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Abstract
Debugging concurrent programs is difficult. This is primarily be-
cause the inherent non-determinism that arises because of sched-
uler interleavings makes it hard to easily reproduce bugs that may
manifest only under certain interleavings. The problem is exacer-
bated in multi-core environments where there are multiple sched-
ulers, one for each core. In this paper, we propose a reproduction
technique for concurrent programs that execute on multi-core plat-
forms. Our technique performs a lightweight analysis of a failing
execution that occurs in a multi-core environment, and uses the re-
sult of the analysis to enable reproduction of the bug in a single-
core system, under the control of a deterministic scheduler.

More specifically, our approach automatically identifies the exe-
cution point in the re-execution that corresponds to the failure point.
It does so by analyzing the failure core dump and leveraging a tech-
nique calledexecution indexingthat identifies a related point in the
re-execution. By generating a core dump at this point, and compar-
ing the differences betwen the two dumps, we are able to guide a
search algorithm to efficiently generate a failure inducing schedule.
Our experiments show that our technique is highly effective and has
reasonable overhead.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Debuggers; D.2.5 [Software Engineering]:
Testing and Debugging—Debugging aids, Dumps, Tracing

General Terms Algorithms, Verification

Keywords concurrency bugs, reproduction, execution indexing,
multi-core

1. Introduction
Much of the complexity in debugging concurrent programs stems
from non-determinism that arises from scheduler interleavings (in
single core environments) and true parallel evaluation (in multi-
core settings); these interleavings are often difficult to precisely
reproduce when debugging an erroneous program. Concurrency
errors that occur under certain interleavings, but which are absent
under others, are called Heisenbugs.
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In single-core environments, Heisenbugs can sometimes be re-
paired by recording all scheduler decisions [7] such that the failed
execution can be faithfully replayed and examined. Unfortunately,
this approach does not easily generalize to parallel multi-core en-
vironments where there are multiple schedulers, one for each core.
When two operations executed in parallel on different cores access
shared state, it is necessary to record the order in which these ac-
tions are performed; simply recording the thread schedule on each
core does not provide this level of detail. Instruction-level moni-
toring that records the order in which accesses to shared variables
occur [4, 8, 16, 18, 28] is expensive, however, and often requires
hardware support, limiting its applicability.

There has been significant recent progress in testing con-
current programs on single-core systems that perform a (user-
specified) bounded search of possible interleavings. Systems such
as CHESS [17], CTrigger [22] and randomization techniques [27]
leverage specific characteristics of concurrency-related failures to
guide this exploration. For example, CHESS is predicated on the
assumption that many concurrency failures can often be induced
by injecting a few preemptions; CTrigger is based on the assump-
tion that errors in concurrent programs often arise because well-
defined access patterns for shared variables are violated. Because
these built-in assumptions permeate their design, they behave quite
differently from model-checking approaches which attempt to ex-
plore the entire space of interleavings,and face substantial scala-
bility problems as a result. Regardless of the specific technique,
existing approaches are not geared towardsreproducingconcur-
rency bugs in multi-core environments since they operate with noa
priori knowledge of specific failures. Their generality, while useful
for discovering new bugs, is less beneficial for reproducing known
ones.

This paper targets the problem of reproducing Heisenbugs in
parallel environments. Our technique combines lightweight analy-
sis of a failure core dump with a directed search algorithm that uses
the results of the analysis to construct a schedule that can reproduce
the bug in a single-core environment. Notably, our technique does
not assume low level logging or hardware support in the failing
run, as long as core dumps can be generated when a failure is en-
countered, and the failure inducing program inputs are available. It
requires very little program instrumentation and involves no modi-
fications to the underlying thread scheduler. Indeed, programs can
run on multiple cores with real concurrency in a completely normal
fashion.

Our approach assumes core dumps will be generated when pro-
grams fail. Core dumps are expected to contain a complete snap-
shot of the program state at the point of the failure, including reg-
ister values, the current calling context, the virtual address space,
and so on. Given a core dump, our technique reverse engineers a



highly precise identification of the failure point that provides sub-
stantially greater precision than what can be derived using just the
program counter (PC) and calling context. We leverage a technique
called execution indexing(EI) [29]. EI generates a canonical and
unique identification of an execution point, called theindex, which
can be used to locate the corresponding point inother executions.
We present an algorithm to reverse engineer the index of the failure
point from a core dump.

In the reproduction phase, the program is executed with the
same input on a single core under a deterministic scheduler. Since
our technique is geared towards Heisenbugs which by their nature
are expected to occur rarely, it is very likely that the single-core run
does not reproduce the failure. However, using index information
gleaned from the core dump, our technique can locate the point
in the passing (re-executed) run that corresponds most closely to
the failure point. A core dump is generated at this point and com-
pared to the failure core dump. The difference between the two
core dumps, especially with respect to shared variables, reveals a
wealth of information regarding salient differences between them.
We enhance the CHESS algorithm to leverage this information to
efficiently construct a failure inducing schedule from this point.

Our contributions are summarized as follows.

• We propose a novel concurrency failure reproduction technique
that has negligible burden on concurrent program execution
in multi-core environments. Our technique takes a failure core
dump and generates a failure inducing schedule.

• We re-execute the program on a single core; we refer to this
re-execution as thepassing run. We leverage EI to pinpoint the
execution point in the passing run that corresponds to the failure
point in the failing run. We propose an algorithm to reverse
engineer the failure index from the core dump. We also devise
an algorithm that identifies the corresponding failure point in
the passing run.

• We propose to generate a core dump in the corresponding point
in the passing run and compare it to the failure core dump. We
study two strategies to prioritize important value differences.
One is based on temporal distance to the failure and the other is
based on program dependences.

• We propose an algorithm based on CHESSthat leverages value
difference information to quickly find a failure inducing sched-
ule.

• We conduct experiments to evaluate the cost and efficacy of
our technique. The results onmysql, apache, and splash-
II programs show that our technique entails 1.6% overhead on
production runs. The experiment on a set of real concurrency
bugs onmysql andapache demonstrates that our technique
achieves orders of magnitude reduction on the number of sched-
ules needed to be explored and on the time required to explore
them, incurring only modest cost during the reproduction phase.

2. Overview
Consider the example in Fig. 1. Suppose two distinct threads ex-
ecute functionsT1() andT2(), resp. Variablex and arraya are
shared, pointerp is local toT1. Depending on the value ofa[i],
pointerp may be set to 0 at line 8;x is used as a flag to indicate if
p is a null pointer. The de-reference inside functionF() is guarded
by !x at line 11. The problem with this program is that the write to
x at 7 and the read at 11 are not atomic; thus, there is a race between
the read ofx at line 11 and the write performed byT2 at line 21.
One possible fix is to enlarge the atomic region guarded bylock
to include 11 and use the same lock to guard the write tox in T2.

A failing execution is shown in Fig. 2. Suppose the two threads
execute in parallel. In the execution shown in (a), the loop executed

void T1( ) {

    for (i=…) {

        x=0;

        p= &…;

acquire(lock);

        if (a[i]…) {

              x=1;

              p=0;

        }

release(lock);

        if (!x) 

           F(p);

    }

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

volatile int x, a[…];

void F (Node * p) {

      p→…;

}

void T2 ( ) {

      x=0;

}
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17.

18.

19.

20.

21.

22.

