
Randomized Protocols for Duplicate

Elimination in Peer-to-Peer Storage Systems

Ronaldo A. Ferreira Murali K. Ramanathan Ananth Grama Suresh Jagannathan

Department of Computer Sciences – Purdue University

250 N. University Street

West Lafayette, IN 47907, USA

{rf, rmk, ayg, suresh}@cs.purdue.edu

Abstract

Distributed peer-to-peer systems rely on voluntary participation of peers to effectively manage a

storage pool. In such systems, data is generally replicated for performance and availability. If the storage

associated with replication is not monitored and provisioned, the underlying benefits may not be realized.

Resource constraints, performance scalability, and availability present diverse considerations. Availability

and performance scalability, in terms of response time, are improved by aggressive replication, whereas

resource constraints limit total storage in the network. Identification and elimination of redundant data

pose fundamental problems for such systems. In this paper, we present a novel and efficient solution that

addresses availability and scalability with respect to management of redundant data. Specifically, we

address the problem of duplicate elimination in the context of systems connected over an unstructured

peer-to-peer network in which there is no a priori binding between an object and its location. We

propose two randomized protocols to solve this problem in a scalable and decentralized fashion that

does not compromise availability requirements of the application. Performance results using both large-

scale simulations, and a prototype built on PlanetLab, demonstrate that our protocols provide high

probabilistic guarantees, while incurring minimal administrative overheads.

Index Terms – Peer-to-peer, unstructured networks, duplicate elimination, randomized algorithms.

I. INTRODUCTION

Peer-to-peer systems have emerged as cost-effective alternatives for scalable data sharing,

backup, and archival storage [6], [14]. Peers contribute data and storage, and in return, gain

access to data at other peers. Effective storage management is an important issue in the deploy-

ment of such systems. Data replication and caching are key enabling techniques for scalability,

performance, and availability. In this context, an important problem relates to pruning unwanted

copies of data efficiently and safely. Attempts at aggressive replication may lead to significant

overheads associated with thrashing, in resource constrained environments. Even if replication

at peers is controlled, as in systems such as Samsara [7], the network as a whole must provide

mechanisms for eliminating replicas that are not accessed, while leaving a minimum number of

replicas in the network to satisfy availability constraints.

In this paper, we investigate the problem of eliminating duplicate data items in peer-to-

peer systems. We examine this issue in the context of unstructured networks [13], where no

assumptions can be made about the relationship between an object and the peers at which it

resides. Unstructured networks differ from their structured counterparts [30], [25], [26], [31] in

several important respects. Structured networks provide a simple primitive for locating an object,

which relies on a distributed hash table (DHT) abstraction. The associated lookup techniques

provide bounds on the number of hops as a function of the number of peers. These bounds are

achieved by establishing and maintaining a well-defined overlay topology. In networks with a high

transient population, the overhead associated with this may be significant. In contrast to structured

peer-to-peer networks, unstructured networks are resilient to node failures and incur low overhead

on node arrivals and departures. These characteristics make unstructured networks attractive for

use in highly transient networks, where peers do not have significant resources. Unfortunately,

the issue of object location, which is central to the problem of identifying redundant copies, is

significantly more complex in this environment.

The primary focus of this paper is on systems where peers are cooperative and non-malicious.

Peers divide their storage into two spaces: a private and a public space. The private space contains

the peer’s data and is not subject to duplicate elimination. The public space holds data from other

peers and is subject to duplicate elimination. We can view the public space as backup storage

or a cache to facilitate availability and performance, respectively. In such an environment, peers

can use any of the conventional object location techniques, such as the ones developed in [29]

and [10].

We can now formally state our problem as follows: consider an unstructured peer-to-peer

system, with each peer hosting multiple data items. The problem is to determine whether each of

these data items can be tagged for elimination or must be retained, with the associated guarantee

that each data item is retained by at least k peers. Here, k is a system parameter chosen to

satisfy a client or application’s availability requirements. The associated protocol must have

minimum network and computing overhead.

