
Using Proofs-from-Tests to
Verify Higher-Order Programs

Suresh Jagannathan

Joint work with He Zhu

1Saturday, September 24, 11

Introduction

2

2Saturday, September 24, 11

Introduction
• How can we integrate specification inference and automated

verification techniques within an optimizing compiler for Standard
ML?
★ Enrich the class of provably correct optimizations

★ Facilitate better specialization and structure representation decisions

2

2Saturday, September 24, 11

Introduction
• How can we integrate specification inference and automated

verification techniques within an optimizing compiler for Standard
ML?
★ Enrich the class of provably correct optimizations

★ Facilitate better specialization and structure representation decisions

• What do we need the system to be?
★ Automated

★ Modular

★ Precise

✦ Incorporate notions of {path, context} - sensitivity

★ Scalable and lightweight

✦ Use off-the-shelf verification tools

★ Understandable

✦ Analysis over a high-level intermediate representation

✦ Useful for error checking

2

2Saturday, September 24, 11

Introduction
• How can we integrate specification inference and automated

verification techniques within an optimizing compiler for Standard
ML?
★ Enrich the class of provably correct optimizations

★ Facilitate better specialization and structure representation decisions

• What do we need the system to be?
★ Automated

★ Modular

★ Precise

✦ Incorporate notions of {path, context} - sensitivity

★ Scalable and lightweight

✦ Use off-the-shelf verification tools

★ Understandable

✦ Analysis over a high-level intermediate representation

✦ Useful for error checking

2

Failure to infer a “rich”
specification only implies a
missed optimization
opportunity, not a violation
of compiler correctness

2Saturday, September 24, 11

Challenges

3

Consider
fun arraymax a g =

let fun am h j m =
 let val k = h j

 val a = assert (k>=0 /\ k<len a)
 val u = sub a k
 val p = max u m

 in assert (p >= m); p
 end
 fun am’ = am g

in foldl (len a) 0 am’
end

3Saturday, September 24, 11

k within bounds of array a

p is a maximal element

Expressive assertion language

Challenges

3

Consider
fun arraymax a g =

let fun am h j m =
 let val k = h j

 val a = assert (k>=0 /\ k<len a)
 val u = sub a k
 val p = max u m

 in assert (p >= m); p
 end
 fun am’ = am g

in foldl (len a) 0 am’
end

3Saturday, September 24, 11

k within bounds of array a

p is a maximal element

Expressive assertion language

Challenges

3

Consider

Complex dataflow

fun arraymax a g =
let fun am h j m =

 let val k = h j
 val a = assert (k>=0 /\ k<len a)
 val u = sub a k
 val p = max u m

 in assert (p >= m); p
 end
 fun am’ = am g

in foldl (len a) 0 am’
end

3Saturday, September 24, 11

k within bounds of array a

p is a maximal element

Expressive assertion language

Unknown procedures

Challenges

3

Consider

Complex dataflow

fun arraymax a g =
let fun am h j m =

 let val k = h j
 val a = assert (k>=0 /\ k<len a)
 val u = sub a k
 val p = max u m

 in assert (p >= m); p
 end
 fun am’ = am g

in foldl (len a) 0 am’
end

3Saturday, September 24, 11

k within bounds of array a

p is a maximal element

Expressive assertion language

Unknown procedures

Challenges

3

Consider

Complex dataflow

fun arraymax a g =
let fun am h j m =

 let val k = h j
 val a = assert (k>=0 /\ k<len a)
 val u = sub a k
 val p = max u m

 in assert (p >= m); p
 end
 fun am’ = am g

in foldl (len a) 0 am’
end

Specifications must propagate across
procedure boundaries

3Saturday, September 24, 11

Liquid Types

4

fun max x y =
if x > y
 then x
 else y

val r =
 max a b

val _ = assert (r >= a)

4Saturday, September 24, 11

Liquid Types

4

fun max x y =
if x > y
 then x
 else y

val r =
 max a b

val _ = assert (r >= a)

{x : {ν: int | true} → y : {ν : int | true} →{ν : int | ν >= x /\ ν >= y}}

{ν : int | ν = x}

{ν : int | ν = x}
 {ν : int | ν = y}

{ν >= a /\ ν >= b} Extend standard types with refinement predicates
that refer to program variables and primitive
functions

Well-typed program implies correctness

4Saturday, September 24, 11

Set of logical qualifiers is potentially
quite large

Would like to infer the potential set of
qualifiers from context and refine them as
appropriate

Refinement Predicates

5

fun foldn n b f {n : true ! b : true ! f : {x1: {ν >= 0 /\ ν < n} ! x2 : true ! true} ! true} =
let fun loop i c {i : {(ν < n) ⇒ (ν >= 0)} ! c : true ! true} =

if (i < n) then loop (i+1) (f i c) {true} else c {true} {true}
in loop 0 b {true}
end

fun g x {∀y. x : {ν >= 0 /\ ν < y} !{ν >= 0 /\ ν < y}} =
x {∀y. ν = x}

fun arraymax a {a : {true} ! true} =
let fun am h j m
{h : {x1 : {ν >= 0 /\ ν < len a} ! {ν >= 0 /\ ν < len a}} !
 j : {ν >= 0 /\ ν < len a} !
 m : {true} ! true} =

let val k {ν >= 0 /\ ν < len a} = h j
 val _ {true} = assert (k>=0 /\ k < len a)
u {true} = sub a k
p {ν >= m} = max u m

in assert (p >= m); p {ν = p} end
fun am’ {x1: {ν >= 0 /\ ν < len a} ! x2 : true ! true} = am g

in foldn (len a) 0 am’ {true} end

5Saturday, September 24, 11

Set of logical qualifiers is potentially
quite large

Would like to infer the potential set of
qualifiers from context and refine them as
appropriate

