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Abstract.

The numerical evaluation of the transforms in the title, and their inverses, is consid-
ered, using a variety of decomposition, truncation, and quadrature methods. Extensive
numerical testing is provided and an application given to the numerical evaluation of
the kernel of a Fredholm integral equation of interest in mixed boundary value problems
on wedge-shaped domains.

AMS subject classification: 44A15, 65D30, 65R10.

Key words: Kontorovich–Lebedev transform, inverse transform, Gaussian quadra-
ture, integral equation

1 Introduction

The Kontorovich–Lebedev transforms are integral transforms whose kernels
are modified Bessel functions of purely imaginary order, or complex order having
real part 1/2. While the computation of these kernels has been the subject of
some recent work, the computation of the transforms themselves, which presents
peculiar difficulties, apart from work in [10], has received little attention. In
§§2–4 of this paper, effective numerical procedures are developed based on a
suitable decomposition of the interval of integration and appropriate Gaussian
quadrature rules. Detailed results on testing these procedures are included.
Sections 5 and 6 are devoted to computing the inverse transforms by Gauss
quadrature evaluation of suitably truncated integrals, with some consideration
being given to estimating the error of truncation. Here, too, numerical examples
are provided to support the effectiveness of our methods. In §7, an application
of the inverse transform is given to the evaluation of the kernel of a Fredholm
integral equation of interest in some mixed boundary value problems on wedge-
shaped domains.

All computations were done in Matlab. The relevant routines can be down-
loaded from the web site

http://www.cs.purdue.edu/archives/2002/wxg/codes

at the link KL-transform.

∗Received . . . . Communicated by . . . .
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2 The Kontorovich–Lebedev transforms

Let Kν denote the modified Bessel function of order ν (also called the Mac-
donald function). Integral transforms with Kν as kernel and complex ν = iβ
resp. ν = 1/2+iβ are called Kontorovich–Lebedev transform (KL-transform) and
modified Kontorovich–Lebedev transform (modified KL-transform), respectively.
Specifically, we write

(2.1) F (β) =

∫ ∞

0

Kiβ(x)f(x)dx

for the former, and

(2.2) F (β) =

∫ ∞

0

K1/2+iβ(x)f(x)dx

for the latter, where f is a real-valued, sufficiently regular function. Note that
F (β) is real-valued in (2.1), but complex-valued in (2.2). A pair of real-valued
modified KL-transforms can be defined by (the definitions (3), (4) in [9] are
misprinted, but given correctly in (19) and (24) of that reference)

(2.3) F+(β) =

∫ ∞

0

ReK1/2+iβ(x)f(x)dx

and

(2.4) F−(β) =

∫ ∞

0

ImK1/2+iβ(x)f(x)dx.

We shall use ν to denote any complex number, which may be assigned the
special values ν = iβ or ν = 1/2 + iβ, as the case may be, but could also be
arbitrary complex, in which case we write

(2.5) F (ν) =

∫ ∞

0

Kν(x)f(x)dx, ν ∈ C,

in place of (2.1) and (2.2).
The kernels in (2.1)–(2.5) at infinity decay exponentially, since (see, e.g., [1,

eqn 9.7.2])

(2.6) Kν(x) ∼
√

π

2x
e−x, x→ ∞, ν ∈ C.

The behavior near zero is more intricate. Indeed (cf. [5, eqn (7.2)]),
(2.7)

Kν(x) ∼ kν(x), kν(x) =
1

2

[

(

2

x

)ν

Γ(ν) +

(

2

x

)−ν

Γ(−ν)
]

, x ↓ 0, ν 6∈ N.

To see more precisely what this entails, consider the case ν = iβ, β > 0. Letting

(2.8) γ = argΓ(1 + iβ) = Im[ln Γ(1 + iβ)],
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and recalling that |Γ(1+iβ)|2 = πβ/ sinh(πβ), one finds after a short calculation
that

(2.9) kiβ(x) =

√

π

β sinh(πβ)
sin(β ln(2/x) + γ), x ↓ 0

(see also [3, eqn (2.14)]). Thus, Kiβ(x) is densely oscillating near x = 0, with

amplitude of the order
√

2π/βeπβ when β is large. Similar densely oscillating
behavior holds also when ν = 1/2+ iβ, indeed when ν is arbitrary complex. For
computational purposes, one does not really need to know the exact analytic
form, since Matlab can handle expressions like (2.7) when ν is complex. Still,
this densely oscillatory behavior near the origin presents a major challenge for
computing KL-transforms.

2.1 Evaluation by standard Gauss quadratures

It seems appropriate, for computational purposes, to split the integral in (2.5)
into two parts, say

(2.10) F (ν) =

(
∫ 2

0

+

∫ ∞

2

)

Kν(x)f(x).

For the second part, the behavior (2.6) at infinity suggests Gauss–Laguerre
quadrature unless f(x) has its own peculiar behavior at infinity, which would
require additional weighting factors. In the absence of such complications, we
write

∫ ∞

2

Kν(x)f(x)dx =

∫ ∞

0

Kν(2 + t)f(2 + t)dt

and apply Gauss–Laguerre quadrature,

(2.11)

∫ ∞

2

Kν(x)f(x)dx =

∫ ∞

0

[etKν(2 + t)f(2 + t)]e−tdt

≈
n

∑

k=1

λL
k e

τL

k Kν(2 + τL
k )f(2 + τL

k ),

where τL
k , λL

k are the nodes and weights of the n-point Gauss–Laguerre quadra-

ture rule. To avoid overflow of eτL

k in (2.11), one must restrict n to, say, n ≤ 185.
For the first part in (2.10), we write

(2.12)

∫ 2

0

Kν(x)f(x)dx =

∫ 2

0

[Kν(x) − kν(x)]f(x)dx +

∫ 2

0

kν(x)f(x)dx.

