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Abstract A good portion of Gatteschi’s research publications—about 65%—is
devoted to asymptotics of special functions and their zeros. Most prominently
among the special functions studied figure classical orthogonal polynomials,
notably Jacobi polynomials and their special cases, Laguerre polynomials,
and Hermite polynomials by implication. Other important classes of special
functions dealt with are Bessel functions of the first and second kind, Airy
functions, and confluent hypergeometric functions, both in Tricomi’s and
Whittaker’s form. This work is reviewed here, and organized along method-
ological lines.
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1 Introduction

In asymptotics there are two kinds of theories: a qualitative theory, and a
quantitative theory. They differ in the way the error of an asymptotic approx-
imation is characterized. In the former, the error is estimated by an order-
of-magnitude term O(ω(x)), i.e., by a statement that there exists a positive,
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unspecified constant C such that the error is bounded in absolute value by
Cω(x) as the variable (or parameter) x is in the neighborhood of a limit value
x0. Here, ω is a known, computable, positive function of x, for example a
reciprocal power of x if x0 = +∞. A quantitative theory, in contrast, provides
a numerical upper bound for the constant C, or better still, concrete numerical
lower and upper bounds for the error, ω−(x) and ω+(x), along with a precise
description of the domain of validity (in x). The approximation, in effect,
then takes on the form of a two-sided inequality. Much of the older, classical
theory of asymptotics is of a qualitative nature, while modern exigencies of
computing require a quantitative theory. In the realm of special functions and
their zeros, Luigi Gatteschi is without doubt one of the major exponents of,
and contributor to, the quantitative theory of asymptotics. His results are not
only of a concrete numerical nature, but often attain a degree of sharpness
rarely found elsewhere in the literature.

In the following we briefly summarize Gatteschi’s relevant work as it
pertains to orthogonal polynomials, Bessel and Airy functions, and confluent
hypergeometric functions. We arrange the presentation according to the type
of methods used, and in each case proceed in more or less chronological order.
Even though we can give only a quick and superficial account of finished
results, it must be emphasized that, underneath it all, there is a great deal of
hard analysis, imaginatively and skillfully executed.

2 The early influence of Szegö, Van der Corput, and Tricomi

Among important individuals who had an influence in shaping Luigi’s for-
mation as a research mathematician, one must mention Giovanni Sansone,
who guided Luigi’s first research efforts, Gabor Szegö and Johannes Van
der Corput, with whom Luigi interacted during a visit in 1951 to Stanford
University, and above all, from the start of Luigi’s career at the University
of Turin, Francesco Tricomi, who became his mentor.

2.1 A general method of Tricomi

Already in the very first papers of Luigi, dealing with zeros of Legendre
and ultraspherical polynomials of large degrees, and high-order zeros of
Bessel functions, an important ingredient is a method of Tricomi for deriving
the asymptotics of zeros of functions from the asymptotics of the functions
themselves (see [57], or [59, p. 151]). While Tricomi formulated his method
in qualitative terms, Luigi in the special cases studied supplies concrete error
bounds by tracing and estimating remainder terms in all Taylor expansions
employed.

2.1.1 Zeros of ultrashperical polynomials

In the case of Legendre and ultraspherical polynomials, the results obtained in
[10–12] are somewhat preliminary inasmuch as they cover only limited ranges
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of zeros. This deficiency is overcome later in [33], though at the expense of
sharpness, where Tricomi’s method is again applied to ultraspherical polyno-
mials P(λ)

n = P(λ−1/2,λ−1/2)
n , 0 < λ < 1. For the rth zero θ(λ)

n,r of P(λ)
n (cos θ) it is

found that for each r = 1, 2, . . . , �n/2� (which, by symmetry, is all we need),

θ(λ)
n,r = ϑ(λ)

n,r + λ(1 − λ)

2(n + λ)(n + λ + 1)
cot ϑ(λ)

n,r + ρ, (1)

where ϑ(λ)
n,r = (r − (1 − λ)/2)π/(n + λ), and1

|ρ| <
λ(1 − λ)

(n + λ + 1)(2r + λ − 1)2
, 0 < λ < 1. (2)

It can be seen that when r is fixed and n → ∞, the first two terms on the
right of (1), as well as the bound in (2), are all ∼ cn−1, with the respective
constants c decreasing [actually, when r = 1, and in part also when r = 2, the
constant c for the bound in (2) is a bit larger than the one for the second term].
On the other hand, when r = �δn/2�, with 0 < δ ≤ 1 fixed, the two terms and
bound are respectively O(1), O(n−2), and O(n−3). For the zeros x(λ)

n,r = cos θ(λ)
n,r

themselves, one finds

x(λ)
n,r = ξ (λ)

n,r

[
1 − λ(1 − λ)

2(n + λ)(n + λ + 1)

]
+ ε, (3)

where ξ (λ)
n,r = cos((r − (1 − λ)/2)π/(n + λ)), and

|ε| <
1.55 λ(1 − λ)

(n + λ)(n + λ + 1)(2r + λ − 1)
, 0 < λ < 1. (4)

2.1.2 Zeros of Bessel functions

Similarly complete are the results in [13] for the Bessel function Jν , 0 ≤ ν ≤ 1.
Thus, for the rth positive zero jν,r of Jν , Luigi shows that

jν,r = xr − 4ν2 − 1

8xr
+ ε(ν, r), r = 1, 2, 3, . . . , (5)

where xr = (r + ν/2 − 1/4)π , and

|ε(ν, r)| <
(7.4A2 + 1.1A)r

64(6r − 5)
(2r + ν − 1)−3, A = |4ν2 − 1|, (6)

valid for each r = 1, 2, 3, . . . . The formula (6), in fact, quantifies the O(r−3)

term in a classical asymptotic formula of McMahon [54]. In another formula
of McMahon for the rth zero of J0(kx)Y0(x) − J0(x)Y0(kx), where J0 and Y0

are the zeroth-order Bessel functions of first and second kind, an O(r−7) term
is similarly quantified in [14] for r ≥ 2 and values of the parameter k satisfying
1 < k < 3 + 2

√
2. The calculations, however, are rather more formidable in

this case. For the rth positive zero j ′
ν,r, 0 ≤ ν ≤ 1, of the derivative J′

ν of the

1The square in the second factor of the denominator is missing in Eq. (2.131) of [33].
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Bessel function, a formula analogous to (5), (6), also due (without error bound)
to McMahon, is derived in [20].