Should be atomic

Figure 1. Example Code.

by T1 iterates twice. In the second iteration,p is set to 0 andx is
set to 1 atA©. However,x is undesirably reset atB©, resulting in
the predicate atC© taking the true branch and eventually causing a
null pointer dereference during the evaluation ofF at line 12. When
the failure occurs, a core dump is generated that records the current
execution context, register values, and the contents of memory.

In the debugging phase, we re-execute the same program with
the same input. Our goal in this phase is not to reproduce the error,
but to construct a passing run under the control of a deterministic
scheduler. The execution shown in Fig. 2 (b) results inT2 being
scheduled afterT1; this in turn leads to the predicate atF© evalu-
ating tofalse, ensuring the program completes correctly. Given
the passing run, we can now compare its state with the state of the
failing run to reproduce the failure.

Our technique consists of three steps. In the first step, it analyzes
the core dump to uniquely identify the execution point where the
program crashed (pointD©) and tries to locate the same (closest)
point in the passing run. In our example, the same point does not
occur in the passing run. The closest (temporal) point isF©.

Note that using calling contexts as an abstraction of these pro-
gram points is not very accurate. Assume in the first iteration of the
loop inT1 shown in Fig. 2(a), the predicate ona[i] takes the false
branch so thatx has the value of 0, leading to the predicate at 11
taking the true branch, resulting in the pointer being de-referenced
insideF(). When the pointer is de-referenced, the calling context
is the same as the context in the second iteration that results in the
failure, namelymain→ T1→ F.

To gain greater precision, we leverage a canonical execution
point representation calledexecution indexing[29]. An execution
point is uniquely represented by itsindex. In this paper, we devise
an algorithm to reverse engineer the index of the failure point from
the failure core dump. The failure index is used to find the corre-
sponding point or the closest corresponding point in the passing
run. Such a point is calledthe aligned pointin this paper. In our
example, since the predicate atF© does not take the true branch, it
serves the role of the aligned point since it is the point closest to the
failure point in the erroneous run.

In the second step, a core dump is generated at the aligned
point (in the passing run), hereF©. The core dump is compared to
the failure core dump to identify the variables, particularly shared
variables, that have different values across the two runs. These
value differences are the result of schedule differences. In our
example, the salient value difference is onx, as highlighted in the
two core dumps.

In the third step, a schedule permutation algorithm in the spirit
of CHESS [17] is used to permute the schedule in the passing run
with the goal of inducing the failure. As the passing run completes
successfully, the standard CHESSalgorithm would try to generate
preemptions at all synchronization points in the passing run, of
which there may be many. In comparison, with the identification



    for (i=1)

        …  

    for (i=2) 

        x=0;

        p= &…;

acquire(lock);

        if (a[i]…) 

             x=1;

             p=0;             

release(lock);

        if (!x) 

x=0;

Context: main→T1→11

a[]={{…}, {…}}

p=0     x=1     i=2 … 

core dump

    for (i=1)

        …  

    for (i=2) 

        x=0;

        p= &…;

acquire(lock);

        if (a[i]…) 

             x=1;

             p=0;             

release(lock);

        if (!x)

            F(p);

               p→…; crashed.

x=0;

Context: main→T1→F→17

a[]={{…}, {…}}

p=0     x=0     i=2 … 

core dump
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Figure 2. Overview. Plain boxes represent executions ofT1; shaded boxes represent executions ofT2; rounded boxes represent core dumps;

of the aligned point and the core dump analysis, our algorithm can
focus on the set of synchronizations close to the aligned point,
and it can selectively inject preemptions at those points likely
to manifest the observed value differences, substantially reducing
the search space that must be explored. In our example, there
are potentially five preemption points inT1, corresponding to the
beginning ofT1 and theacquire and release operations in
the two iterations of the loop. Our algorithm concludes that the
release(lock) operation at E© is the closest synchronization
point that influencesx. Consequently, the scheduler is instrumented
to inject a preemption right after the lock release. By doing so, the
failure is successfully reproduced.

3. Reverse Engineering Precise Failure Points
Identifying the execution point in a passing run that corresponds to
the failure point, i.e., the aligned point, serves two critical goals:
first, it locates the set of synchronizations that are close to the
aligned point; second, it helps identify the salient variables that
have faulty values by comparing the core dump at the aligned point
and the failure core dump. To do so requires reverse engineering
the precise identification of a failure point from a core dump.

Using the program counter (PC) of the failure point is the most
straightforward way to identify the failure point. However, the in-
struction denoted by the same PC may be encountered multiple
times during an execution; for example, it may appear in different
calling contexts, or on different iterations of a loop. A more so-
phisticated approach is to use the calling context and the PC of the
failure point as a signature. However, this is also not sufficient as
exemplified by our earlier example in Section 2, in which the call
to F() resides in a loop in which multiple execution points cor-
responding to different iterations all have the same calling context
and PC. Theoretically, a program has a finite number of calling con-
texts but its execution may have infinite number of dynamic points,
which implies that many execution points may alias to the same
calling context and PC signature. An empirical study described in
[6] confirms this hypothesis empirically, and shows that executions

that produce billions of dynamic points may have less than one
thousand unique calling contexts.

2 for 
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… 

Figure 3. The Index Tree of the Execution ofT1 in Fig. 2 (a).

3.1 Execution Indexing

Execution indexing(EI) is a technique proposed in [29]. Execution
points are uniquely represented by a signature derived from a pro-
gram’s dynamic control flow. Points across multiple executions are
aligned by their indices – namely, two points are considered to be
aligned if they have the same index.

The basic idea of EI is to use execution structure to correlate
points across executions. The tree in Fig. 3, called anindex tree,
represents the structure of the thread executingT1 in the failing
execution in Fig. 2 (a). Leaf nodes are boxed, representing state-
ment executions. Internal nodes are circled, representing the body
of complex statement executions. Sample complex statements are
conditionals and method invocations. The labels of the internal
nodes represent the complex statement and the branch taken if ap-
plicable. In particular, the root node represents the entire thread. It
consists of the loop statement 2. Since 2 is a complex statement
and the true branch was taken, the execution within the true branch
is represented by a node with the label 2T . Note that because it is



a child of the root node, it is represented as being directly nested
within the body ofT1. Since statements 3, 4, 5, and so on directly
nest in the true branch of 2, they are the children of the 2T node.
Furthermore, as the first execution of 2 takes the true branch, there
is another iteration of the loop, leading to another 2T appearing
as the child node of the 2T node on the second level. The process
continues in this vein leading to the structure as shown in Fig. 3.

The structure ofT1 in the passing execution in Fig. 2 (b) can
be similarly constructed. The primary difference lies in the fact
that the predicate at line 11 in the second iteration takes a different
branch. Hence, the two trees only differ at the isolated area at the
right corner of the tree shown in Fig. 3. The two executions are
aligned by aligning the trees. Intuitively, this structural alignment
tolerates cases in which a predicate takes different branches across
runs by aligning the execution points before and after the different
branches.

At runtime, the index trees are usually not explicitly con-
structed. Instead, theindexof the current execution point, which
is the path from the root of the index tree to the leaf representing
the point, is maintained. It represents the nesting structure of the
current point. The index can be used to identify the aligned point
in a different execution. For example, the index of the crash point
in Fig. 2 (a) is the shaded path shown in Fig. 3. This index can be
used to see if the same point is encountered in the passing run in
Fig. 2 (b). In our example, the crash point is not executed in the
passing run, reflected by fact that the corresponding index is not
encountered. In contrast, the closest point in the passing run is the
predicate instance denoted by the index ofT1→ 2T → 2T → 11.

