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Failure to infer a “rich” 
specification only implies a 
missed optimization 
opportunity, not a violation 
of compiler correctness
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Challenges

3

Consider
fun arraymax a g = 

let fun am h j m = 
   let val k = h j

     val a = assert (k>=0 /\ k<len a)
     val u = sub a k
     val p = max u m

   in assert (p >= m); p 
   end
  fun am’ = am g

in foldl (len a) 0 am’ 
end
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Consider

Complex dataflow

fun arraymax a g = 
let fun am h j m = 

   let val k = h j
     val a = assert (k>=0 /\ k<len a)
     val u = sub a k
     val p = max u m

   in assert (p >= m); p 
   end
  fun am’ = am g

in foldl (len a) 0 am’ 
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Specifications must propagate across 
procedure boundaries
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Liquid Types

4

fun max x y  = 
if x > y 
    then x 
    else y 

val r = 
   max a b

val _ = assert (r >= a)
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Liquid Types

4

fun max x y  = 
if x > y 
    then x 
    else y 

val r = 
   max a b

val _ = assert (r >= a)

{x : {ν: int | true} → y : {ν : int | true} →{ν : int | ν >= x /\ ν >= y}}

{ν : int | ν = x}

{ν : int | ν = x}
 {ν : int | ν = y} 

{ν >= a /\ ν >= b} Extend standard types with refinement predicates 
that refer to program variables and primitive 
functions

Well-typed program implies correctness
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Set of logical qualifiers is potentially 
quite large

Would like to infer the potential set of 
qualifiers from context and refine them as 
appropriate

Refinement Predicates

5

fun foldn n b f {n : true ! b : true ! f : {x1: {ν >= 0 /\ ν < n} ! x2 : true ! true} ! true} =
let fun loop i c {i : {(ν < n) ⇒ (ν >= 0)} ! c : true ! true} =

if (i < n) then loop (i+1) (f i c) {true} else c {true} {true}
in loop 0 b {true} 
end

fun g x {∀y. x : {ν >= 0 /\ ν < y} !{ν >= 0 /\ ν < y}} = 
x {∀y. ν = x} 

fun arraymax a {a : {true} ! true} = 
let fun am h j m 
{h : {x1 : {ν >= 0 /\ ν < len a} ! {ν >= 0 /\ ν < len a}} ! 
 j : {ν >= 0 /\ ν < len a} ! 
 m : {true} ! true} = 

let val k {ν >= 0 /\ ν < len a} = h j
  val _ {true} = assert (k>=0 /\ k < len a)
u {true} = sub a k
p {ν >= m} = max u m

in assert (p >= m); p {ν = p} end
fun am’ {x1: {ν >= 0 /\ ν < len a} ! x2 : true ! true} = am g

in foldn (len a) 0 am’ {true} end
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in assert (p >= m); p {ν = p} end
fun am’ {x1: {ν >= 0 /\ ν < len a} ! x2 : true ! true} = am g

in foldn (len a) 0 am’ {true} end

materialize quantifiers based on constraints 
introduced in non-lexical scope 
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Basic Idea
•  Analyze higher-order programs using first-order verification 

engine
★ Use a modular (inter-procedural) analysis to abstract dataflow through higher-

order procedures.

★ First-order verification engine treats higher-order functions as abstract values.

★ Use subtyping to propagate dependent type information across function boundaries
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order procedures.

★ First-order verification engine treats higher-order functions as abstract values.

★ Use subtyping to propagate dependent type information across function boundaries

•  Counterexample Guided Type Refinement
★ Iteratively refine dependent types using information gleaned from counterexample 

program paths

★ Use concrete tests to generate and mine dependent type predicates

•  Fixpoint algorithm
★Iterative type refinement based on new verification facts

★Iterative type-checking based on new qualifier inferences

•  Integrate these steps as a separate compiler phase

6
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Framework
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Type Inference

Type Checking

Type Refinement

Specification

Dependent Type Rules

Proof from test

SMT Solver
✓

✘
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Framework
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Type Inference

Type Checking

Type Refinement

Specification

✓
✘

Qualifier Inference

Contextual Predicates
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Type Inference

9

fun foldn n b f = ...
fun g x = x 
fun arraymax a {a : {true} ! true} = 

let fun am h j m  = 
let val k {ν >= 0 /\ ν < len a} = h j

  val u = (assert (k>=0 /\ k < len a); sub a k)
  val p = max u m

in assert (p >= m); p
end
fun am’= am g

in foldn (len a) 0 am’ 
end

Want to infer type of h in this context
propagate dependent type constraints for 
function signatures along subtyping chains 
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Want to infer type of h in this context
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Type Checking