2.1.3 Zeros of Jacobi polynomials

The application of Tricomi’s method to more general Jacobi polynomials P(α,β)
n

had to wait until 1980, when a suitable asymptotic expansion for P(α,β)
n became

available through the work of Hahn [53]. Using the first three terms of this
expansion in conjunction with Tricomi’s method (in fact, a slight extension
thereof), and assuming |α| ≤ 1/2, |β| ≤ 1/2, Luigi jointly with Pittaluga [50]
proves that for the zeros θ

(α,β)
n,r of P(α,β)

n (cos θ) contained in any compact
subinterval of (−1, 1), there holds

θ(α,β)
n,r = ϑ(α,β)

n,r + 1

(2n + α + β + 1)2

[(
1

4
− α2

)
cot

(
1

2
ϑ(α,β)

n,r

)

−
(

1

4
− β2

)
tan

(
1

2
ϑ(α,β)

n,r

)]
+ O(n−4),

(7)

where ϑ
(α,β)
n,r = (2r + α − 1/2)π/(2n + α + β + 1). If α2 = β2 = 1/4, not only

the expression in brackets, but also the error term in (7) vanish. In the
ultraspherical case α = β, the result (7) is asymptotically in agreement with
earlier ones in [11]. There is of course a result analogous to (7) for the zeros
x(α,β)

n,r of P(α,β)
n (x) themselves. Numerical tests revealed that already for n = 16,

these asymptotic approximations (with the error term removed) typically yield
4 1

2 – 6 correct significant digits for all zeros x(α,β)
n,r . Interestingly, if one of the

parameters α, β has the value ±1/2, the accuracy is several orders higher near
the appropriate boundary of [−1, 1], a phenomenon duly explained by Luigi.

2.2 A general method of Gatteschi and Van der Corput’s theory
of enveloping series

2.2.1 Zeros of Bessel functions by Gatteschi’s method

In [15], with the assistance of Van der Corput, Luigi develops a general
procedure of his own for generating inequalities for the zeros of a function

f (x) = (1 + δ) sin x + ε cos x − ρ, δ > −1, (8)

where δ, ε, and ρ may depend on x but are small in magnitude. This kind
of functions is often encountered in asymptotic expansions (for large x) of
certain Bessel-type functions. Luigi in [15] applies his new procedure to Bessel
functions Jν(x), where ν can now be arbitrary nonnegative, and supplements
the results in [13] by estimating the zeros jν,r that are larger than (2ν + 1)(2ν +
3)/π . The same procedure is applied in [19] to Airy functions Ai(−x), Bi(−x)

and their positive zeros.
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In two of his late papers, [47] and [48], Luigi, jointly with Giordano, returns
to his procedure and makes further applications to Bessel functions. In [47],
McMahon’s formula for jν,r is taken up again and in the case |ν| ≤ 1/2 supplied
with lower and upper bounds for the O(r−5) term, and in the case ν > 1/2
with similar bounds for the O(r−3) and O(r−5) terms. A two-term asymptotic
approximation with explicit error bounds is obtained in [48] for the positive
zeros iν,r > (r + ν/2 − 3/4)π , r ≥ 10, of (d/dx)[√xJν(x)] in the case that |ν| ≤
1/2.

2.2.2 Bessel functions at and near the transition point

A new methodological element—Van der Corput’s theory of “enveloping
series”—appears in [21]. Given a series

∑∞
n=0 an (not necessarily convergent)

and a majorizing series
∑∞

n=0 An thereof, i.e., |an| ≤ An for all n, the series∑∞
n=0 an is said to envelope a number (or function) s relative to the majorant∑∞
n=0 An, if for each n = 0, 1, 2, . . .

s =
n−1∑
k=0

ak + ϑn An, |ϑn| ≤ 1.

Using two key theorems in Van der Corput’s theory of enveloping series,
one relating to the formal substitution of a series into another series, and
another relating to integration of (functional) enveloping series, both applied
to contour integral representations of Hankel functions, Luigi in [21] derives
very impressive asymptotic expansions for Jν(ν) and Yν(ν) as ν → ∞, both
supplied with error estimates. They are not simple, involving as they do
incomplete gamma functions and coefficients A(m)

k in the Taylor expansion
of

(
1
5! + 1

7! z + 1
9! z2 + · · · )m

, m = 2, 3, . . . (which today, however, are easily
obtainable by symbolic computation systems such as Maple). As an applica-
tion, Luigi takes the first two terms of his expansion for Jν(ν) (the second term
happening to be zero) and obtains

Jν(ν) = �(1/3)

22/331/6π
ν−1/3 − θη, 0 < θ ≤ 1, ν ≥ 6, (9)

where2

η = 1

πν

(
e−νπ/

√
3 + .521e−(2π/

√
3)3ν/6

)
+ 1.4

π

(
6

ν

)5/3

.

This recovers an asymptotic formula of Cauchy, but endows it with an explicit
error bound. The simpler bound η < ν−5/3 is given in the lecture [25].

