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Abstract Since this workshop is dedicated to my “50 years of professional activity”,
it may not be out of place to give a brief account of what came out of all this activity!
Listing the publications is a partial answer, which I am trying to supplement here with
some indications of contents. It is impossible, within a reasonable amount of space,
to go into any great detail, but just enough information will be given so that anyone
who reads this can decide whether to look up an original source for more details. The
material is organized into nine sections, each devoted to a particular subject area, and
a tenth one with a brief summary of impact. Publications that seem more significant
than others are listed immediately following the subsection headings.

Keywords bibliography · Walter Gautschi

1 Special functions

1.1 Gamma function inequalities: [24, 57, 58]

The first paper actually proves (two-sided) inequalities for the incomplete gamma
function (for a correction, see Math. Rev. 21 #2067). In a limit case, they improve
upon inequalities of E. Hopf for the exponential integral E1. The related inequalities
for the gamma function, x1−s < �(x + 1)/�(x + s) < (x + 1)1−s, x > 0, 0 < s < 1,
now bearing my name, have received considerably more attention. The other two
papers deal with harmonic mean inequalities for the gamma function.
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1.2 Computational algorithm for the complex error function: [46, 49]

Also known in the physics literature as Voigt function, or Faddeeva function, it is a
basic function required in spectroscopy, atmospheric transmittance, nuclear reactors,
and other areas of physics. In [49] an algorithm is developed to efficiently compute
the function in the first quadrant Q of the complex plane. Whereas efficiency is
commonly achieved by adopting different methods in different subregions of the
domain of interest, here, through a detailed parameter analysis, a single nearly
optimal algorithm is developed that provides a prescribed accuracy for all z ∈ Q.
When |z| becomes large, it automatically turns into a classical continued fraction
approximation. An Algol implementation of the algorithm is provided in [46]. Both
papers are widely cited in the physics literature, the former, with 133 citations, in fact
being the second most frequently cited paper of mine; cf. Section 10.

1.3 Computation of special functions: [27, 39]

The more important reference here is [39] (with 271 citations the most frequently
cited paper). It is basically a work studying “minimal solutions” of three-term recur-
rence relations and related continued fractions, with applications to the computation
of special functions (Bessel, Legendre, Coulomb wave, incomplete beta and gamma
functions, and repeated integrals of the error function). The concept of minimality
is traced back to the Italian mathematician Pincherle; in fact, an 1894 paper of his,
in which minimality is related to convergence of a continued fraction, is resurrected
from obscurity. Earlier and subsequent related work can be found in [28, 45, 54, 66],
surveys in [7](Section 2), [52, 177], and there are many pieces of published software;
cf. Section 9.

The paper [27] analyzes the numerical peformance of first-order (inhomogeneous)
recurrence relations, in particular forward vs backward recursion, with applications
to “molecular integrals” and exponential integrals [54]. The analysis is supported
by many inequalities and monotonicity results for the former integrals, and asymp-
totic results for both, which may be of independent interest. (The example of the
incomplete gamma function is considered, from the same point of view, later in
[133].) Another application is made in [36] to the recursive calculation of successive
derivatives of f (z)/z at a fixed complex z �= 0, where f is analytic in a disc centered
at z and large enough to contain the origin. The first-order recurrence relation
satisfied by these derivatives is then stable in forward direction if and only if f (0) �= 0.
Computer algorithms are developed in [37] when f is either the exponential or
a trigonometric function, the latter being of interest in connection with successive
derivatives of the sinc function (sin z)/z. Further improvements in the stability of
these algorithms are discussed in [47] and implemented in [48].

1.4 Incomplete gamma function: [74, 75, 178]

The first two papers develop a detailed computational procedure and computer
algorithm, also summarized in [76]; the third is a historical profile of this function,
written on the occasion of the 100th anniversary of the birth of F.G. Tricomi, who
pioneered it.
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1.5 Exponential integrals

A uniform (in x) asymptotic approximation of the exponential integral En(x) for
large n appears in [25], and expansions of E1 in incomplete gamma functions are
given in [146].

1.6 Handbook chapters in “Abramowitz/Stegun”: [5, 6]

These are widely cited chapters on the exponential integral and related functions,
and on the error function and Fresnel integrals.

1.7 A survey of computational methods: [7]

This surveys a wide range of methods for approximating and computing special
functions. Included are methods based on best rational approximation, truncated
Chebyshev expansion, Taylor series and asymptotic expansion, Padé approximation
and continued fractions, and linear and nonlinear recurrence relations. Software
available at the time is also surveyed.

2 Ordinary differential equations

2.1 Numerical integration of oscillatory differential equations: [29]

The methods developed here, based on trigonometric rather than algebraic poly-
nomials, anticipate methods later called “exponentially fitted.” They have recently
attracted renewed interest and are named after me.

2.2 An early survey of numerical methods for ODEs: [4]

This is the first systematic review of the theory of one-step and multistep methods
known at the time. It has largely been overshadowed by Henrici’s book on discrete
variable methods, which appeared in the same year.

2.3 Global error estimates

An attempt is made in [63] to estimate the global error of one-step methods, at least
asymptotically for small steps. In [79], the method is determined, within a class of
multistep methods, having minimum coefficient in the asymptotic formula for the
global error.

