id( IOBUF inp, int pkttype,

unsigned long pktlen, PACKET *packet )
1582 {
1583 byte *p;
1584
1585 packet->pkt.user_id = m_alloc

(sizeof *packet->pkt.user_id + pktlen);
...

1595 p = packet->pkt.user_id->name;
1596 for( ; pktlen; pktlen--, p++ )
1597 *p = iobuf_get_noeof(inp);
1598 *p = 0;
1599 ...

Figure 5. Vulnerable Code in Parse-packet.c of
Gnupg-1.0.5

The integer overflow suspect is the expression of
m alloc. We started with a benign input. Unfortunately, the
benign input did not lead to execution of parse user id,
we have to first mutate the benign input such that the desired
path is covered. In this case, our diablo based SCD mod-
ule is called, and it disassembles the binary code of gnupg,
and generates an inter-procedural static control flow graph-
The total time of such a procedure is 238 seconds in our ex-
periment. We display part of the graph in Figure 6. A box
node represents a basic block and the instructions of this basic
block are displayed inside the box. For better illustration, we
annotate the graph with the corresponding source code. As
we can see, the initial input drives program execution along
the path from 0x805d1de to 0x805d1e5 while the desired
program point is at line 1597. According to our SCD compu-
tation, line 1597 is transitively statically control dependent on
the call site to function parse user id (0x805d386),
which in turn is statically control dependent on the switch
statement at line 397 (0x805d1de). This point was executed
by our initial input. The lineage of pkttype(%ecx) at this
point contains the input value of 6. We manually inspected the
path condition and concluded that changing the lineage value
to 13 leads to the suspect.

With the mutated benign input that drives the execu-
tion to 1597, the mutator found the lineage at 1597 is
not empty due to the data dependences between 1597 and
1585, whose lineage contains an input value at pktlen.
The value was changed to MAXUINT by our mutator. It
caused m alloc to allocate a buffer with 35 bytes (sizeof
*packet->pkt.user id =36). The number of assign-
ments at 1597, decided by the value, exceeded the buffer and
resulted a crash.

Our another integer overflow case study was on zgv-5.8.
This case has been explained earlier in Section 2 and will not
be repeated here.

6.1.5 Summary and Speculation
Our experience with vulnerabilities that have been reported
shows that most of them are easy to exploit. Our approach

parse_key

parse_user_id

Other_parse_functionpkttype=6

pkttype=13

desired path

 397   switch(pkttype)

1585    packet->pkt.user_id = m_alloc
            (sizeof *packet->pkt.user_id + pktlen);

Lineage of ecx is the first 

byte of input

Our benign input first 

goes here

Figure 6. Part of Static Control Flow Graph of
gnupg.

of tracing lineage plus heuristic-guided input mutation suf-
fices to generate evidence. Our speculation is as follows. A
vulnerability can be exploited only if it can be manipulated
by input values. However, manipulation becomes hard, if
not impossible, after the input values propagate along depen-
dence edges for a certain distance during program execution.
In other words, the places that are manipulatable through in-
puts have only simple dependence structure, implying simple
computation involved. This can partially explain the success
of our strategy. Further study is needed to confirm this specu-
lation.

6.2 Experience With New Vulnerabilities

So far we have assumed a perfect frontend that only points
us to suspects that are guilty. Next we present our experience
of connecting our system to a real static vulnerability detec-
tion tool called RATS [2], which can detect buffer overflow
and even integer overflow with user extensions.

We applied our system to a few most-recent software ver-
sions. The first one we tried was ipgrab-0.9.9. RATS
reported 106 buffer overflow suspects. We tried to convict
these suspects one by one using our system. We found that
the 48th suspect is a real one. The vulnerability, which is pre-
sented in Figure 7, lies at line 357 in file.c. It is a buffer
overflow caused by an integer overflow. To begin with, we
used a random generated benign input. The input was not
hard to acquire because any input packet will touch the sus-
pect. The mutator altered the lineage of header.inc len
to MAXUINT, and it caused a segmentation fault at line 357
because the parameter to malloc is 0 while fread tries to
read MAXUINT bytes. Thus, through one round of muta-



Table 3. Performance and Space Overhead of Lineage Tracing
Performance (seconds) Space (bytes)

Program Metrics Normal W/O Log Ratio With Log Ratio Link-list Bdd Ratio
ncompress-4.2.4 Time to compress a 4.3k bytes file 0.001 1.740 1740 1.960 1960 4296576 460700 9.33
gzip-1.2.4 Time to compress a 15.7k bytes file 0.004 2.700 675 9.645 2411 3163228 1086220 2.91
bftpd-1.0.11 Response time of an automated user authentication 0.014 0.302 21 0.318 23 6808 4160 1.63
nullhttpd-0.5.0 Response time of processing a 512 bytes post packet 0.007 0.452 65 0.463 66 120736 21980 5.49
wu-ftpd-2.6.0 Response time of an automated user authentication 0.018 0.486 27 0.526 29 11496 6340 1.81
cfingerd-1.4.3 Response time of a normal lookup request 0.015 0.517 34 0.543 36 39508 10820 3.65
ngircd-0.8.2 Response time of an automated 5 sequence irc commands 0.021 0.342 16 0.378 18 33032 16060 2.07
zgv-5.8 Time to display a 1.4k bytes malicious gif file 0.011 20.909 1901 21.965 1997 971328 14000 69.38
gnuPG-1.4.3 Time to verify a 1.2k bytes signature file 0.012 29.298 2441 86.926 7243 2898128 279160 10.38

tion, we proved the existence of this vulnerability. Using the
same methodology, we have found and proved another two
new integer overflows causing buffer overflow vulnerabilities
in dcraw-7.94, and epstool-3.3. We have reported
these vulnerabilities with evidence to their developers. They
replied promptly, admitting the existence of these defects.