Here, the first integral on the right, unless f has peculiar behavior near zero, is
amenable to Gauss–Legendre quadrature on [0, 2] with moderately many points.
It is the second integral where the main difficulty resides. We can surmount it,
with some effort, by making the change of variable t = ln(2/x) to obtain

(2.13)

∫ 2

0

kν(x)f(x)dx = 2

∫ ∞

0

kν(2e−t)f(2e−t)e−tdt.
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Gauss–Laguerre quadrature, possibly of high degree (when Im ν is large), is ap-
plicable to the last integral. Here, too, depending on the behavior of f , alternate
ways of doing the integration may be called for.

All quadratures are performed to within a prescribed error tolerance of 1
2 10−10,

where error means “mollified” error (absolute error for quantities less than 1 in
absolute value, and relative error otherwise).

The procedure described, for arbitrary complex ν, is implemented in the rou-
tine KLT.m, which calls upon the routine macdonald.m of [5] to evaluate Kν(x).
We recall that this latter routine relies on numerical techniques for |β| ≤ 10, and
on a symbolic Matlab routine when |β| > 10, where β = Im ν. Since the first
two integrals involve Kν in the integrand, each of the numerical quadratures
described requires repeated calls to the routine macdonald.m. This makes the
routine KLT.m very slow, when |β| > 10, even though, in programming it, some
effort has gone into reducing the slowdown as much as possible.

2.2 Evaluation of the third integral by a special Gaussian quadrature

We have seen that in the third integral,

(2.14) I3 :=

∫ 2

0

kν(x)f(x)dx,

the function kν(x) as x ↓ 0 is densely oscillating, and therefore presents a chal-
lenge for any standard scheme of numerical integration. However, similarly as in
[6], we may incorporate kν into a weight function and develop special Gaussian
quadratures for this weight function. This is probably impractical if many values
of ν must be dealt with, but seems feasible otherwise, provided f is smooth.

We first consider he case ν = iβ. Here we have the behavior of kiβ indicated
in (2.9). We write

I3 = 2

∫ 1

0

kiβ(2t)f(2t)dt = 2

√

π

β sinhπβ

∫ 1

0

sin(β ln(1/t) + γ)f(2t)dt

and introduce the nonnegative weight function on [0, 1],

(2.15) wβ(t) = 1 + sin(β ln(1/t) + γ), γ = arg Γ(1 + iβ).

Then

(2.16) I3 = 2

√

π

β sinhπβ

[
∫ 1

0

wβ(t)f(2t)dt−
∫ 1

0

f(2t)dt

]

.

Here we compute the first integral by Gauss quadrature relative to the weight
function wβ , and the second integral by a standard quadrature rule appropriate
for f . In so doing, we expect to achieve good accuracy with relatively low-order
quadrature rules.

To generate the Gauss formula for wβ , we start, as in [6], from the moments of
wβ and apply the symbolic, variable-precision Chebyshev algorithm to compute
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the required recurrence coefficients for the respective orthogonal polynomials.
By using sufficiently high precision, we are able to obtain these recurrence coef-
ficients to Matlab machine precision. Once they are available, the desired Gauss
formulae can be generated in the usual way via eigenvalues and -vectors of the
Jacobi matrix for wβ .

The moments of wβ , on the other hand, are readily computed from
(2.17)

mk =

∫ 1

0

tkwβ(t)dt

=
1

k + 1
+

1

(k + 1)2 + β2
((k + 1) sin γ + β cos γ), k = 0, 1, 2, . . . .

The generation of the recurrence coefficients from these moments is implemented
in the routine sr RMKLTp.m with input parameter a = 0.

In the more general case ν = α+ iβ, 0 < α < 1, β ≥ 0, we define

(2.18) Γ+ = |Γ(ν)|, γ+ = arg Γ(ν); Γ− = |Γ(−ν)|, γ− = arg Γ(−ν)

and

(2.19) ψ± = ψ±(t) = β ln(1/t) ± γ±.

From (2.7), we then obtain by an elementary computation

(2.20)

Re I3 = 2Re

∫ 1

0

kν(2t)f(2t)dt

= Γ+

∫ 1

0

t−α(1 + cosψ+)f(2t)dt+ Γ−

∫ 1

0

tα(1 + cosψ−)f(2t)dt

−
(

Γ+

∫ 1

0

t−αf(2t)dt+ Γ−

∫ 1

0

tαf(2t)dt

)

,

Im I3 = 2Im

∫ 1

0

kν(2t)f(2t)dt

= Γ+

∫ 1

0

t−α(1 + sinψ+)f(2t)dt− Γ−

∫ 1

0

tα(1 + sinψ−)f(2t)dt

−
(

Γ+

∫ 1

0

t−αf(2t)dt− Γ−

∫ 1

0

tαf(2t)dt

)

.

Here we need special Gauss formulae on [0, 1] for the (nonnegative) weight func-
tions

(2.21) wc
+(t;α, β) = t−α(1 + cosψ+(t)), wc

−(t;α, β) = tα(1 + cosψ−(t))

and the analogous functions ws
+, ws

− with the cosine replaced by the sine. The
last two integrals in each of (2.20) are agreeable to standard quadrature rules,
e.g. the Gauss-Jacobi rule on [0, 1] with Jacobi parameters αJ = 0, βJ = ±α.