As observed in [22], there is a slight inaccuracy (on p. 275) in [21], but the
results obtained there are shown to continue to hold. Also, from the first term

2The first term in parentheses is misprinted in [21, Eq. (20′)] as e−2π/
√

3.
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of the asymptotic expansion for Yν(ν) in [21], the following companion result
to (9) is obtained,

Yν(ν) = − �(1/3)

(4/3)1/3π
ν−1/3 + ρ, |ρ| ≤ .252

πν
, ν ≥ 1. (10)

An interesting consequence of this is⎧⎨
⎩

|Jν(νx)|
|Yν(νx)|

⎫⎬
⎭ <

1√
x

[
3.841

πν1/3
+ .252

πν

]
, (11)

valid for x > 1, ν ≥ 1.
An asymptotic estimate of Jν(x) around the transition point x = ν is devel-

oped in [26], by using a Liouville–Steklov-type approach (cf. Section 3.1). It is
shown that

Jν

(
ν exp(6−1/3ν−2/3t)

) = 32/3�(2/3)Jν(ν)Ai
( − 3−1/3t

) + ρ, (12)

where for ν ≥ 6

|ρ| <

⎧⎪⎨
⎪⎩

t4 + 5.6 t
πν

if 0 < t < 61/3ν2/3,

1

ν
[.005 t4 exp(4(|t|/3)3/2) + 1.77 |t| exp(2(|t|/3)3/2)] if t < 0.

(13)

Sharper estimates are obtained by a reapplication of the Liouville–Steklov
method.

Luigi also gives an asymptotic estimate of the derivative J′
ν(x) at x = ν,

J′
ν(ν) = 1

2
√

3π

[
�(2/3)

(
6

ν

)2/3

− �(1/3)

30

(
6

ν

)4/3
]

+ ϑ
2

ν2
, |ϑ | < 1, ν ≥ 6,

(14)
an interesting subsidiary result.

3 Methods based on differential equations

Linear second-order differential equations, which are at the heart of much
of special function theory, can be used in many ways to obtain asymptotic
approximations and inequalities. There are two techniques, in particular, that
Luigi frequently, and early on, availed himself of: One is the method of
Liouville–Steklov (sometimes also attributed to Fubini), which is based on
transforming the differential equation into a Volterra integral equation; the
other is the use of Sturm-type comparison theorems.

3.1 The method of Liouville–Steklov

3.1.1 Hilb’s formula and zeros of Legendre polynomials

Already in one of his early papers, [16], Luigi applies the method of Liouville–
Steklov, following Szegö’s treatment in [55, Section 8.62], to the differential
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equation satisfied by (sin θ)1/2 Pn(cos θ). (By symmetry, it suffices to consider
the interval 0 ≤ θ ≤ π/2.) This yields immediately Hilb’s formula,

Pn(cos θ) =
(

θ

sin θ

)1/2

J0((n + 1/2)θ) + σ, (15)

where for large n, when θ is away from the origin (i.e., θ ≥ cn−1 for some
positive constant c), the error is σ = θ1/2 O(n−3/2), otherwise σ = O(n−2). In
his quest for quantification, Luigi derives explicit inequalities for the error σ :
In the first case,

|σ | < .358 θ−1/2n−5/2 + .394 θ1/2n−3/2 if π/2n < θ ≤ π/2 (16)

(which may also be written as |σ | < .622 θ1/2n−3/2; cf. [23, Eq. (2)]), and in the
second case,

|σ | < .09 θ2 if 0 < θ ≤ π/2n. (17)

This is then applied to obtain two-sided inequalities for the zeros θn,r (in
ascending order) of Pn(cos θ), namely3

0 <
j0,r

n + 1/2
− θn,r < (1.6 + 3.7r)n−4, n = 1, 2, . . . , �n/2�, (18)

where j0,r is the rth positive zero of the Bessel function J0.
A reapplication of the Liouville–Steklov method to the same differential

equation, but now with (15) inserted in the integral of the Volterra integral
equation, in [23] yields an improved two-term asymptotic approximation for
Pn(cos θ), and in consequence also two-term approximations for the zeros θn,r

of Pn(cos θ), and likewise for the zeros xn,r of Pn(x). Thus, for example,

xn,r = 1 − j 2
0,r

2(n + 1/2)2
+ j 2

0,r + j 4
0,r

24(n + 1/2)4
+ O(n−6), (19)

which for n = 16, r = 1 and r = 2 (neglecting the error term), yields approxi-
mations for the respective zeros having errors 2.28 × 10−8 resp. 2.15 × 10−6.

3.1.2 Hilb’s formula for ultraspherical polynomials

Hilb’s formula for ultraspherical polynomials is supplied with error bounds in
[18] and applied to the zeros of P(λ)

n . A slightly different application of the
method of Liouville–Steklov, especially if applied successively as suggested
by Szegö [55, Section 8.61(2)] in the case of Legendre polynomials, yields
more accurate approximations of ultraspherical polynomials P(λ)

n , valid in any
compact subinterval of (−1, 1), and of their zeros contained therein [34].

3There is a misprint in Eq. (17) of [16], where the number 16 in the denominator should be 10. The
upper bound given there (and in our Eq. (18)) has been checked by us on the computer and was
found to be too small, at least for larger values of n. The reason for this may be inaccuracies in the
numerical constants supplied.



Numer Algor

3.1.3 Hilb’s formula for Jacobi polynomials

There is a Hilb’s formula also for Jacobi polynomials P(α,β)
n , α > −1 and β

arbitrary real [55, Section 8.63], which in the classical form reads as follows,

θ−1/2

(
sin

1

2
θ

)α+1/2 (
cos

1

2
θ

)β+1/2

P(α,β)
n (cos θ)

= 2−1/2 N−α �(n + α + 1)

n! Jα(Nθ) + σα(n, θ), (20)

where N = n + (α + β + 1)/2 and σα = θ1/2 O(n−3/2) away from the origin, and
σα = θα+2 O(nα) otherwise. In [31], this is improved in two ways: First, the
method of Liouville–Steklov is refined, with the result that in (20) the number
N can be replaced by

ν =
[(

n + α + β + 1

2

)2

+ 1 − α2 − 3β2

12

]1/2

(21)

and the error term improved to σα = θ5/2 O(n−3/2) and σα = θα+4 O(nα) away
from, and near the origin, respectively.4 Secondly, the method of Liouville–
Steklov is iterated once more, similarly as in [23], producing a two-term
approximation,