In order to maintain the current index, the current (transi-
tive) nesting structure needs to be maintained. In other words, the
branches and method bodies that the current execution point nests
in need to be decided. To do so, two types of execution regions
are defined. The first type of region concerns predicate branches
and the second type concerns method bodies. Regions follow the
last-in-first-out rule, meaning the last entered region must be exited
first. Hence, a stack (anindex stack(IS)) can be used to maintain
the index of the current execution point. An entry is pushed to the
stack if a region is entered. It is popped when the region is exited.
The state of the stack reflects the nesting structure of the current
execution point and can be used to construct the current index.

An online algorithm that computes nesting structure based on
post-dominance analysis was proposed to deal with control flow
caused bybreak, continue, etc., which violates syntactic con-
straints. More specifically,a predicate branch region is delimited
by the predicate and its immediate post-dominator. In fact, all state-
ment executions in a predicate branch region are control dependent
on the predicate. Intuitively, a statementx is control dependent on
the true/false branch of a predicatey if x’s execution is directly
determined byy taking the true/false branch [9].A method body re-
gion is delimited by the entry to the method and the exit from the
method.

Rule Event Instrumentation
(1) Enter procedureX IS.push(X)
(2) Exit procedureX IS.pop()
(3) Predicate atp with the IS.push(pb)

branch outcome beingb
(4) Statements while (pb=IS.top()∧ s is the immediate

post-dominator ofp) IS.pop()
*IS is the indexing stack.

Figure 4. EI rules.

The instrumentation rules for EI are presented in Fig. 4. The
first two rules mark the start and the end of a procedure by pushing
and popping the entry associated with the procedure, respectively.

benchmark one CD aggr. to
one

not
aggr.

loop total

apache-2.0.46 84.42 4.93 4.18 6.47 105K
mysql-5.1.31 89.92 2.77 3.1 4.22 892K
postgresql-8.3 86.46 3.4 2.7 7.44 521K

Table 1. The distribution of control dependences. Column “one CD”
means the percentage of statements that have a single control dependence;
column “aggr. to one” means although the statement has multiple control
dependences, these control dependences can be aggregated to one; col-
umn “not aggr.” indicates the number of statements that have multiple non-
aggregatable control dependences; column “loop” are loop predicates. Note
that these control dependences are all intra-procedural. Interprocedural de-
pendences caused by function invocations are captured by the call stack.

In Rule (3), if a predicate is encountered, an entry comprised of
the predicate and the branch outcome is pushed to the stack. Note
that the branch outcome label is used to distinguish which of the
two regions is entered. Finally, Rule (4) specifies that if the current
executing statement is the immediate post-dominator of the top
entry on the stack, the top entry is popped. The while loop is to
handle multiple entries having the same immediate post-dominator.
The state of the IS and the label of the current executing statement
constitute the current index.

Consider the failing execution in Fig. 2 (a). When threadT1 is
spawned, an entry with labelT1 is pushed, which is only popped
when the thread terminates. When the loop enters its first iteration,
namely, predicate 2 takes the true branch, an entry with label 2T

is pushed. The entry will be popped when its immediate post-
dominator, the end of the method, is encountered. Entering the
second iteration results in another index, 2T , being pushed onto the
stack. Upon the execution of statement 3 in the second iteration,
the concatenation of the current stack, [T1, 2T , 2T ], and statement
3, precisely represents the index of the statement execution.

EI has been successfully used to associate corresponding points
across multiple concurrent executions in the context of data race
detection [29] and dead lock detection [13].

3.2 Reverse Engineering a Failure Index

As described earlier, maintaining EI requires instrumentation and
thus runtime overhead. In [29], a highly optimized EI implementa-
tion entails 42% overhead on average, which is clearly too high to
be used for production runs. Furthermore, such high overhead per-
turbs concurrent executions significantly, which in turn may mask
failures that would otherwise appear in normal runs.

In this paper, we propose to reverse engineer the index of the
failure point from the core dump, entailing negligible overhead
during production runs. The key observation is that given a PC, we
can almost always reverse engineer its immediate nesting region,
which is denoted by a predicate or a method entry. The nesting
region of the predicate or the method entry can be recursively
computed until the whole index is recovered.

Non-Loop-Predicate Statements with Control Dependences.
We first consider the case in which the given PC is not a loop pred-
icate and it nests in some predicate regions1. Through static control
flow analysis, we can compute the static control dependences of
the given PC, which denote the set of possible nesting regions at
runtime. We observe that most statements have a single static con-
trol dependence, hence at runtime the given PC can only reside in
one region. Fig. 5 (a) presents such an example. Assume at run-
time, statement 2 is executed and we want to reverse engineer its
nesting region. Since it is control dependent on one predicate, i.e.

1 Switch-case statements are considered as falling into this category.



if (p)  

    s1;

else 

    s2;

s3
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Figure 5. Examples for non-loop control dependences. Control
flow graphs are presented to the right of the code snippets. Shaded
boxes denote the given PCs.
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   if (p2) 

      goto 26;

   s1;
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      s2;

   else

      s3;
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Figure 6. Example of a non-aggregatable non-loop control depen-
dence.

statement 1, it must reside in the true branch of statement 1. Hence,
its parent node in the index tree must be 1T . Table 1 presents the
distribution of the various cases of control dependences in a set of
concurrent programs. Observe that 84-89% of the statements have
single control dependences.

It is also possible that a PC has multiple static control depen-
dences. However, at runtime, it can have only one such depen-
dence. Hence, we need to be able to reverse engineer the dynamic
dependence from the multiple possibilities. Fig. 5 (b) presents an
example. Statically, statement 13 is control dependent on 11T and
12T 2. Dynamically, depending on whether the path 11→ 13 or
11→ 12→ 13 is taken, 13 is control dependent on 11T or 12T ,
respectively. In other words, it may nest in the true branch of 11 or
12. As shown in Table 1, 2.8-5% of statements have multiple pos-
sible nesting regions caused by an OR operator. For such cases, we
can aggregate the disjunction to one complex predicate so that 13
has only one nesting region. Let 11−12 denote the complex predi-
cate, the parent of 13 in the index tree can be reverse engineered as
11−12T .

In a more complex (and more unlikely) case, a statement may
have multiple static control dependences caused by unconditional
jumps. The multiple predicates can not be easily aggregated into a
complex predicate. Our solution is to find the closest common sin-
gle control dependence ancestor. In Fig. 6, statement 26 is statically
control dependent on 22T and 25T . At runtime, it nests in one of
these two regions, depending on the path taken. According to Ta-
ble 1, 2.7-4.2% of statements fall into this category. In such a case,
since both 22 and 26 are (transitively) control dependent on the true
branch of 21, the parent node of 26 in the reverse engineered index
is 21T . We are losing some accuracy because we do not distinguish
the two different paths leading from 21 to 26. However, we have
not found this loss of precision to be a problem in practice.

2 According to [9], control dependence can be algorithmicallydetermined
as follows:x is control dependent on the true/false branch ofy iff there is
a path fromy to x along the true/false edge ofy such thatx post-dominates
each statement along the path excepty.

