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Abstract. We consider the problem of inferring expressive safety prop-
erties of higher-order functional programs using first-order decision pro-
cedures. Our approach encodes higher-order features into first-order logic
formula whose solution can be derived using a lightweight counterex-
ample guided refinement loop. To do so, we extract initial verification
conditions from dependent typing rules derived by a syntactic scan of
the program. Subsequent type-checking and type-refinement phases infer
and propagate specifications of higher order functions, which are treated
as uninterpreted first-order constructs, via subtyping chains. Our tech-
nique provides several benefits not found in existing systems: (1) it en-
ables compositional verification and inference of useful safety properties
for functional programs; (2) additionally provides counterexamples that
serve as witnesses of unsound assertions: (3) does not entail a complex
translation or encoding of the original source program into a first-order
representation; and, (4) most importantly, profitably employs the large
body of existing work on verification of first-order imperative programs
to enable efficient analysis of higher-order ones. We have implemented
the technique as part of the MLton SML compiler toolchain, where it has
shown to be effective in discovering useful invariants with low annotation
burden.

1 Introduction

Dependent or refinement types [21, 11, 29] offer a promising way to express rich
invariants in functional programs that can go beyond the capabilities of tra-
ditional type systems [8] or control-flow analyses [26], albeit at the price of
automatic inference. Recently, there has been substantial progress in reducing
this annotation burden [16, 24, 15, 14, 17, 18, 20, 19, 23] using techniques adopted
from model-checking and verification of first-order imperative programs [12, 7].
These solutions, however, either (a) involve a complex reformulation of the in-
tuitions underlying invariant detection and verification from a first-order con-
text to a higher-order one [18, 19], making it difficult to directly reuse existing
tools and methodologies, (b) infer dependent types by solving a set of con-
straints collected by a whole-program analysis [16, 24], additionally seeded with



programmer-specified qualifiers, that can impact compositionality and usabil-
ity, or (c) entail a non-trivial translation to a first-order setting [14], making it
more complicated to relate the inferences deduced in the translated first-order
representation back to the original higher-order source when there is a failure.

In this paper, we present Popeye, a compositional verification system that in-
tegrates a first-order verification engine, unaware of higher-order control- and
dataflow, into a path- and context-sensitive dependent type inference framework
for Standard ML. Notably, our solution treats uses of higher-order functions as
uninterpreted terms. In this way, we are able to directly exploit the scalability
and efficiency characteristics of first-order verification tools without having to
either consider a sophisticated translation or encoding of our functional source
program into a first-order one [14], or to re-engineer these tools for a higher-
order setting [18]. Our verification strategy is based on a counterexample-guided
refinement loop that systematically strengthens a function’s inferred dependent
type based on new predicates discovered during examination of a derived coun-
terexample path. Moreover, our strategy allows us not to only verify the validity
of complex assertions, but can also be used to directly provide counterexample
witnesses that disprove the validity of presumed invariants that are incorrect.

Our technique is compositional because it lazily propagates refinements com-
puted at call-sites to procedures and vise versa, allowing procedure specifications
to be strengthened incrementally. It is lightweight because it directly operates
on source programs without the need to generate arbitrary program slices [27],
translate the source to a first-order program [14], or abstract the source to a
Boolean program [19]. Popeye’s design consists of two distinct parts:

1. Dependent Type Checking . Initially, we infer coarse dependent types for
all local expressions within a procedure using dependent type rules that
encode intraprocedural path information in terms of first-order logic formulae
that range over linear arithmetic and uninterpreted functions, the latter
used to abstract a program’s higher-order control-flow. We build verification
conditions that exploit the dependent types and which are subsequently
supplied into a first-order decision procedure. Verification failure yields an
intraprocedural counterexample path.

2. Dependent Type Refinement . The counterexample path can be used by
existing predicate discovery algorithms to appropriately strengthen pre- and
post-conditions at function calls. Newly discovered refinement predicates are
propagated along subtyping chains that capture interprocedural dependen-
cies to strengthen the dependent type signatures of the procedures used at
these call-sites.

The remainder of the paper is organized as follows. In the next section, we present
an informal overview of our approach. Section 3 defines a small dependently-
typed higher-order core language. We formalize our verification strategy for this
language in Section 4. Section 5 discusses the implementation and experimental
results. Related work and conclusions are given in Sections 6 and 7.



2 Overview and Preliminaries

Dependent types. We consider two kinds of dependent type expressions:

1. a dependent base type written {ν : B| r}, where ν is a special value variable
undefined in the program whose scope is limited to r, B is a base type, such
as int or bool, and r is a boolean-valued expression (called a refinement).
For instance, {ν : int | ν > 0} defines a dependent type that represents the
set of positive integers.

2. a dependent function type written:

{x : P1x → P1} ⊕ {x : P2x → P2} ⊕ . . .⊕ {x : Pnx
→ Pn}

abbreviated as ⊕i{x : Pix → Pio}, where each {x : Pix → Pi} defines a
function type whose argument x is constrained by dependent type Pix and
whose result type is specified by Pi. The different components of a dependent
function type distinguish different contexts in which the function may be
used. For instance,

{x : {ν : int | ν > 0} → {ν : int | ν > x}}⊕{x : {ν : int| ν < 0} → {ν : int| ν < x}}

specifies the function that, in one call-site, given a positive integer returns an
integer greater than x, while in another, given a negative integer returns an
integer less than x. Components in a dependent function type are indexed
by an implicit label, e.g., a finite call-string used in polyvariant control-flow
analyses [25, 13].