θ−1/2

(
sin

1

2
θ

)α+1/2 (
cos

1

2
θ

)β+1/2

P(α,β)
n (cos θ)

= 2−1/2ν−α �(n + α + 1)

n!
[(

1 − 4 − α2 − 15β2

1440 ν2
θ2

)
Jα(νθ)

+ 4 − α2 − 15β2

720 ν3
θ

(
1

2
ν2θ2 + α2 − 1

)
J′
α(νθ)

]
+ ρα(n, θ), (22)

with the remainder term further improved to respectively ρα = θ9/2 O(n−3/2)

and ρα = θα+6 O(nα). The result (22) can easily be specialized to ultraspherical
polynomials (i.e., to α = β = λ − 1/2) and to Legendre polynomials (λ = 1/2).
In the latter case, by expressing J′

0 in terms of J0 and J2, one obtains the rather
simple formula

(
sin θ

θ

)1/2

Pn(cos θ) = J0(νθ) − θ3

360 ν
+ θ2

360 ν2
J2(νθ) + ρ(n, θ), (23)

with ν = [(n + 1/2)2 + 1/12]1/2 and ρ = θ9/2 O(n−3/2) resp. ρ = θ6 O(1).

4In the second of these formulae, the factor θα+4 is misprinted as θα+1 in the original Eq. (19)
of [31].
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Luigi now once again applies Tricomi’s theorem (cf. Section 2.1) to derive
from the asymptotic approximations in [31] asymptotic results for zeros of
Jacobi polynomials in terms of zeros of Bessel functions, and vice versa. In
the ultraspherical case, for example, he finds for the rth positive zero js,r of Js,
−1/2 < s < 1/2, when r is fixed, the following asymptotic approximation,

js,r = νθn,r + 1 − 4s2

360 ν
θ3

n,r − (1 − s2)
1 − 4s2

180 ν3
θn,r + O(n−6), (24)

where ν = [
(n + s + 1/2)2 + (1 − 4s2)/12

]1/2 and θn,r = θ
(s+1/2)
n,r is the rth zero

of P(s+1/2)
n (cos θ).

In [2], the method of Liouville-Steklov is used to derive a new asymptotic
approximation of Hilb’s type for Jacobi polynomials P(α,β)

n , |α| ≤ 1/2, |β| ≤
1/2, with realistic and explicit error bounds, and from it an asymptotic estimate
of the zeros θ

(α,β)
n,r of P(α,β)

n (cos θ) obtained previously in a different manner by
Frenzen and Wong [7]. Continuation of this work in [41, 42] led to a number
of significant improvements.

The classical Hilb’s formula (20) for Jacobi polynomials is applied in [17]
to study the relative extrema of P(α,β)

n . If yn,r are their abscissae, and yn,r =
cos ϕn,r, a short and elegant proof is given of the limit relation

lim
n→∞

(
sin

1

2
ϕn,r

)α (
cos

1

2
ϕn,r

)β

P(α,β)
n (yn,r) = Jα( jα+1,r). (25)

3.2 Methods based on Sturm comparison theorems

Sturm-type comparison theorems, for example in the form stated by Szegö
in [55, Section 1.82], are a natural tool for comparing zeros of one type of
special functions with zeros of another type, the types of special functions
depending on the choice of differential equations that are being compared.
This is a recurring theme in Luigi’s work and gives rise to many interesting
inequalities.

3.2.1 Zeros of Jacobi polynomials and Bessel functions

In [32], the comparison is between zeros θ
(α,β)
n,r of Jacobi polynomials

P(α,β)
n (cos θ) and zeros jα,r of Bessel functions Jα , which, under the assumption

|α| ≤ 1/2, β ≤ 1/2, finds expression in the inequalities

jα,r

[
N2 + 1

4
− α2 + β2

2
− 1 − 4α2

π2

]−1/2

< θ(α,β)
n,r < jα,r

[
N2 + 1 − α2 − 3β2

12

]−1/2

, (26)

valid for r = 1, 2, . . . , �n/2�, where N = n + (α + β + 1)/2.
The first zero, jν = jν,1 of the Bessel function Jν , ν > 0, and also the abscissa

j ′
ν of its first maximum, are studied in [49], where Sturm’s theorem is used in
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a form given by Watson in [61, Section 15.83] and is slightly extended and
combined, in part, with Tricomi’s theorem (cf. Section 2.1). The result can be
written in the form

jν = ν exp
(
2−1/3ν−2/3a1 − 1.623 ϑ ν−4/3

)
,

j ′
ν = ν exp

(
2−1/3ν−2/3a′

1 − 1.06 ϑ ′ ν−4/3
)
, (27)

where 0 < ϑ, ϑ ′ < 1, and a1 = 2.33810741, a′
1 = 1.01879297 are the first zero,

resp. maximum, of the Airy function Ai(−x). The bounds implied by (27)
compare favorably with earlier estimates by Schafheitlin and Tricomi.

Restricting ν to the “principal" interval |ν| < 1/2, Luigi, together with
Giordano, in [46] obtains a very sharp upper bound for jν , namely

jν < �(ν)K(ν), −1/2 < ν < 1/2, (28)

where

�(ν) = arccos

√
10ν + 35 + 2

√
10ν2 + 55ν + 70

4ν2 + 32ν + 63

is the first zero θ
(ν)
5,1 of P(ν,ν)

5 (cos θ),

K(ν) =
[
(ν + 11/2)2 +

(
1

4
− ν2

) (
1

sin2 φ(ν)
− 1

φ2(ν)

)]1/2

,

and

φ(ν) =
√

ν + 1
(√

ν + 2 + 1
)

ν + 11/2
.

Outside the principal interval, there holds

jν <
1

3
�(ν)

√
6ν2 + 99ν + 273, ν �∈ (−1/2, 1/2). (29)

These inequalities are generally sharper (often considerably so) than the
best inequalities (valid for ν > −1) known in the literature.