An important issue for the effective elimination of data in a storage system is the identification

of common data at different peers. Adya et al. [1] proposes convergent encryption to solve

this problem. With convergent encryption, it is possible to safely store encrypted data at other

peers and, at the same time, recognize if two files from different users have the same content.

Convergent encryption uses an encryption key derived from the content of the file and has been

used in [8] to identify blocks of data with the same content. Doucer et al. [8] motivates the

importance of duplicate elimination problem and proposes SALAD, a distributed data structure

to aggregate file content information and location information. In building this data structure, an

underlying structure of the files based on their content and location is maintained; this structure

is similar to the index employed by structured peer-to-peer networks. It is unclear how SALAD

can be adapted to an unstructured environment. SALAD imposes a topology on the network,

while in an unstructured environment, peers are free to connect to each other at random.

To address these concerns, we present the design, implementation, and evaluation of two novel

solutions to the problem of identifying and eliminating duplicates in unstructured peer-to-peer

storage systems. Our approaches are applicable to diverse storage environments [27], [11], [14].

Our key insight is that the problem of duplicate elimination can be abstracted to a relaxed and

probabilistic version of the leader election problem: we aim to elect a group of k leaders for

each file. The elected leaders are responsible for storing the file. If a leader must depart the

network, it randomly chooses another node to hold its replicas. Our solution to this problem

relies on the premise that the network state in an unstructured peer-to-peer system changes fast

enough that deterministic guarantees provided by conventional leader election algorithms are not

useful. For this reason, we use our probabilistic leader election protocol, which has significantly

lower message and time complexity. Our leader election protocol differs from traditional leader

election algorithms in two important respects:

• The probabilistic nature of our protocol may produce more or fewer leaders than desired

with small probability, O(1
n), for a system with n nodes.

• Other nodes participating in the protocol that are not elected as leaders need not know the

identity of the elected leaders.

Our first approach to the elimination problem uses probabilistic quorum systems [20]. In this

approach, each node creates a quorum for each of its replicas by choosing
√

n ln n nodes in the

system uniformly at random and queries the quorum on whether it needs to keep the file. If it

receives a negative response from any node in the quorum, the file is discarded. The details on

how a quorum member responds to a query are provided in Section II. In the worst case, if a

replica is present at all peers, the total message complexity of the elimination process of this

protocol is O(n
√

n ln n).

In the second approach, we use a novel randomized leader election protocol. The protocol

proceeds in two phases. In the first phase, consisting of O(log n) rounds, the number of nodes

that are potential leaders is reduced. The second phase is similar to the probabilistic quorum

approach: a quorum is formed for each of the remaining nodes, and k leaders are chosen. The

elimination process of this protocol has optimal message complexity O(n) for a network with

n nodes.

We evaluate these protocols using real-world file system traces from Microsoft Research [9].

We consider both a detailed simulation to study the scalability of the protocols, and a prototype

implementation on PlanetLab [23] to quantify administrative overheads and efficiency in real

network environments. Our experiments measure the amount of space reclaimed, memory and

communication overhead, and the average storage gain per node. The main contributions of the

paper are:

• Two novel randomized protocols for duplicate elimination in peer-to-peer storage systems,

along with analytical insights into their performance.

• An investigation, using detailed simulation, of the interaction between the choice of the

number of duplicates to be maintained (availability) and the administrative overheads (scal-

ability).

• An implementation on PlanetLab using real-world file traces, which validates analytical and

simulation-based performance characterization.

The rest of the paper is organized as follows. Section II presents a detailed description of

the protocols. The experimental and simulation setup and corresponding results are given in

Section III. Related work is presented in Section IV. Conclusions are outlined in Section V.

II. DUPLICATE ELIMINATION PROTOCOLS

In this section, we describe the duplicate elimination protocols. These protocols rely on leader

election as the main kernel, with leaders assigned the responsibility of preserving specified data

items, while all other participants are free to remove them.

A. A Probabilistic Quorum (PQ) Approach

Our first protocol is based on ideas proposed for building probabilistic quorum (PQ) systems.

A quorum is defined as a set of subsets of peers, such that any two subsets have a non-empty

intersection. To guarantee non-empty intersection with high probability, the number of members

in each quorum is equal to
√

n ln n [20], where n is the number of peers in the network.