As shorthand, we sometimes write only the refinement predicate to represent
the dependent type, omitting its type constructor. Thus, in the following, we
sometimes write {r} as shorthand for {ν : B | r}. For example, {ν > 0} repre-
sents {ν : int | ν > 0}. We also write B as shorthand for {ν : B | true}. For
perspicuity, we use syntactic sugar to allow the ⊕ operator to be “pushed into”
refinements:

{ν : B | r1} ⊕ {ν : B | r2} = {ν : B | r1 ⊕ r2}
{x : P1 → Pr1} ⊕ {x : P2 → Pr2} = {x : P1 ⊕ P2 → Pr1 ⊕ Pr2}

As a result, context-sensitive dependent types reuse the shape of ML types (Sec-
tion 3.1). Additionally, we define P.i to return the dependent type indexed by la-
bel i. When a function is used in a single context, we simply write {x : Px → P}.

Procedure specifications. A procedure specification is given in terms of a
pre- and post-condition of a procedure; we express these conditions in terms of a
dependent function type where the type of the function’s domain can be thought
of as the function’s pre-condition, and where the type of the function’s range
defines its post-condition.



fun f g x =

if x>=0 then

let r = g x in r

else

let p = f g

q = compute x

s = f p q

in s

fun main h n =

let r = f h n

in assert (r >= 0)

Fig. 1. The use of higher-order procedures can make compositional dependent type
inference challenging.

2.1 Example

Consider the program shown in Fig. 1. This program exhibits complex dataflow
(e.g., it can create an arbitrary number of closures via the partial application of
f ) and makes heavy use of higher-order procedures (e.g., the formal parameter
g in function f ). We wish to infer a useful specification for f without having
to (a) supply candidate qualifiers used in the dependent types that define the
specification, (b) know the possible concrete arguments that can be supplied to
g , or (c) require details about compute ’s definition. In spite of these constraints,
our technique nonetheless associates the following non-trivial type to f :

f : {g : {garg : {ν ≥ 0}} → {ν ≥ 0}} → x : {true} → {ν ≥ 0}}

This type ascribes an invariant to g that asserts that g must take a non-
negative number as an argument (as a consequence of the path constraint (x

>= 0) within which it is applied) and returns a non-negative number as a result
(as a consequence of the assertion made in main ).

fun g x y = x

fun twice f x y =

let p = f x

in f p y

fun neg x y = -(x ())

fun main n =

if n >= 0 then

assert(twice neg (g n) () >= 0)

else ()

Fig. 2. A function’s specification can be refined based on the context in which it is
used.

The utility of context-sensitive dependent types arises when a function is called
in different (potentially inconsistent) contexts. Consider the program shown in
Fig. 2. Here, function f (which is supplied the argument neg in main ) is called
in two different contexts in the procedure twice . The first argument to f is a
higher-order procedure - in the first call, this procedure is bound to the result
of evaluating g n ; in the second call, the procedure (bound to p ) is the result
of the first partial application. Since f negates the value yielded by applying its
procedure argument to () , we thus infer the following specification:

farg1 : {{true⊕ true} → {ν ≥ 0⊕ ν ≤ 0}} → farg2 : {true⊕ true} → {ν ≤ 0⊕ ν ≥ 0}



3 Language

We formalize our ideas in the context of a call-by-value variant of the λ-calculus
with support for dependent types. The syntax of the language is shown in Fig. 3.
We use f, g, x, y, . . . to range over variables; typically, f and g (as well as their
subscripted variants) are only bound to abstractions, while x and y (as well
as their subscripted variants) can be bound to values of any type. The special
variable ν is used to denote the value of a term in its corresponding dependent
type refinement predicate. The language supports a small set of base types (B),
monotypes (τ), type schemas (σ) that introduce polymorphic types via type
variables that are universally quantified at the outermost level, and dependent
types (P ) that include dependent base types and dependent function types

Predicates (p) are Boolean expressions built from a predefined set (Q) of first-
order logical, arithmetic, and relational operators; the arguments to these op-
erators are simple expressions - variables, constants, or function applications;
to simplify the technical development, we assume function applications are A-
normalized, ensuring every abstraction and function argument is associated with
a program variable. A refinement expression is either a refinement variable (κ)
that represents an initially unknown refinement or a concrete predicate (p).
Templates (PT ) are dependent types whose refinement expressions are only re-
finement variables (κ). The pick or selection operator κ.i on refinement variable
allows ⊕ to be pushed into refinements (as described in Section 2), and hence
omitted in template definitions. Instantiation of the refinement variables to con-
crete predicates takes place through the type refinement algorithm described in
Section 4. An assert statement of the form “assert p; e′” evaluates expression e′

if predicate p evaluates to true and returns the special value fail otherwise.

f, g, x, y, . . . ∈ Var c ∈ Constant ::= 0, 1, . . ., true, false, . . . B ∈ Base ::= int | bool

τ ∈ Monotype ::= B| α | τ → τ σ ∈ PolyType ::= τ | ∀α.σ
P ∈ DepType ::= {ν : B | r} | ⊕i {x : P → P}

r ∈ Refinement ::= κ | p p ∈ Predicate ::= Q(s, . . . , s)

κ ∈ RefinementVar ::= κ | κ.i PT ∈ Template ::= {ν : B |κ} | {x : PT → PT }
s ∈ SimpleExp ::= ν | x | f x v ∈ Value ::= c | λx. e

e ::= s | v | fix e | fail | if p then et else ef | let x = e in e | assert p; e | [Λα] e | [τ ] e

Fig. 3. Syntax

3.1 Dependent Type System

Type inference and checking use an ordered type environment Γ that consists of
a sequence of dependent type bindings x : Px along with guard expressions drawn



from conditional expression predicates. The use of these guard expressions makes
the type system path-sensitive since the dependent types inferred for a term are
computed using the guard expressions that encode the program path taken to
reach this term. We define the shape of a dependent type as its corresponding
ML type; thus, Shape(P) is obtained by replacing all refinements in P with true.
We generalize its definition to type environments in the obvious way - hence,
Shape(Γ ) consists only of bindings that relate variables to ML types, with all
refinements replaced with true and guard expressions found in Γ removed.