We note that in the previous case α = 0, one has Γ+ = Γ− = |Γ(1 + iβ)|/β,
and γ+ = −γ−, hence ψ+(t) = ψ−(t). Since γ := arg Γ(1 + iβ) = arg(iβΓ(iβ)) =
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γ+ + π/2, one gets wc
+(t; 0, β) = 1 + cosψ+ = 1 + cos(β ln(1/t) + γ+) = 1 +

sin(β ln(1/t) + γ), in agreement with (2.15).
The recurrence coefficients for the orthogonal polynomials relative to the

weight functions (2.21) (and the companion weight functions with the sine re-
placing the cosine) can again be generated by the symbolic, variable-precision
Chebyshev algorithm. The respective moments are
(2.22)

(mc
k)+ :=

∫ 1

0

tk · t−α(1 + cosψ+)dt =
1

k + 1 − α
+

(k + 1 − α) cos γ+ − β sin γ+

(k + 1 − α)2 + β2
,

(mc
k)− :=

∫ 1

0

tk · tα(1 + cosψ−)dt =
1

k + 1 + α
+

(k + 1 + α) cos γ− + β sin γ−
(k + 1 + α)2 + β2

,

(ms
k)+ :=

∫ 1

0

tk · t−α(1 + sinψ+)dt =
1

k + 1 − α
+

(k + 1 − α) sin γ+ + β cos γ+

(k + 1 − α)2 + β2
,

(ms
k)− :=

∫ 1

0

tk · tα(1 + sinψ−)dt =
1

k + 1 + α
− (k + 1 + α) sin γ− − β cos γ−

(k + 1 + α)2 + β2

This is implemented, respectively, in the routines sr RMKLTp.m, sr RMKLTm.m,
sr IMKLTp.m, and sr IMKLTm.m.

It may be worth observing that the same procedure can be applied to any
of the weight functions (2.21) multiplied by a power of t, say tλ, provided that
λ+1−α > 0 for the former, and λ+1+α > 0 for the latter. (Recall that ψ± in
(2.21) depend on α through the constants γ±, so that we cannot simply change
α by ∓λ.)

3 Numerical results for the KL-transform

The routine KLT.m, with ν = iβ, was tested by the routine testKLT.m against
most of the exact answers given in the table of [2, Ch. 11, §6]. (In the process we
discovered two errors in this table: in #11.303 and #11.304, the factor 1/2 in
the arguments of the cosine and sine should be removed; in #11.308, the answer
should be multiplied by 1/2.) In most cases, our procedure worked routinely
without the need of any intervention, but in some, the integration on the right
of (2.13) requires special programming of the function

(3.1) gν(t) = kν(2e−t)f(2e−t)

before Gauss–Laguerre quadrature is applied to it; see, e.g., Examples 3.3 and
3.4.

Example 3.1 f(x) = J0(x sinh a
2 ), a > 0.

Here, the KL-transform (2.1) is (ibid., #11.311)

F (β) =
π

2 cosh πβ
2

P−1/2+iβ/2(cosh a),

where P−1/2+iτ (x), x > 1, is Mehler’s conical function. (It can be computed
by a backward recurrence algorithm based on the three-term recurrence re-
lation for the sequence of conical functions Pm

−1/2+iτ , m = 0, 1, 2, . . . , where
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P 0
−1/2+iτ = P−1/2+iτ ; see [4, pp. 57–59]. For a Matlab implementation, see the

routine mehler.m.) Some numerical results for a = 3 are shown in Table 3.1,
where n1, n2, n3 are the number of terms required in Gauss quadrature to obtain
10-decimal values of the integral (2.11), the first integral in (2.12), and (2.13),
respectively. (None of these n are optimal, but rather obtained by the particular
manner in which n was incremented in our implementation.) The second column

Table 3.1 Numerical results for Example 3.1

β F err n1 n2 n3
0.20 9.132165920e–01 2.12e–11 40 40 90
0.50 6.451224110e–01 3.10e–11 40 50 90
1.00 2.111726841e–01 9.55e–12 40 50 90
4.00 4.441944302e–04 3.64e–11 40 40 130
7.00 –6.873660349e–06 2.52e–12 40 40 250
10.00 –2.786930599e–09 1.80e–12 35 40 330
15.00 –1.661335602e–11 4.18e–13 35 45 335

contains the computed values of F (β) and the third column their absolute er-
rors. Note the disproportionately large expense incurred in computing the third
integral (where, as was pointed out, the main difficulty resides). Naturally, as
F becomes smaller, the relative error becomes larger, but the absolute error re-
mains constant at the level 10−11. In most applications, it is the absolute error
that matters anyway.

Another interesting and relatively unproblematic case is #11.302 in [2, Ch. 11,
§6], our next example.

Example 3.2 f(x) = e−a2x2

, a > 0.
The KL-transform here is

F (β) =

√
π

4a
e1/(2a2) Kiβ/2(1/(8a

2))

coshπβ/2
.

Selected results for a = 1/2, 1, 2, 4 are shown in Table 3.2. The values of n1, n2,
n3 (not shown) are similar to those in Table 3.1.

Example 3.3 f(x) = xλe−x, λ > −1.
The KL-transform is expressible in terms of the gamma function,

F (β) = 2λ Γ(λ+ 1)

Γ(2λ+ 2)
|Γ(λ+ 1 + iβ)|2.