Refinement Predicates

5

fun foldn n b f {n : true ! b : true ! f : {x1: {ν >= 0 /\ ν < n} ! x2 : true ! true} ! true} =
let fun loop i c {i : {(ν < n) ⇒ (ν >= 0)} ! c : true ! true} =

if (i < n) then loop (i+1) (f i c) {true} else c {true} {true}
in loop 0 b {true}
end

fun g x {∀y. x : {ν >= 0 /\ ν < y} !{ν >= 0 /\ ν < y}} =
x {∀y. ν = x}

fun arraymax a {a : {true} ! true} =
let fun am h j m
{h : {x1 : {ν >= 0 /\ ν < len a} ! {ν >= 0 /\ ν < len a}} !
 j : {ν >= 0 /\ ν < len a} !
 m : {true} ! true} =

let val k {ν >= 0 /\ ν < len a} = h j
 val _ {true} = assert (k>=0 /\ k < len a)
u {true} = sub a k
p {ν >= m} = max u m

in assert (p >= m); p {ν = p} end
fun am’ {x1: {ν >= 0 /\ ν < len a} ! x2 : true ! true} = am g

in foldn (len a) 0 am’ {true} end

materialize quantifiers based on constraints
introduced in non-lexical scope

5Saturday, September 24, 11

Basic Idea

6

6Saturday, September 24, 11

Basic Idea
• Analyze higher-order programs using first-order verification

engine
★ Use a modular (inter-procedural) analysis to abstract dataflow through higher-

order procedures.

★ First-order verification engine treats higher-order functions as abstract values.

★ Use subtyping to propagate dependent type information across function boundaries

6

6Saturday, September 24, 11

Basic Idea
• Analyze higher-order programs using first-order verification

engine
★ Use a modular (inter-procedural) analysis to abstract dataflow through higher-

order procedures.

★ First-order verification engine treats higher-order functions as abstract values.

★ Use subtyping to propagate dependent type information across function boundaries

• Counterexample Guided Type Refinement
★ Iteratively refine dependent types using information gleaned from counterexample

program paths

★ Use concrete tests to generate and mine dependent type predicates

6

6Saturday, September 24, 11

Basic Idea
• Analyze higher-order programs using first-order verification

engine
★ Use a modular (inter-procedural) analysis to abstract dataflow through higher-

order procedures.

★ First-order verification engine treats higher-order functions as abstract values.

★ Use subtyping to propagate dependent type information across function boundaries

• Counterexample Guided Type Refinement
★ Iteratively refine dependent types using information gleaned from counterexample

program paths

★ Use concrete tests to generate and mine dependent type predicates

• Fixpoint algorithm
★Iterative type refinement based on new verification facts

★Iterative type-checking based on new qualifier inferences

6

6Saturday, September 24, 11

Basic Idea
• Analyze higher-order programs using first-order verification

engine
★ Use a modular (inter-procedural) analysis to abstract dataflow through higher-

order procedures.

★ First-order verification engine treats higher-order functions as abstract values.

★ Use subtyping to propagate dependent type information across function boundaries

• Counterexample Guided Type Refinement
★ Iteratively refine dependent types using information gleaned from counterexample

program paths

★ Use concrete tests to generate and mine dependent type predicates

• Fixpoint algorithm
★Iterative type refinement based on new verification facts

★Iterative type-checking based on new qualifier inferences

• Integrate these steps as a separate compiler phase

6

6Saturday, September 24, 11

Framework

7

Type Inference

Type Checking

Type Refinement

Specification

Dependent Type Rules

Proof from test

SMT Solver
✓

✘

7Saturday, September 24, 11

Framework

8

Type Inference

Type Checking

Type Refinement

Specification

✓
✘

Qualifier Inference

Contextual Predicates

8Saturday, September 24, 11

Type Inference

9

fun foldn n b f = ...
fun g x = x
fun arraymax a {a : {true} ! true} =

let fun am h j m =
let val k {ν >= 0 /\ ν < len a} = h j

 val u = (assert (k>=0 /\ k < len a); sub a k)
 val p = max u m

in assert (p >= m); p
end
fun am’= am g

in foldn (len a) 0 am’
end

Want to infer type of h in this context
propagate dependent type constraints for
function signatures along subtyping chains

9Saturday, September 24, 11

Type Inference

9

fun foldn n b f = ...
fun g x = x
fun arraymax a {a : {true} ! true} =

let fun am h j m =
let val k {ν >= 0 /\ ν < len a} = h j

 val u = (assert (k>=0 /\ k < len a); sub a k)
 val p = max u m

in assert (p >= m); p
end
fun am’= am g

in foldn (len a) 0 am’
end

{h : !j : ! m : {true} ! true}

Want to infer type of h in this context
propagate dependent type constraints for
function signatures along subtyping chains

9Saturday, September 24, 11

Type Inference

9

fun foldn n b f = ...
fun g x = x
fun arraymax a {a : {true} ! true} =

let fun am h j m =
let val k {ν >= 0 /\ ν < len a} = h j

 val u = (assert (k>=0 /\ k < len a); sub a k)
 val p = max u m

in assert (p >= m); p
end
fun am’= am g

in foldn (len a) 0 am’
end

Want to infer type of h in this context
propagate dependent type constraints for
function signatures along subtyping chains