For duplicate elimination, k nodes need to be elected among the nodes holding a specific data

item. Each node with the data item creates a quorum of the prescribed size, as specified above.

Each node with a candidate data item sends a REQUEST TO KEEP message to all its quorum

members. It decides to keep or delete the data item based on the response to this message. A

REQUEST TO KEEP message contains the following information:

• SENDER ID: identity of the sender;

• DATA DESCRIPTOR: content hash of the file;

• RANDOM NUMBER: a random number locally generated by the node in the range

[0...n4] [19].1

Each quorum member waits for a prescribed time period (a system parameter) and processes

all the messages received. At the end of the time period, it takes all the messages received for

the same DATA DESCRIPTOR. Positive responses (ACKs) are sent to the k peers that have

the largest random numbers among all the messages with the same data descriptor. The ACKs

include the random numbers that were selected by the quorum member. Negative responses

(NAKs) are sent to the rest of the peers. A peer that receives at least one NAK deletes the data.

A peer that receives only positive responses must sort all the random numbers in the ACKs it

receives to verify if its random number is among the top k. If this is the case, the peer retains

the data, otherwise the data is deleted. If a data item is present at all peers in the network, which

corresponds to the worst case scenario, the message complexity of this protocol is O(n
√

n ln n).

Observe that this message complexity does not include the cost for selecting nodes uniformly at

random from the network. In Section II-C, we discuss how a node can obtain uniform samples

in an unstructured network. When the PQ protocol is applied separately for each data item, the

message complexity must include the number of data items. In Section II-B.2, we discuss how

information about separate data items can be aggregated to keep the message complexity the

same as the message complexity for a single data item.

B. A Randomized Election (RE) Approach

As an alternative to probabilistic quorum systems, we also consider a randomized leader

election protocol based on a balls and bins [22] abstraction. The protocol operates in two phases.

In the first phase, the number of nodes holding the same data item is reduced. In the second

phase, the remaining nodes determine the k leaders that retain the data item. The main features

of the protocol are as follows:

• There are k peers holding a copy of the file at the end of the protocol with high probability.

1This range is selected for uniqueness, w.h.p.

• The message complexity of the elimination protocol is O(n), where n is the number of

peers in the system.

• Any peer among the set of peers having a duplicate is equally likely to be elected as one

of the k leaders.

To simplify the explanation, we assume that there are multiple copies of a single data item in

the entire system and each peer holds one copy of this data item. Although our presentation at this

point assumes a synchronous protocol, we show how to relax this assumption in Section II-B.1.

Before we describe the protocol, we formalize a few terms used in the description. A contender

is a participating peer in the protocol that holds a copy of the data. A mediator is a peer

that receives a message from a contender and determines whether the contender participates in

subsequent steps of the protocol. The mediator is similar to a quorum member in the probabilistic

quorum approach. A round is composed of communications between a single contender and a

set of mediators. The set of contenders can change with each round of the protocol. A contender

that does not proceed to a new round deletes the copy of the data item.

In a realization of this balls-and-bins abstraction, a peer can be a contender as well as a

mediator at the same time. Casting a ball into a randomly chosen bin corresponds to sending a

REQUEST TO KEEP message from a contender to a mediator, picked uniformly at random.

The REQUEST TO KEEP message has the same fields as the REQUEST TO KEEP message

in the PQ approach and an extra field (ROUND NUMBER), indicating the round number.

The protocol is played as a tournament in two phases. The first phase consists of log n −

log(c× k) rounds for a system of n nodes, where c is constant and k is a system parameter (the

desired number of replicas). In round i of this phase, each contender casts mi balls into n bins,

the precise expressions for mi in terms of n and i are given in Figure 2. A contender is said to

‘win’ a bin if its ball is the only one that lands in the bin. If a contender wins all the bins that

its balls land in, it is considered a winner in this round and proceeds to the next round. This

process is illustrated in Figure 1 for n = 8, k = 1, and c = 2. Here, the first phase consists of

log2 8− 1 = 2 rounds.