The third integral (2.13) here involves the function

f(2e−t) = (2e−t)λe−2 exp(−t),

which, evaluated in this way, may produce Not-a-Number (NaN) when e−t under-
flows and λ is not an integer. To avoid this, one should use (e−t)λ = e−λt and,
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Table 3.2 Numerical results for Example 3.2
a β F err a β F err

0.5 0.8 6.444049245e–01 3.83e–11 2 0.8 2.638058636e–01 4.17e–11
3.2 2.654701743e–03 8.61e–12 3.2 1.217781405e–04 8.33e–12
6.4 –6.059005084e–07 1.06e–12 6.4 1.627404962e–07 1.09e–12
10.0 –1.846755076e–10 2.10e–12 10.0 –1.259474686e–11 2.37e–12
15.0 –2.532852648e–13 2.53e–13 15.0 3.305082397e–13 3.30e–13

1 0.8 4.595091276e–01 4.48e–11 4 0.8 1.173107607e–01 4.16e–11
3.2 –9.793367187e–04 1.06e–11 3.2 1.456652714e–04 8.00e–12
6.4 –2.651650649e–07 7.41e–13 6.4 1.550757649e–08 3.18e–13
10.0 –5.820973531e–11 2.44e–12 10.0 4.205363155e–12 2.37e–12
15.0 –2.535061005e–13 2.53e–13 15.0 3.304098625e–13 3.30e–13

in the interest of improved accuracy, combine this exponential with the weight
function e−t in (2.13) to obtain, after a simple change of variables,

2

∫ ∞

0

kiβ(2e−t)f(2e−t)e−tdt

=

√

π

β sinh(πβ)

2λ+1

λ+ 1

∫ ∞

0

e−2 exp(−t/(λ+1)) sin(βt/(λ+ 1) + γ)e−tdt.

The integral on the right is now ready for Gauss–Laguerre quadrature. High-
order quadrature is required for negative values of λ and large β because of the
increased frequency of the oscillations of the sine function.

One might expect, in this example, that the first integral on the right of (2.12)
could be computed more efficiently by a Gauss–Jacobi quadrature with Jacobi
parameters αJ = 0, βJ = λ, but experience has shown that this is not the case.

Example 3.4 f(x) = exp(−x− a2/(2x))/(2x), a > 0.
Here we have (ibid., #11.301)

F (β) = K2
iβ(a).

This is another example where the function f(2e−t) in the integral (2.13), for t
large, may result in division by zero if not properly programmed. We write

f(2e−t) = 1
4 e

−2e−t−(a2/4)et+t

and let the function on the right underflow when t is large. In this way, for
a = 1, the results in Table 3.3 are obtained.

Among all the other examples we tried, the only one that caused some problem
was f(t) = Kλ(t) ([2, #11.313]): n-point Gauss–Laguerre quadature of the third
integral (2.13) may result in overflow if n is too large. This was dealt with by
increasing n in steps of 1 and lowering the accuracy requirement if necessary.
For another resolution of the problem, see Example 3.6.
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Table 3.3 Numerical results for Example 3.4
β F err n1 n2 n3

0.20 1.721480307e–01 1.14e–12 30 45 330
0.50 1.474890388e–01 4.57e–11 30 40 250
1.00 8.376858862e–02 1.61e–12 30 40 290
4.00 4.668685743e–06 2.49e–12 30 40 250
7.00 2.048630917e–11 3.96e–13 30 40 250
10.00 4.383100309e–12 4.37e–12 25 40 210
15.00 1.114846318e–13 1.11e–13 25 45 215

Example 3.5 Evaluation of I3 by (2.16) for β = 5 and f(x) = e−x2

.
In order to generate the first 40 recurrence coefficients for the weight function

wβ = wc
+( · ; 0, β) by means of the routine sr RMKLTp.m, spotchecking in the

range .01 ≤ β ≤ 15 revealed that symbolic computation with 75 digits yields
results to Matlab machine precision (cf. the routine testsr RIMKLTp.m). The
required Gauss formulae are then easily generated and the difference of the two
integrals in (2.16) readily calculated as explained there. The results for I3, using
n-point quadratures, are shown in Table 3.3. Convergence is seen to be quite fast,

Table 3.3 Gauss quadrature approximations for the integral I3
n I3
3 1.08. . . e–05
6 1.032758. . . e–05
9 1.0327566311.. . e–05

12 1.0327566314453.. . e–05
15 1.0327566314453.. . e–05

in contrast to the evaluation by (2.13), which requires some 150 Gauss-Laguerre
points for 10-digit accuracy.

Example 3.6 Same as Example 3.5, but for f(x) = erfc
√
x and f(x) = Kλ(x).

The same approach as in Example 3.5 can be used, provided the singularities
in f are properly accounted for. In the case of the complementary error function,
there is a square root singularity at zero, since

erfc
√
x = 1 −

√
x g(x), g(x) =

erf
√
x√
x

,

with g a smooth (entire) function. Therefore,

∫ 1

0

wβ(t)erfc
√

2tdt = β0(wβ) −
√

2

∫ 1

0

√
twβ(t)g(2t)dt,

and
∫ 1

0

erfc
√

2tdt = 1 −
√

2

∫ 1

0

√
t g(2t)dt.



10 WALTER GAUTSCHI

Thus, the first integral calls for Gauss quadrature rules relative to the weight
function

√
t wβ(t), which can be obtained in a manner indicated at the end of

§2. The second integral is amenable to Gauss-Jacobi quadrature on [0, 1] with
Jacobi parameters αJ = 0, βJ = 1/2. The results are very similar in quality to
those in Table 3.3.

In the case of the modified Bessel function f(x) = Kλ(x), one has Kλ(2t) ∼
1
2Γ(λ)t−λ as t ↓ 0, so that the first integral in (2.16),

∫ 1

0

t−λwβ(t)[tλKλ(2t)]dt,

can be computed by Gauss quadrature relative to the weight function t−λwβ(t),
and the second integral,

∫ 1

0

t−λ[tλKλ(2t)]dt,

by Gauss–Jacobi quadrature on [0, 1], with parameters αJ = 0, βJ = −λ. Nu-
merical results for λ = 3/4 are shown in Table 3.4.

Table 3.4 Gauss quadrature evaluation of I3 for f(x) = Kλ(x)
n I3
10 –1.235. . . e–05
20 –1.23388. . . e–05
30 –1.233801. . . e–05
40 –1.2337912. . . e–05

4 Numerical results for the modified KL-transform

Fewer analytic results are known for the modified KL-transform than for the
ordinary KL-transform. Some, however, are provided in [9, Tables 1 and 2] for
the real transforms F+ and F− of (2.3), (2.4). We tested our routine KLT.m with
ν = 1/2 + iβ against a few of them; see testMKLT.m.