Γ (x) = {ν : B | e}
Γ ` x : {ν : B | ν = x} VarBase

Γ (x) not a base type

Γ ` x : Γ (x)
VarFunc

Γ ` c : ty(c)
Const

Γ ` e1 : P1 Γ ;x : P1 ` e2 : P2

Γ ` let x = e1 in e2 : P2
Let

∀ i. Γi;x : Pix ` e : Pie Γi;x : Pix ` Pie <: Pi

⊕iΓi ` λx.e : ⊕i {x : Pix → Pi}
Fun

Γ ` e : {f : Pf → ⊕i {x : Pix → Pi}}
Γ ; f : Pf ` fix e : ⊕i {x : Pix → Pi}

Fix

Γ ` y : Py Γ ` Py <: Px Γ ` fi : (x : Px → P )

Γ ` fi(y) : [y/x]P
App

Γ ` p : bool Γ ; p ` et : Pt Γ ;¬p ` ef : Pf

Γ ` if p then et else ef : C(p, Pt, Pf )
If

Γ ` f : ⊕i {x : Pix → Pi}
Γ ` fj : {x : Pjx → Pj}

Pick

∀ i. Γi ` fi : {x : Pix → Pi}
⊕iΓi ` f : ⊕i {x : Pix → Pi}

Conc
Γ ` {bool | true} <: {bool | p} Γ ` e : P

Γ ` assert p; e : P
Assert

Γ ` e : ∀α.P Γ ` P ′ Shape(P ′) = γ

Γ ` [γ]e : [P ′/α]P
Inst

Γ ` e : P α not free in Γ

Γ ` [Λα]e : ∀α.P Gen

〈Γ 〉 ∧ 〈r1〉 ⇒ 〈r2〉
Γ ` {ν : B | r1} <: {ν : B | r2}

BaseSub
Γ ` P ′

x <: Px Γ ;x : P ′
x ` P <: P ′

Γ ` {x : Px → P} <: {x : P ′
x → P ′} FunSub

∀ i. Γ ` {x : Pix → Pi} <: {x : P ′
i x → P ′

i}
Γ ` ⊕i {x : Pix → Pi} <: ⊕i {x : P ′

i x → P ′} ConcFunSub

Fig. 4. Dependent typing rules

Fig. 4 defines the dependent type inference rules; these rules are adapted from
[24], generalized to deal with richer path and context-sensitive types. Syntac-
tically, Γ ` e : P states that expression e has type dependent type P under
type environment Γ . Our typing rules are refinements of the ML typing rules. If



Γ ` e : P then Shape(Γ ) ` e : Shape(P ). Γ ; x : P defines the type environment
that extends the sequence Γ with a binding for x to P . The rules for variables,
constants, let-expressions are standard. Rule Fun associates a context-sensitive
dependent function type with an abstraction. The structure of this type is deter-
mined by the different contexts in which the abstraction is applied (Γi) generated
from rule Conc described below. The first judgment in the antecedent considers
the type of the abstraction body in all type environments Γi enriched by a type
binding of bound variable x with dependent type Pix . The second judgment as-
serts that Pie , the type associated with the body of the abstraction, be a subtype
of the return type of the abstraction. Rule Fix defines recursive functions in the
obvious way. Rule App establishes a subtyping relation between the actual and
formal parameters in the application. The abstract labels that subscript func-
tion identifiers in the rules are used to express context-sensitivity but are not
part of the program syntax, and are constructed during the interprocedural type
refinement phase.

In the If rule, we independently infer types Pt and Pf for branch expressions et
and ef , resp. Then, the dependent type of the entire expression is given using
operator C that enforces the guard expression (or its negation) p (or ¬p) to be
a precondition of the corresponding type:

C(p, {τ | r1}, {τ | r2}) = {τ | p⇒ r1 ∧ ¬p⇒ r2}
C(p,⊕i{x : P1 → Pr1},⊕i{x : P2 → Pr2}) = ⊕i{x : C(p, P1, P2)→ C(p, Pr1 , Pr2)}

There are two rules for extracting and generating context-sensitive dependent
type functions. A term f with type ⊕i {x : Pix → Pi} reflects the type of all
uses of f in different contexts; the type at a given context can be indexed by
the label at the use (rule Pick). Conversely, we can construct the concatanation
of the types at each context to yield the actual type of the function (rule Conc).
The subtype judgment in rule Assert enforces that the assertion predicate p hold.
Polymorphic instantiation and generalization are defined in the standard way.

There are three subtyping rules. In rule Base Subtyping, the premise check 〈Γ 〉∧
〈r1〉 ⇒ 〈r2〉 requires that the conjunction of environment formula 〈Γ 〉 and r1
imply r2. As in [24], 〈Γ 〉 is defined as a first order logic formula:∧

{r | r ∈ Γ} ∧
∧
{[[x/ν] r] | x : {ν : B | r} ∈ Γ}

Rule FunSubtype defines the usual subtyping relation on functions and rule Con-
cFun generalizes this rule to deal with context-sensitivity. These three rules im-
plicitly encode subtyping chains, allowing specifications to be propagated across
function boundaries.

Our semantics enjoys the usual progress and preservation properties; evalua-
tion preserves types, and well-typed programs do not get stuck. (An assertion
violation causes the program to halt with the special value fail.)



Theorem 1 (Dependent Type Safety).

1. (Preservation) If Γ ` e : P and e ↪→ e′ then Γ ` e′ : P
2. (Progress) If Γ ` e : P , where e 6= fail then e is either a constant or an

abstraction, or there exists an e′ such that e ↪→ e′.

4 Verification Procedure

Our verification system consists of (a) a type-checking algorithm that encodes
intra-procedural path constraints and generates verification conditions whose va-
lidity can be checked by a first-order decision procedure, and (b) a counterexam-
ple guided dependent type refinement loop that uses the counterexample yielded
by a verification failure to strengthen existing invariants, and propagate new ones
inter-procedurally via dependent subtyping chains.