6

3

2

5
6

7

8

Round 3 (log n): Each

6

contender casts 5 balls.

6

5

4

5

First Phase

7

8

1

Contenders Mediators

Leader

Second Phase

6
5

5
6

5

1

2
6

3

4

5

6

2
6

7 8
7

8
6

Round 1: Each contender

5

2

3

1
3

4
4

5

casts one ball.

4

6

5

4
2

5

11

2

3

4

5

6

7

8

Round 2: Each contender
casts two balls

2

Fig. 1. Illustration of the protocol – contenders are illustrated by squares, mediators by buckets, and messages from contenders

to mediators by labeled balls (the label indicating the source of the ball). In all rounds, contenders that are no longer in the

running are shaded dark. In the first round, each contender casts one ball and contenders 2, 4, 5, and 6 proceed since their

balls uniquely occupy their respective buckets. In round 2 (last round of the first phase), each contender casts two balls and

contenders 5 and 6 proceed. Finally, in round 3 (the only round of the second phase), each contender casts 5 balls and contender

6 is selected the leader since it has a higher node id (in our protocol, we use a random number as the criterion in the second

phase. We use node id here for ease of illustration.)

The number of mediators that a contender sends messages to (the number of balls to cast) in

a round is calculated independently by every contender based on the system size (total number

of nodes) and the round number. The formula given in Figure 2 is an approximation of the exact

theoretical value. We present the theoretical value in Section II-D with the proofs of the bounds of

the algorithm. Each mediator sends an ACK if it receives only a single REQUEST TO KEEP

message. Otherwise, it sends a NAK to all the contenders that sent a message to it. A contender

deletes a data item if it receives at least a single NAK, otherwise it proceeds to the next round.

The number of contenders remaining after each round is reduced by half, on average. The

remaining contenders at the end of the first phase proceed to the second phase. The expected

number of contenders at the end of the first phase is c× k. The second phase of the protocol is

identical to the probabilistic quorum approach, but with a reduced number of contenders. Details

about the protocol are summarized in Figures 2 and 3.

! Set the number of messages mj for round j as follows

mj =

√
2j ln 2, first phase

√
n ln n, second phase

! Select a set of mj mediators uniformly at random among all the nodes in the system.

! For each mediator selected in the previous step, send a REQUEST TO KEEP message,

along with a RANDOM NUMBER ri.

! Proceed to the next round, j + 1, if and only if ACKs are received from all the mediators.

Otherwise, delete the copy of the data item locally.

Fig. 2. Contender actions.

1) An Asynchronous Protocol: We now relax the assumptions made earlier and provide a

solution that supports asynchronous communication among mediators and contenders. In the

asynchronous case, messages from contenders to a mediator for a specific round need not be

received at the same time. Therefore, in every round of the first phase, a mediator sends an ACK

to the first contender request for that round. A NAK is sent to subsequent requests from other

contenders for that round.

In the first phase of the asynchronous protocol, a contender sends REQUEST TO KEEP

messages, along with a round number to a set of mediators picked uniformly at random, as in

the synchronous protocol. A mediator M maintains a vector V of size equal to the number of

rounds (log n). All the entries in V are initially set to zero. On receiving a REQUEST TO KEEP

from a contender C in round j, if entry j in V at M is zero, M sends an ACK to C and sets the

entry j to C (signifying that the winner of the jth round at M is C). Otherwise a NAK is sent

to C. The purpose of this step is to reduce the number of contenders that proceed to subsequent

rounds. The contenders that survive (which do not receive even a single negative response) all

! Receive messages from each contender.

! First Phase:

– If exactly one contender sent a REQUEST TO KEEP message, send an ACK to that

contender and proceed to round j + 1.

– Otherwise, send a NAK to all the contenders that sent a request and proceed to round

j + 1.

! Second Phase:

– Perform the actions described for the Probabilistic Quorum protocol.

Fig. 3. Mediator actions.

the rounds in the first phase proceed to the second phase of the protocol.

The second phase of the asynchronous protocol follows the protocol for probabilistic quorum

given in Section II-A, but with a constant number of contenders. An analytical modeling of this

algorithm is presented in Section II-D.