3.2.2 Zeros of Laguerre polynomials

The application of Sturm’s theorem (again in Szegö’s form) to zeros 0 <

λ
(α)
n,1 < λ

(α)
n,2 < · · · < λ(α)

n,n of Laguerre polynomials L(α)
n is carried out in [37]. Two

types of comparison differential equations are used, one giving rise to Bessel
functions, the other to Airy functions. In the former case, under the assumption
−1 < α ≤ 1, Luigi finds that

λ(α)
n,r < ν cos2

(
1

2
x(α)

n,r

)
, r = 1, 2, . . . , n, (30)

where x(α)
n,r is the root of the equation

x − sin x = π − 4 jα,r

ν
, (31)
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and ν = 4n + 2α + 2. In the latter case, he shows that

λ(α)
n,r > ν cos2

(
1

2
x∗(α)

n,r

)
if − 1/2 ≤ α ≤ 1/2, (32)

and

λ(α)
n,r < ν cos2

(
1

2
x∗(α)

n,r

)
if − 1 < α ≤ −2/3 or α ≥ 2/3, (33)

where x∗(α)
n,r is the root of the equation

x − sin x = 8

3ν
a3/2

n+1−r (34)

and ak the kth zero in ascending order of Ai(−x).
Since Hermite polynomials are related to Laguerre polynomials with pa-

rameters α = ±1/2, and j1/2,r = rπ , j−1/2,r = (r − 1/2)π , the inequalities (30)
and (32) yield upper5 and lower bounds for the positive zeros 0 < hn,�(n+1)/2�+r,
r = 1, 2, . . . , �n/2�, of the Hermite polynomial Hn:

hn,�(n+1)/2�+r <
√

2n + 1 ×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cos

[
1

2
x

(
2n − 4r + 3

2n + 1
π

)]
, n even,

cos

[
1

2
x

(
2n − 4r + 1

2n + 1
π

)]
, n odd,

(35)

where x = x(y) is the inverse function of y = sin x − x and

hn,�(n+1)/2�+r >
√

2n + 1 cos

[
1

2
x

(
8

3(2n + 1)
a3/2

�n/2�+1−r

)]
, r = 1, 2, . . . , �n/2�.

(36)

All these inequalities are remarkably sharp.

3.2.3 Zeros of confluent hypergeometric functions

Since Laguerre polynomials L(α)
n are special cases of confluent hypergeometric

functions �(a, c; x) and �(a, c; x) (in Tricomi’s notation), namely a = −n,
c = 1 + α, it is natural to try extending the inequalities obtained in [37] for
Laguerre polynomials to confluent hypergeometric functions. This is done in
[39], where Sturm-type comparison theorems are used in both Szegö’s and
Watson’s form. With regard to the first (“regular”) confluent hypergeometric
function �(a, c; x), it is known that, if c > 0, there are no positive zeros
of �(a, c; x) if a ≥ 0, and precisely −�a� positive zeros if a < 0. Under the
assumption a < 0, 0 < c ≤ 2, Luigi then proves that for the rth positive zero
φr there holds

φr < 4k cos2

(
1

2
xr

)
, r = 1, 2, . . . , s, (37)

5In the upper bound of (35) for n odd, the numerator 2n − 4r + 1 in [37] is misprinted as
2n − 4r + 3.
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where k = 1
2 c − a, s = � 1

4 − a�, and xr is the root of the equation

x − sin x = π − jc−1,r

k
. (38)

Note that (38) is identical with (31) in the case a = −n, c = 1 + α of Laguerre
polynomials, since k = 1

2 (1 + α) + n = ν/4. Also, s = � 1
4 − a� is either the total

number of positive zeros, or one less, depending on whether a − �a� is less
than, or greater or equal to, 1/4.

As for the (“irregular”) confluent hypergeometric function �(a, c; x), it is
known that, if c ≥ 1, it has no positive zeros if a ≥ 0, and precisely −�a� positive
zeros ψr if a < 0. Here, assuming a < 0, 1 ≤ c ≤ 2, Luigi proves the inequality

ψr < 4k cos2

(
1

2
x0

r

)
, r = 1, 2, . . . , −�a�, (39)

where k = 1
2 c − a and x0

r is the root of

x − sin x = π − j 0
c−1,r

k
, k = 1

2
c − a, (40)

with j 0
c−1,r the rth positive zero of cos((a−�a�)π)Jc−1(x)−sin((a−�a�)π)

Yc−1(x). The case 0 < c < 1 can be reduced to 1 < c < 2 by applying the
identity �(a − c + 1, 2 − c; x) = xc−1�(a, c; x).

Using a different differential equation for comparison in Sturm’s theorem,
Luigi derives additional inequalities for φr and ψr, where the former reduce
to the inequalities (32), (33) in the case of Laguerre polynomials. Another
interesting special case is a = (1 − ν)/2, ν > 1 and c = 3/2, which leads to
parabolic cylinder functions Dν and upper and lower bounds for their positive
zeros δν,r, r = 1, 2, . . . , −�(1 − ν)/2�.

3.2.4 Inequalities from asymptotic estimates

Applications of Sturm’s theorem of a somewhat different character are made
in [36] and [43], where known asymptotic estimates containing order-of-
magnitude terms are shown to actually become inequalities if the O-term is
omitted. Such is the case, e.g., in a result of Frenzen and Wong [7, Corollary 2]
concerning the zeros θ

(α,β)
n,r of P(α,β)

n (cos θ), which in the hands of Luigi becomes
the inequality

θ(α,β)
n,r ≥ 1

N
jα,r − 1

4N2

[(
1

4
− α2

)(
2

t
− cot

1

2
t
)

+
(

1

4
− β2

)
tan

1

2
t
]
,

N = n + α + β + 1

2
, t = 1

N
jα,r, (41)

valid for |α| ≤ 1/2, |β| ≤ 1/2 and r = 1, 2, . . . , n, with equality holding if α2 =
β2 = 1/4. In fact, (41) can be improved by replacing N in the definition of t
(but not elsewhere) by ν = [N2 + (1 − α2 − 3β2)/12]1/2. A similar upper bound
can be obtained by switching the parameters α and β and using a well-known
identity relating P(α,β)

n with P(β,α)
n . These inequalities are quite sharp, especially
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near the respective end points π and 0. Sometimes, the upper bound in (26)
may be better for the first few values of r than the upper bound obtainable from
(41) by switching α and β, and likewise the lower bound obtainable similarly
from the upper bound of (26) may be better than (41) for the last few values
of r. Thus, in applications, (41) and (26) should be considered conjointly. All
these inequalities are easily specialized to the ultraspherical case α = β.