4.1 Dependent Type Checking

The first step of our verification procedure is to assign each function a dependent
type template as described earlier. By applying our inference rules, with the
type template, given a type environment Γ and expression e, we can construct
dependent types for local expressions and derive a set of subtyping constraints,
which will be subsequently used to generate verification conditions (VC).

There are three verification conditions generated from the type checking rules.
First, a subtyping constraint introduced by an assert expression:

Γ ` {bool | true} <: {bool | p}

entails a verification condition that checks the validity of p under the path con-
straints and type bindings defined by Γ . Second, the subtyping constraint asso-
ciated with function abstraction:

Γ ;x : PT x ` PT e <: PT

establishes a verification condition on the post-condition of this abstraction that
requires it be consistent with the invariants inferred for its body. Third, the
subtyping constraint associated with function application:

Γ ` PT y <: PT x

entails a verification condition that checks that the specification of the function’s
pre-condition subsumes the invariants associated with the argument at the call.

A solution in our system is defined by a refinement environment Σ that maps
refinement variables κ to refinements. We lift this notion to dependent types
Σ(PT ) and type environment Σ(Γ ) by substituting each place holder κ with



Σ(κ) appearing in PT and Γ . A verification condition c is valid if Σ(c) is valid.
We say Σ satisfies a subtyping constraint Γ ` PT 1 <: PT 2 if Σ(Γ ) ` Σ(PT 1) <:
Σ(PT 2). Σ is a valid solution if it satisfies all subtype constraints.

Like [24], we deconstruct arbitrary subtyping constraints to base subtyping con-
straints (Fig. 4). According to the Base Subtyping rule, the verification condition
formula is generated as

〈Σ(Γ )〉 ∧ 〈Σ(r1)〉 ⇒ 〈Σ(r2)〉

To allow our verification engine to deal with unknown higher-order functions,
we encode higher-order functions into an uninterpreted form. Suppose the type
of function f is x0 : Px0

→ · · · → xn : Pxn
→ Pf . We encode Pf to be {ν =

Rf (arg0(f), . . . , argn(f))}; here, Rf and argi are uninterpreted terms representing
the result of function f and the ith argument supplied to f at a call. Applications
of higher-order function f are encoded by substituting actuals for the appropriate
(suitably encoded) formal as Encode(f). This gives us the ability to verify a
function modularly without having to know the set of definitions referenced by
a functional argument or result. For example, for the program shown in Fig. 1,
the variable r in the let-binding, r = g x , is encoded as [x/arg0(g)]Rg(arg0(g)),
which is simply Rg(x). The subtyping constraint built for checking the post-
condition during the verification of f , leads to the construction of the verification
condition:

((x ≥ 0 ∧ r = Rg(x))⇒ ν = r) ∧ ((¬(x ≥ 0) ∧ s ≥ 0)⇒ ν = s)⇒ (ν ≥ 0)

4.2 Dependent Type Refinement

The heart of our counterexample-guided type refinement loop is given in Fig. 5.
Our refinement algorithm exploits the dependent type template and subtyping
constraints generated from type inference rules and finally returns solution Σ. In
Solve , our method iteratively type checks each procedure of the given program
using the subtyping rules listed in Fig. 4 until a fix-point is reached. When
a procedure cannot be typed with the set of current refinements, our method
supplies the unverified procedure’s type environment Γ , the current refinement
map Σ, its type template x : PT x → PT , the unverified function λx.e, and the
verification conditions C constructed for the function to Refine which can then
proceed to strengthen the function’s dependent type.

Counterexample generation. Our refinement algorithm first constructs a
counterexample ce for an unverified verification condition. The counterexample
is derived by solving the negation of the desired verification condition:

〈Σ(Γ )〉 ∧ 〈Σ(r1)〉 ∧ ¬〈Σ(r2)〉

The encoding of Γ and r1 reflects path information; by the structure of the rules
in Fig. 4, the encoding of refinement r2, on the other hand, reflects a safety



Refine (Γ , Σ, {x : PT x → PT }, λx.e, C) =
if exists c ∈ C such that Σ(c) is not valid with a witness of ce
then

let Σ′ = case c of
| Γ ` {ν : B|p1} <: {ν : B|r2} ⇒

let pred = case r2 of | p2 ⇒ r2 | ⇒ Σ[r2]
in Strengthen ({x : PT x → PT }, Σ, wp (ce, pred), r2)

| Γ ` {ν : B| κ1} <: {ν : B| κ2} ⇒
Σ[κ1 7→ (Σ[κ1]) ∧ (Σ[κ2])]

in Refine (Γ , Σ′, {x : PT x → PT }, λx.e, C)
else Σ

Solve (procedures as List[Γ , {x : PT x → PT }, λx.e, C], Σ) =
if exists (Γ , {x : PT x → PT }, λx.e, C) for a procedure needs to be checked
then

Solve (procedures, Refine (Γ , Σ, {x : PT x → PT }, λx.e, C))
else Σ

Fig. 5. Type refinement algorithm

property that is implied by 〈Γ 〉∧〈r1〉. Thus, an assignment to this formula leads
to a counterexample of a possible safety violation; this counterexample path is
represented as a straight-line program.

A path expression of the form: “ if p then et else ef” is translated to: “ assume
p; et” if an assignment from the VC evaluates p to true and “ assume ¬p; ef”
otherwise. Consider our example from Fig. 1. A first-order decision procedure
would find an assignment to the the negation of the VC as an error witness, e.g.,
r = -1 and x = 1 . The representation of the counterexample path of procedure
f given in Fig. 1 is thus:

fun f g x = assume (x >= 0); let r = g x in r

According to the two different forms of subtyping constraints generated, depen-
dent types can be refined from the counterexample path in one of two ways:
weakest precondition generation or procedure specification propagation.