2) Aggregation: We now relax the assumption of a single data item in the entire system and

explain how the protocol can be extended to deal with multiple data items efficiently. A simple

extension would be to perform leader election for each file in the system separately. However, this

approach results in a protocol complexity of O(n ∗ # of unique data items). A better approach

that reduces message complexity, and thus improves efficiency, is to hold a single election. In

this case, a contender, say C1, initially sends messages to mediators with a list of all the local

data items. On collision with contender C2 at the mediator M , M sends ACKs for files held by

C1 that are not present in C2. C1 proceeds to the next round with the list of files for which it

received an ACK. The complexity of this method is O(n
√

n ln n), assuming that the list of data

items can be packed into a constant number of messages. The multiplicative factor
√

n ln n is

present because each node, in the worst case, can go to the second phase of the protocol for a

disjoint set of files. Given that the number of unique data items is likely to be significantly larger

than the number of nodes in the system, the latter approach is expected to be more scalable.

Furthermore, observe that the same aggregation scheme can be applied to the PQ approach. The

resulting complexity in this case is also O(n
√

n ln n).

C. Algorithmic Issues

Effective realization of the duplicate elimination protocols presented in the paper builds on

a number of recent results on generating random walks, and efficiently estimating network size

for unstructured networks. In our protocols, nodes need to select quorum members or mediators,

uniformly at random. To select nodes uniformly at random from the network, we rely on random

walks. Gkantsidis et al. [12] shows that it is possible to construct a uniform sample of size k in

an unstructured network by performing a random walk of length Ω(log n) and then proceeding

with the random walk for k more hops. The last k peers encountered in the walk represent a

uniform random sample. This result, however, applies to network topologies that can be modeled

as expander graphs. For more generic networks, such as the ones encountered in real-world

networks, an auxiliary algorithm must be executed to determine probabilistic weights for different

branches of the network on which a random walk is performed. The problem of uniform sampling

in non-uniform graphs has been extensively studied [21], [15], [2]. For the sake of completeness,

we briefly discuss the Metropolis-Hastings (MH) algorithm that we use in our simulations.

1) Uniform Sampling: In a simple random walk, all neighbors of a node p have the same

probability of being selected as the next hop, that is Prpj = 1/K, where j is one of K neighbors

of p. It is well known [22] that a simple random walk in an undirected graph of a minimum

length proportional to log n converges to a stationary distribution πT . The probability of a node i

being selected as a sample of the distribution πT is equal to di/2m, where di is the degree of node

i and m is the number of edges of the graph. In real-world networks, the degrees of the nodes

vary significantly. This variation in degrees implies that a simple random walk selects nodes

with different probabilities, with low degree nodes having lower probabilities of being selected.

We present an algorithm that modifies the transition probabilities between nodes to produce a

probability transition matrix that has a stationary uniform distribution. Thus, a random walk on

a network with node transition probabilities defined using this algorithm results in a uniform

sample. The algorithm is traditionally presented in the context of Markov chains, for example

in [5], but its adaptation to a distributed network is straightforward.

Metropolis-Hastings

This algorithm is an adaptation for uniform sampling of the classical Metropolis-Hastings

algorithm [21], [15], [5]. In this distributed algorithm each node i sends a message containing

its degree information, di, to each of its neighbors j ∈ Ψ(i), where Ψ(i) is the set of nodes

directly connected to i. Once the information of each of the neighbors is received, the transition

probabilities are set up as follows:

Prmh
ij =

1/max(di, dj) if i &= jandj ∈ Ψ(i)

1−
∑

j∈Ψ(i)(Prmh
ij) if i = j

0 otherwise.

The result of this algorithm in the entire network is the implicit construction of a doubly

stochastic matrix. A random walk of a given minimum length using the probabilities above results

in uniform samples. We refer the reader to [21], [15], [5], [2] for more details on the algorithm and

its analytical underpinnings. Observe that the message complexities of the elimination protocols

presented earlier in this section do not include the cost for uniform sampling. If random walks are

used for uniform sampling, a O(log n) factor must be added to the complexities, since we need

to perform a random walk of length O(log n) to each random sample. In this case, the complete

RE protocol would have worst case complexity O(n log n) and the PQ protocol O(n
√

n log n).