Similarly, by omitting the O-term in (7), the right-hand side becomes an
upper bound in the ultraspherical case α = β.

For the zeros jν,r of Bessel functions Jν , the removal of the O-terms in some
asymptotic (for large ν) estimates of Olver is conjectured in [43] to lead to
upper and lower bounds, specifically to

νxν,r < jν,r < νxν,r + gν(xν,r), r = 1, 2, 3, . . . , (42)

where xν,r is the root of the equation
√

x2 − 1 − arctan
√

x2 − 1 = (2/3ν)a3/2
r ,

gν(x) = x
ν

1

(x2 − 1)1/2

[ −5ν

48 a3/2
r

+ 5

24(x2 − 1)3/2
+ 1

8(x2 − 1)1/2

]
, (43)

and ar is th rth zero of Ai(−x). The lower bound is actually proved to hold for
ν > 0 and all r, and the upper bound for ν > 0 and all r sufficiently large. In fact,
if in (43) the right-hand side is multiplied by the factor 1 + 21/3/(280 arν

4/3),
then the conjecture is proved to hold for ν ≥ 1/2 and all r. Heavy use is made
in this work of symbolic computation with Maple V.

4 Uniform expansions

4.1 Zeros of Laguerre polynomials

Asymptotic estimates of the zeros of Laguerre polynomials L(α)
n that resemble

the inequalities in (30)–(34) are obtined in [38] from the initial terms of
uniform asymptotic expansions for Laguerre polynomials due to Frenzen
and Wong [8]. With x(α)

n,r again denoting the root of (31), and setting τ (α)
n,r =

cos2
(

1
2 x(α)

n,r

)
, from the expansion [8, Eq. (4.7)] Luigi finds the asymptotic

estimate

λ(α)
n,r = ντ (α)

n,r − 1

2ν

⎡
⎣

(
1 − 4α2

)
ν

2 jα,r

(
τ (α)

n,r

1 − τ
(α)
n,r

)1/2

+ 4α2 − 1

2

+ τ (α)
n,r

1 − τ
(α)
n,r

+ 5

6

(
τ (α)

n,r

1 − τ
(α)
n,r

)2
⎤
⎦ + O

(
ν−3), (44)

where ν = 4n + 2α + 2, and the O-term is uniformly bounded for all r =
1, 2, . . . , �qn�, with 0 < q < 1 fixed.

A companion estimate, valid in the range r = �pn�, �pn� + 1, . . . , n,
0 < p < 1, which overlaps with the range for (44) when p ≤ q, is similarly
obtained from the expansion [8, Eq. (5.13)]. With x∗(α)

n,r again denoting the root
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of (34), and setting τ ∗(α)
n,r = cos2

(
1
2 x∗(α)

n,r

)
, the asymptotic estimate now reads

λ(α)
n,r = ντ ∗(α)

n,r + 1

ν

⎡
⎣ 5ν

24 a3/2
n+1−r

(
τ ∗(α)

n,r

1 − τ
∗(α)
n,r

)1/2

+ 1

4
− α2

−1

2

τ ∗(α)
n,r

1 − τ
∗(α)
n,r

− 5

12

(
τ ∗(α)

n,r

1 − τ
∗(α)
n,r

)2
⎤
⎦ + O

(
ν−3

)
, (45)

where ν is as above in (44).
In the case where r is fixed and ν → ∞, the estimate (44) can be

sharpened to

λ(α)
n,r = j 2

α,r

ν

[
1 + j 2

α,r + 2(α2 − 1)

3 ν2

]
+ O

(
ν−5

)
, r fixed, (46)

which is an old estimate of Tricomi from the 1940s. Likewise, the estimate (45)
for r = n + 1 − s and s fixed can be sharpened to

λ
(α)
n,n+1−s = ν − 22/3asν

1/3 + 1

5
24/3a2

s ν
−1/3 + O

(
ν−1

)
, s fixed, (47)

which is another of Tricomi’s earlier estimate.

4.2 Zeros of confluent hypergeometric functions

Two types of uniform asymptotic expansions for Whittaker’s confluent
hypergeometric functions Mκ,μ, Wκ,μ, given by Dunster [5], are used in [9] to
develop asymptotic estimates (for large κ) of the positive zeros m(κ,μ)

r , w
(κ,μ)
r

of Mκ,μ(x) and Wκ,μ(x), respectively. If specialized to Laguerre polynomials,
κ = n + (α + 1)/2, μ = α/2, they yield approximations for the zeros λ(α)

n,r of
Lα)

n that are now applicable for unrestrictedly large values of both n and α.
Uniformity of the results, of course, comes at a price of increased complexity
of the formulae.