Weakest precondition generation. In this setting, the constraint is of the
form: Γ ` {ν : B | p1} <: {ν : B | r2}, corresponding to the first case in Refine

in Fig. 5, where p1 is a concrete predicate and r2 is either a concrete predicate or
a refinement variable or a selection of refinement variable. This constraint is gen-
erated when based typed expression is supplied as function argument or return
or establishing assertions. Our type refinement in this case can be implemented
by a backward symbolic analysis analogous to weakest precondition generation,
operating over a counterexample path. Recall that the weakest pre-condition of
an expression S is a function wp(S,Q) mapping the post-condition Q to a pre-
condition P , ensuring the execution of S terminates in a final state satisfying Q.
Similarly, our weakest precondition generation simply pushes up post-conditions



wp(e, φ) = case e of

| λx.e⇒ wp(e, φ)

| assume ψ; e⇒ (ψ ⇒ wp(e, φ))

| let x = e′ in e⇒ wp(x = e′, wp(e, φ))

| v = x⇒ [x/v]φ

| v = c⇒ [c/v]φ

| v = f−→a ⇒ [Encode(f)/v]φ

| ⇒ wp(ν = e, φ)

Fig. 6. Weakest precondition generation definition.

backwards, substituting terms for values in the presumed post-condition based
on the structure of the term used to generate the pre-condition.

Our weakest precondition semantics is extended to deal with counterexample
paths that include unknown function calls but for which context information
constraining their arguments or results is available. Here, we can only strengthen
relevant signatures, deferring the re-verification of the procedure being invoked
until it becomes known. The called function’s post-condition will be eventually
propagated via dependent subtyping chains back to the procedures that flow into
this call-site; in doing so, pre-conditions of these functions could be strengthened,
requiring re-verification of the calling contexts in which they occur to ensure that
these contexts imply the pre-condition. Such flows are handled directly by the
subtyping chains analyzed by the refinement phase. For a called higher-order
function f , we use Encode (f) to represent its value. The definition of our wp
is given in Fig. 6. Consider the example in Fig. 1. The post-condition inferred
is ν ≥ 0. We can infer the precondition shown in Section 2 by applying our wp
rules as follows:

wp( assume (x ≥ 0); let r = g x in r ), ν ≥ 0) =

wp( assume (x ≥ 0),wp(let r = g x in r , ν ≥ 0)) =

wp( assume (x ≥ 0),wp( r = g x , (wp(ν = r , ν ≥ 0)))) =

wp( assume (x ≥ 0),wp( r = g x , r ≥ 0)) =

wp( assume (x ≥ 0),Rg(x) ≥ 0) =

x ≥ 0⇒ Rg(x) ≥ 0

Thus g ’s specification is strengthened to g : {{ν ≥ 0} → {ν ≥ 0}}.

When a function call f(x) is encountered and the abstraction to which f is
bound is known precisely (e.g., based on a syntactic or control-flow analysis pre-
processing phase), our method strengthens the post-condition of the function’s



body of f to that available at the call. wp recursively applies our verification
technique to refine the function’s precondition based on the post-condition de-
fined by the context in which it is called. wp can then be executed from this call
site operating on the rest of statements of the counterexample beyond the call
site and the newly strengthened precondition.

Procedure specification propagation. In this setting, the subtyping con-
straint is of the form: Γ ` {ν : B | κ1} <: {ν : B | κ2}, corresponding to
the second case in Refine in Fig. 5, Refinement variables are introduced when
defining dependent type templates; this occurs during inference of function ab-
straction and fix expressions. Ensuring the subtyping constraint holds requires
that any instantiation of κ2 be propagated to κ1. This enables refinements asso-
ciated with the post-condition of a higher order function to be propagated into
the real function body, and conversely to propagate refinements associated with
a function’s pre-condition back to the parameters of higher order function.

Consider how we might verify the program shown in Fig. 2. Our method initially
infers a dependent type template for f as {{κ11 → κ12} → κ2 → κf}. The
assertion in main drives a new post-condition {ν ≥ 0} for twice , and hence
f2 which is the second the call to f, instantiating κf to {true ⊕ ν ≥ 0}. This
constraint is then propagated to the post-condition of neg since neg subtypes to
f at the call site of twice in main . The weakest pre-condition backward analysis
of our system then strengthens the pre-condition for neg and propagates it back
to f , instantiating {κ12} to {true ⊕ ν ≤ 0}. In twice , our technique needs to
ensure, at the second call site of f2, the actual higher-order function p subtypes
to the first argument of f where p is derived from the first call to f notated
as f1. The subtyping relation can then be expressed as Γ ` {κ2.1 → κf.1} <:
{κ11 .2 → κ12 .2}. The post-condition in κ12 .2 ({ν ≤ 0}) is then propagated to
κf.1, which becomes {ν ≤ 0 ⊕ ν ≥ 0}. Finally, the context-sensitive type for f

is derived as

farg1 : {{true⊕ true} → {ν ≥ 0⊕ ν ≤ 0}} → farg2 : {true⊕ true} → {ν ≤ 0⊕ ν ≥ 0}

4.3 Correctness

We provide two correctness results for our verification algorithm V(Γ,Prog)
where Γ is top-level typing environment and Prog is a program 1. The first
(Soundness) states that the dependent types inferred by our verification pro-
cedure are consistent with our type rules. The second (Weak) states that our
procedure generates the least type necessary to discharge the subtyping con-
straints collected by the inference algorithm. In the following, R(Γ ) recursively
extracts dependent base types {ν : B|κ} from the domain of Γ .

Theorem 2 (Verification Algorithm).