This cost, however, can be amortized across multiple runs of the elimination protocols.

2) Network Size: Another input to our protocol is the size of the network. An estimate of the

number of processes in the system is needed to determine the number of messages that need

to be sent in each round of the protocol. Horowitz et al. [16] presents a scheme that allows a

node to estimate the size of its network based only on local information with constant overhead

by maintaining a logical ring. Mayank et al. [3] proposes an estimation scheme based on the

birthday paradox [22][page 45]. A peer estimates the network size by sending a message on a

random walk and using the hop count when the message returns to the peer. It is shown that it

takes approximately
√

n hops for a message to return to its sender. In our current implementation,

we have the system size as a parameter.

D. Analysis

In this section, we establish performance bounds of our algorithms. We consider a distributed

system of n processes represented by the set Γn = {ai|1 ≤ i ≤ n}, for processes a1, a2, . . . , an.

The set of contenders in round j of the protocol is represented by Φj = {ρi|1 ≤ i ≤ |Φj|},

where Φj ⊆ Γn, Φj+1 ⊆ Φj and ρ1, ρ2, ..., ρ|Φj | are the contenders. The number of messages

(balls) sent by a contender in a round j is denoted by ϕj . The set of mediators associated with a

contender ρi in round j is denoted by Ψij . We associate a unique integer πi with every contender

ρi. The protocol concludes by declaring a unique member in Φw to be the final winner, where w

corresponds to the final round in the protocol, and {∀j : j < w, |Φj| > 1, |Φw| = 1}. We show

that w < log(n). For purpose of clarity, we present the proofs for k = 1. The generalization for

k > 1 is straightforward.

Theorem 1: In the first phase of the protocol, the number of contenders in round j + 1 is

approximately half the number of contenders in round j.

Proof: Let Xij be an indicator random variable corresponding to process ρi in round j

obtaining a positive response from every process in Ψij .

Xij =

1, if ∀s : s ∈ Ψij , s sent a positive response

0, otherwise

The expectation of Xij is given by

E[Xij] = Pr(Xij = 1) =
(
1− ϕj

n

)ϕj(|Φj |−1)

≈ e−
ϕ2

j (|Φj |−1)

n (1)

Let Yj+1 be a random variable that represents the number of processes proceeding to round j+1.

We have Yj+1 =
∑|Φj |

i=1 Xij . The expectation of Yj+1 is given by

E[Yj+1] = E[

|Φj |∑

i=1

Xij] =

|Φj |∑

i=1

E[Xij] ≈ |Φj|e−
ϕ2

j (|Φj |−1)

n (2)

Since ϕj =
√

n ln 2
|Φj |−1 , we have

E[Yj+1] ≈
|Φj|
2

(3)

Observe that in Section II-B we present a simplified expression for mj that uses the fact that

the number of contenders is reduced by half in each round.

Theorem 2: The probability of having at least one contender at the end of the first phase is

1− ε, i.e., Pr(Yw > 0) ≥ 1− ε, where ε → 0 as n →∞.

Proof: By using the Second Moment Method, (based on Chebyshev’s Inequality), for a

non-negative integer-valued random variable Yw, we have:

Pr(Yw = 0) ≤ V ar(Yw)

(E[Yw])2
=

E[Y 2
w]

(E[Yw])2
− 1 (4)

Let k = |Φw−1|,

E[Y 2
w] =

k∑

i=1

E[Y 2
iw] +

∑

i#=j

E[YiwYjw]

= E[Yw] + k(k − 1)E[Y1wY2w]

= E[Yw] + k(k − 1)(1− ϕw−1

n
)ϕw−1(2k−3)

= E[Yw] + k(k − 1)e−
ϕ2

w−1
n (2k−3)

Without loss of generality, assume that Cn < |Φ1|. At the start of the final round of the first

phase, in the worst case, there are at least Cn+1 contenders. By substituting for |Φw−1| = Cn+1,

ϕw−1 =
√

n ln 2
|Φw−1|−1 , E[Yw] = |Φw−1|

2 in (4), we have

Pr(Yw = 0) ≤ 2

Cn + 1
+

4Cn

(Cn + 1)2
2Cn−1
Cn+1

− 1.