• Construct a verification condition (VC) as a first-order 
formula from inferred dependent types
★ Typing rules track path conditions that are encoded in the structure of the VC

• The condition to be verified by an SMT solver is the negation 
of the VC
★ unsat => type checking successful

★ sat => additional strengthening required to derive a consistent specification

10
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(i < n ) /\ (ν = i) => {ν >= 0 /\ ν < n} to strengthen invariants¬

App

� ` v2 : P

x

� ` e

f

: (x : P

x

! P )

� ` e

f

(v2) : [v2/x]P

IF

� ` e1 : bool � ` P �; e1 ` e2 : P �;¬e1 ` e3 : P

� ` if e1 then e2 else e3 : P
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• Type Refinement is used to augment the set of qualifiers
★ We could re-analyze the body of called functions along a counterexample (inter-

procedural) path from a call-site.  

★ But, within a compiler, can explore concrete paths fairly easily 

✦  Internally,  build a compile-test-run loop over an optimized well-typed IR

• Use lightweight testing to determine where and how to refine 
the type system.  (Proofs-from-tests aka Dash)

• Testing provides a concrete witness to guide how existing 
invariants can be strengthened.

Type Refinement

12

Failed
Proof

Test
Case

Concrete
Path

Abstract
Counterexample

refinement
New
Proof
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Directed Testing

13

px

p

concrete path 
diverges

function f 
return edge

function f call 
edge

px is not implied by the environment
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Directed Testing

• If environment at a call-site 

★ implies the called function’s pre-condition, then original counterexample will 
no longer be reported if we strengthen called function’s post-condition and 
compute weakest precondition.  

★ does not imply the called function’s precondition, then must strengthen 
function’s pre-condition to force divergence.

• Goal: either eliminate the counterexample by strengthening callee’s post-
condition, or direct test case execution to converge to counterexample, 
strengthening caller’s pre-condition

14

px

p

concrete path 
diverges

function f 
return edge

function f call 
edge

px is not implied by the environment
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Example

15

let fun g x = x
    fun f x = if x < 2   
                 then let s = g x

                  in assert (s <= 0)
                  end

               else ()
...
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diverge

x<2

s<=0

x=-1
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x<2

x=1
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Initially, solve:
¬V C : ¬(x < 2� s � 0)

{� � 0}� {� � 0}
Strengthen g’s type which is initially {true}� {true}

Strengthen pre-condition for f to {x : � � 0}to eliminate the counter-example

Generate new verification condition based on g’s refinement
¬V C : ¬((x < 2 � (x � 0� s � 0)� (s � 0))
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Pre-Condition Refinement

16

fun foldn n b f 
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16

fun foldn n b f 
  {n : true ! b : true ! f : {x1: {ν >= 0 /\ ν < n} ! x2 : true ! true} ! true} =

let fun loop i c {i : true ! c : true ! true} =
if (i < n) then loop (i+1) (f i c) else c
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Post-Condition Refinement

17

fun arraymax a g = 
let fun am h j m 
  {h : {x1 : {true}!{ν >= 0 /\ ν < len a}} !j : {true} ! m : {true} ! true} = 

let val k {ν >= 0 /\ ν < len a} = h j
  val u {true} = sub a k
  val p          = max u m

in assert (p >=m); p {ν=p} end {true}
fun am’ = am g

in fold (len a) 0 am’ end

{true}
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AlgorithmicType Inference
• Type inference 

★Rule Generation

✦Encode first-order formula from liquid type rules

★Constraint Propagation

✦Subtyping chains

• Type checking
★Verification condition generation and solve

• Type Refinement
★ Directed testing to generate functional precondition and postcondition constraints 

18
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Language

19

Base Types

B ::=

|int
|bool

Dependent Types, Schemas

P ::=

|{⌫ : B|e}
|P ! P

|↵
|8↵.8x.P
|P ^ P

Expressions

e

0 ::=

|⌫, v, x 2 V ar

|c
|�x.e0

|if e0 then e

0 else e

0

|let x = e

0 in e

0

|assert e0; e0

ef ::=

|v
|ef v

e ::=

|[⇤↵]e0

|[�]e0

similar to Core ML intermediate 
representation in MLton
   

Intersection types to
distinguish predicates at
different call-sites

Materialization to express non-lexical 
constraints

Derived from weakest precondition 
generation and propagated along 
subtyping chains
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Dependent type encoding

• Liquid type rules provide well-formedness and subtyping 
constraints on dependent types

• Encode dependent types of local variables and terms using 
program terms and pre/post-conditions of functions
★Local dependent types encode intra-procedural path information 

✦ Extract program error path from a (weak) dependent type system 

• Abstract dependent types of functions
★Initially, all argument and return of functions are abstracted to true