334 while(1)
335 {
336 /* Read the header */
337 ret = fread((void *) &header,
338 sizeof(snoop_packet_header_t),1,fp);
347 /* Do conversions */
348 header.orig_len = ntohl(header.orig_len);
349 header.inc_len = ntohl(header.inc_len);
350 header.rec_len = ntohl(header.rec_len);

...
355 /* Get the actual packet */
356 packet = my_malloc(header.inc_len+1);
357 ret = fread((void *)packet,header.inc_len,1,fp);
358 ...

Figure 7. Vulnerable Code in File.c of Ipgrab-
0.9.9

6.3 Performance and Space Overhead

We also used the above 9 benchmark programs to measure
performance and space overhead of the lineage tracing mod-
ule, which is the performance dominator in our system. With
respect to performance, we measure three scenarios, without
lineage tracing, with lineage tracing but without logging, and
with both lineage tracing and logging. For the daemon pro-
grams, we indirectly measure their performance by measur-
ing their response time, and for the utility applications, we
directly measure the running times. The setup and the result
are presented in Table 3.

Without logging, the performance slow down factor varies
from 16 to 2441. If logging is enabled, its performance over-
head varies from 23 to 7243 times. The large overhead fac-
tors for utility programs are mainly due to the fact that the
total running times of these programs include the starting and
ending times of the Valgrind engine, which is significant
compared with the real execution time. The numbers for dae-
mon programs, ranging from 16 to 66, are closer to the real
slowdown since we excluded the time spent on Valgrind
by inserting performance monitors to the programs. Note that
network latency is not an issue here because we were using
the local network interface. We believe the performance has
greatly benefited from using roBDD. One can easily imag-
ine the overhead of performing set operations on up to a few
thousands elements during each step of execution. Another
observation is that if the application is data-intensive (e.g.,
gnuPG), the log file is very large (nearly 10M in this case),

causing a lot of runtime overhead.
Due to some historical reason, we used an old version of

Valgrind, which incurs ten times slowdown even without
any instrumentation. Furthermore, we have not strived to op-
timize the system because performance is not yet a critical
factor for us.

For the space overhead, as illustrated in Table 3, we can
see that a link-list based approach will cost much more space
than our roBDD based approach, especially for data-intensive
applications.

7 Related Work

Our technique can be considered as a dynamic program
analysis, which is based on executable binaries and requires
program execution. Therefore, we mainly compare it with
existing dynamic approaches.

In recent years, there have been significant advance in au-
tomated code based test generation. EXE [9] is a system
that generates test cases for certain types of program errors
including buffer overflow and divide-by-zero errors. CUTE
[10] and DART [11] are systems that generate test cases to
cover all feasible program paths. Whitebox fuzz testing [13]
scales the technique to hundreds of millions of instructions.
Theoretically, these techniques can be applied to our prob-
lem of automated evidence generation. Compared with our
technique, these techniques are more complete, meaning that
ideally, they can pinpoint all real vulnerabilities in the code
and provide test cases to prove them. However in practice,
they have inherent limitations that constrain their application.
First, most these techniques are tuned to unit testing due to
the scalability issue. In other words, they generate test cases
for functions or modules instead of the whole program. How-
ever most remote exploits are whole program inputs and they
require whole program execution as well. Besides, unit test-
ing entails a non-trivial driver to set up the execution environ-
ment. Second, these techniques work by combining concrete
execution with model checking. Model checking is an expen-
sive technique because it tries to explore all potential program
paths. In EXE [9], sophisticated searching strategy was used
to explore the state space. However, in the worst case, all pro-
gram paths have to be explored. Third, these techniques work
by solving symbolic constraints. It implies that the user has
to specify symbolic variables in the source code, demanding
not only the access to the source code but also a certain level
of understanding.

In contrast, our technique is a light-weight whole program
technique, it uses static tools as the frontend and it works by
mutating existing program inputs. It does not require source



code access and it does not require understanding the pro-
gram in most cases. We believe the existing test generation
techniques and our method are complementary. We plan to
incorporate the constraint solving part of these techniques to
our system, for the purpose of generating starting benign in-
puts to cover suspects. On the other hand, the use of lineage
may mitigate some of the existing problems in automated test
generation.

Taint-Check [16] represents another type of dynamic tech-
niques that are relevant. Our technique can be considered as a
generalization of taint-check. More specifically, Taint-Check
uses one bit to color program execution as input-relevant or
input-irrelevant. By contrast, we “taint” each program execu-
tion point with a set of relevant input values. Our scenario is
more challenging because sets may have various numbers of
elements, with the upper bound of the universal set of inputs.
Furthermore, taint-check is proposed as an online technique
with the goal of detecting attacks on the fly. Hence, reduc-
ing runtime overhead is its major concern. This is also true
for other dynamic techniques such as control flow integrity
checking tools [15, 17, 18] and data flow integrity checking
[19]. Our technique aims to generate evidence off-line by an-
alyzing program execution.

8 Conclusions
In this paper, we propose a data lineage tracing based dy-

namic approach to generate evidence for remote exploitable
vulnerabilities in software. The approach is highly automated
and delivers both efficiency and effectiveness. Using our sys-
tem, we are able to reproduce exploits for all the known vul-
nerabilities we studied. We also successfully identified and
convicted a number of new vulnerabilities, which were all
promptly confirmed by the developers. Our evaluation also
shows that the system has reasonable overhead for the sce-
nario of offline diagnosis.
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