1 The proof can be found in www.cs.purdue.edu/homes/zhu103/pubs/vmcai13full.pdf



1. (Soundness) Let ((. . . , {Γ, x : PT x → PT , λx.e, C}, . . .), Σ) be the result of
V(Γ,Prog). Then, provided V(Γ,Prog) terminates, Σ(Γ ) ` λx.e : {x :
Σ(PT x)→ Σ(PT )}.

2. (Weak) And, for all other valid solution Σ′, the algorithm generates the
weakest solution: ∀c as {Γ ` {ν : B|r1} <: {ν : B|r2}} ∈ C, and ∀ {ν :
B|κ} ∈ {R(Γ ) ∪ {ν : B|r1}}, Σ′(Γ ) ` {ν : B|Σ′(κ)} <: {ν : B|Σ(κ)}.

4.4 Invariant Generation

Because our technique does not guarantee termination given the undecidability
of automatically synthesizing loop invariants, the size of a dependent function
type may grow into an infinite representation, and a fixed-point may never be
reached. Consider the ML program fragment shown in Fig. 7 adapted from [14].
The procedure iteri visits the elements of a list xs , applying function f to
each element and its index in the list. Procedure mask calls iteri when the
length of its array and list arguments are the same. It supplies function g as the
higher-order argument to iteri which performs some computation involving a
list and array element at the same index. We desire to verify the array bound
safety property j < len( a ) for the array access in procedure g (Note j ≥ 0 can
be directly proved by our method introduced in Section 4.2).

fun iteri i xs f =

case xs of

[ ] => ()

| x :: xs’ => (f i x; iteri (i+1) xs’ f)

fun mask a xs =

let g j y = · · · y · · · Array.sub (a, j) · · · in

if Array.length a = List.length xs then

iteri 0 xs g

else () end

Fig. 7. A program that has a non-trivial loop invariant.

During the course of verifying this program, we would need to discharge a spec-
ification that forms a pre-condition for iteri asserting that len( xs ) 6= 0 ⇒ i

< len( a ). However, verifying this specification requires a theorem prover to con-
clude that len( xs )-1 6= 0⇒ i+1 < len( a ) as precondition for the recursive call
to iteri (i+1) xs’ . In trying to discover a counter-example to this claim,
a theorem prover would likely generate an infinite number of pre-conditions,
len( xs ) - k 6= 0⇒ i + k < len( a ) where k = 0, 1, 2 · · · What is required is a
sufficiently strong invariant that can be used to validate the required safety prop-
erties. While programmers could certainly write such specifications if necessary,
we follow the idea of interpolation-based model-checking [22] to automatically
infer them when possible.



When our mainline verification algorithm diverges or reaches a pre-determined
timebound during the analysis of a recursive procedure, it is unrolled incre-
mentally together with its calling context. Our method then infers dependent
type templates and generates subtyping constraints for the k-unrolled proce-
dures. Pre-conditions of the higher order functions used in recursive procedure
are propagated via subtyping chain from that of the real function they represent
for. Post-conditions of the higher order functions are also propagated from that
of the real function which can be obtained from our type inference algorithm.
We then exploit a technique described in [28] to infer dependent types from the
collected base subyping constraints. The basic idea is to use the interpolation
of the first-order formulas derived from the subtyping constraints to deduce an
instantiation for a given type refinement variable κ. We desire that the prover re-
turns a more suitable refinement beyond that yielded by a weakest precondition
generator. Refinements synthesized from k-unrolled non-recursive procedures are
folded back to the original procedure as candidates.

For example, suppose our method discovers that it must unroll the recursive
procedure iteri two times, obtaining the program shown below:

fun iteri0 i0 xs0 f0 =

case xs0 of

[ ] => ()

| x0 :: xs0’ => (f0 i0 x0; iteri1 (i0+1) xs0’ f0)

fun iteri1 i1 xs1 f1 =

case xs1 of

[ ] => ()

| x1 :: xs1’ => (f1 i1 x1; iteri2 (i1+1) xs1’ f1)

fun iteri2 i2 xs2 f2 = halt

Fig. 8. Unrolling a recursive procedure to enable loop invariant discovery using inter-
polation.

Here, halt is a special term, representing a termination point. Because we main-
tain the original calling context of iteri , we have len a = len xs in the typing
environment and leverage subtyping constraints to establish that the actual g

subtypes to the formal f0 . We infer refinements for this unrolled excerpt using
the obtained base subtyping constraints. We thus have the following subtyping
constraint:

i1 : κi1, i0 : κi0, xs0 : κxs0, len (xs0) = len (xs0′) + 1, len (xs) = len (a)

` {ν = xs0′ } <: κxs1



that establishes that the actual xs0’ given to iteri1 subtypes to the formal
xs1 . In the body of iteri1 , there is another constraint for the call to f1 i1 :

i1 : κi1, xs1 : κxs1, len (xs1) = len (xs1′) + 1 ` {ν′ = i1} <: {ν′ < len (a) }

Because we have already inferred the dependent type for procedure g before
typing iteri and obtained precondition ν′ < len(a) for its first argument, we
can use it to also serve as the precondition of the first argument of f1 propagated
through the subtyping chains.

We extend the above constraints into first order logic formulas:

{ i1 = i0 + 1 ∧ i0 = 0 ∧ xs0 = xs ∧ len (xs0) = len (xs0′) + 1 ∧
len (xs) = len (a) ∧ ν = xs0′ }(a) ⇒ κxs1

κxs1 ⇒ { i1 = i0 + 1 ∧ ν = xs1 ∧ len (xs1) = len (xs1′) + 1 ∧
ν′ = i1 ⇒ ν′ < len (a) }(b)

The unknown refinement represented by κxs1 is indeed an interpolation of for-
mula (a) and formula (b) and can be inferred by feeding them into an appropriate
interpolation theorem prover [22] which may return len(ν) + i1 = len (a) as
result. Our method then yields len(ν) + i = len (a) (discarding subscript) as
a refinement candidate of the second argument xs of procedure iteri .