One of the difficulties encountered, which is more prominent here than be-
fore, is the need for very high-order Gauss–Laguerre quadratures to evaluate
the integral on the right of (2.13). For some of the large Gauss nodes τL

k , the
exponential e−t then may underflow for t = τL

k , which causes the computation
of kν(2e−t) to fail and may also cause problems in the evaluation of f(2e−t).
Generally, this imposes a limit n ≤ 350 on the order n of the Gauss–Laguerre
formula, and possibly a more severe limitation, depending on the function f .

Example 4.1 f(x) = erfc
√
x.

In this case ([9, Table 1, #4]),

F+(β) =
π

2
√

2

1

cosh(πβ/2) cosh(πβ)
.

Our routine yields the results in Table 4.1. It can be seen that the limit n = 350
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Table 4.1 Numerical results for Example 4.1
β F+ err n1 n2 n3

0.20 8.788209728e–01 1.10e–11 30 75 90
0.50 3.341839551e–01 6.06e–11 30 75 90
1.00 3.818710224e–02 5.52e–11 30 80 90
4.00 2.895850464e–08 2.47e–11 30 70 250
7.00 1.506884314e–10 1.51e–10 30 45 350
10.00 2.204738588e–09 2.20e–09 30 40 350
15.00 1.059987616e–11 1.06e–11 35 45 355

on the order becomes active when β ≥ 7. While the absolute error (in column
“err”) still remains acceptably small, the relative error, as before, is much larger.
Indeed, the absolute error is seen to essentially coincide with the computed value
of F+ when β ≥ 7.

Example 4.2 f(x) = xλe−x, λ > −1/2.
The modified KL-transforms are [9]

F+(β) =

√
π |Γ(λ+ 1

2 + iβ)|2
2λ+1Γ(λ+ 1

2 )
, F−(β) =

√
π |Γ(λ+ 1

2 + iβ)|2
2λ+1Γ(λ+ 3

2 )
.

Similarly as in Example 3.3, the integral on the right of (2.13), with ν = α+ iβ,
requires reformulation as

2

∫ ∞

0

kν(2e−t)f(2e−t)e−tdt

=
2λ

λ+ 1 − α

∫ ∞

0

[eiβt/(λ+1−α)Γ(ν) + e−(2α+iβ)t/(λ+1−α)Γ(−ν)]

· exp(−2e−t/(λ+1−α))e−tdt

prior to evaluation by Gauss–Laguerre quadrature. Numerical results for λ = 1
2

are shown in Table 4.2. The values of n1, n2, n3 (not shown) are similar to those
in Table 4.1, but n3 ≤ 335. As λ is decreased, the restriction on the quadrature

Table 4.2 Numerical results for Example 4.2

β F+ F− err+ err−
0.20 5.872477937e–01 1.174495587e–01 3.30e–11 5.73e–12
0.50 4.277369709e–01 2.138684855e–01 1.36e–11 2.68e–11
1.00 1.704689302e–01 1.704689302e–01 2.88e–11 1.88e–11
4.00 5.492426030e–05 2.196971484e–04 2.16e–11 2.09e–11
7.00 7.751168645e–09 5.429512218e–08 5.47e–12 1.33e–12
10.00 3.480986546e–12 1.299855249e–11 2.59e–12 4.06e–12
15.00 2.426814450e–13 –1.216683892e–12 2.43e–13 1.22e–12
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order again becomes an issue.

Example 4.3 Evaluation of Re I3 and Im I3 by (2.20) for α = 1/2, β = 1 and
f(x) = e−x.

This will engage all four weight functions wc
+, wc

−, ws
+, and ws

−. For the first,
we already found in Example 3.5 that symbolic computation with 75 digits is
sufficient to obtain the first 40 recurrence coefficients for the respective orthog-
onal polynomials to Matlab machine precision. We determined that the same is
true for the other three weight functions. All quadrature rules required for com-
puting the integrals in (2.20) thus become available up to order 40. Numerical
results for n-point quadrature are generated by the routine testsr RIMKLTpm.m

and shown in Table 4.3.

Table 4.3 Gauss quadrature approximations to Re I3 and Im I3
n Re I3 Im I3
3 1.00674. . . e–01 2.20061. . . e–01
6 1.006788892637.. . e–01 2.2005787295314.. . e–01
9 1.0067888926385.. . e–01 2.2005787295307.. . e–01

12 1.0067888926385.. . e–01 2.2005787295307.. . e–01

5 The inverse KL- and modified KL-transform

Both transforms, (2.1) and (2.2), admit inversion formulae, namely

(5.1) f(x) =
2

π2x

∫ ∞

0

Kiβ(x)β sinh(πβ)F (β)dβ

for (2.1), and

(5.2)
f(x) =

4

π2

∫ ∞

0

ReK1/2+iβ(x) cosh(πβ)ReF (β)dβ

=
4

π2

∫ ∞

0

ImK1/2+iβ(x) cosh(πβ)ImF (β)dβ

for (2.2). Equation (5.1) suggests to call

(5.3) Φ(x) =

∫ ∞

0

Kit(x)ϕ(t)dt

the inverse Kontorovich–Lebedev transform (inverse KL-transform). Applied to
ϕ(t) = (2/π2x)t sinh(πt)F (t), where F is given by (2.1), it yields f(x) in (5.1).
Likewise,

(5.4) Φ(x) =

∫ ∞

0

K1/2+it(x)ϕ(t)dt

may be called the inverse modified Kontorovich–Lebedev transform (inverse mod-

ified KL-transform). Its real [imaginary] part, applied to ϕ(t) = (4/π2) cosh(πt)
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ReF (t) [ϕ(t) = (4/π2) cosh(πt)ImF (t)], where F is given by (2.2), yields f(x)
in (5.2).