9Saturday, September 24, 11

Type Inference

9

fun foldn n b f = ...
fun g x = x
fun arraymax a {a : {true} ! true} =

let fun am h j m =
let val k {ν >= 0 /\ ν < len a} = h j

 val u = (assert (k>=0 /\ k < len a); sub a k)
 val p = max u m

in assert (p >= m); p
end
fun am’= am g

in foldn (len a) 0 am’
end

⤴
{h : {... -> {ν >= 0 /\ ν < len a}} !j : ! m : {true} ! true}

Want to infer type of h in this context
propagate dependent type constraints for
function signatures along subtyping chains

9Saturday, September 24, 11

Type Inference

9

fun foldn n b f = ...
fun g x = x
fun arraymax a {a : {true} ! true} =

let fun am h j m =
let val k {ν >= 0 /\ ν < len a} = h j

 val u = (assert (k>=0 /\ k < len a); sub a k)
 val p = max u m

in assert (p >= m); p
end
fun am’= am g

in foldn (len a) 0 am’
end

⤴
{h : {... -> {ν >= 0 /\ ν < len a}} !j : ! m : {true} ! true}

Want to infer type of h in this context
propagate dependent type constraints for
function signatures along subtyping chains

9Saturday, September 24, 11

Type Inference

9

fun foldn n b f = ...
fun g x = x
fun arraymax a {a : {true} ! true} =

let fun am h j m =
let val k {ν >= 0 /\ ν < len a} = h j

 val u = (assert (k>=0 /\ k < len a); sub a k)
 val p = max u m

in assert (p >= m); p
end
fun am’= am g

in foldn (len a) 0 am’
end

⤴
{h : {... -> {ν >= 0 /\ ν < len a}} !j : ! m : {true} ! true}

Want to infer type of h in this context
propagate dependent type constraints for
function signatures along subtyping chains

{ν >= 0 /\ ν < len a}

9Saturday, September 24, 11

Type Inference

9

fun foldn n b f = ...
fun g x = x
fun arraymax a {a : {true} ! true} =

let fun am h j m =
let val k {ν >= 0 /\ ν < len a} = h j

 val u = (assert (k>=0 /\ k < len a); sub a k)
 val p = max u m

in assert (p >= m); p
end
fun am’= am g

in foldn (len a) 0 am’
end

Want to infer type of h in this context
propagate dependent type constraints for
function signatures along subtyping chains

{ν >= 0 /\ ν < len a}

9Saturday, September 24, 11

Type Inference

9

fun foldn n b f = ...
fun g x = x
fun arraymax a {a : {true} ! true} =

let fun am h j m =
let val k {ν >= 0 /\ ν < len a} = h j

 val u = (assert (k>=0 /\ k < len a); sub a k)
 val p = max u m

in assert (p >= m); p
end
fun am’= am g

in foldn (len a) 0 am’
end

Want to infer type of h in this context
propagate dependent type constraints for
function signatures along subtyping chains

{ν >= 0 /\ ν < len a}

9Saturday, September 24, 11

Type Inference

9

fun foldn n b f = ...
fun g x = x
fun arraymax a {a : {true} ! true} =

let fun am h j m =
let val k {ν >= 0 /\ ν < len a} = h j

 val u = (assert (k>=0 /\ k < len a); sub a k)
 val p = max u m

in assert (p >= m); p
end
fun am’= am g

in foldn (len a) 0 am’
end

Want to infer type of h in this context
propagate dependent type constraints for
function signatures along subtyping chains

{ν >= 0 /\ ν < len a}

{h : {x1: {ν >= 0 /\ ν < len a} -> {ν >= 0 /\ ν < len a}} !j :
 ! m : {true} ! true}

9Saturday, September 24, 11

Type Checking

• Construct a verification condition (VC) as a first-order
formula from inferred dependent types
★ Typing rules track path conditions that are encoded in the structure of the VC

• The condition to be verified by an SMT solver is the negation
of the VC
★ unsat => type checking successful

★ sat => additional strengthening required to derive a consistent specification

10

10Saturday, September 24, 11

Example

11

fun foldn n b f
 {n : true ! b : true ! f : {x1: {ν >= 0 /\ ν < n} ! x2 : true ! true} ! true} =

let fun loop i c
 {i : true ! c : true ! true} =

if (i < n) then loop (i+1) (f i c) else c
in loop 0 b end

11Saturday, September 24, 11

Example

11

fun foldn n b f
 {n : true ! b : true ! f : {x1: {ν >= 0 /\ ν < n} ! x2 : true ! true} ! true} =

let fun loop i c
 {i : true ! c : true ! true} =

if (i < n) then loop (i+1) (f i c) else c
in loop 0 b end

Want to type-check the call

11Saturday, September 24, 11

Example

11

fun foldn n b f
 {n : true ! b : true ! f : {x1: {ν >= 0 /\ ν < n} ! x2 : true ! true} ! true} =

let fun loop i c
 {i : true ! c : true ! true} =

if (i < n) then loop (i+1) (f i c) else c
in loop 0 b end

Want to type-check the call

Expected constraint on argument i is: {ν >= 0 /\ ν < n}

11Saturday, September 24, 11

Example

11

fun foldn n b f
 {n : true ! b : true ! f : {x1: {ν >= 0 /\ ν < n} ! x2 : true ! true} ! true} =

let fun loop i c
 {i : true ! c : true ! true} =

if (i < n) then loop (i+1) (f i c) else c
in loop 0 b end

Want to type-check the call

Expected constraint on argument i is: {ν >= 0 /\ ν < n}

Need to solve:

(i < n) /\ (ν = i) => {ν >= 0 /\ ν < n} to strengthen invariants¬

11Saturday, September 24, 11

Example

11

fun foldn n b f
 {n : true ! b : true ! f : {x1: {ν >= 0 /\ ν < n} ! x2 : true ! true} ! true} =

let fun loop i c
 {i : true ! c : true ! true} =

if (i < n) then loop (i+1) (f i c) else c
in loop 0 b end

Want to type-check the call

Expected constraint on argument i is: {ν >= 0 /\ ν < n}

Need to solve:

(i < n) /\ (ν = i) => {ν >= 0 /\ ν < n} to strengthen invariants¬

App

� ` v2 : P

x

� ` e

f

: (x : P

x

! P)

� ` e

f

(v2) : [v2/x]P

IF

� ` e1 : bool � ` P �; e1 ` e2 : P �;¬e1 ` e3 : P

� ` if e1 then e2 else e3 : P

11Saturday, September 24, 11

• Type Refinement is used to augment the set of qualifiers
★ We could re-analyze the body of called functions along a counterexample (inter-

procedural) path from a call-site.

★ But, within a compiler, can explore concrete paths fairly easily

✦ Internally, build a compile-test-run loop over an optimized well-typed IR

• Use lightweight testing to determine where and how to refine
the type system. (Proofs-from-tests aka Dash)

• Testing provides a concrete witness to guide how existing
invariants can be strengthened.

Type Refinement

12

Failed
Proof

Test
Case

Concrete
Path

Abstract
Counterexample

refinement
New
Proof

12Saturday, September 24, 11

Directed Testing

13

px

p

concrete path
diverges

function f
return edge

function f call
edge

px is not implied by the environment

13Saturday, September 24, 11

Directed Testing

• If environment at a call-site

★ implies the called function’s pre-condition, then original counterexample will
no longer be reported if we strengthen called function’s post-condition and
compute weakest precondition.

★ does not imply the called function’s precondition, then must strengthen
function’s pre-condition to force divergence.

• Goal: either eliminate the counterexample by strengthening callee’s post-
condition, or direct test case execution to converge to counterexample,
strengthening caller’s pre-condition

14

px

p

concrete path
diverges

function f
return edge

function f call
edge

px is not implied by the environment

14Saturday, September 24, 11

Example

15

let fun g x = x
 fun f x = if x < 2
 then let s = g x

 in assert (s <= 0)
 end

 else ()
...

15Saturday, September 24, 11

Example

15

let fun g x = x
 fun f x = if x < 2
 then let s = g x

 in assert (s <= 0)
 end

 else ()
...

Initially, solve:
¬V C : ¬(x < 2� s � 0)

15Saturday, September 24, 11

Example

15

let fun g x = x
 fun f x = if x < 2
 then let s = g x

 in assert (s <= 0)
 end

 else ()
...

x<2

¬(s<=0)

counterexample path

Initially, solve:
¬V C : ¬(x < 2� s � 0)

15Saturday, September 24, 11

Example

15

let fun g x = x
 fun f x = if x < 2
 then let s = g x

 in assert (s <= 0)
 end

 else ()
...

Generate a concrete test supplying
x = �1

x<2

¬(s<=0)

counterexample path

Initially, solve:
¬V C : ¬(x < 2� s � 0)

15Saturday, September 24, 11

diverge

x<2

s<=0

x=-1

Example

15

let fun g x = x
 fun f x = if x < 2
 then let s = g x

 in assert (s <= 0)
 end

 else ()
...

Generate a concrete test supplying
x = �1

x<2

¬(s<=0)

counterexample path

Initially, solve:
¬V C : ¬(x < 2� s � 0)

15Saturday, September 24, 11

diverge

x<2

s<=0

x=-1

Example

15

let fun g x = x
 fun f x = if x < 2
 then let s = g x

 in assert (s <= 0)
 end

 else ()
...

Generate a concrete test supplying
x = �1

x<2

¬(s<=0)

counterexample path

Initially, solve:
¬V C : ¬(x < 2� s � 0)

{� � 0}� {� � 0}
Strengthen g’s type which is initially {true}� {true}

15Saturday, September 24, 11

Example

15

let fun g x = x
 fun f x = if x < 2
 then let s = g x

 in assert (s <= 0)
 end

 else ()
...

Generate a concrete test supplying
x = �1

x<2

¬(s<=0)

counterexample path

Initially, solve:
¬V C : ¬(x < 2� s � 0)

{� � 0}� {� � 0}
Strengthen g’s type which is initially {true}� {true}

15Saturday, September 24, 11

Example

15

let fun g x = x
 fun f x = if x < 2
 then let s = g x

 in assert (s <= 0)
 end

 else ()
...

Generate a concrete test supplying
x = �1

x<2

¬(s<=0)

counterexample path

Initially, solve:
¬V C : ¬(x < 2� s � 0)

{� � 0}� {� � 0}
Strengthen g’s type which is initially {true}� {true}

Generate new verification condition based on g’s refinement
¬V C : ¬((x < 2 � (x � 0� s � 0)� (s � 0))

15Saturday, September 24, 11

Example

15

let fun g x = x
 fun f x = if x < 2
 then let s = g x

 in assert (s <= 0)
 end

 else ()
...