After candidate refinement synthesis, our method then applies an elimination
procedure [24] to filter out incorrect candidates. If the original procedure is still
not typable, the process is repeated, unrolling it k + 1 times. For this example,
with the above refinement candidate, we can correctly verify the pre-condition
of f in iteri . Since the theorem prover can use the case condition to know
length( xs ) > 0 and based on the invariant i + len( xs ) = len( a ), it can deter-
mine that i < len( a ) must hold. Our method finally generates the appropriate
dependent type for iteri as:

iteri : i : int→ {xs : ′a list| i + len(ν) = len(a)} →
{f : {farg1 : int | 0 ≤ ν < len(a)} → ′a→ unit} → unit

Note the invariant generation module is only invoked when our system diverges
during the verification of a recursive procedure. We differ from [28] in two re-
spects: first, [28] does not use an elimination procedure since it tries to infer de-
pendent types for the original program using a whole program analysis; second,
we only infer refinement candidates for a non-recursive unrolled code fragment
instantiated upon divergence, instead of the original whole program, greatly re-
ducing the number of instances where interpolation computation is required.

5 Implementation

We have implemented our verification system in Popeye. Popeye takes as input
an SML program (not necessarily closed) and outputs specifications inferred



for the procedures defined by the program. We have provided specifications for
built-in primitive datatypes as well as arrays, lists, tuples, and records that
are used to bootstrap the inference procedure. The Yices theorem prover is
used as the verification engine. CSIsat [5] is employed to generate interpolations
when inferring candidate refinements for recursive procedures and loops. The
implementation is incorporated within the MLton whole-program optimizing
compiler toolchain and consists of roughly 14KLOC written in SML2.

5.1 Case Study: Bit Vectors

To gauge Popeye’s utility, we applied it to an open-source bit vector library
(bitv) [6] (version 0.6). A bit vector is represented as a record of two fields, bits ,
an array containing vector’s elements, and length , an integer that represents
the number of bits that the vector holds. Operations on bit vectors should enforce
the invariant that (bits.length - 1) · b < bits.length · b , where b is a
constant that defines the number of bits intended to be stored per array element.
This invariant is assumed for all procedures. Popeye successfully type checks
the program combined with 5 manually generated preconditions (for recursive
procedures as prover [5] cannot deal with mod operation heavily used in the
library) by relatively longer verification time than that of Dsolve [24] in this
benchmark; however Dsolve requires manual addition of extra 14 user-supplied
qualifiers.

Bug Detection. Without any programmer annotations, Popeye discovered an
array out-of-bounds error that occurs in the blit function:

fun blit {bits=b1, length=l1} {bits=b2, length=l2}
ofs1 ofs2 n =

if n < 0 || ofs1 < 0 || ofs1 + n > l1

|| ofs2 < 0 || ofs2 + n > l2

then assert false

else unsafe blit b1 ofs1 b2 ofs2 n

This function calls unsafe blit only if a guard condition that checks that all
offset value and the number of bits ( n ) to be copied are positive, and that the
range of the copy fit within the bounds of the source and target vectors. The
counterexample reported for blit procedure corresponds to an input as {length
(b1)=2, length (b2)=0, l1=60, ofs1=32, l2=0, ofs2=0, len=0}. The guard holds
under this assignment, but because unsafe blit attempts to access the offset
in the target bit-vector that is the starting point for the copy, before initiating
the copy loop, an array out-of-bounds exception gets thrown. In this example,
Popeye reports a test case that serves as a witness to the bug, and can help
direct the programmer to identify the source of the error. The primary novelty
of this technique in this regard is its ability to generate a precise counterexam-
ple path with concrete inputs that serve as a witness to the violation without
requiring explicit user confirmation as Dsolve.

2 The Popeye implementation is available at http://code.google.com/p/popeye-type-
checker/



Complex Refinement Generation. Procedure unsafe blit found in this library
tries to copy n bits starting at offset ofs1 from bit-vector v1 to bit-vector v2

with target offset ofs2 . Popeye discovers the following precondition:

((ofs2 + n)− 1)/b) < v2.length

This is a non-trivial specification comprised of refinements that we believe would
be difficult, in general, for programmers to construct. Systems such as Dsolve
require users to provide these qualifiers explicitly. The ability to generate non-
trivial refinements automatically only using counterexamples is an important
distinguishing feature of our approach compared to e.g., Liquid Types.

5.2 Experimental Results

To test its accuracy, we have applied Popeye to a number of synthetic SML
programs from the benchmark suite used to evaluate MoCHI [19]. While these
benchmarks are small (typically less than 100 LOC), they exercise complex
control- and dataflow, and exploit higher-order procedures heavily, in ways in-
tended to make dependent type inference challenging. Details of these bench-
marks are provided in [19]. In the table, column num ref denotes the number
of refinements discovered by Popeye. num cegar shows how many iterations of
the refinement loop were necessary for Popeye to converge. prover call gives
the number of theorem prover calls; there are typically more prover calls than
CEGAR loop iterations because the results of a counterexample usually entails
propagation of newly discovered invariants to other contexts, thus requiring re-
verification (and hence additional theorem prover calls). cegar time shows the
time spent on refinement loops. run time gives the total running time taken.

The first seven benchmarks shown in Table 1 cannot be verified by Dsolve using
its default set of simple qualifiers since either context-sensitive dependent types
or non-trivial invariants are required. The last two of these seven (suffixed with
-e ) are buggy, and thus cannot cannot also be automatically proved by Dsolve.
The last two benchmarks requires recursive procedure invariants which can be
synthesized by our invariant generation module. Here, a single unrolling of the
recursive procedure in repeat-e was sufficient to witness the error; in contrast,
Popeye required three unrollings of the recursive procedure in array-init to find
a suitable set of candidate refinements. We note that MoCHI fails to verify the
array-init program. While MoCHI can also verify the first eight benchmarks
in this table, its formulation is a bit more complex than ours, and does not easily
generalize to deal with data structures and user-level datatypes.