★Strengthen pre- and post-conditions based on the program error path

20
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Encoding Type Rules
• Encode type rules as constraints over first-order formula

• Encoding should preserve {path,context} sensitivity

• Facilitate test generation and predicate refinement

21

� � e1 : bool � � P �; e1 � e2 : P �;¬e1 � e3 : P

� � if e1 then e2 else e3 : P

Example:

Generate constraint for P from this rule as:

P = C(e1)� C(e2) � ¬C(e1)� C(e3)

Constraint relates value of guard to specific branches

C(e) defines the constraints generated for e based on the structure of the liquid 
type rules
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Verification Condition Generation

22
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Verification Condition Generation

22

Fun
� ` x : P

x

! P �;x : P
x

` e : P

� ` �x.e : (x : P
x

! P )

App
� ` v2 : P

x

� ` e

f

: (x : P
x

! P )

� ` e

f

(v2) : [v2/x]P

Verify postcondition P with precondition Px

Postcondition P is assumed if and only if its 
precondition Px is asserted.  Encoding?
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Verification Condition Generation

22

Fun
� ` x : P

x

! P �;x : P
x

` e : P

� ` �x.e : (x : P
x

! P )

App
� ` v2 : P

x

� ` e

f

: (x : P
x

! P )

� ` e

f

(v2) : [v2/x]P

Verify postcondition P with precondition Px

Postcondition P is assumed if and only if its 
precondition Px is asserted.  Encoding?

ASSERT
� ` e

0 : bool � ` { |true} <: { |e0} � ` e : P

� ` assert e0; e : P

Prove [Γ@e’]⇒e’ where [Γ@e’] represent 
the conjunction of dependent types of 
variables in e’ from Γ
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The left conjunct captures constraints induced by assertions on function arguments that occur 
within the function body:   
      These constraints must always hold
      Verification condition Γ |- v2 : Px        

The right conjunct discriminates over different call-sites
      Constraints deduced for post-conditions at a call inform structure of pre-conditions
      

Encoding Application

23

App
� ` v2 : P

x

� ` e

f

: (x : P
x

! P )

� ` e

f

(v2) : [v2/x]P

Two issues:
1.     Want to preserve some measure of context-sensitivity  

                  keep pre- and post-condition constraints at different call sites distinct
2.     Make “must-hold” properties defined by assertions within the function body explicit

Px � P
�

i Pxi � Pi

Address these issues using intersection types

C(P ) = [v2/x]P

C(P ) = �i([v2/�)Pxi � [v2/x]Pi

C(P ) = �i[v2/x]Pi

if v2 is of base type
otherwise because implication is made to hold by 
subtyping relation for functions
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Type Checking/Refinement Algorithm

24

verify f λx.e WL
let vcs = vcgen ∅ λx.e (abs_ty (λ x. e)) 
in 

foreach vc in vcs
let (result, vc_assignment, abstract_ce) = solve vc
in

if result then ()
else

let 
t = genTestcase vc_assignment
concrete\_path = run (f, t) 
if(abstract_ce = concrete_path) then 

genPrecondition f concrete_path WL
verify f e

else
pred = divergePred f abstract_ce concrete_path 
genPostcondtion f pred WL

end

24Saturday, September 24, 11



Type Checking/Refinement Algorithm

24

verify f λx.e WL
let vcs = vcgen ∅ λx.e (abs_ty (λ x. e)) 
in 

foreach vc in vcs
let (result, vc_assignment, abstract_ce) = solve vc
in

if result then ()
else

let 
t = genTestcase vc_assignment
concrete\_path = run (f, t) 
if(abstract_ce = concrete_path) then 

genPrecondition f concrete_path WL
verify f e

else
pred = divergePred f abstract_ce concrete_path 
genPostcondtion f pred WL

end

Generate verification conditions

24Saturday, September 24, 11



Type Checking/Refinement Algorithm

24

verify f λx.e WL
let vcs = vcgen ∅ λx.e (abs_ty (λ x. e)) 
in 

foreach vc in vcs
let (result, vc_assignment, abstract_ce) = solve vc
in

if result then ()
else

let 
t = genTestcase vc_assignment
concrete\_path = run (f, t) 
if(abstract_ce = concrete_path) then 

genPrecondition f concrete_path WL
verify f e

else
pred = divergePred f abstract_ce concrete_path 
genPostcondtion f pred WL

end

Generate verification conditions

solve each condition using SMT

24Saturday, September 24, 11



Type Checking/Refinement Algorithm

24

verify f λx.e WL
let vcs = vcgen ∅ λx.e (abs_ty (λ x. e)) 
in 

foreach vc in vcs
let (result, vc_assignment, abstract_ce) = solve vc
in

if result then ()
else

let 
t = genTestcase vc_assignment
concrete\_path = run (f, t) 
if(abstract_ce = concrete_path) then 