Loop Predicates.If the given PC is a loop predicate (4.2-7.4% ac-
cording to Table 1), its parent node in the index can be reverse en-
gineered as well. We observe that loop related index subsequences
are in the form of a string of consecutive loop predicates. For in-
stance, consider the sample index tree shown in Fig. 3, the fact that
the failure point is transitively nested in the second iteration of the
for loop is represented by the failure index (the shaded path) having
a substring of 2T → 2T , because the second loop predicate execu-
tion is dictated by the branch outcome of the first loop predicate
execution. It is easy to infer that if the loop is exercisedn times, in
thenth iteration, the index stack will have a string ofn consecutive
loop predicates along the spine. If the loop has a loop count, its
value can be easily recovered from the core dump. If the loop does
not have a loop count, e.g., because it is generated via a while con-
struct, our solution is to instrument the code to add a loop count.
Since the instrumentation does nothing but increases the counter
by one per iteration, the overhead is negligible. A detailed study of
this approach is presented in Section 6.

Note that an execution index is not a full execution history but
a precise indicator of an execution point. Hence, to reconstruct an
index, it is sufficient to know the value of loop counters for the
live loops (i.e., loops have not terminated) at the point of failure.
These live loops are nesting, just like functions nesting in a calling
context. The counters of loops that have terminated before the
failure need not be maintained.

Statements Directly Nesting in Method Bodies.If the given
PC does not directly nest in any predicate region, it must directly
nest in the body of a method invocation. In such cases, the index
parent node of the given PC is explicit from the call stack, which is
an integral part of the core dump.

The algorithm is presented in Algorithm 1. MethodfindPar-
ent() is a recursive function that reverse engineers the index of a
given PC from the failure core dump. To compute the index of the
failure point, we invoke the method with the failure PC. Lines 2-6
handle cases that the PC directly nests in a method body. The call
site and the nesting method is recovered from the calling context.
The method is the parent node of the PC in the index. The algo-
rithm proceeds with the call site PC. Lines 7-13 handle loop cases.
The algorithm first retrieves the loop count value,i, and then in-
sertsi entries of the loop predicate to the index. Lines 16-19 handle
the PC having a non-loop predicate control dependence or multiple
predicates that can be aggregated into a complex one. Lines 21-
23 handle the non-aggregatable cases. At line 26, if the root of the
index tree is reached, the recursive process terminates. Otherwise,
it recursively calls itself to identify the parent node of the newly
recovered index node.

Example. Consider our example in Fig. 2 (a). MethodfindPar-
ent() is called with the failure PC (line 17). This operation is not
statically control dependent on any other statement. It thus directly
nests in the method body ofF(). The method is added as the par-
ent of 17 in the index. Call site 12 is recovered from the call stack.
MethodfindParent() is now recursively invoked with the call site
PC, 12. Since 12 has a unique control dependence 11T , node 11T

is added to the index. As 11 is control dependent on the loop predi-
cate 2T , the loop counti=2 is retrieved from the core dump. Hence,
entry 2T is added twice to the index. Finally, the entry of threadT1
is added and the process terminates. Observe that the index of the
crash point is precisely reverse engineered.

Note that we only need to reverse engineer the failure index of
the thread where the failure occurred. Specifically, we donot need
to reverse engineer the indices of the current execution points of
other threads. The reason is that schedule differences must have
induced the failure through value differences in the failing thread.



Algorithm 1 Reverse Engineering Failure Index.
Input: the failure PC
Output: The index of failure PC, stored inidx
Definitions: context is the calling context, whose entries are in
the format (c, m), meaning methodm is invoked at call sitec;
getLoopCount(l p) retrieves the loop count value of loopl p from
the core dump;pb represents theb branch of predicatep.

/*find the index parent of a given PC, with respect to the failure
core dump*/
findParent (pc)

1: cd = static control deps. ofpc
2: if cd==φ then
3: /*directly nesting in the method body*/
4: (callsite, method)= context.pop()
5: idx= method• “→”• idx;
6: parent=callsite
7: else ifcd contains a loop predicatel pT then
8: /*directly nesting in a loop*/
9: i= getLoopCount(l p)

10: for t = 1 to i do
11: idx= l pT • “→”• idx;
12: end for
13: parent= lp
14: else
15: /*directly nesting in non-loop predicates*/
16: if cd=={pb} or cd can be aggregated topb then
17: /*one CD or aggregatable to one CD*/
18: idx= pb • “→” • idx
19: parent= p
20: else
21: qb = the closest common CD ancestor ofcd
22: idx= qb • “→”• idx
23: parent= q
24: end if
25: end if
26: if parent 6= the beginning of the threadthen
27: findParent(parent)
28: end if

3.3 Identifying the Aligned Point in Passing Runs

With the recovered failure index, we can identify the point in
passing runs that corresponds to the failure point. If such a point
is not encountered due to schedule differences, we want to identify
the closest alignment.

The proposed instrumentation rules are presented in Fig. 7. In
passing runs, the failure index is provided in variableidx. The rules
remove entries fromidx when matching regions are encountered,
until idx is empty, indicating the alignment of the failure point
has been successfully identified. Rule (5) specifies that when a
method is entered and it matches the head entry ofidx, indicating
the execution is about to enter a matching method body, the head of
idx is simply removed. Rule (6) defines predicate instrumentation.
If condition 1© is satisfied, it means execution is about to enter a
matching branch and hence the head ofidx is removed. If condition
2© is satisfied, meaning the same predicate is encountered but the
branch outcome is different, the passing run is terminated with the
CLOSEST ALIGNMENT signal, meaning the exact alignment can
not be found and this is the closest alignment. Intuitively, since
the execution denoted by the remaining entries inidx must nest
in the branch indicated by the head entry and the passing run is
taking a different branch, it is impossible to match the remaining
entries. It is worth mentioning that an important property of control

dependence is that ifx is control dependent ony, executingy
implies executingx. If idx is a precise index, namely, an index
strictly following the definition, when the currentidx head entry
h is removed, we know that the new head, denoted byh′, must be
executed, becauseh′ is control dependent onh by definition. This
guarantees our instrumentation rules can make progress.

However, we have only reverse engineered the failure index,
which may miss some index entries because of non-aggregatable
multiple static control dependences as described earlier. Condition
3© is defined to tolerate such inaccuracy. It specifies that if the
current idx head entry is (transitively) control dependent on the
opposite branch, which implies the execution will never reach the
current head entry, the instrumentation also terminates with the
CLOSEST ALIGNMENT signal.

Rule (7) specifies that a successful alignment exists if the last
entry ofidx matches the currently executing statement, meaning all
nesting regions have been successfully matched.

Rule Event Instrumentation
(5) Enter procedureX if ( idx.head==X) idx-=idx.head
(6) Predicate atp with the if (idx.head==pb 1©)

branch outcomeb idx-=idx.head
elseif (idx.head==p¬b 2© ||

controlDep(idx.head, p¬b 3©)
exit(CLOSESTALIGNMENT)

(7) Statements if ( |idx|==1 && idx.head==s)
exit(EXACT ALIGNMENT)

Figure 7. Instrumentation rules for finding the closest aligned
point. MethodcontrolDep(x, y) decides ifx is transitively control
dependent ony.

Example 1.Consider the failure index as shaded in Fig. 3. Assume
it is provided to the instrumented passing run in Fig. 2 (b). Upon
entering threadT1, the head node of the index,T1, is removed. En-
tering threadT1 dictates that statement 2 must be executed, as the
branch outcomes match, thus the first 2T is removed. Similarly, the
second 2T is removed when the second iteration is entered. Upon
the execution of 11 in the second iteration, since the branch out-
come in the passing run is false when the index entry indicates
true, we have according to rule (6) condition2©, a precise align-
ment mismatch, but have nonetheless found the closest alignment
for the two executions.