3 Conditioning of matrices and mappings

3.1 Condition of Vandermonde and Vandermonde-like matrices: [30, 60, 86, 105]

Vandermonde-like matrices are Vandermonde matrices in which the consecutive
powers are replaced by consecutive polynomials, here orthogonal polynomials, and
the nodes are the zeros of the first polynomial not appearing in the matrix.
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The four papers listed are the basic papers on norm estimates for inverses of
Vandermonde and Vandermonde-like matrices, and hence on condition numbers
for these matrices. Confluent Vandermonde matrices, already considered in [30],
are revisited in [32]. The results in [30] are applied in [44] to Vandermonde ma-
trices whose nodes are zeros of shifted Jacobi polynomials. Such matrices arise in
the numerical inversion of Laplace transforms by a method of Bellman, Kalaba,
and Lockett. In [61], further applications are made to real node configurations of
optimally conditioned Vandermonde matrices – a problem still unresolved for large-
scale matrices – and in [70], with the help of Jensen’s formula in the theory of analytic
functions, to lower bounds for the condition number of ordinary and confluent
Vandermonde matrices with arbitrary complex nodes. The upshot of this work is that
Vandermonde matrices with real nodes are always ill-conditioned, exponentially so
or worse. For complex nodes, they are usually, but not necessarily, well-conditioned.
In the case of Vandermonde-like matrices, the matter depends on the Christoffel
numbers or Christoffel function (evaluated at the nodes) of the measure defining
the orthogonal polynomials, more precisely, on the ratio of their arithmetic and
harmonic means.

A noteworthy case, considered in [110], is the n × n Vandermonde matrix whose
nodes are the first n members of an infinite sequence of complex nodes on the unit
circle, specifically a Van der Corput sequence. The (spectral) condition number is
then shown to be bounded by

√
2n. It is true that the roots of unity yield optimal

condition number 1, but these form a triangular array of nodes as opposed to a linear
array, which for practical purposes is more interesting. The survey [170] summarizes
much of this work, and in addition contrasts Van der Corput sequences on the unit
circle, and also on confocal ellipses, with so-called quasi-cyclic sequences on the same
contours.

3.2 The condition of polynomial bases: [72]

The sensitivity of the coefficients of a polynomial of degree n − 1 in a given basis
to small perturbations of the polynomial on a fixed interval [a, b ], and vice versa,
can be measured by the condition number κn of a certain linear map Mn. For the
basis of powers, and intervals [−ω, ω] symmetric with respect to the origin, κn can
be expressed explicitly in terms of the coefficients of the Chebyshev polynomials
Tm(x/ω), m = n − 1, n − 2, and shown to grow exponentially fast, at least like
O[(1 + √

2)n]. For intervals [0, ω] the growth is at least O[(1 + √
2)2n]. This is in

sharp contrast with bases consisting of polynomials orthogonal on a finite interval,
considered in [53], in which case the growth of κn is typically polynomial when the
sensitivity is measured on the interval of orthogonality.

3.3 The condition of algebraic equations: [55]

The roots of an algebraic equation can be quite sensitive to small perturbations in
the coefficients of the equation (relative to some given polynomial basis). Here,
appropriate condition numbers are defined and analyzed. Best understood is the
case of equations expressed in power form, for which the condition of the roots can
often be written down explicitly or at least estimated closely. Many examples for
this are provided, the most notable one involving the Wilkinson polynomial. In the



Numer Algor

case of polynomial equations expressed in a basis of orthogonal polynomials, the
condition of the roots can, if not easily expressed or estimated, at least be computed
numerically. Examples for this are also provided.

3.4 The condition of moment maps in the theory of orthogonal polynomials and
related quadratures

For this, see Sections 5.2 and 5.6.
For the material in Sections 3.2–3.4, see also the survey in [9].

4 Chebyshev-type quadrature

4.1 Chebyshev-type quadrature formulae: [56]

For the integral
∫ 1
−1 f (t)dt, an n-point Chebyshev quadrature formula is one having

equal weights 2/n, real distinct nodes in [−1, 1], and polynomial degree of exactness
n. According to a classical result of Bernstein, such formulae exist only for 1 ≤ n ≤ 7
and n = 9. This gives rise to the question of how to find substitute formulae, called
Chebyshev-type formulae, for the nonexisting Chebyshev formulae. A natural way
is to somehow relax the polynomial exactness condition. In [56], this is done for
n = 8, 10, 11, 13 by replacing polynomial exactness by certain optimality conditions
involving the remainder term. It is shown, however, that this comes at the price of
having to accept a double node in each case.

4.2 Weighted Chebyshev-type quadrature formulae: [59, 62, 65, 159]

Chebyshev quadrature can be considered also for weighted integrals∫
R

f (t)dλ(t). Nonexistence may then be even more prevalent, as e.g. for Laguerre
and Hermite measures dλ(t) = t αe−tdt on R+ and dλ(t) = e−t2

dt on R, for which
an n-point Chebyshev quadrature formula is known to exist only when n ≤ 2 (if
α = 0) and n ≤ 3, respectively. A similar situation is shown in [59] to exist also
for n-point Chebyshev-type quadrature formulae of relaxed degree of exactness
n − s, s > 0, and relaxed conditions on the nodes (to be merely real, not necessarily
distinct). A deeper analysis of weighted Chebyshev-type quadrature formulae is
given in [62], where formulae are considered that have maximum algebraic degree of
exactness and minimum error when applied to the first power not exactly integrated.
Called optimal in [62], they always exist. Their construction, however, requires the
complete solution of systems of algebraic equations involving generalized power
sums. Algebraic tools are developed to solve some special cases, which is then
applied to obtain optimal Legendre-weight formulae for n ≤ 17, Hermite-weight
formulae for n ≤ 11, and Laguerre-weight formulae (with α = 0) for n ≤ 7. In the
Legendre case, the optimal formulae of “next-to-highest” algebraic degree are
shown in [65] to minimize not only the error term for the first power not exactly
integrated, but also the one for all subsequent powers. Hence, they are minimum-
norm quadratures in the Hardy space H2 of functions f (z) analytic in |z| < r, r > 1,
and square-integrable on |z| = r.
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A short summary of Chebyshev and Chebyshev-type quadrature formulae is given
in [69], and a more comprehensive historical review, up to about 1975, in [159].

5 Gauss-type quadrature rules

An extensive historical review, covering the period from Gauss’s original 1814 paper
to about 1980, and written on the occasion of the 150th anniversary of Christoffel’s
birth, can be found in [8].