Generate a concrete test supplying
x = �1

Generate new concrete test supplying
x = 1

x<2

¬(s<=0)

counterexample path

Initially, solve:
¬V C : ¬(x < 2� s � 0)

{� � 0}� {� � 0}
Strengthen g’s type which is initially {true}� {true}

Generate new verification condition based on g’s refinement
¬V C : ¬((x < 2 � (x � 0� s � 0)� (s � 0))

15Saturday, September 24, 11

¬(s<=0)

x<2

x=1
converge

Example

15

let fun g x = x
 fun f x = if x < 2
 then let s = g x

 in assert (s <= 0)
 end

 else ()
...

Generate a concrete test supplying
x = �1

Generate new concrete test supplying
x = 1

x<2

¬(s<=0)

counterexample path

Initially, solve:
¬V C : ¬(x < 2� s � 0)

{� � 0}� {� � 0}
Strengthen g’s type which is initially {true}� {true}

Generate new verification condition based on g’s refinement
¬V C : ¬((x < 2 � (x � 0� s � 0)� (s � 0))

15Saturday, September 24, 11

¬(s<=0)

x<2

x=1
converge

Example

15

let fun g x = x
 fun f x = if x < 2
 then let s = g x

 in assert (s <= 0)
 end

 else ()
...

Generate a concrete test supplying
x = �1

Generate new concrete test supplying
x = 1

x<2

¬(s<=0)

counterexample path

Initially, solve:
¬V C : ¬(x < 2� s � 0)

{� � 0}� {� � 0}
Strengthen g’s type which is initially {true}� {true}

Strengthen pre-condition for f to {x : � � 0}to eliminate the counter-example

Generate new verification condition based on g’s refinement
¬V C : ¬((x < 2 � (x � 0� s � 0)� (s � 0))

15Saturday, September 24, 11

Pre-Condition Refinement

16

fun foldn n b f
 {n : true ! b : true ! f : {x1: {ν >= 0 /\ ν < n} ! x2 : true ! true} ! true} =

let fun loop i c {i : true ! c : true ! true} =
if (i < n) then loop (i+1) (f i c) else c

in loop 0 b
end

16Saturday, September 24, 11

Pre-Condition Refinement

16

fun foldn n b f
 {n : true ! b : true ! f : {x1: {ν >= 0 /\ ν < n} ! x2 : true ! true} ! true} =

let fun loop i c {i : true ! c : true ! true} =
if (i < n) then loop (i+1) (f i c) else c

in loop 0 b
end

Type-checking loop involves solving:
¬V C : ¬{(i < n � (� = i)� (� � 0 � � < n)}

16Saturday, September 24, 11

Pre-Condition Refinement

16

fun foldn n b f
 {n : true ! b : true ! f : {x1: {ν >= 0 /\ ν < n} ! x2 : true ! true} ! true} =

let fun loop i c {i : true ! c : true ! true} =
if (i < n) then loop (i+1) (f i c) else c

in loop 0 b
end

Type-checking loop involves solving:
¬V C : ¬{(i < n � (� = i)� (� � 0 � � < n)}

A concrete test case: { i = -1, n = 0 }
Test case run does not diverge from counterexample path

16Saturday, September 24, 11

Pre-Condition Refinement

16

fun foldn n b f
 {n : true ! b : true ! f : {x1: {ν >= 0 /\ ν < n} ! x2 : true ! true} ! true} =

let fun loop i c {i : true ! c : true ! true} =
if (i < n) then loop (i+1) (f i c) else c

in loop 0 b
end

Type-checking loop involves solving:
¬V C : ¬{(i < n � (� = i)� (� � 0 � � < n)}

A concrete test case: { i = -1, n = 0 }
Test case run does not diverge from counterexample path

Weakest pre-condition generation: i < n� (i � 0)

16Saturday, September 24, 11

Pre-Condition Refinement

16

fun foldn n b f
 {n : true ! b : true ! f : {x1: {ν >= 0 /\ ν < n} ! x2 : true ! true} ! true} =

let fun loop i c {i : true ! c : true ! true} =
if (i < n) then loop (i+1) (f i c) else c

in loop 0 b
end

Type-checking loop involves solving:
¬V C : ¬{(i < n � (� = i)� (� � 0 � � < n)}

A concrete test case: { i = -1, n = 0 }
Test case run does not diverge from counterexample path

Strengthen dependent type for loop:

{i : {(� < n)� (� � 0)}� c : true� true

Weakest pre-condition generation: i < n� (i � 0)

16Saturday, September 24, 11

Post-Condition Refinement

17

fun arraymax a g =
let fun am h j m
 {h : {x1 : {true}!{ν >= 0 /\ ν < len a}} !j : {true} ! m : {true} ! true} =

let val k {ν >= 0 /\ ν < len a} = h j
 val u {true} = sub a k
 val p = max u m

in assert (p >=m); p {ν=p} end {true}
fun am’ = am g

in fold (len a) 0 am’ end

{true}

17Saturday, September 24, 11

Post-Condition Refinement

17

fun arraymax a g =
let fun am h j m
 {h : {x1 : {true}!{ν >= 0 /\ ν < len a}} !j : {true} ! m : {true} ! true} =

let val k {ν >= 0 /\ ν < len a} = h j
 val u {true} = sub a k
 val p = max u m

in assert (p >=m); p {ν=p} end {true}
fun am’ = am g

in fold (len a) 0 am’ end

Type-checking function am involves solving:
¬V C : ¬{(k � 0) � (k < len a)� (p � m)}