Example 2.Consider the program in Fig. 6. Assume in the failing
run, the path taken is 21T → 22F → 24→ 25T → 26 and the failure
occurs at 26. As discussed earlier, due to the non-aggregatable
multiple static control dependences of 26, the reverse engineered
index is 21T → 26. Assume in the passing run, the program takes
the path 21T → 22F → 24→ 25F → 28→ END, that is, taking
a different branch at 25. Upon executing 21 with the true branch
outcome, the 21T entry of the index is popped. Upon executing
25F , since 26 is control dependent on 25T , the condition 3© of
Rule (6) applies and the instrumentation signals finding the closest
alignment.

4. Identifying Critical Shared Variable Accesses
In the previous section, we introduced how to identify the aligned
point in a passing run. Recall that the aligned point could be the
exact alignment or the closest alignment. A core dump is generated
at the aligned point. Critical shared variables are identified by
comparing the core dump with the previously acquired failure core
dump. Accesses to the critical shared variables are also identified
and prioritized to drive schedule perturbation.

We consider a core dump to be a complete snapshot of the
program state, including the call stack, registers, and the entire



virtual space. In other words, the current states of all active threads
are captured. We compare the values of all global variables, the
local variables on the current stack frame of the failing thread, and
all the heap variables reachable from registers, global variables or
the local variables of the failing thread. Note that it is not necessary
to compare variables in all threads as the failure must be caused by
some value differencesin the failing thread. We use the algorithm
in Boehm’s garbage collector [5] to identify all reachable heap
variables. The basic idea is to traverse memory regions through
pointer fields as much as possible. We call the path leading from
a register, a global pointer or a local stack pointer to a memory
variable thereference pathto the variable. We compare all the
memory variables that are of primitive types, e.g.char andint,
and which have identical reference paths in the two core dumps.
Note that a memory variable may have multiple reference paths in
the presence of aliasing. In this paper, we treat the aliased memory
variable as multiple variables, identified by the different reference
paths associated with it.

The core dump comparison produces a set of value differences.
We focus on value differences of shared variables. The shared
variables that have different values in the two core dumps are called
critical shared variables (CSVs), because they reflect the outcome
of schedule differences. They are also the reason why a failure
occurs in one run but not the other. The schedule perturbation, as
will be discussed in Section 5, is guided by the accesses to the
CSVs in the passing run. More specifically, we want to perturb the
benign CSV accesses to produce the failure. In this paper, we study
two strategies to prioritize CSV accesses:temporal distanceand
dependence distance.

Prioritization Based on Temporal Distance.This heuristic prior-
itizes CSV accesses according to the temporal distance between
the access and the aligned point. The intuition is that in the fail-
ing run, the CSV accesses critical to the failure are often close to
the failure point. Since we do not monitor the failed run, we use
the temporal distances to the aligned point in the passing run as an
approximation. Moreover, since all passing runs are executed via
a deterministic scheduler on a single core, we can easily identify
all accesses that occur before the aligned point and only prioritize
these accesses. For our example in Fig. 2 (b),x is the CSV, and
the read ofx at 11 in the second iteration is the closest access to
the aligned point, the writex=1 inside the predicate in the second
iteration is the second closest, and so on. The writex=0 in T2 is
not considered as it occurred after the aligned point and did not
contribute to the value difference at the aligned point.

Prioritization Based on Dependence Distance.This heuristic prior-
itizes CSV accesses according to the dependence distance between
an access and the aligned point. The intuition is that in the failing
run, the CSV accesses critical to the failure must have contributed
to the failure through data/control dependences and they tend to be
close to the failure point along dependence edges. Since we do not
have dependence information in the failing run, we use the depen-
dence distance in the passing run as an approximation.

Specifically, we perform dynamic slicing [15] from the aligned
point in the passing run with the variable that causes the behavior
differences. If the exact alignment is identified, the variable that
triggers the crash in the failing run is used as the slicing criterion. If
only the closest alignment is identified, it must be the case that the
two runs diverge at a predicate, and the variables that are used in the
predicate are used as the slicing criteria. Note that these variables
could be non-shared variables. The CSV accesses are ranked by
their distances to the slicing criteria. Those that are not in the slice
are given the lowest priority as they are very likely not relevant
to the failure. In Fig. 2, since the passing run and the failing run
differ at the predicate execution at line 11, the variable that caused

the difference is used as the slicing criterion, namely,x. The most
critical read tox at 11 is closest to the slicing criterion. The write
x=1 inside the predicate in the second iteration ranks the second.
The same write in the first iteration has the lowest priority as it is
not in the slice and hence not relevant to the failure. Note that the
temporal distance heuristic can not exclude it.

5. Reproducing Failures
The last phase of our technique is to search for a failure induc-
ing schedule with the guidance of CSV accesses. We enhance the
CHESS [17] algorithm, which is used for testing concurrent pro-
grams, for this purpose. The idea ofCHESSis to insert preemptions
at synchronization points in a systematic way such that the space
of interleavings can be algorithmically explored to find a failure in-
ducing schedule. Even though the number of possible preemption
combinations is exponential, the number of preemptions that must
be used in combination with one another to trigger a failure is often
bounded.
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Figure 8. Applying CHESSto the passing run in Fig. 2 (b).

    for (i=1)
        …  
    for (i=2) 
        x=0;
        p= &…;

acquire(lock);
        if (a[i]…) 
             x=1;
             p=0;             

release(lock);
        if (!x) 

x=0;

A

D

E

F

… 

{x=1(2)}

Access        CSV
… 

{x}

{(!x)(1)} {x}

{x=0┴} {x}

Figure 9. EnhancingCHESS. Each access is superscripted with its
priority; symbol⊥ represents the lowest priority.

We use the running example to illustrate theCHESSalgorithm.
Fig. 8 (a) shows the passing run in Fig. 2 (b). LabelsA© to F©
indicate possible preemption points. They are all associated with
synchronization operations or the beginning of threads. Based on
program semantics, preemption may be injected before or after
a synchronization. For example, the preemptions associated with
acquire(lock), such asB©, are before theacquire(lock),
to allow threads needinglock to be scheduled. For a similar
reason, preemptions associated withrelease() are after the lock
release, e.g.C©. Given a set of candidate preemption points, the
algorithm adopts several strategies to generate tests. The simplest
strategy is linear search [17], namely, induce one preemption point



at a time in a linear fashion. Fig. 8 (b) and (c) show the first two
preemption attempts. In the first attempt,T1 is preempted such that
T2 runs beforeT1. In the second attempt,T1 is preempted atB©
such thatT2 is executed beforeT1 acquires the lock.

Algorithm 2 Search for Failure Inducing Schedule.
Input: A list of preemption candidates in the execution order of the
first passing run, stored inpreemption.

Output: the preemptions that are needed to reproduce the failure.

Description: a preemption is a triple (idx, accesses, csv), with
idx being the index that uniquely identifies the preemption point,
accessesthe CSV access annotation,csvthe CSV annotation;wl a
list containing weighted preemptions;k is the preemption bound;
and, methodtestrun(s) applies a set of preemptions.

findSchedule(preemption)
1: for i=1 tok do
2: for eachi-subset ofpreemption, denoted ass, do
3: w=Σpm∈s (the minimal priority superscript in

pm.accesses)
4: wl+= (w, s)
5: end for
6: end for
7: sortwl in an ascending order of weight.
8: while wl 6= φ && the failure is not reproduceddo
9: (w, s)= wl.pop().