6 Related Work

There has been much work on the use of dependent types for checking complex
safety properties of ML programs. Freeman and Pfenning [11] describe a refine-
ment type inference scheme defined in terms of an abstract interpretation over



Program num ref num cegar prover call cegar time run time

fhnhn 3 4 35 0s 0.014s
neg 15 20 230 0.004s 0.18s
max 10 11 175 0.005s 0.95s
r-file 11 21 205 0.012s 1.56s
r-lock 10 18 108 0.006s 0.60s
r-lock-e 13 18 113 0.01s 0.68s
repeat-e 39 18 237 0.11s 4.87s
list-zip 2 4 149 0.01s 1.55s
array-init 35 106 3617 0.03 102.3s

Table 1. Benchmark Results.

a programmer-specified lattice of refinements for each ML type, and a restricted
use of intersection types to combine these refinements that still preserves de-
cidability of type inference. DML [29] is a conservative extension of ML’s type
system that supports type checking of programmer-specified dependent types;
the system supports a form of partial type inference whose solution depends
upon the set of refinements found in a linear constraint domain.

To reduce the annotation burden imposed by systems like DML, Liquid Types [24,
15] requires programmers to only specify simple candidate qualifiers from which
more complex dependent types defined as conjunctions of these refinements are
inferred by a whole program abstract interpretation. Our approach differs from
liquid types in four important respects: (1) we attempt to infer refinements, (2) a
counterexample path together with a test case can be reported as a program bug
witness; (3) the type refinement fixpoint loop enables compositional verification,
propagating specifications via dependent subtyping chains on demand; (4) the
dependent types we inferred are context-sensitive.

Broadly related to our goals, HMC [14] also borrows techniques from impera-
tive program verification to verify functional programs. It does so by reducing
the problem of checking the satisfiability of the constraints generated in a liq-
uid type system to a safety checking problem of a simple imperative program.
However, the translated imperative program loses the structure of the original
source semantics. Thus, it is not obvious how we might convert a counterexample
reported in the translated program into the original source for debugging.

Terauchi [27] also proposes a counterexample-guided dependent type inference
scheme, albeit based on a whole-program analysis. A counterexample in his ap-
proach is an “unwound” slice of the program that is untypable using the current
set of candidate types, rather than a counterexample path. Since the unfolded
program may be involved in multiple program paths, many of which may not
be relevant to the verification obligation, it would appear that the size of the
constraint sets that needs to be solved may become quite large.

There has been much recent interest in using higher-order recursion schemes [18,
20] to define expressive model-checkers for functional programs. In [19, 23], pred-



icate abstraction is proposed to abstract higher-order program with infinite do-
mains like integers to a finite data domain; the development in these papers is
limited to pure functional programs without support for data structures. Model
checking arbitrary µ-calculus properties of finite data programs with higher or-
der functions and recursions can be reduced to model checking for higher-order
recursion schemes [18]. Finding suitable refinements relies on a similar constraint
solving to [27, 28] for a straight-line higher-order counterexample program. Such
techniques involve substantial re-engineering of first-order imperative verification
tools to adapt them for a higher-order setting.

One important motivation for our work is to reuse well-studied imperative pro-
gram verification techniques. For example, predicate abstraction [12] has been
effectively harnessed by tools such as slam [2] and blast [4] to verify complex
properties of imperative programs with intricate shape and aliasing properties.
Software verification tools, such as Boogie [3], ESC/Java [10] and CALYSTO
[1] construct first order logic formula to encode a program’s control flow. If a
verification condition, expressed via programmer-specified assertions or specifi-
cations, cannot be discharged, the counterexample path can be used to refine
and strengthen it.

7 Conclusion

In this paper, we present a compositional inter-procedural verification technique
for functional programs. We use dependent type checking rules to generate de-
pendent type templates for local expressions inside a procedure. Dependent sub-
typing rules are then used to generate verification conditions. From an unprov-
able verification condition, we can construct a counterexample path to infer
dependent types for procedure arguments and results, and to propagate inferred
specifications between procedures and call-sites where they are applied. Thus,
our technique effectively leverages a variety of strategies used in the verification
of first-order imperative programs within a higher-order setting.
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12. Graf, S., Säıdi, H.: Construction of Abstract State Graphs with PVS. In: CAV. pp.

72–83 (1997)
13. Jagannathan, S., Weeks, S.: A Unified Treatment of Flow Analysis in Higher-Order

Languages. In: POPL. pp. 393–407 (1995)
14. Jhala, R., Majumdar, R., Rybalchenko, A.: HMC: Verifying Functional Programs

using Abstract Interpreters. In: CAV. pp. 470–485 (2011)
15. Kawaguci, M., Rondon, P., Jhala, R.: Type-based Data Structure Verification. In:

PLDI. pp. 304–315 (2009)
16. Knowles, Kenneth and Flanagan, Cormac: Type Reconstruction for General Re-

finement Types. In: ESOP. pp. 505–519 (2007)
17. Kobayashi, N.: Model-Checking Higher-Order Functions. In: PPDP. pp. 25–36

(2009)
18. Kobayashi, N.: Types and Higher-Order Recursion Schemes for Verification of

Higher-Order Programs. In: POPL. pp. 416–428 (2009)
19. Kobayashi, N., Sato, R., Unno, H.: Predicate Abstraction and CEGAR for Higher-

Order Model Checking. In: PLDI. pp. 222–233 (2011)
20. Kobayashi, N., Tabuchi, N., Unno, H.: Higher-order Multi-Parameter Tree Trans-

ducers and Recursion Schemes for Program Verification. In: POPL. pp. 495–508
(2010)
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