{true}

17Saturday, September 24, 11

Post-Condition Refinement

17

fun arraymax a g =
let fun am h j m
 {h : {x1 : {true}!{ν >= 0 /\ ν < len a}} !j : {true} ! m : {true} ! true} =

let val k {ν >= 0 /\ ν < len a} = h j
 val u {true} = sub a k
 val p = max u m

in assert (p >=m); p {ν=p} end {true}
fun am’ = am g

in fold (len a) 0 am’ end

Type-checking function am involves solving:
¬V C : ¬{(k � 0) � (k < len a)� (p � m)}

A possible test case generated by the solver:
{h = �x.0, j = 0, m = 0, a = Array[0]}

{true}

17Saturday, September 24, 11

Post-Condition Refinement

17

fun arraymax a g =
let fun am h j m
 {h : {x1 : {true}!{ν >= 0 /\ ν < len a}} !j : {true} ! m : {true} ! true} =

let val k {ν >= 0 /\ ν < len a} = h j
 val u {true} = sub a k
 val p = max u m

in assert (p >=m); p {ν=p} end {true}
fun am’ = am g

in fold (len a) 0 am’ end

Type-checking function am involves solving:
¬V C : ¬{(k � 0) � (k < len a)� (p � m)}

A possible test case generated by the solver:
{h = �x.0, j = 0, m = 0, a = Array[0]}

17Saturday, September 24, 11

Post-Condition Refinement

17

fun arraymax a g =
let fun am h j m
 {h : {x1 : {true}!{ν >= 0 /\ ν < len a}} !j : {true} ! m : {true} ! true} =

let val k {ν >= 0 /\ ν < len a} = h j
 val u {true} = sub a k
 val p = max u m

in assert (p >=m); p {ν=p} end {true}
fun am’ = am g

in fold (len a) 0 am’ end

Type-checking function am involves solving:
¬V C : ¬{(k � 0) � (k < len a)� (p � m)}

A possible test case generated by the solver:
{h = �x.0, j = 0, m = 0, a = Array[0]}

Concrete test diverges at call to max
 Strengthen post-condition for max to where y is the second formal parameter to max {� � y}

17Saturday, September 24, 11

Post-Condition Refinement

17

fun arraymax a g =
let fun am h j m
 {h : {x1 : {true}!{ν >= 0 /\ ν < len a}} !j : {true} ! m : {true} ! true} =

let val k {ν >= 0 /\ ν < len a} = h j
 val u {true} = sub a k
 val p = max u m

in assert (p >=m); p {ν=p} end {true}
fun am’ = am g

in fold (len a) 0 am’ end

Type-checking function am involves solving:
¬V C : ¬{(k � 0) � (k < len a)� (p � m)}

A possible test case generated by the solver:
{h = �x.0, j = 0, m = 0, a = Array[0]}

Concrete test diverges at call to max
 Strengthen post-condition for max to where y is the second formal parameter to max {� � y}

{ ν >= m }

17Saturday, September 24, 11

AlgorithmicType Inference
• Type inference

★Rule Generation

✦Encode first-order formula from liquid type rules

★Constraint Propagation

✦Subtyping chains

• Type checking
★Verification condition generation and solve

• Type Refinement
★ Directed testing to generate functional precondition and postcondition constraints

18

18Saturday, September 24, 11

AlgorithmicType Inference
• Type inference

★Rule Generation

✦Encode first-order formula from liquid type rules

★Constraint Propagation

✦Subtyping chains

• Type checking
★Verification condition generation and solve

• Type Refinement
★ Directed testing to generate functional precondition and postcondition constraints

18

18Saturday, September 24, 11

Language

19

Base Types

B ::=

|int
|bool

Dependent Types, Schemas

P ::=

|{⌫ : B|e}
|P ! P

|↵
|8↵.8x.P
|P ^ P

Expressions

e

0 ::=

|⌫, v, x 2 V ar

|c
|�x.e0

|if e0 then e

0 else e

0

|let x = e

0 in e

0

|assert e0; e0

ef ::=

|v
|ef v

e ::=

|[⇤↵]e0

|[�]e0

similar to Core ML intermediate
representation in MLton

Intersection types to
distinguish predicates at
different call-sites

Materialization to express non-lexical
constraints

Derived from weakest precondition
generation and propagated along
subtyping chains

19Saturday, September 24, 11

Dependent type encoding

• Liquid type rules provide well-formedness and subtyping
constraints on dependent types

• Encode dependent types of local variables and terms using
program terms and pre/post-conditions of functions
★Local dependent types encode intra-procedural path information

✦ Extract program error path from a (weak) dependent type system

• Abstract dependent types of functions
★Initially, all argument and return of functions are abstracted to true

★Strengthen pre- and post-conditions based on the program error path

20

20Saturday, September 24, 11

Encoding Type Rules
• Encode type rules as constraints over first-order formula

• Encoding should preserve {path,context} sensitivity

• Facilitate test generation and predicate refinement

21

� � e1 : bool � � P �; e1 � e2 : P �;¬e1 � e3 : P

� � if e1 then e2 else e3 : P

Example:

Generate constraint for P from this rule as:

P = C(e1)� C(e2) � ¬C(e1)� C(e3)

Constraint relates value of guard to specific branches

C(e) defines the constraints generated for e based on the structure of the liquid
type rules

21Saturday, September 24, 11

Verification Condition Generation

22

22Saturday, September 24, 11

Verification Condition Generation

22

Fun
� ` x : P

x

! P �;x : P
x

` e : P

� ` �x.e : (x : P
x

! P)

App
� ` v2 : P

x

� ` e

f

: (x : P
x

! P)

� ` e

f

(v2) : [v2/x]P

Verify postcondition P with precondition Px

Postcondition P is assumed if and only if its
precondition Px is asserted. Encoding?