Both inverse transforms, (5.3) and (5.4), will be computed by truncating the
infinite interval at t = B in such a way that the tail integral from B to ∞
is sufficiently small. For estimating this tail integral, it is important to have
available estimates for the respective kernels.

In the case of (5.3), we have an inequality due to Lebedev [7],

(5.5) |Kit(x)| ≤ Ax−1/4e−πt/2,

where A is a sufficiently large, but unknown, positive constant. In trying to
determine this constant for t relatively large, say t ≥ 5, we noticed that the
most critical values of t are those near t = x, the turning point of the differential
equation satisfied by Kit(x). This is illustrated for x = 5 and x = 10 in Fig. 5.1
for the value A = 1.825 that we determined. Similar tests, with the same value

0 1 2 3 4 5 6 7 8 9 10
−6

−4

−2

0

2

4

6

8

10

12

14
x 10

−4

5 6 7 8 9 10 11 12 13 14 15
−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−7

x = 5 x = 10

Figure 5.1: Kit(x) (solid line) and upper bound (5.5) with A = 1.825 (starred
curve) as functions of t near t = x

of A, were conducted for x = 6 : 9, x = 12 : 2 : 18, and x = 20 : 10 : 50. The
function |Kit(x)| for t ≥ x then becomes quite small, of the order 10−14 − 10−35

when 20 ≤ x ≤ 50, and will be negligible in most applications. Finally, (5.5)
with A = 1.825 was verified for t = 5 : 9 and t = 10, 12, 15, 20, 50, each time
with x = [.001 .01 .1 .5 1 2 5 10 20 50].

Inequality (5.5) allows us to estimate the tail integral in (5.3), at least for
B ≥ 5, by

(5.6)

∣

∣

∣

∣

∫ ∞

B

Kit(x)ϕ(t)dt

∣

∣

∣

∣

≤ Ax−1/4ϕB, A = 1.825,

where

(5.7) ϕB =

∫ ∞

B

|ϕ(t)|e−πt/2dt.

This will enable us to estimate the absolute error incurred if the infinite interval
in (5.3) is truncated at B, and also the relative error, if an estimate of Φ(x) is at
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hand. The integral from 0 to B in (5.3) is computed by Gauss-Legendre quadra-
ture on [0, B] with relative error tolerance at 1

2 10−8, unless stated otherwise.
In the case (5.4), the relevant inequalities are

(5.8)
|ReK1/2+it(x)| ≤ cte−πt/2x−3/4 +

√

2π/x e−xe−πt,

|ImK1/2+it(x)| ≤ c0te
−πt/2x−3/4,

which have been derived in [10] with unspecified positive constants c, c0. Simi-
larly as for (5.5), we found numerical values for these constants, when t ≥ 5, to
be

(5.9) c = .535, c0 = .482.

Thus, from (5.4), when B ≥ 5,

(5.10)

∣

∣

∣

∣

∫ ∞

B

ReK1/2+it(x)ϕ(t)dt

∣

∣

∣

∣

≤ cx−1/4ϕB,0 +
√

2π/xe−xϕB,1,
∣

∣

∣

∣

∫ ∞

B

ImK1/2+it(x)ϕ(t)dt

∣

∣

∣

∣

≤ c0x
−3/4ϕB,0,

where

(5.11) ϕB,0 =

∫ ∞

B

te−πt/2|ϕ(t)|dt, ϕB,1 =

∫ ∞

B

e−πt|ϕ(t)|dt.

This will be useful for estimating the tail integrals of (5.4) for the real and
imaginary part. The integrals from 0 to B are computed, as before, by Gauss–
Legendre quadrature on [0, B].

The procedure described is implemented in the routines KLinvT.m, RMKLinvT.m,
and IMKLinvT.m for, respectively, the inverse KL-transform and the real and
imaginary part of the inverse modified KL-transform.

6 Numerical results for the inverse KL-transform

We have tested the procedure outlined in §5 against some of the known trans-
forms in [2, Ch. 11, §5]; see testKLinv.m. Performance was as expected and
will be illustrated by a few examples.

Example 6.1 ϕ(t) = cos(at), a ≥ 0.
The inverse transform is Φ(x) = 1

2 πe
−x cosh a (ibid., #11.273), whereas from

(5.7) we have

ϕB ≤
∫ ∞

B

e−πt/2dt = 2
π e

−πB/2.

With B = 10, results for selected values of x and for a = 1 and a = 2 are shown
in Table 6.1. Here, n is the number of Gauss points required for a relative
accuracy of 1

2 10−8, and err0 is an estimate of the relative error, obtained from
(5.6) and Φ, the computed value of Φ(x). The last three columns show the exact



COMPUTING THE KONTOROVICH–LEBEDEV TRANSFORMS 15

Table 6.1 Numerical results for Example 6.1
x n err0 Φ exact abserr relerr

a = 1
0.5 19 2.87e–07 7.26179809e–01 7.26179818e–01 8.65e–09 1.19e–08
3.0 15 8.68e–06 1.53343301e–02 1.53343603e–02 3.01e–08 1.97e–06
5.5 14 3.53e–04 3.23769574e–04 3.23807684e–04 3.81e–08 1.18e–04
8.0 14 1.51e–02 6.87791157e–06 6.83767789e–06 4.02e–08 5.88e–03