genPrecondition f concrete_path WL
verify f e

else
pred = divergePred f abstract_ce concrete_path 
genPostcondtion f pred WL

end

Generate verification conditions

solve each condition using SMT

examine counterexample

24Saturday, September 24, 11



Type Checking/Refinement Algorithm

24

verify f λx.e WL
let vcs = vcgen ∅ λx.e (abs_ty (λ x. e)) 
in 

foreach vc in vcs
let (result, vc_assignment, abstract_ce) = solve vc
in

if result then ()
else

let 
t = genTestcase vc_assignment
concrete\_path = run (f, t) 
if(abstract_ce = concrete_path) then 

genPrecondition f concrete_path WL
verify f e

else
pred = divergePred f abstract_ce concrete_path 
genPostcondtion f pred WL

end

Generate verification conditions

solve each condition using SMT

examine counterexample

extract and run test case from assignment

24Saturday, September 24, 11



Type Checking/Refinement Algorithm

24

verify f λx.e WL
let vcs = vcgen ∅ λx.e (abs_ty (λ x. e)) 
in 

foreach vc in vcs
let (result, vc_assignment, abstract_ce) = solve vc
in

if result then ()
else

let 
t = genTestcase vc_assignment
concrete\_path = run (f, t) 
if(abstract_ce = concrete_path) then 

genPrecondition f concrete_path WL
verify f e

else
pred = divergePred f abstract_ce concrete_path 
genPostcondtion f pred WL

end

Generate verification conditions

solve each condition using SMT

examine counterexample

extract and run test case from assignment

weakest precondition generation when 
concrete and abstract paths converge

24Saturday, September 24, 11



Type Checking/Refinement Algorithm

24

verify f λx.e WL
let vcs = vcgen ∅ λx.e (abs_ty (λ x. e)) 
in 

foreach vc in vcs
let (result, vc_assignment, abstract_ce) = solve vc
in

if result then ()
else

let 
t = genTestcase vc_assignment
concrete\_path = run (f, t) 
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verify f e

else
pred = divergePred f abstract_ce concrete_path 
genPostcondtion f pred WL

end

Generate verification conditions

solve each condition using SMT

examine counterexample

extract and run test case from assignment

weakest precondition generation when 
concrete and abstract paths converge

strengthen post-condition when they diverge
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Type Checking/Refinement Algorithm

• Functions are put into worklist (WL) based on call relations

• Each iteration of the fixed-point picks a function from WL and 
verifies it using verify

• Generate pre/postcondition 
★ Can strengthen the dependent type of this function and callee function.

★ Put all function whose dependent type has changed into WL (worklist)

• When precondition of a function is strengthened, invoke type 
constraint propagation algorithm

25
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Implementation

• Implementation is based on MLton, an open-source optimizing 
Standard ML compiler
★Incorporate verification mechanism as a front-end pass in Core ML

✦ After defunctorization (no modules) and local simplification

‣ Type information and original program variables still available

✦ Before closure conversion, monomorphisation, and SSA translation

• Use theorem prover Yices as the verification engine
★Use MLton’s FFI interface to interact with a binary version of this prover

• A total of 7.5 KLOC

26
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Implementation

• MLton frontend defunctorizes, type-checks, and does local simplification yielding CoreML, an 
intermediate representation which is polymorphic, higher-order and has nested patterns.

• Verifier generates verification conditions from typing rules for CoreML and feeds them to Yices.

• Obtain counterexample along with a testcase witness.

• Compile and run the function under verification with the testcase to obtain a concrete path

• Verifier uses the concrete path and counterexample to strengthen type system

27

MLton 
Frontend

Verifier

SMT YicesMLton
Compiler

CoreML

Verification condition

testca
se / fu

nctio
n 

source code
concrete path

result/
counterexample

Source Type inferred
All sat

Environment
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Preliminary Results
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• Verify the array index should always be no less than 0
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Related Work

• Liquid Types (Rondon et. al [PLDI’08], Kawaguchi et. al [PLDI’09])

★ Qualifier discovery vs. selection

• Higher-Order Program Model Checking (Kobayashi et. al [PLDI’11]), 
★  First-order vs. higher-order verification engine

• Dependent Types from Counterexamples (Terauchi [POPL’10])

★ Concrete tests vs. abstract counterexamples

•  Verifying Functional Programs using Abstract Interpreters                    
(Jhala et. al, [CAV’11])

★ Program analysis vs. program transformation
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Conclusions

Preliminary evidence that incorporating modular verification 
techniques into an optimizing compiler is feasible

★ A first step towards devising optimizations that leverage automatically derived 
“rich” specifications
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