22Saturday, September 24, 11

Verification Condition Generation

22

Fun
� ` x : P

x

! P �;x : P
x

` e : P

� ` �x.e : (x : P
x

! P)

App
� ` v2 : P

x

� ` e

f

: (x : P
x

! P)

� ` e

f

(v2) : [v2/x]P

Verify postcondition P with precondition Px

Postcondition P is assumed if and only if its
precondition Px is asserted. Encoding?

ASSERT
� ` e

0 : bool � ` { |true} <: { |e0} � ` e : P

� ` assert e0; e : P

Prove [Γ@e’]⇒e’ where [Γ@e’] represent
the conjunction of dependent types of
variables in e’ from Γ

22Saturday, September 24, 11

The left conjunct captures constraints induced by assertions on function arguments that occur
within the function body:
 These constraints must always hold
 Verification condition Γ |- v2 : Px

The right conjunct discriminates over different call-sites
 Constraints deduced for post-conditions at a call inform structure of pre-conditions

Encoding Application

23

App
� ` v2 : P

x

� ` e

f

: (x : P
x

! P)

� ` e

f

(v2) : [v2/x]P

Two issues:
1. Want to preserve some measure of context-sensitivity

 keep pre- and post-condition constraints at different call sites distinct
2. Make “must-hold” properties defined by assertions within the function body explicit

Px � P
�

i Pxi � Pi

Address these issues using intersection types

C(P) = [v2/x]P

C(P) = �i([v2/�)Pxi � [v2/x]Pi

C(P) = �i[v2/x]Pi

if v2 is of base type
otherwise because implication is made to hold by
subtyping relation for functions

23Saturday, September 24, 11

Type Checking/Refinement Algorithm

24

verify f λx.e WL
let vcs = vcgen ∅ λx.e (abs_ty (λ x. e))
in

foreach vc in vcs
let (result, vc_assignment, abstract_ce) = solve vc
in

if result then ()
else

let
t = genTestcase vc_assignment
concrete_path = run (f, t)
if(abstract_ce = concrete_path) then

genPrecondition f concrete_path WL
verify f e

else
pred = divergePred f abstract_ce concrete_path
genPostcondtion f pred WL

end

24Saturday, September 24, 11

Type Checking/Refinement Algorithm

24

verify f λx.e WL
let vcs = vcgen ∅ λx.e (abs_ty (λ x. e))
in

foreach vc in vcs
let (result, vc_assignment, abstract_ce) = solve vc
in

if result then ()
else

let
t = genTestcase vc_assignment
concrete_path = run (f, t)
if(abstract_ce = concrete_path) then

genPrecondition f concrete_path WL
verify f e

else
pred = divergePred f abstract_ce concrete_path
genPostcondtion f pred WL

end

Generate verification conditions

24Saturday, September 24, 11

Type Checking/Refinement Algorithm

24

verify f λx.e WL
let vcs = vcgen ∅ λx.e (abs_ty (λ x. e))
in

foreach vc in vcs
let (result, vc_assignment, abstract_ce) = solve vc
in

if result then ()
else

let
t = genTestcase vc_assignment
concrete_path = run (f, t)
if(abstract_ce = concrete_path) then

genPrecondition f concrete_path WL
verify f e

else
pred = divergePred f abstract_ce concrete_path
genPostcondtion f pred WL

end

Generate verification conditions

solve each condition using SMT

24Saturday, September 24, 11

Type Checking/Refinement Algorithm

24

verify f λx.e WL
let vcs = vcgen ∅ λx.e (abs_ty (λ x. e))
in

foreach vc in vcs
let (result, vc_assignment, abstract_ce) = solve vc
in

if result then ()
else

let
t = genTestcase vc_assignment
concrete_path = run (f, t)
if(abstract_ce = concrete_path) then

genPrecondition f concrete_path WL
verify f e

else
pred = divergePred f abstract_ce concrete_path
genPostcondtion f pred WL

end

Generate verification conditions

solve each condition using SMT

examine counterexample

24Saturday, September 24, 11

Type Checking/Refinement Algorithm

24

verify f λx.e WL
let vcs = vcgen ∅ λx.e (abs_ty (λ x. e))
in

foreach vc in vcs
let (result, vc_assignment, abstract_ce) = solve vc
in

if result then ()
else

let
t = genTestcase vc_assignment
concrete_path = run (f, t)
if(abstract_ce = concrete_path) then

genPrecondition f concrete_path WL
verify f e

else
pred = divergePred f abstract_ce concrete_path
genPostcondtion f pred WL

end

Generate verification conditions

solve each condition using SMT

examine counterexample

extract and run test case from assignment

24Saturday, September 24, 11

Type Checking/Refinement Algorithm

24

verify f λx.e WL
let vcs = vcgen ∅ λx.e (abs_ty (λ x. e))
in

foreach vc in vcs
let (result, vc_assignment, abstract_ce) = solve vc
in

if result then ()
else

let
t = genTestcase vc_assignment
concrete_path = run (f, t)
if(abstract_ce = concrete_path) then