10: testrun(s)
11: end while
12: returns

preempt (pm)
21: for each threadT other than the preempted onedo
22: csv=the CSV set of the current synchronization point ofT
23: if ∃v∈ csv, v is accessed bypm.accessesthen
24: create a check point and continue the execution withT
25: if the failure is reproducedthen
26: exit()
27: end if
28: restore the check point
29: end if
30: end for

Besides applying preemptions, the algorithm also controls the
scheduler to systematically pick up the available threads to run.
For instance, if there are threadsT3 andT4 in our example, the
algorithm also explores different schedules so that both can run at
chosen preemption points.

CHESS is intended as a testing tool that explores all possible
preemption combinations for a given bound. Because we have
information regarding the source of a failure, we can direct the
search space more profitably. Next, we present an enhancedCHESS
algorithm that exploits information gleaned earlier.

We identify the sequence of preemption candidates from the
passing run. We call the execution delimited by a preemption can-
didate pm and its immediate following preemption candidate the
schedule blockled by pm. Our scheduler never preempts a sched-
ule block and hence all statement executions inside a block belong
to the same thread. We annotate each preemption candidate with
two pieces of information.

The first is the set of CSV accesses that are within the sched-
ule block led by the preemption. Such information is used to pri-
oritize the preemptions because it indicates what accesses may be
perturbed if the preemption were triggered. The second piece is the

set of CSVs that will be accessed by the current thread in the future.
It is computed by aggregating all the CSVs that are accessed by the
thread after the preemption. Such information is used to guide the
scheduler to select threads when preemptions are applied.

For example, in Fig. 9, at the preemption candidateD©, the set
of accesses is{x=1(2)}, denoting that there is a CSV writex=1 in
the execution betweenD© and E©, and its priority is 2. The CSV
set is{x}, denoting thatT1 will accessx from D© to the end of the
thread.

The search algorithm is presented in Algorithm 2. Assume a
preemption bound ofk.3 Lines 1 and 2 generate preemption com-
binations that contain less than or equal tok preemptions. Each
combination is assigned a weightw that is computed as the sum
of the highest priority (the smallest superscript) of the accesses in
each member preemption (line 3). For instance, assume a two pre-
emption combination{pm1, pm2}, in which the accesses ofpm1
is {x = 1a

,y = 3b} and the accesses ofpm2 is {x = 0c
,y = 5d}.

Its weight ismin(a,b)+ min(c,d). Combinations are inserted into
the worklistwl at line 4. After all combinations are generated, the
worklist is sorted in an ascending order at line 7. The loop in lines
8-11 applies each combination in the worklist in order until the fail-
ure is reproduced or the worklist is exhausted.

Method preempt() presents the scheduling algorithm when a
preemptionpm is applied. For each threadT other than the pre-
empted one, the algorithm tests ifpm.accesseshas any overlap with
the CSV set of the current synchronization point ofT. Recall that
pm.accessescontains the CSV accesses in the schedule block led by
pmand the CSV set ofT is the set of CSVs that will be accessed
by T. Intuitively, the algorithm tests if switching to executingT
may perturb the CSV accesses in the preempted schedule block.
If so, the scheduler selectsT to continue execution at line 24. All
possible selections ofT will be explored.

Example. Consider our running example. According to the pre-
emption candidates and their annotations as shown in Fig. 9, the
sorted worklist is{(1,{ E©}), (2,{D©}), (3,{ E©, D©}), ...}. When
applying the first combination in the worklist,T1 is preempted at
E©, T2 is the only thread that can be scheduled and its CSV set con-
tainsx. The accesses ofE© is {(!x)(1)}, in which x is accessed.
According to the test at line 23, the search algorithm selectsT2 to
execute next and thus reproduces the failure.

6. Evaluation
Our implementation consists of six components. The first is the
static instrumentation engine that is responsible for instrumenting
deployed software to add loop counters. To achieve maximum gen-
erality, we implement it on GCC-4.1.2. This is the only compo-
nent that is expected to be used in the production environment.
The remaining components are only used for reproduction in the
debugging phase. The second component is the post-dominator
and control dependence analysis. It is also implemented in C. The
third component is for failure index reverse engineering and core
dump comparison. The fourth component is a tracing system on
Valgrind [19] that collects traces for slicing. It is also responsible
for locating the aligned point when the failure index is given. The
fifth component is the enhanced CHESS [17] algorithm. It is im-
plemented on Valgrind. For comparison purpose, we have also im-
plemented the originalCHESSalgorithm. The sixth component is
the dynamic slicing algorithm mentioned in [30]. We implemented
it with C. The experiments were conducted on a Intel Core 2 Duo
2.26GHz machine with 4GB memory, running Linux 2.6.

3 For our experiments, we setk = 2 because it was shown in prior work [17]
that most failures only need two preemptions to trigger.



Table 2. Concurrency Bugs Studied.
bugs id description exec. time threads

apache-1 21285 atom* 1.4s 3
apache-2 45605 race 1.3s 2
mysql-1 21587 atom 5.5s 2
mysql-2 12228 atom 4.9s 2
mysql-3 12212 race 1.5s 2
mysql-4 12848 atom 6.8s 2
mysql-5 42419 race 10.8s 2

*atom means atomicity violation.

Table 3. Core Dump Analysis.
bugs core dump vars/diffs shared/CSV len(index)

(F+P)
apache-1 108/108MB 17498/387 178/2 49
apache-2 85/85M 2223/27 29/4 10
mysql-1 48/48MB 6686/64 1665/30 27
mysql-2 55/55MB 8310/359 2171/60 50
mysql-3 49/49MB 2294/118 840/11 51
mysql-4 45/45MB 4150/86 1877/71 35
mysql-5 158/158MB 15211/641 1020/89 72

We select a set of bugs frommysql andapache to evalu-
ate the effectiveness of our technique. These programs are multi-
threaded and have been widely used as subjects for concurrency de-
bugging. The bugs are on the full version of the programs. Since the
bug repositories for these programs do not provide core dumps, we
manually inspect the reports to extract the required input and envi-
ronmental setup. Since the original inputs from the bug reports are
usually very short, leading to only a few milliseconds of execution,
we lengthen these inputs by prepending randomly generated inputs.
We then instrument the programs to add necessary loop counters.
We subsequently perform stress testing with the generated input
on multiple cores to produce the reported failures. If the failure is
exposed, we collect its core dump. Table 3 shows the set of fail-
ures that we successfully produced. Theid column presents the
bug ids in their repositories. The bug charateristics are described in
thedescription column. The original execution time on multi-
ple cores and the number of threads are presented inexec. time
andthreads, resp. It is worth mentioning that while stress testing
is very expensive, it is not part of our proposed technique, but is
used only to acquire the failure core dumps. After the core dump is
collected, the program is executed with the same input on a single
core under our Valgrind tracing component, which generates traces
and a core dump at the aligned point. The two core dumps are then
compared. The results are fed to our schedule search algorithm to
produce the failure inducing schedule.