5.1 Geometric properties: [153]

It has been known for some time, either explicitly or implicitly, that for Gauss–Jacobi
and other related quadrature formulae on [−1, 1] their weights, suitably normalized,
when plotted over the corresponding nodes, come to lie on the upper half of the unit
circle, asymptotically for large orders. In [153], this is shown to be true for a large
class of weight functions, essentially the Szegö class, not only for the Gauss formulae,
but also for Gauss–Radau, Gauss–Lobatto, and, under more restrictive conditions,
even for Gauss–Kronrod formulae. There is a close connection with potential theory
inasmuch as the unit semicircle is the reciprocal density of the equilibrium measure of
the interval [−1, 1]. For weight functions with other support, for example a compact
set � ⊂ [−1, 1], the limit curve will be the reciprocal density of the equlilibrium
measure of �. An illustration of this is given, where � is the union of two symmetric,
disjoint intervals.

5.2 Generation of Gaussian quadrature formulae: [3, 41, 50, 84, 123]

The problem is to generate Gaussian quadrature formulae for essentially arbitrary
(positive) weight functions. The way to do this is classically known: generate the
orthogonal polynomials for the given weight function, and obtain the Gauss nodes
as the zeros of, and the weights in terms of, these orthogonal polynomials. Also
classical, and in fact well into the 20th century, is the implementation of this idea
using the moments of the weight function. In [41], the problematic nature of this
approach – severe ill-conditioning – is pointed out and analyzed for the first time by
estimating (from below) the condition number κn of the nonlinear map from the first
2n moments to the n-point Gauss quadrature formula. It is found that, typically, κn >

(1 + √
2)4n for weight functions on [−1, 1]. Confluent Vandermonde matrices and the

work in [32] are crucial for this analysis. In the same paper, the proposal is made to
avoid ill-conditioning by discretizing the inner product and generating the respective
discrete instead of the required continuous orthogonal polynomials to approximate
the Gauss formulae. The computer algorithm in [42] implements this idea. Further
development of this idea had to wait until 1982, when in Section 2.2 of [84] the scope
of the method has been expanded and the method itself called “discretized Stieltjes
procedure” (in recognition of a brief remark in an 1884 paper of Stieltjes regarding
the generation of successive orthogonal polynomials relative to a continuous weight
function). The method was further consolidated in [123], where it is implemented in
a Fortran routine, and in [3], which contains a Matlab implementation. (The method
has recently been referred to as the “Stieltjes–Gautschi method”.)
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Once (a sufficient number of) the orthogonal polynomials, i.e., their recurrence
coefficients collected in a symmetric tridiagonal matrix – the Jacobi matrix – have
been generated, the Gauss nodes can be obtaind as the eigenvalues of the Jacobi
matrix, and the Gauss weights either from known formulae involving orthogonal
polynomials, or in terms of (the first components of) the normalized eigenvectors.
The latter seems to be more efficient, judging from a small number of experiments
reported on in [160].

Another idea of avoiding ill-conditioning was advanced in 1969 by Sack and
Donovan, who proposed the use of modified moments, i.e., weighted integrals of
auxiliary orthogonal polynomials pk rather than powers as in the case of ordinary
moments. This is immediately analyzed in [50] with regard to conditioning and found
in typical cases (involving the interval [−1, 1]) to lead to condition numbers that
grow only polynomially rather than exponentially. A more definitive analysis of the
underlying condition number is given later in [84] and [97]. In the same paper [50],
an algorithm is also developed for generating the Jacobi matrix of order n, given the
first 2n + 1 modified moments. It uses a Cholesky factorization of the (n + 1 × n + 1)

Gram matrix of the polynomials {pk} and therefore has complexity O(n3). Sack and
Donovan, and later in 1974 Wheeler, developed more efficient O(n2) algorithms.
In the case of ordinary moments and discrete orthogonal polynomials, Wheeler’s
algorithm in fact has already been discovered by Chebyshev in 1859 and is therefore
called “modified Chebyshev algorithm” in Section 2.4 of [84].

5.3 Validation of Gaussian quadrature formulae: [87]

Given numerical values of the nodes and weights of a Gauss formula, the question
here is to determine their accuracy. In view of the severe ill-conditioning mentioned
in the previous subsection, this is a nontrivial problem. Moment-related tests are
utterly useless. Two other tests are proposed and shown to be quite effective in the
case of a 15-point Gauss formula for the weight function exp(−t3/3) on R+, published
in the chemistry literature to 16 decimal digits, but accurate to only 1–2.

5.4 Gauss–Radau and Gauss–Lobatto formulae: [115, 147]

The topics in [115] are generalized Gauss–Radau and generalized Gauss–Lobatto
formulae having end point(s) of multiplicity 2. Positivity of the formulae is es-
tablished for arbitrary weight functions on [−1, 1]. General characterizations of
the internal nodes and weights are well known, but the weights for the boundary
terms require special attention. They are explicitly determined in [115], as rational
functions of the order n, for Chebyshev weight functions of all four kinds. For
Chebyshev weights of the first kind and Gauss–Radau formulae, more explicit
formulae than those generally known are obtained for the internal weights. The
superiority of generalized Gauss–Lobatto over ordinary Gauss formulae is illustrated
in the case of Fourier coefficients relative to orthogonal Bessel functions.

Generalized Gauss–Radau and Gauss–Lobatto formulae with end point(s) of
arbitrary multiplicity r ≥ 1 are studied in [147]. They are of interest in connection
with moment-preserving spline approximation on compact intervals; cf. Section 7.1.
Computational procedures are developed to generate these formulae, and numerical
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tests seem to indicate that they are positive for all r and for many, if not all, weight
functions.

In [139], for Gauss–Radau formulae, the respective Jacobi matrices, as well as all
the quadrature weights, are obtained explicitly for general Jacobi weight functions
on [−1, 1] and generalized Laguerre weights on [0, ∞]. This obviates, for these
weight functions, the need to compute eigenvectors of the Jacobi matrix to obtain the
quadrature weights, and the explicit formulae are often, especially for the boundary
weights, more accurate than the results from eigenvectors. The computation of the
Jacobi matrix for high-order Gauss–Lobatto formulae may break down because
of underflow, causing division by zero. In the case of Jacobi weight functions on
[−1, 1], explicit formulae for the offending elements of the Jacobi matrix, given in
[138], eliminates the problem. It is also shown in [138], by numerical experiments,
that for Jacobi weight functions, explicit formulae for the weights of both, interior
and boundary terms, generally give more accurate results than computation via
eigenvectors.