genPrecondition f concrete_path WL
verify f e

else
pred = divergePred f abstract_ce concrete_path
genPostcondtion f pred WL

end

Generate verification conditions

solve each condition using SMT

examine counterexample

extract and run test case from assignment

weakest precondition generation when
concrete and abstract paths converge

24Saturday, September 24, 11

Type Checking/Refinement Algorithm

24

verify f λx.e WL
let vcs = vcgen ∅ λx.e (abs_ty (λ x. e))
in

foreach vc in vcs
let (result, vc_assignment, abstract_ce) = solve vc
in

if result then ()
else

let
t = genTestcase vc_assignment
concrete_path = run (f, t)
if(abstract_ce = concrete_path) then

genPrecondition f concrete_path WL
verify f e

else
pred = divergePred f abstract_ce concrete_path
genPostcondtion f pred WL

end

Generate verification conditions

solve each condition using SMT

examine counterexample

extract and run test case from assignment

weakest precondition generation when
concrete and abstract paths converge

strengthen post-condition when they diverge

24Saturday, September 24, 11

Type Checking/Refinement Algorithm

• Functions are put into worklist (WL) based on call relations

• Each iteration of the fixed-point picks a function from WL and
verifies it using verify

• Generate pre/postcondition
★ Can strengthen the dependent type of this function and callee function.

★ Put all function whose dependent type has changed into WL (worklist)

• When precondition of a function is strengthened, invoke type
constraint propagation algorithm

25

25Saturday, September 24, 11

Implementation

• Implementation is based on MLton, an open-source optimizing
Standard ML compiler
★Incorporate verification mechanism as a front-end pass in Core ML

✦ After defunctorization (no modules) and local simplification

‣ Type information and original program variables still available

✦ Before closure conversion, monomorphisation, and SSA translation

• Use theorem prover Yices as the verification engine
★Use MLton’s FFI interface to interact with a binary version of this prover

• A total of 7.5 KLOC

26

26Saturday, September 24, 11

Implementation

• MLton frontend defunctorizes, type-checks, and does local simplification yielding CoreML, an
intermediate representation which is polymorphic, higher-order and has nested patterns.

• Verifier generates verification conditions from typing rules for CoreML and feeds them to Yices.

• Obtain counterexample along with a testcase witness.

• Compile and run the function under verification with the testcase to obtain a concrete path

• Verifier uses the concrete path and counterexample to strengthen type system

27

MLton
Frontend

Verifier

SMT YicesMLton
Compiler

CoreML

Verification condition

testca
se / fu

nctio
n

source code
concrete path

result/
counterexample

Source Type inferred
All sat

Environment

27Saturday, September 24, 11

Preliminary Results

28

• Verify the array index should always be no less than 0

28Saturday, September 24, 11

Preliminary Results

28

• Verify the array index should always be no less than 0

28Saturday, September 24, 11

Preliminary Results

28

• Verify the array index should always be no less than 0

28Saturday, September 24, 11

Preliminary Results

28

• Verify the array index should always be no less than 0

28Saturday, September 24, 11

Preliminary Results

28

• Verify the array index should always be no less than 0

28Saturday, September 24, 11

Preliminary Results

28

• Verify the array index should always be no less than 0

28Saturday, September 24, 11

Preliminary Results

28

• Verify the array index should always be no less than 0

28Saturday, September 24, 11

Preliminary Results

28

• Verify the array index should always be no less than 0

28Saturday, September 24, 11

Preliminary Results

28

• Verify the array index should always be no less than 0

28Saturday, September 24, 11

Preliminary Results

29

• Verify the array index should always be less than the length of the array

29Saturday, September 24, 11

Preliminary Results

29

• Verify the array index should always be less than the length of the array

29Saturday, September 24, 11

Preliminary Results

29

• Verify the array index should always be less than the length of the array

29Saturday, September 24, 11

Preliminary Results

29

• Verify the array index should always be less than the length of the array

29Saturday, September 24, 11

Preliminary Results

29

• Verify the array index should always be less than the length of the array

29Saturday, September 24, 11

Preliminary Results

29

• Verify the array index should always be less than the length of the array

29Saturday, September 24, 11

Preliminary Results

29

• Verify the array index should always be less than the length of the array

29Saturday, September 24, 11

Preliminary Results

29

• Verify the array index should always be less than the length of the array

29Saturday, September 24, 11

Related Work

• Liquid Types (Rondon et. al [PLDI’08], Kawaguchi et. al [PLDI’09])

★ Qualifier discovery vs. selection

• Higher-Order Program Model Checking (Kobayashi et. al [PLDI’11]),
★ First-order vs. higher-order verification engine

• Dependent Types from Counterexamples (Terauchi [POPL’10])

★ Concrete tests vs. abstract counterexamples

• Verifying Functional Programs using Abstract Interpreters
(Jhala et. al, [CAV’11])

★ Program analysis vs. program transformation

30

30Saturday, September 24, 11

Conclusions

Preliminary evidence that incorporating modular verification
techniques into an optimizing compiler is feasible

★ A first step towards devising optimizations that leverage automatically derived
“rich” specifications

31

31Saturday, September 24, 11