Table 3 presents the results of the core dump analysis. The
core dump column presents the sizes of the core dumps. The
vars/diffs column presents the number of variables that are
reachable from the failing thread and hence subject to compari-
son, and the number of variables having different values in the two
core dumps. Columnshared/CSV presents the number of shared
variables compared and the number of critical shared variables
(CSVs), i.e. shared variables with different values. The last col-
umn presents the length of the reverse engineered failure indices.
Since the passing run is performed inside Valgrind to locate the
aligned point, the generated core dump also contains the state of
Valgrind. To compare the core dump sizes, we exclude the part
from Valgrind. We can observe that the failing and the passing
core dumps have roughly the same size, indicating their memory

Table 4. Failure Inducing Schedule Production.
bug chess* chessX+dep chessX+temporal

tries time tries time tries time

apache-1 1787 18hr 31 765s 60 1202s
apache-2 3027 18hr 591 4.1hr 652 4.2hr
mysql-1 760 18hr 4 3189s 4 3189s
mysql-2 421 18hr 5 1152s 5 1152s
mysql-3 712 18hr 7 940s 7 940s
mysql-4 619 18hr 6 3880s 6 3880s
mysql-5 562 18hr 6 3453s 6 3453s

*Executions were cut off after 18 hours if the bugs were not reproduced.

Table 5. ChessX+Temporal Using Instruction Count.
bugs instrs. vars/diffs shared/CSV chessX+temporal

tries time

apache-1* 301M 17504/24 422/10 160 3330s
apache-2 41M 2248/28 29/5 693 6hr
mysql-1 7459M 6586/180 1576/48 50 6hr
mysql-2* 8954M 7209/163 2245/90 36 4.5hr
mysql-3 2708M 5583/229 1941/49 30 6hr
mysql-4 16285M 4104/203 1663/101 28 6hr
mysql-5 19152M 14906/985 385/51 23 6hr

*The bugs are reproduced.

mappings are roughly the same4, as the consequence of generating
the core dumps at the aligned points. Note that while many vari-
ables are reachable in the failing thread, very few of them have
different values in the two core dumps. Also, the CSVs represents
a small fraction of the total number of shared variables, indicating
that CSVs can effectively reduce the schedule search space.

Table 4 quantifies the effectiveness of our technique. We denote
the original CHESS algorithm, our enhanced algorithm with the
temporal distance heuristic, and the enhanced algorithm with the
dependence distance heuristic aschess, chessX+temporal, and
chessX+dep, respectively. For each algorithm, we collect the num-
ber of schedules tried and the total time to execute the schedules.
In most cases, our algorithm requires less than 10 tries while the
original chess algorithm can not find the preemptions within 18
hours, even after hundreds to thousands tries. We believe these re-
sults support the claim that our technique is able to direct the search
quickly to the failure. Our current implementation is on Valgrind, a
relatively slow dynamic instrumentation system. Even without any
instrumentation, Valgrind could slow down the original execution
by a factor of 4-10. We have not yet attempted to perform any sub-
stantial optimizations to reduce this overhead. We also observe that
chessX+dep is able to reduce the number of tries for two out of
the seven cases. Theapache-2 case requires two preemptions,
which explains the relatively larger number of tries.

To show the benefits of using execution indexing over simply
using instruction counts to locate the failurep point, we also acquire
the number of thread-local executed instructions from hardware
counters when the failure occurs. In the passing run, we execute
the same number of instructions for the same thread and then look
for the execution of the failure PC. Such a point is considered as
the aligned point. The rest of the procedure is same as our indexing
based approach. Note that we do not consider a design that uses the
instance count of the failure point PC because it entails significant
overhead on production runs due to the cost of maintaining per-PC
counters. The results are presented in Table 5. Theinstrs. col-
umn represents the thread local instruction counts when the failures
occur. The next two columns present the core dump comparison re-

4 Core dumps are geneated by dumping the mapped memory segments.



Table 6. Other Cost.
bugs core dump diff (s) slicing (s)

parsing time (s)
apache-1 16 0.191 48.4
apache-2 7 1.150 56.0
mysql-1 343 0.025 33.9
mysql-2 331 0.066 41.1
mysql-3 299 0.030 35.7
mysql-4 190 0.048 32.3
mysql-5 728 0.200 45.8

sults and the last two columns present the result of running our
chess algorithm, guided by the core dumps. We can observe that
the number of reachable variables are quite different from those
in Table 3 because of the different definitions of aligned points.
The number of variable differences and CSVs is also different (no-
tably, the number of CSVs is often larger than the corresponding
number in Table 3 in many cases). The reason for this difference
is that many of these variables are not frequently updated, making
them insensitive to core dump timing. Finally, the important ob-
servation is that 5 failures can not be reproduced within the time
bound of 6 hours. This is because: (1) the set of CSVs are different,
the real critical shared variables are not present in the CSV set; (2)
the search algorithm starts at a wrong point (i.e. the aligned point
according to instruction count) preventing the right pre-emption(s)
from being located.
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Figure 10. Runtime Overhead on Production Systems.

Fig. 10 presents the overhead of our loop counter instrumenta-
tion. Besidesmysql andapache, we also select the concurrent
programs from the splash-II benchmark as our subjects because
they are more loop intensive5. In order to minimize the effect of
non-determinism on instrumentation overhead, we run the bench-
marks on a single core with a deterministic scheduler. For the re-
sults, we can see the overhead ranges from 0-2.5% with an average
of 1.6%. This supports our claim of the technique has negligible
runtime overhead on production runs. Note that although splash-II
programs are loop intensive, many of their loops have loop coun-
ters and do not need to be instrumented, which explains why they
have lower overhead thanapache andmysql.

Table 6 quantifies other costs. Columnscore dump parsing
andtime to compare present the times to parse and compare the

5 Some 32 bits splash-II programs are not included because our GCC instru-
menter failed to compile them.

two core dumps, respectively. It is clear that parsing core dumps
is the dominant cost in core dump analysis. The reason is that
the core dumps are very large and we currently use an expensive
GDB coredump interface to retrieve variable values, which entails
sending string queries to (and parsing string results from) GDB.
We expect an online algorithm that does not rely on the GDB
string interface to substantially reduce such costs. Another possible
optimization is not to parse the entire core dump, but rather selected
(relevant) portions. Columnslicing time presents the slicing
cost. Due to the length of the considered executions, full traces
are too expensive to collect. We collect traces for a window of
20 million instruction executions, roughly 400MB. Recall that we
perform dynamic slicing on traces. We find that these traces are
sufficient to drive our algorithms. It is worth mentioning that these
costs are all one time costs because they are only needed for the
first re-execution.

Case Study Next, we perform a case study onapache with the
bug id 21285, i.e.apache-1. The apache web server maintains a
cache shared by threads for processing requests. Content objects
are placed into the cache in two steps. In the first step, an object is
added to the cache with a default size, since at this stage the exact
size of content is unknown. In the second step, when the exact size
of the object is available, the object that was added earlier is first
removed from the cache and then placed in the cache again with
the proper size. This strategy allows early detection when multiple
requests try to cache the same content. However, since the two steps
are not atomic, an object with a default size could be evicted from
the cache before it is replaced by an object with the proper size,
leading to a crash as we explain below.

A part of the relevant code is presented in Fig. 11. To handle
a request, a thread first callscreate entity() to place content
with a default size in the cache. Subsequently, when the correct
size is known, inwrite body(), the same thread removes the
content it added earlier, modifies its size and replaces it in the
cache. Observe that the locksconf→ lock is not held across the
two methods, leading to the possibility of an atomicity violation.
When new content is inserted into the cache incache insert(),
existing content is evicted if the projected total cache size exceeds
the limit.

The configuration we used to trigger the bug, according to
the bug report, is a cache that allows 2 objects, and 3 threads
that handle three respective requests that demand caching. In the
failure core dump, we observe that the program has crashed on
cachecache.c:182. The failure index is not encountered in the
passing run. In fact, the two runs diverge at the predicate at line 181.
When the failure core dump is compared against the core dump
collected at 181 in the passing run, we find 2 CSVs out of the 178
shared variables. The variablec→ current size used at 181 is
one of the CSVs. In this study, we only inspect the results of using
the dependence distance based strategy.