In [45], Luigi develops two new uniform asymptotic expansions for Whit-
taker functions, one involving Bessel functions, the other Airy functions.
Using three terms of the former, he then derives asymptotic estimates of the
respective zeros, which are simpler than those obtained previously in [9] and
valid as κ → ∞ for fixed μ. Thus, for the rth positive zero of Mκ,μ(x) he finds

m(κ,μ)
r = 4κξr + 1

2κ

(
ξr

1 − ξr

)1/2
[

κ

2

16μ2 − 1

j2μ,r
− 2μ2

(
1 − ξr

ξr

)1/2

+ 1

24

4ξ 2
r − 12ξr + 3

(1 − ξr)3/2ξ
1/2
r

]
+ O(κ−3), (48)

where ξr = ξ
(κ,μ)
r is the root of the equation

arcsin
√

ξ +
√

ξ − ξ 2 = j2μ,r

2κ
. (49)
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The O-term is uniformly bounded for all r = 1, 2, 3, . . . such that m(κ,μ)
r ≤ 4qκ

with q fixed, 0 < q < 1. Similarly, for the rth positive zero of Wκ,μ(x),

w(κ,μ)
r = 4κτr + 1

2κ

(
τr

1 − τr

)1/2
[

κ

2

16μ2 − 1

j0
2μ,r

− 2μ2

(
1 − τr

τr

)1/2

+ 1

24

4τ 2
r − 12τr + 3

(1 − τr)3/2τ
1/2
r

]
+ O

(
κ−3

)
, (50)

where τr = τ
(κ,μ)
r is the root of

arcsin
√

τ +
√

τ − τ 2 = j0
2μ,r

2κ
, (51)

and j0
2μ,r the rth positive zero of sin((κ − μ)π)J2μ(x) − cos((κ − μ)π)Y2μ(x).

Three terms of Luigi’s Airy-type asymptotic expansion yield estimates valid
for all zeros m(κ,μ)

r , w
(κ,μ)
r larger than 4pκ , with p fixed, 0 < p < 1. Specifically,

with n = �κ − μ − 1/2� denoting the number of positive zeros,

m(κ,μ)
r = 4κξ ∗

r + 1

24κ

(
ξ ∗

r

1 − ξ ∗
r

)1/2

×
[

5κ

c3/2
n+1−r

− 1

2

(48μ2 − 4)(ξ ∗
r − 1)2 + 4ξ ∗

r + 1

(1 − ξ ∗
r )3/2ξ

∗1/2
r

]
+ O

(
κ−3

)
, (52)

where ξ ∗
r = ξ

∗(κ,μ)
r is the root of the equation

arccos
√

ξ −
√

ξ − ξ 2 = c2/3
n+1−r

3κ
(53)

and ck the kth positive zero in ascending order of sin((κ − μ)π)Ai(−x) +
cos((κ − μ)π)Bi(−x), and

w(κ,μ)
r = 4κτ ∗

r + 1

24κ

(
τ ∗

r

1 − τ ∗
r

)1/2

×
[

5κ

a3/2
n+1−r

− 1

2

(48μ2 − 4)(τ ∗
r − 1)2 + 4τ ∗

r + 1

(1 − τ ∗
r )3/2τ

∗1/2
r

]
+ O

(
κ−3

)
, (54)

where τ ∗
r = τ ∗

n,r is the root of

arccos
√

τ −
√

τ − τ 2 = a2/3
n+1−r

3κ
, (55)

and ak the kth positive zero in ascending order of Ai(−x).
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5 Miscellanea

In this section, a few of Luigi’s papers are collected, which do not fit into the
classification scheme we have adopted.

5.1 Retouching asymptotic formulae

The idea of “retouching” asymptotic formulae, going back to Tricomi [56],
consists in introducing into the asymptotic approximation small correction
terms, which can be compactly tabulated or presented graphically so as to
enable a quick and relatively accurate determination of the desired quantity.
The idea is particularly useful if two or more variables are involved. In [27],
Luigi experiments with this idea in connection with asymptotic formulae for
Bessel functions Jν(x), Yν(x) in the range x ≥ 10 and arbitrary ν with −1 <

ν < 1. He is able, in this way, to produce approximations accurate to about
six decimals. He does the same in [28] for Laguerre polynomials Ln(x), n ≥ 7,
in the oscillatory region 0 ≤ x ≤ 4n + 2, where retouching is applied to two
asymptotic formulae, one appropriate for the left tenth, the other for the
remaining part, of the interval.

Retouching of sorts is taking place also in the paper [29], dedicated to the
computation of all zeros of the generalized Laguerre polynomial L(α)

n , α > −1.
Classical results need to distinguish between zeros in three zones: a central
zone and two lateral zones. Appropriate retouching of the asymptotic formula
for the central zone gives rise to a unique procedure for computing all zeros.
It involves the first �n/2� zeros of the Bessel function Jα(x) and of the Airy
function Ai(−x).

5.2 Reversing asymptotic approximations

Hilb-type formulae such as (15) and their generalizations to ultraspherical
and Jacobi polynomials are intended to approximate these polynomials in
terms of Bessel functions, and likewise for the respective zeros. There is no
intrinsic reason why this process cannot be turned around and thus be used
to approximate Bessel functions in terms of, say, ultraspherical polynomials.
This in fact is done in [30], where an improved Hilb formula for ultraspherical
polynomials P(ν+1/2)

n (cos θ), ν > −1/2, is used to compute Bessel functions
Jν(x) in terms of them, the variable x being an appropriate multiple (depending
on ν and n) of θ . Luigi’s intention was to bridge in this way the gap of
moderately large x, where neither the power series expansion of Jν(x) (for
small x) nor its asymptotic expansion (for large x) is numerically satisfactory.
Strong competitors, however, are computational algorithms based on three-
term recurrence relations satisfied by Bessel functions, which have been
developed by one of us (W. G.) and others at just about the same time.
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5.3 Bernstein-type inequalities

A well-known inequality for Legendre polynomials is Bernstein’s inequality

(sin θ)1/2|Pn(cos θ)| < (2/π)1/2n−1/2, 0 ≤ θ ≤ π, (56)

where the constant (2/π)1/2 is best possible. This result has been sharpened and
generalized to ultraspherical polynomials by various authors. A generalization
to Jacobi polynomials is due to Baratella [1]. By improving the constant in
Baratella’s result, Luigi jointly with Chow and Wong in [4] proves, for |α| ≤
1/2, |β| ≤ 1/2, that

(
sin

1

2
θ

)α+1/2 (
cos

1

2
θ

)β+1/2

|P(α,β)
n (cos θ)| ≤ �(q + 1)

�(1/2)

(
n + q

n

)
N−q−1/2,

N = n + (α + β + 1)/2, 0 ≤ θ ≤ π,

(57)

where q = max(α, β). The numerical constant in (57) is best possible (cf. [52]).