10.0 14 2.94e–01 3.34872372e–07 3.12324338e–07 2.25e–08 7.22e–02
a = 2

0.5 23 8.70e–07 2.39424971e–01 2.39424982e–01 1.06e–08 4.44e–08
3.0 21 6.76e–03 1.96791489e–05 1.96977849e–05 1.86e–08 9.46e–04
5.5 21 7.58e+00 –1.50757200e–08 1.62056077e–09 1.67e–08 1.03e+01
8.0 20 5.31e+00 1.96237461e–08 1.33325509e–13 1.96e–08 1.47e+05

10.0 18 4.06e+00 2.42442519e–08 7.19633865e–17 2.42e–08 3.37e+08

answer and the actual absolute and relative errors achieved. Evidently, as the
exact answer becomes smaller, the relative accuracy deteriorates, whereas the
absolute accuracy stays roughly the same at the level 10−8. It can be seen,
however, that our estimate err0 of the relative error is fairly realistic as long as
the true relative error is less than 100%. Once it exceeeds that amount (i.e.,
the exact answer is much smaller), then the estimate err0 is unable to correctly
predict it, as is evident in the second half of the table. The estimate (5.6) of the
absolute error is still meaningful, however.

Example 6.2 ϕ(t) = t · tanh(πt)P−1/2+it(a), a > 1; Φ(x) = (πx/2)1/2e−ax.
Here, P−1/2+it is Mehler’s conical function (cf. Example 3.1). From [11, eqn

(6)] it is known that for large t,

|P−1/2+it(a)| ≈
√

2

πt
√
a2 − 1

.

Numerical evidence suggests that the right-hand side is in fact an upper bound,
even for t as small as 1. Since | tanh(πt)| ≤ 1, we can thus estimate

ϕB =

∫ ∞

B

|t · tanh(πt)P−1/2+it(a)|e−πt/2dt

≤
√

2

π
√
a2 − 1

∫ ∞

B

t1/2e−πt/2dt

=

(

2

π

)2

(a2 − 1)−1/4 Γ(3/2, πB/2),

where Γ(a, x) is the incomplete gamma function. For large B, therefore, using
[1, eqn 6.5.32], one finds, at least approximately,

ϕB ≤
(

2

π

)3/2

(a2 − 1)−1/4
√
Be−πB/2.
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Numerical results for a = 1.5, 2, and 4 behave very similarly to the ones in Table
6.1.

Example 6.3 ϕ(t) = t · tanh(πt)Kit(a), a > 0.
The inverse transform, according to [2, #11.275], is

Φ(x) =
π

2

√
ax

a+ x
e−(a+x).

One computes, using (5.5), that

ϕB ≤ 1.825

π
a−1/4e−πB

(

B +
1

π

)

.

This is much smaller than the ϕB in the previous examples. We have two

Table 6.2 Numerical results for Example 6.3
x n err0 approx/exact abserr relerr

a = 2
0.5 46 4.82e–12 5.157552572933e–02 2.25e–14 4.37e–13

5.157552572935e-02
3.0 45 3.06e–11 5.185051667617e–03 2.68e–14 5.17e–12

5.185051667590e-03
5.5 45 3.55e–10 3.841902525371e–04 3.77e–14 9.80e–11

3.841902524995e-04
8.0 45 4.35e–09 2.852561712095e–05 4.21e–14 1.48e–09

2.852561716306e-05
10.0 45 3.27e–08 3.596829424365e–06 2.98e–14 8.29e–09

3.596829454192e-06
a = 10

0.5 46 1.80e–08 9.211355009897e–06 8.34e–15 9.06e–10
9.211355001555e–06

3.0 45 7.10e–08 1.495921819728e–06 3.29e–14 2.20e–08
1.495921786783e-06

5.5 42 6.54e–07 1.394457184586e–07 4.18e–14 3.00e–07
1.394456766782e-07

8.0 41 6.99e–06 1.188748391160e–08 4.79e–14 4.03e–06
1.188753178490e-08

10.0 41 4.85e–05 1.618785708968e–09 4.06e–14 2.51e–05
1.618826269543e-09

options: either leave the accuracy requirement as is and lower B; or keep B
at 10 and ask for more accuracy. We do the latter and set the relative error
tolerance at 1

2 10−12. Taking a = 2 and a = 10, we obtain the results of Table
6.2. As can be seen, the level of relative accuracy is indeed higher, unless x
and/or a is large, and thus Φ small.

The next example is a bit more challenging.
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Example 6.4 ϕ(t) = t sinh(πt/2)Kit/2(a), a > 0.
This is [2, #11.277] corrected (the sine should be a hyperbolic sine; also, in

the transform, 2
1

2 should read 2
3

2 ; similarly, in the transform of #11.276, 2
5

2

should read 2
7

2 ). Here, Lebedev’s inequality and | sinh(πt/2)| ≤ 1
2e

πt/2 imply

|ϕ(t)| ≤ 1
2 Aa

−1/4teπt/4, t ≥ B, A = 1.825,

and therefore, by (5.7),

ϕB ≤ 2

π
Aa−1/4e−πB/4

(

B +
4

π

)

.

To achieve accuracies comparable to those in the earlier examples, one needs to
increase B from the comfortable B = 10 to the more laborious B = 24. The
increased effort required comes from the fact that the evaluation of the integrand
in (5.3) involves a good deal of symbolic computation (for the values of Kit(x)
at the Gaussian nodes t = τk > 10); moreover, the Gauss formula itself is not
as rapidly convergent as it was before. Numerical results are shown for a = 1 in
Table 6.3.