With the ranked CVS access information, our algorithm tries
31 preemptions before it finds the failure inducing schedule. The
generated schedule demands only one preemption: one at line 556
right after the call toapr thread mutex unlock. The corre-
sponding execution perturbation is as follows. The first thread is
preempted just after it releases the lock at line 556. Observe that
at this point it has placed content into the cache but with a default
size instead of the actual size. Next the scheduler runs the second
thread which handles the remaining 2 requests and places 2 more
objects into the cache. However, when the third object is placed into
the cache, the size limit is exceeded and and the cache chooses to
evict the object cached by the first thread. After the second thread
has finished the first thread is resumed. However, when the first
thread tries to remove the (already evicted) object from the cache
at 1030, it ends up subtracting its size fromc→ current size



mod_mem_cache.c
create_entity (…) {

   apr_thread_mutex_lock(sconf→lock);

   if (!chache_find(key))

       cache_insert(obj);

   apr_thread_mutex_unlock(sconf→lock);

}

write_body (…) {

   apr_thread_mutex_lock(sconf→lock);

   cache_remove(obj);

   obj→...→m_len=obj→count;

   cache_insert(obj);

   apr_thread_mutex_unlock(sconf→lock);  

}

545

556

1030

cache_cache.c
cache_insert (void * entry) {

   while (… || (c→current_size + size_entry(entry) >

                c→max_size)) {

          ejected=cache_pq_pop(…);

          c→current_size -= c→size_entry(ejected);

          c→free_entry (ejected);

   }

   c→current_size += c→size_entry(entry);

      …           

       apr_atomic_set(...); //in mod_mem_cache.c

}

cache_remove (void *entry) {

   c→current_size -= c→size_entry(entry);

}   

181

182

175

huge loop count 

underflows the cache

Figure 11. Case study ofapache-1.

again. This leads to a negative number which manifests as a very
large positive value since the field is an unsigned integer. Given this
value, when the thread tries to place the content back into the cache,
the huge loop count underflows the object queue at line 182.

7. Limitations and Discussion
Our technique currently assumes that the failure inducing input can
be acquired and used in re-executions, which may not be true if the
servers have been running for a long time. A potential solution is to
use a lightweight checkpointing technique [23, 25, 28] to avoid the
need to re-collect all inputs from the beginning of the execution.
It would then only be necessary to reconstruct execution from the
closest checkpoint and consider the inputs processed thereafter.

Our technique relies on core dumps. Some concurrency-related
failures may not crash, but rather produce wrong outputs, although
most bug reports we have seen formysql andapache fall into the
crash category. While core dumps can be acquired at wrong output
points, we have not investigated the efficacy of our approach on
non-crashing but erroneous executions.

To mitigate privacy concerns that may arise because of the need
to supply coredumps on production runs, we note that our technique
only requires sufficient information to identify shared variables
that carry different values; the exact values of the shared variables
are not important. Furthermore, recent techniques on anonymizing
end-user information [10] to protect privacy apply naturally in our
setting.

In [1], scenarios were observed that concurrent schedules may
quickly diverge significantly from sequential schedules. Though
such state drifting makes a vast array of states a possibility, it is
not necessary to compare the closest correct state against the faulty
state where the bug was observed in order to make our technique
work. As the total number of possible correct states increase, the
number of states against which we can compare the faulty state
also increase.

There are other contexts that may give rise to concurrency bugs
that we have not yet considered. For example, race conditions that
arise due to relaxed memory consistency support in hardware [26],
cannot be reproduced with a serial schedule. Moreover, our tech-
nique can not replay kernel and device state since it operates purely
in user space. Hence, it does not handle bugs that are triggered by
kernel actions. From our experience with the bug reports for the
considered programs, such cases are rare. It is also possible that
the different state of a CSV may have been overwritten by other
writes before the core dump occurs. However, this is only prob-
lematic when the overwrites happen to make the variable have the
same value in the two runs (so that it does not manifest itself as

a CSV); we have yet to see such conditions in the bug reports we
have examined.

8. Related Work
The prior work most relevant to ours is search-based reproduction
techniques. In [23], a multi-phased reproduction technique is pro-
posed. Specifically, coarse-grained logging is used in production
runs to collect system call and synchronization information; while
such coarse-grained information does not guarantee reproducing
failures, a search algorithm is used to generate failure inducing
schedules. In [2], a technique is proposed to search for executions
based on output constraints, namely, constraints that produce the
same erroneous output. Limited logging is needed in production
runs to collect input traces, path profiles, and event orders to re-
duce the search space. A constraint solver is used to reproduce fail-
ures. Compared to these techniques, our approach shares the same
observation that software-based approaches must perform directed
schedule search because low overhead coarse-grained logging is
not sufficient for faithful replay. The unique feature of our solution
is that we reduce the search space by analyzing core-dumps, lever-
aging the idea of execution indexing. As a result, our technique has
negligible overhead on production runs.

There are also software based replay systems that record indi-
vidual memory accesses and their happens-before relations [4, 8].
Such systems entail substantial runtime overhead. There has been
substantial work on software-based record and replay for applica-
tions such as parallel and distributed system debugging [3, 11, 14,
20, 21, 24, 25] . These systems only perform coarse-grained log-
ging at the level of system calls or control flow and hence are not
sufficient for reproducing concurrency failures. We consider these
techniques complementary to ours.

Recently, it has been shown that with architectural support, con-
current execution can be faithfully replayed [12, 16, 18, 28]. While
such techniques are highly effective, they demand deployment of
special hardware, which limits their applicability.

Over the years, significant progress has been made in testing
concurrent programs. CHESS [17] is a stateless bounded model
checker that performs systematic stress testing to expose bugs in
concurrent programs. It can be adopted to reproduce Heisenbugs.
However, since CHESSwas not designed for failure reproduction,
it does not exploit available failure information to guide its enu-
meration of different schedules. Our technique leverages failure
core dumps for this purpose. CTrigger [22] is another concurrency
testing technique that searches for schedule perturbations to break
usual patterns of shared variable accesses to expose faults. Random
schedule perturbations are also shown to be effective in debugging



races and deadlocks [13, 27]. We believe our core dump analysis
can be synergistically combined with these algorithms.

9. Conclusion
We propose a concurrency bug reproduction technique for multi-
core executions that relies on a novel core dump analysis and sched-
ule search. The technique only requires adding loop counters to
production runs, which has negligible runtime overhead. Given a
failure core dump from a parallel (multi-core) run, our approach
re-executes the program with the same input and identifies an exe-
cution point in the re-execution that corresponds to the failure point
on a concurrent (single-core) system. This is done by reverse engi-
neering a canonical state representation, called the execution in-
dex, of the failure point from the failure core dump. The index is
used in the re-execution to locate the corresponding point. A new
core dump is generated during the re-execution at the correspond-
ing point. The two core dumps are compared to identify shared
variables with different values, which imply schedule differences.
A CHESS-like algorithm is proposed to leverage the shared variable
difference information to search for failure inducing schedules. Ex-
perimental results show that the approach is very effective, pro-
duces failure inducing schedules more quickly than existing search
techniques with modest overhead, and provides a feasible technique
for reproducing bugs that manifest in multi-core environments.
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