5.5 Gauss–Turán formulae: [132]

These are weighted quadrature rules (with weight function w) of maximum degree of
exactness involving not only function values, but also derivatives up to an even order
2s, all evaluated at the same set of n nodes. The latter must be the zeros of the so-
called s-orthogonal polynomial πn,s of degree n whose (2s + 1)-st power is orthogonal
(with respect to w) to all polynomials of degree < n. Put differently, πn,s is orthogonal
to all lower-degree polynomials relative to the positive weight function π2s

n,sw. One
has here a case of implicit orthogonality, since the polynomial sought appears also
in the weight function. The basic idea of computing the polynomial πn,s is to embed
it into a sequence of n + 1 polynomials π0, π1, . . . , πn−1, πn, of which the last one is
πn = πn,s and all are mutually orthogonal relative to the weight function π2s

n,sw. The
problem, therefore, is to compute the Jacobi matrix of order n for π2s

n,sw. A procedure
for this is developed in [132], which is stable, but owing to the implicit nature of the
problem requires the solution of a set of 2n nonlinear equations. This is accomplished
by the Newton–Kantorovich method and basically requires only knowledge of the
Jacobi matrix of order (s + 1)n for the weight function w and the respective Gauss
formula of order (s + 1)n. For the 2s + 1 weights of the Gauss–Turán formula
associated with each node, an upper triangular system of linear equations is derived,
the solution of which again requires only the (s + 1)n-point Gauss formula for w.
Special attention is paid to the Chebyshev weight function w(t) = (1 − t2)−1/2, for
which the orthogonal (Chebyshev) polynomials are s-orthogonal for all s.

5.6 Gauss–Kronrod formulae: [104, 106, 108, 164]

Given an n-point Gauss quadrature formula relative to some weight function w, it
may be extended to a (2n + 1)-point formula by inserting n + 1 additional nodes
and choosing them, and all the weights, in such a way as to maximize the degree
of exactness. This is the idea behind Gauss–Kronrod quadrature. It is known that the
n + 1 nodes to be inserted must be the zeros of the polynomial π S

n+1 of degree n + 1,
called Stieltjes polynomial, which is “orthogonal” to all lower-degree polynomials
with respect to the sign-variable “weight function” πnw, where πn is the nth-degree
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orthogonal polynomial relative to the weight function w. The reality of the zeros of
π S

n+1 – the Kronrod nodes – is by no means guaranteed, nor is the fact that they are all
mutually distinct and contained in the interval of orthogonality, or even interlacing
with the given Gauss nodes. There is an extensive and still growing literature dealing
with these questions, and also with the question of positivity. The state of knowledge,
as of 1988, is summarized in [164]. In [104], these questions are examined in detail
for the Gegenbauer weight function w(t) = (1 − t2)λ−1/2, first explicitly for 1 ≤ n ≤ 4,
and then, in part numerically and in part algebraically, for values of n up to 40. For
each fixed n, a dynamic approach is taken: starting from a λ-interval in which the
property p of interest is known to hold, the parameter λ is moved away from this
interval until the property breaks down, which is signaled by an algebraic condition
(for example, the vanishing of the resultant of two polynomials). In this way the
exact interval λ

p
n < λ < 	

p
n can be determined in which property p holds. It is

conjectured that there are such exact intervals also for any n > 40. A similar analysis
is undertaken for general Jacobi weight functions w(t) = (1 − t)α(1 + t)β , the task
then being to obtain the region Dp

n in the (α, β)-plane in which property p holds for
a given n. This is carried out numerically/algebraically for n up to 10.

All the desired properties are shown in [106] to hold for Gauss–Kronrod formulae
involving a one-parameter family of weight functions considered already in 1930
by Geronimus. Not only are all these properties satisfied, but the formulae can be
written down fairly explicitly and, moreover, they have exceptionally high degree of
exactness. The same is shown in [108] to be (almost always) true for weight functions
of Bernstein–Szegö type, i.e., a Chebyshev weight of any of the four kinds divided by
a quadratic polynomial which remains positive on [−1, 1]. (The Geronimus weight
is the special case where the quadratic polynomial is even.) The theory, as a limit
case, extends to linear divisor polynomials as well. There is yet another situation,
considered in [128], which gives rise to equally favorable Gauss–Kronrod formulae,
at least for n sufficiently large, namely the case in which the orthogonal polynomials
for the underlying weight function satisfy a three-term recurrence relation which
ultimately has constant coefficients.

The problem of computing an n-point Gauss–Kronrod formula is addressed in
[98], where a system of 3n + 2 nonlinear equations involving modified moments is
derived for all the unknown quantities (the n + 1 Kronrod nodes and 2n + 1 weights).
The system is solved by a careful implementation of the Newton–Kantorovich
method. A detailed analysis of the condition of the underlying moment map is
also provided. For repeated Kronrod extensions à la Patterson, it is found in [165]
that Newton’s method quickly deteriorates with increasing n and eventually fails to
converge for reasons of severe ill-conditioning. The method preferred in [3] is a more
recent method due to Laurie using eigenvalues and eigenvectors.