Table 6.3 Numerical results for Example 6.4
x n err0 Φ exact abserr relerr

0.5 44 1.18e–06 3.50981025e–01 3.50981023e–01 2.15e–09 6.12e–09
3.0 32 3.38e–08 7.05383495e–01 7.05383499e–01 4.38e–09 6.21e–09
5.5 29 2.26e–07 9.07971240e–02 9.07971075e–02 1.65e–08 1.81e–07
8.0 28 9.60e–06 1.94363824e–03 1.94365628e–03 1.80e–08 9.28e–06

10.0 29 6.54e–04 2.69855461e–05 2.69900886e–05 4.54e–09 1.68e–04

7 A numerical example for the inverse modified KL-transform

For the analytic solution of mixed boundary value problems involving a wedge-
shaped domain Dα = {(r, ϑ) : 0 ≤ r < ∞, |ϑ| ≤ α} (in polar coordinates),
0 < α ≤ π, integral equations have been proposed whose kernels are given by [8,
eqs (3.6) and (3.8)]

(7.1) K(x, y) =
4

π

∫ ∞

0

sinh((π − α)t)

sinh(αt)
ReK1/2+it(x)ReK1/2+it(y)dt

and a similar expression with cosh in place of sinh. Thus, K(x, y) in (7.1) is the
real part of the inverse modified KL-transform (5.4) applied to the function

(7.2) ϕ(t) =
4

π

sinh((π − α)t)

sinh(αt)
ReK1/2+it(y).

For the special values α = π/n, n = 1, 2, . . . , of the angle α, the kernel is known
explicitly; for example, K(x, y) = 0 when α = π,

(7.3) K(x, y) = K0(x + y) +K1(x+ y) when α = π/2,
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and
(7.4)

K(x, y) =
√

3K0(
√

x2 + y2 + xy) +

√
3(x+ y)

√

x2 + y2 + xy
K1(

√

x2 + y2 + xy),

when α = π/3.

In order to estimate the quantities ϕB,0, ϕB,1 in (5.11) when applied to the
function ϕ of (7.2), we use

sinh((π − α)t)

sinh(αt)
≤ e−(2α−π)t

1 − e−2αB
, t ≥ B,

and the first inequality in (5.8) (with x replaced by y) to obtain

(7.5) |ϕ(t)| ≤ 4

π

e−(2α−π/2)t

1 − e−2αB

(

cty−3/4 +

√

2π

y
e−ye−πt/2

)

, c = .535.

The tail integral in (7.1), therefore, can be estimated by the first inequality in
(5.10), where

(7.6)

ϕB,0 ≤ 4

π

e−2αB

1 − e−2αB

{

c

2α
y−3/4

[

(

B +
1

2α

)2

+
1

4α2

]

+
1

2α+ π/2

√

2π

y
e−ye−πB/2

(

B +
1

2α+ π/2

)}

and

(7.7)
ϕB,1 ≤ 4

π

e−(2α+π/2)B

1 − e−αB

{

c

2α+ π/2
y−3/4

(

B +
1

2α+ π/2

)

+
1

2α+ π

√

2π

y
e−ye−πB/2

}

.

In the context of mixed boundary value problems, the integral equation in
question lives on the interval [r0,∞), and the kernel K therefore on [r0,∞) ×
[r0,∞), where r = r0 is the point on the boundary of Dα at which the type of
boundary conditions changes.

Example 7.1 The kernel K(x, y) on [1,∞) × [1,∞) for the domain Dα with
α = π/2.

The routine RMKLinvT.m was run in testRMKLinv.m to compute K(x, y) to
9 significant digits for x, y = [1 : .2 : 2, 2.5 : .5 : 5, 6 : 10], y ≤ x, with
the computed answers checked against the exact ones from (7.3). The number
of quadrature points never exceeded n = 19, and the relative [absolute] error
observed was generally 10−10 − 10−11 [10−12 − 10−15], but never larger than
3.00 × 10−6 [1.64 × 10−10].
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Example 7.2 Same as Example 7.1, but for Dα with α = π/3.
The same computations were performed as in Example 7.1 and the results

compared with exact ones from (7.4). The absolute errors observed are similar
to those in Example 7.1, the largest being 9.15 × 10−10. The relative errors are
somewhat larger, more in the range 10−7 − 10−9, and as large as 5.71 × 10−3

near x = y = 10.
The numerical solution of the integral equation with kernel K(x, y) on [r0,∞)

will involve quadrature on a truncated interval [r0, R], r0 < R < ∞. If τk,
k = 1, 2, . . . , n, are the quadrature nodes, r0 ≤ τ1 < τ2 < · · · < τn ≤ R, and
Kn = [K(τk, τℓ)] is the (n×n)-matrix of the system of linear algebraic equations
to be solved, it is useful to know the condition number, condKn, of the matrix
Kn.

Example 7.3 The condition of the matrix Kn for Gauss–Legendre quadrature
on [r0, R].

The desired condition number is computed in the routine condK.m, which
combines our routine RMKLinvT.m with the Matlab routine cond.m. To our
dismay we discovered that Kn is rather ill-conditioned, even for small values of
n. This is illustrated in Table 7.1 for r0 = 1 and a few values of α and R. It can

Table 7.1 The condition of the matrix Kn

R = 5 R = 10
n α condKn n α condKn

2 π/2 1.89e+03 2 π/2 4.45e+05
π/3 2.61e+02 π/3 2.31e+04
π/5 4.03e+01 π/5 9.15e+02

5 π/2 7.72e+08 5 π/2 1.22e+12
π/3 3.70e+06 π/3 1.14e+09
π/5 3.04e+04 π/5 3.09e+06

8 π/2 1.08e+13 8 π/2 8.24e+16
π/3 7.21e+10 π/3 7.85e+14
π/5 1.24e+08 π/5 2.84e+12

be seen that smaller angles α yield better conditioned systems, and larger values
of R worse conditioned systems. The condition numbers for equally spaced
quadrature nodes are about the same, give or take one order of magnitude.
It may well be that for better conditioning, the quadrature nodes should be
distributed more densely near the beginning of the interval [r0, R] and less so
near the end. Determining a good, or even best, choice of quadrature points is
an opem problem worthy of further study.
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