5.4 Jacobi polynomials in the complex plane

In [6], Elliott obtained an asymptotic expansion for Jacobi polynomials
P(α,β)

n (z) which is valid uniformly for all z in the complex plane cut along
the real axis from −∞ to 1, with a neighborhood of z = −1 deleted, and
with regard to the parameters α and β holds for arbitrary real β but only for
α ≥ 0. From this expansion, Luigi in [3], together with Baratella, derives one-
and two-term asymptotic approximations for P(α,β)

n (z) with the same region
of validity for z as stated above, and the same assumption on β, but with the
restriction α ≥ 0 relaxed to α > −1 by a judicious use of the differential equa-
tion and differentiation formulae satisfied by Jacobi polynomials. Analogous
approximations that are valid in the z-plane cut along the real axis from −1
to +∞, with a neighborhood of z = 1 deleted, can be obtained by switching
α and β and using the reflection formula for Jacobi polynomials.

5.5 An expansion of Jacobi polynomials in Laguerre polynomials

In [40], for α > −1, β > −1, the following curious expansion is derived,

P(α,β)
n (x) = (2k + t)n+α+β+1

(2k)n+α+1(2k − t)β
e−t

∞∑
m=0

Am

(
k,

α + 1

2

)(
t

2k

)m

L(α+m)
n (t),

(58)
where

t = 2k
1 − x
3 + x

, k = n + β + α + 1

2
, |t| < 2k,
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and Am = Am(k, �) satisfies the recurrence relation

(m + 1)Am+1 = (m + 2� − 1)Am−1 − 2kAm−2, m = 2, 3, . . . ,

with A0 = 1, A1 = 0, A2 = �. The condition |t| < 2k translates into x > −1. In
the special case β = 0, the expansion is due to Tricomi; see [58, Eq. (26)] as
corrected in [60, p. 98].

5.6 Surveys

On a number of occasions, Luigi has taken time out to survey recent progress
he and others had made. In an early lecture, [24], beautifully written, he
explains the nature of asymptotics, the need for error bounds and techniques
to obtain them, for special functions as well as for their zeros, all carefully
illustrated on the example of Legendre polynomials.6

In [35], work on asymptotic estimates for the zeros of Jacobi polynomials
and Bessel functions is reviewed.7 There are also many original results in this
survey, for example a new application of (22) to obtain the following estimate
for the zeros of Jacobi polynomials P(α,β)

n (cos θ), |α| ≤ 1/2, |β| ≤ 1/2,

θ(α,β)
n,r = jα,r

ν

[
1 − 4 − α2 − 15β2

720 ν4

(
1

2
j2
α,r + α2 − 1

)]
+ j5

α,r O
(
n−7

)
(59)

valid for r = 1, 2, . . . , �γ n�, with γ fixed in 0 < γ < 1, and ν defined as in
(21). Moreover, when r is fixed, (59) with the error term replaced by O(n−7),
is shown to hold for any α > −1 and arbitrary real β. If solved for jα,r, it
yields a good approximation for the first few zeros of the Bessel function Jα .
The simplified O(n−5) version of (59), with r = 1, has been found useful by
one of us (W. G.) to discuss (in [51]) a conjectured inequality involving θ

(α,β)

n,1

and θ
(α,β)

n+1,1.
The final sections of [35] discuss inequalities holding between zeros of Jacobi

polynomials and zeros of Bessel functions, some of which sharpening (26), and
others extending (26), with the bounds switched, to8 |α| > 1/2, |β| > 1/2. In
particular, many interesting and sharp upper and lower bounds are obtained
for the first zero jα,1, and first few zeros jα,r, of the Bessel function Jα .

Asymptotic estimates and inequalities for the zeros λ(α)
n,r of Laguerre poly-

nomials L(α)
n are reviewed in [44] and, here too, supplemented by new results.

6There are some misprints that may distract the reader: ε1(
∗) at the bottom of p. 88 should be

ε1(x∗); on p. 89, second text line, x should read x∗; and in the displayed equation that follows, the
first term on the left should be multiplied by δ.
7For unexplained reasons, the numbers in Table 1 differ somewhat from those in the correspond-
ing table in [50, p. 85]. In the survey, plots for these numbers are also provided.
8In [35, Theorem 5.1 ii)], the inclusion sign ∈ should be �∈.
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Thus, e.g., the formula (45) is used to derive a very sharp and interesting
estimate for the last few zeros of L(α)

n , namely, when s is fixed and n → ∞,

λ
(α)
n,n+1−s = ν − 22/3asν

1/3 + 1

5
24/3 a2

s ν
−1/3 +

(
11

35
− α2 + 12

175
a3

s

)
ν−1

+
(

92

7875
a4

s − 16

1575
as

)
22/3ν−5/3 +

(
15152

3031875
a5

s − 1088

121275
a2

s

)
21/3

× ν−7/3 + O
(
ν−3

)
, (60)

where ν = 4n + 2α + 2. This, in fact, improves an old O(ν−1) result of Tricomi.
In obtaining (60), heavy use is made of Maple V. Luigi also conjectures that
in the case |α| ≤ 1/2, when O-terms are omitted, the right-hand side of (44)
becomes a lower bound for all r = 1, 2, . . . , n, whereas the right-hand side of
(45) becomes an upper bound for all, except the first few, zeros, and for all
zeros if −.4999 ≤ α ≤ 1/2.

The last three sections of [44] review results obtained by Luigi and others in
the case where the parameter α is large compared to n, or both parameters α

and n are large.
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