5.7 Error bounds for analytic functions: [88]

When n-point Gaussian quadrature relative to a weight function w on [−1, 1] is
applied to an analytic function f , the error is expressible as a contour integral
(2π i)−1

∫
�

Kn(z) f (z)dz, where � is a contour in the domain of analyticity of f
encircling the interval [−1, 1]. The kernel Kn depends solely on the weight function
w. In order to bound the error, it is useful to have a sharp bound of |Kn(z)| for
z ∈ �. The task in [88] is to find a point zn on � such that |Kn(zn)| = maxz∈� |Kn(z)|.
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Once found, the kernel Kn(zn) can be computed by a continued fraction algorithm
for minimal solutions of three-term recurrence relations; cf. Section 1.3. (The same
algorithm is useful also for evaluating certain correction terms that arise when poles
are present in the integrand.) In the case of a circular contour with center at the
origin and radius r > 1, our task is resolved for a large class of weight functions with
the help of a monotonicity result in [89] for Gauss quadrature approximations of
the moments of w. In fact, zn is either r or −r, depending on whether w(t)/w(−t) is
nondecreasing or nonincreasing on (−1, 1). Technically more challenging is the case
of elliptic contours, where precise results are obtained only for the four Chebyshev
weight functions. The maximum is then again attained on the real axis, except
for Chebyshev weights of the second kind and n odd, when it is attained on the
imaginary axis. (A detailed discussion of the case n even is given in [109].) For
more general Jacobi weight functions, the problem is explored numerically. This
work is continued in [112], where error bounds for Gauss–Radau and Gauss–Lobatto
formulae are derived in the same spirit, and in [111], where the same is done
for generalized Gauss–Radau and generalized Gauss–Lobatto formulae having end
point(s) of multiplicity 2.

Contour integration techniques for error estimation are surveyed in [172], partly
in a historical perspective.

5.8 Rational/polynomial Gauss quadrature: [134]

When integrating functions that have poles outside, possibly near, the interval of
integration, it seems natural to utilize quadrature rules that are exact for a mixture of
polynomials and elementary rational functions having the same poles, or at least the
most important ones, as the function to be integrated. Such formulae of Gaussian
type, exactly integrating as many polynomials and rational functions as possible,
are developed in [174] and, in a more definitive manner, in [134]. This calls for
the construction of Gauss quadrature formulae for weight functions modified by a
rational function; cf. Section 6.1. The idea is extended in [137] to Gauss–Kronrod
and Gauss–Turán type formulae as well as to rational Gauss formulae for Cauchy
principal value integrals. Interpolatory quadrature rules, for example Fejér rules (see
Section 5 of [142]), can also be “rationalized.” The use of rational Gauss formulae for
integrals of interest in solid state physics is proposed in [122].

5.9 Applications

Gauss quadrature has been applied in various contexts: in [92] to integrals – Einstein
and Fermi functions – of interest in solid state physics and also in the summation of
slowly convergent series [113], in [103] to Cauchy principal value integrals involving
a coth-kernel, in [117] to integrals over the positive real line with prescribed algebraic
behavior of the integrand at zero and at infinity, in [136] to certain integrals of interest
in wavelet analysis, and in [143, 144, 152, 154] to the evaluation of special functions
(hypergeometric, confluent hypergeometric, Bessel, Macdonald, Airy functions, and
Kontorovich-Lebedev integral transforms).
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6 Orthogonal polynomials

6.1 Generation of orthogonal polynomials: [3, 84]

The generation of orthogonal polynomials, meaning the generation of their Jacobi
matrix, goes hand in hand with the generation of Gauss-type quadrature rules,
and the principal methods – discretization and moment-based methods – have
already been mentioned in Section 5.2. The major reference here is [84] (with 100
citations the third most frequently cited paper). In addition, there are modification
algorithms which generate new orthogonal polynomials from old ones by multiplying
the weight function of the latter by a rational function. The major reference for
this, until recently, was [161], but today, the techniques presented in Section 2.4
of [3] are simpler and more effective. A related type of modification – multiplying
the weight function of the old polynomials by the square of the nth degree (old)
orthogonal polynomial πn – is studied in [120], where for each n the sequence of new
polynomials is called induced (by the orthogonal polynomial πn); see Section 7.3 for
an application. Another important problem is the computation of Cauchy integrals
of orthogonal polynomials, in particular the Cauchy transform of a positive measure,
where the theory of minimal solutions of three-term recurrence relations and related
algorithms find an application; see [80].

Constructive methods and software for, and applications of, orthogonal polynomi-
als have been reviewed at various stages of their development in expository articles,
[11, 13, 93, 148, 163, 166, 167, 169, 171, 173, 176, 179], of which the first two and [169]
are the more extensive ones. The article [13] is actually a concise summary of the
book [3], but also contains exercises.

6.2 Special (nonclassical) orthogonal polynomials: [91, 152]

The recurrence coefficients of orthogonal polynomials with weight function sup-
ported on [−1, −ξ ] ∪ [ξ, 1], 0 < ξ < 1, and having algebraic singularities with indices
p and q at ±ξ resp. ±1, are shown in [91] to be computable directly by simple
nonlinear recursions and, in the case p = q = ±1/2, to be explicitly known. Inter-
estingly, in the case p = q = −1/2, the corresponding n-point Gaussian quadrature
formula has equal weights whenever n is even. Orthogonal polynomials with unusual
weight functions w are generated and applied in [83], where w is the reciprocal
gamma function on R+, in [150], where w is densely oscillating, or exponentially
decaying, near the origin, and in [152], where w(t) = exp(−et) on R+ is decaying
“super-exponentially” at infinity.

6.3 Orthogonal polynomials on the semicircle: [102]

In [94, 96] a new type of complex orthogonal polynomials is introduced for which the
inner product (u, v) – the integral of the product uv over the upper unit semicircle –
is non-Hermitian. It is, however, quasi-definite, as is shown by examining moment
determinants, implying that the (monic) complex orthogonal polynomials exist
uniquely. They satisfy a three-term recurrence relation with one set of coefficients
purely imaginary and the other positive. All zeros of each of these polynomials
are simple, contained in the interior D+ of the upper half of the unit disc, and
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distributed symmetrically with respect to the imaginary axis. Each polynomial also
satisfies a linear second-order complex differential equation. The zeros determine
a Gaussian quadrature rule over the semicircle, whose nodes and weights can be
computed in terms of the eigenvalues and eigenvectors of a real tridiagonal matrix
which, however, is no longer symmetric, as in the classical case. The Gauss formula
can also be used for integration over the full circle if the latter is broken up into two
halves and the lower half transformed into the upper by a change of variables. In this
way, Cauchy’s theorem, e.g., can be implemented numerically [168].

The theory is generalized in [102] to weighted inner products over the semicircle
and simplified considerably, using orthogonality and the associated polynomials
of the second kind as principal tools and thereby avoiding moment determinants
altogether. Special attention is paid to Jacobi and Gegenbauer weight functions
(on D+) and to the zeros of the respective (complex) orthogonal polynomials. It
is proved, in part with the help of the gamma function inequality of Section 1.1, that
in the case of Gegenbauer weights the zeros are all simple and contained in D+, and
numerical exploration suggests the same for Jacobi weights. For arbitrary symmetric
weight functions it is shown that all zeros are in D+ with the possible exception of a
single (simple) zero on the imaginary axis on or above the point i. That the exception
can indeed occur is proved in [107]. A linear second-order differential equation again
holds, at least in the case of Gegenbauer weights.

6.4 Sobolev orthogonal polynomials: [126, 131]

These are polynomials orthogonal in Sobolev spaces, the inner product thus involv-
ing derivative terms up to some order s ≥ 1, each being endowed with its own (pos-
itive) measure, often discrete for derivatives of order ≥ 1. The recurrence relation
satisfied by Sobolev polynomials is now of increasing order; computing its coefficients
is again a major task, which is considered in [126]. Two methods are developed:
The first is based on modified moments of the constitutive measures and generalizes
the modified Chebyshev algorithm for ordinary orthogonal polynomials (s = 0).
Because of intrinsic complexities, this is done only in the special, but important, case
s = 1. The second method, applicable for arbitrary s ≥ 1, generalizes the discretized
Stieltjes procedure. The study of the zeros of Sobolev orthogonal polynomials is
an important problem, which is here explored computationally, making use of the
fact that they are the eigenvalues of an upper Hessenberg matrix formed with
the recurrence coefficients. For Sobolev polynomials with s = 1 and inner products
involving Jacobi and generalized Laguerre measures, a number of conjectures are
formulated with regard to reality, location, and interlacing of the zeros. For a class of
Sobolev orthogonal polynomials with s = 1 and compactly supported measures, the
asymptotic distribution of zeros not only of Sobolev polynomials, but also of their
first derivative, is analyzed in [131] by potential-theoretic methods and illustrated
numerically.

A rather special type of Sobolev orthogonality is considered in [129], where the
“ground measure” is absolutely continuous and there occurs only one derivative,
of order r ≥ 1, with the associated measure being atomic, i.e., concentrated at a
single point c ∈ R. In this case, the Sobolev orthogonal polynomial qk(x) of degree
k, multiplied by (x − c)r+1, is expressible as a linear combination of either qj(x),
| j − k| ≤ r + 1, or pj(x), | j − k| ≤ r + 1, the polynomials orthogonal with respect to
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the ground measure. Stable methods are developed for computing the respective
coefficients, and the numerical behavior – not always unproblematic – of these new
(finite-order) recurrences is analyzed along with the location of the zeros, of which
some may be complex.

7 Approximation

7.1 Moment-preserving spline approximation: [99, 100]

Work on this problem began with [90], where a function f on R+ was to be
approximated by a step function s in such a way that f and s have as many
moments in common as possible. Both, the location and height of the jumps of
s, are assumed to be freely variable. The problem has arisen in connection with
the moment-preserving approximation of the Maxwell distribution and has been
“solved” in the physics literature by methods known to be highly unstable. Here it
is observed that the problem is equivalent to constructing a Gaussian quadrature
formula relative to a weight function which depends on f and which is positive
if f is monotonically decreasing on R+. The problem is thus brought into the
realm of stable methods for constructing orthogonal polynomials. Numerical data is
presented not only for the Maxwell distribution, but also for the Bose–Einstein and
Fermi–Dirac distributions. In [99] the problem is generalized to moment-preserving
approximation on R+ by spline functions of fixed degree and variable knots. Under
appropriate assumptions on f , the problem is shown to have a unique solution if and
only if a Gauss quadrature formula exists, with distinct positive nodes, for a certain
weight function, not necessarily positive on R+, depending on f . Unique existence
is assured, e.g., if f is completely monotonic on R+. Analogous problems on a
compact interval, considered in [100], are considerably more intricate as they require
generalized Gauss–Radau and generalized Gauss–Lobatto quadrature formulae for
their solution; cf. Section 5.4. A summary of this work is given in [118].

7.2 Fourier analysis: [51]

The object here is to approximate the nth (complex) Fourier coefficient cn( f ) of
a 2π -periodic function f , given the values of f at N equally spaced points in
[0, 2π). The most common solution is the discrete Fourier transform ĉn( f ), which
is reasonable if no information about f is known other than the N function values.
The approximation, indeed, is optimal in the discrete L2-norm (relative to the N
equidistant points), and moreover is accessible to the fast Fourier transform for
speedy evaluation. On the other hand, ĉn( f ), because of its N-periodicity ĉn+N( f ) =
ĉn( f ), may fall short in reflecting important properties of cn( f ), as for example
its decay properties as n → ∞. An alternative approach, therefore, is to first use
the data to find an approximation ϕ of f and then approximate cn( f ) by cn(ϕ). In
many cases it is found that cn(ϕ) = τnĉn( f ), where τn – called attenuation factor
– is independent of f and depends only on the approximation process P : f → ϕ.
This approximation, still amenable to fast Fourier transform evaluation, by virtue of
the attenuation factors may faithfully reproduce the asymptotic behavior of cn( f ) as
n → ∞. The paper [51] develops a general theory of attenuation factors. The basic
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result is that for the existence of attenuation factors it is necessary and sufficient
that the process P be linear and translation invariant. The theorem extends to
approximation processes P that use also derivative values of f at the data points,
in which case there is an attenuation factor associated with the Fourier transform of
each derivative. Multiple attenuation factors occur also for approximation processes
P that are r-translation invariant, r > 1, i.e., translation invariant over r, but not
fewer, consecutive subintervals. The theory is illustrated by many examples, in which
ϕ are polynomial and nonpolynomial spline interpolants, including deficient splines,
as well as other piecewise polynomial interpolants.

7.3 Extended Lagrange interpolation: [119, 127]

Both, [119] and [127], analyze the extension of Lagrange interpolation at the n
zeros of an nth-degree orthogonal (relative to a weight function w) polynomial πn

to Lagrange interpolation at 2n + 1 points by introducing n + 1 additional abscissae
of interpolation. Following an idea of A. Bellen, the additional abscissae, similarly
as in Kronrod extension of Gaussian quadrature, are taken to be the zeros of the
polynomial of degree n + 1 orthogonal with respect to the weight function π2

nw

(not πnw, as in Kronrod extension!), an “induced” orthogonal polynomial in the
terminology of [120].

The first paper considers mean convergence (in L2
w[−1, 1]) as n → ∞, for arbi-

trary continuous functions f ∈ C[−1, 1]. By a well-known result of Erdős and Turán,
this indeed holds for n-point interpolation of f at the zeros of πn, and the question
is whether the same remains true for the extended (2n + 1)-point interpolation. The
principal result in [119] relates to Chebyshev weight functions w and is basically a
negative one: mean convergence for all f ∈ C[−1, 1] fails to hold for Chebyshev
weight functions of the first, third, and fourth kind, but holds trivially, i.e., as a
consequence of the Erdős–Turán result, for the Chebyshev weight function of the
second kind. Extensive numerical exploration, based on a sufficient condition for
mean convergence due to Bellen, however, suggests its validity for Jacobi weight
functions with parameters α, β suitably restricted.

The second paper [127] looks at what Erdős and Turán called “quadrature
convergence,” i.e., convergence to zero of the weighted integral of the interpolation
error (not its square!). This trivially holds for n-point interpolation as above, and
also for the extended (2n + 1)-point interpolation, if the interpolatory (2n + 1)-
point quadrature rule based on the 2n + 1 abscissae of interpolation is positive. The
latter is shown to be indeed the case for all four Chebyshev weight functions by
determining the quadrature weights explicitly. Moreover, it is shown that positivity
of the (2n + 1)-point quadrature rule always holds if the inserted n + 1 abscissae
interlace with the n original ones and the n Gaussian weights for w satisfy certain
inequalities. These have been checked numerically for Jacobi weight functions with
parameters α, β and found valid for all |α| ≤ 1/2, |β| ≤ 1/2.

7.4 Continued fraction approximation: [68, 85]

In [68], attention is drawn to a curious anomaly in the convergence of certain contin-
ued fractions: if the continued fraction is interpreted as an infinite series, the terms
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of the series initially decrease rapidly in absolute value, causing the partial sums to
have essentially (i.e., to many decimal digits) the same value over a long range of the
summation index. Eventually, however, the terms begin to increase again and peak
at a relatively large value before decreasing again and finally converging to zero. The
series thus seems initially to converge to some number, but in fact converges to the
correct limit only during the “final descent” of the terms. The phenomenon, termed
“apparent convergence to the wrong limit,” has been encountered in connection with
ratios of Kummer functions and their evaluation by means of a continued fraction
of Perron. It is concretely illustrated in the special cases of Bessel function and
incomplete gamma function ratios.

The convergence behavior of continued fractions (with real elements) and appro-
priate stopping rules are studied via infinite series also in [85], where for a realistic
assessment of convergence the importance of transient, as opposed to asymptotic,
convergence rates is emphasized, and in [71], where two continued fractions, one of
Gauss, the other of Perron, are compared for evaluating modified Bessel function
ratios.

The convergents of a continued fraction representation of the modified Bessel
function of order 1, given in the applied mathematics literature, are shown in [116] to
be Gauss–Chebyshev quadrature approximations to an integral representation of the
function in question, in fact, approximations from below. Alternative Gauss–Radau
quadratures of the same integral yield approximations from above. The same sort
of two-sided approximations can be established for modified Bessel functions of any
order ν > −1/2.

7.5 Padé approximation: [89]

In [89], three (only looseley connected) aspects are discussed regarding Padé approx-
imants associated with Hamburger series: (a) Necessary and sufficient conditions for
normality of the Padé table, classically expressed in terms of moment determinants,
are formulated in terms of orthogonal and related polynomials. (b) In the case of
a weight function w (defining the moments) supported on a symmetric interval I,
different monotonicity properties are derived for the higher-order coefficients (those
beyond the moments) in the power series expansion of the Padé approximants,
depending on whether w(t)/w(−t) is strictly increasing, constant equal to 1, or strictly
decreasing on I. They have found application in the development of error bounds for
Gaussian quadrature of analytic functions; cf. Section 5.7. (c) The Padé approximants
themselves are computed using stable methods for constructing Gaussian quadrature
formulae and orthogonal polynomials (those in Sections 5.2 and 6.1).

7.6 Summation of slowly convergent series: [113, 114]

As observed already in Section 4 of [92], slowly convergent series whose terms
are a Laplace transform of some known function f, or the derivative of a Laplace
transform, evaluated at integer values, can be summed in the form of a weighted
integral of f over R+, the weight functions involved being Einstein and Fermi
functions. The sequence of the respective Gaussian quadrature approximations to
these integrals then often converges quite rapidly and thus provides an effective
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summation procedure. This is implemented in [113] for series whose general term is
a rational function, possibly multiplied by a fractional power. Among the examples
given is one that arose in the study of an interesting spiral devised by P.J. Davis
(see [10]). Series that occur in plate contact problems are treated similarly in [114],
but eventually are reduced to the problem of evaluating a Cauchy transform of a
certain measure on [0, 1]; cf. Section 6.1. Another application is made in [149] to the
computation of the Hardy–Littlewood function. Brief summaries appear in [167] and
[175].

8 Miscellaneous

There are a number of isolated articles on a variety of topics. Some, like [1, 17–
23, 26, 31, 64, 82, 140, 151, 157, 158, 162, 185, 186, 193, 194, 196, 197, 199, 201], are of
marginal interest, others are more substantial.

In [12], the problem is considered of producing contour plots of analytic functions
using Matlab and Maple facilities in combination with the solution of ordinary
differential equations. Applications are made to the partial sums of the exponential
series. (The same technique has been applied already in [49] to obtain an altitude
map for the error of the Gauss–Hermite quadrature approximation to the complex
error function.)

Fejér quadrature rules are considered in [40]. They are interpolatory on [−1, 1],
having as nodes the zeros of the Chebyshev polynomials of the first and second
kind. Since, by a result of Fejér, both are positive, a well-known theorem of Pólya
implies that they converge for all functions continuous on [−1, 1]. It is shown in
[40] that they also converge for functions that have monotone singularities at one or
both end points of [−1, 1] and are integrable there. This is of interest in connection
with discretization methods for computing Gaussian quadrature rules and orthogonal
polynomials (Sections 5.2 and 6.1), where the first Fejér rule is an important vehicle
of discretization.

In [73], modified moments of the weight function tα ln(1/t), α > −1, on [0, 1], using
shifted Legendre polynomials, are evaluated explicitly.

While test matrices for the assessment of computer routines for solving linear
algebraic systems and eigenvalue problems have been available for some time, the
same could not be said for test algebraic equations to assess rootfinding routines. In
[77], two families of such test equations are developed, the first having predominantly
complex roots, the other exclusively real roots. Both have integer coefficients and
involve parameters which can be used to control the condition of the roots from
well-conditioned to arbitrarily ill-conditioned ones. The exact roots, of course, must
be computable directly, without recourse to a rootfinding algorithm.

In [78], lower bounds are established for the largest zero of an orthogonal
polynomial and applied to Jacobi, Gegenbauer, generalized Laguerre, and Hermite
polynomials. Other inequalities for the largest zero of Jacobi polynomials, and also
for the polynomials themselves, are conjectured in [156].

In [81], the interest centers on the errors, measured in the energy norm, of optimal
relaxation methods in dependence on the initial residual vector, particularly the
behavior of its high-order components in the coordinate system of principal axes.
The analysis rests heavily on the theory of orthogonal polynomials.
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The paper [95] solves a statistical problem of interest in principal compo-
nent analysis, namely to find a single orthogonal matrix which transforms several
symmetric positive definite matrices simultaneously to nearly diagonal form as best
as possible. The algorithm developed has become known in the statistics literature as
the FG-algorithm, a name given it in the paper.

Two papers, [101] and [141], deal with the Hilbert transform of Jacobi resp.
generalized Laguerre and Hermite measures, which is expressible explicitly in terms
of a hypergeometric function in the first case, and Tricomi’s incomplete gamma
function resp. Dawson’s integral in the others. The numerical evaluation of these
expressions, especially the first, is not easy.

In [121], in connection with the three-term recurrence relation for discrete orthog-
onal polynomials, attention is drawn to a phenomenon of “pseudostability”, already
encountered in Section 4 of [101]. It helps to explain a type of instability that has
been observed in the discretized Stieltjes procedure.

The role played by moments in numerical quadrature problems is discussed in
[130]. The paper also contains new conjectures regarding the positivity of certain
Newton–Cotes formulae with Jacobi and other weight functions.

The paper [135] is devoted to adaptive quadrature and has been motivated by
serious deficiencies in the routines quad and quad8 of earlier Matlab releases. Two
new Matlab routines are developed and extensively tested, one an adaptive Simpson
rule, the other based on a 4-point Gauss–Lobatto formula and two successive
Kronrod extensions. A modified version of the latter has since replaced the old quad
and quad8 routines.

A very recent paper, [155], comments on a letter of Euler to Daniel Bernoulli, in
which Euler mentions his (failed) attempt to interpolate the common logarithm at
the successive powers of 10. (A shorter commentary is to appear in a forthcoming
volume in Series IVA of Euler’s Opera omnia, [202].) The trouble is that the
procedure converges too fast, causing the limiting function to be an entire function.
Interestingly, though, this entire function is related to a q-extension of the logarithm,
where q = 1/10, and in the case of the logarithm to base ω, considered by Euler
almost 20 years later, q = 1/ω.

There are a number of papers dealing with historical and contemporary figures
in mathematics: an assessment of the impact (or lack thereof) of Christoffel’s work
on quadrature during and after his lifetime [187], tributes to, or commentaries on,
the work of Philip Rabinowitz [124], Luigi Gatteschi [125], and Gene H. Golub [145,
200], several appreciations of the life and work of A. Ostrowski [188, 189, 192, 198],
an obituary of Y. L. Luke [190], and some reflections and recollections on my own
career [195] (on the occasion of my 65th birthday).

The story of my involvement in de Branges’s proof of the Bieberbach conjecture
is told in [191].

9 Software

Many individual pieces of software have been written, especially in the area of
special functions: [33–35, 38, 43, 67]. Among major software packages (in For-
tran) are [123] and its quadruple-precision version ORTHPOLq on the Web at
http://www.cs.purdue.edu/archives/2001/wxg/codes. The same Web

http://www.cs.purdue.edu/archives/2001/wxg/codes
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Site, with “2001” replaced by “2002”, contains the package OPQ of Matlab routines,
a companion piece to the book [3].

10 Impact (citations)

According to the ISI Web of Science, the ten most frequently cited papers, as of July
2006, are as follows (with the number of citations given in parentheses):

[39] (271); [49] (133); [84] (100); [46] (74); [41] (73); [50] (67); [123] (53); [88]
(43); [93] (36); [105] (31)

In closing, let me say that a good part of my “professional activities” consisted
of teaching, lecturing, and editorial and translation work, all of which has left
some marks: the textbook [2] in the first instance, practically all of the conference
proceeding papers in the second, and the edited volumes [14–16], and the translations
[180–183], in the third instance. All work that has been enjoyable and rewarding.
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