Therefore, Pr(Yw > 0) ≥ 1− ε, where

ε =
2

Cn + 1
+

4Cn

(Cn + 1)2
2Cn−1
Cn+1

− 1.

For Cn = Θ(
√

log n), ε → 0 as n →∞.

Furthermore, if we fix the number of rounds so that the expected number of contenders in the

last round of the first phase of the protocol is 2 log n
δ2 , where 0 < δ < 1 and δ is a constant, then

by Chernoff bound [22], we have P (Yw ≤ (1− δ)E[Yw]) ≤ 1
n . For a typical value of δ = 1

2 , we

have P (Yw ≤ 4 log n) ≤ 1
n . Informally, the number of contenders entering the second phase of

the protocol Yw is close to the expected value w.h.p. Correspondingly, the number of messages

in the second phase would be 2 log n
δ2

√
n ln n, which still maintains the message complexity.

Theorem 3: There is exactly one contender remaining at the end of the protocol w.h.p.

Proof: ∀u, v : u, v ∈ Φw, u &= v, the probability that any two sets Ψuw and Ψvw intersect is

Pr(Ψuw ∩Ψvw) = 1−
(
1−

√
n ln n

n

)√n ln n

≈ 1− 1

n

Since the sets intersect w.h.p., only the process ρi with the highest value of πi receives positive

responses from all processes in Ψiw. The rest of the contending processes have at least one

decline message. Hence, a unique final winner of the protocol is chosen w.h.p.

Theorem 4: The number of rounds in the protocol is O(log n).

Proof: From (3), it is clear that in every round of the first phase, the number of contenders

reduces by at least half. Since there is only one round in the second phase, the number of rounds

in the protocol is O(log |Φ1|). In the worst case, when |Φ1| = n, the number of rounds of the

protocol is O(log n).

Theorem 5: When |Φ1| = n, the total number of messages in the system is O(n).

Proof: The total number of messages in the system in the first phase is 2
(∑w−1

j=1 |Φj|
√

n ln 2
|Φj |−1

)
.

When |Φ1| = n, the number of contenders in round j is approximately n
2j−1 , which results in

2n(ln 2)
(∑w−1

j=1
1

2
j−1
2

)
messages. Hence, the number of messages in the first phase is O(n) as

∑w−1
j=1

1

2
j−1
2

converges.

At the end of the first phase, the number of remaining contenders is no more than Cn. Since

each contender sends at most
√

n ln n messages in the second phase, the maximum number of

messages exchanged in the second phase is 2c ln n
√

n, where Cn = c
√

ln n and c is a constant.

Hence, the total number of messages in the protocol is O(n).

When |Φ1| = O(1), the total number of messages in the system is O(
√

n ln n).

III. IMPLEMENTATION AND EXPERIMENTAL RESULTS

In this section, we present experimental results for the two protocols described in the previous

section. Our experiments consider both a detailed large-scale simulation, as well as a prototype

implementation on PlanetLab. The simulation setup allows us to quantify the performance

of our protocols for various system parameters. This is not easily done for the PlanetLab

implementation. For our PlanetLab experiments, we use file traces from real systems.

A. Simulation Setup and Results

Recent studies show that the topology of unstructured networks can be modeled using power-

law random graphs [28]. In our experiments, we use a power-law random graph with 50,000

nodes. To generate the graph, we first generate the degrees of the nodes according to a power-law

distribution with parameter α = 0.8 and then connect the nodes randomly.

We assume that a single file is the target of duplicate elimination and that the file is duplicated

at a fraction β of the nodes. The file is placed at nodes selected uniformly at random across

the network. We vary β from 1% to 50%. These percentages are chosen to simulate files of

differing popularity, from rare files to extremely popular ones; in other words, popular files are

duplicated at many nodes, while unpopular ones are not. The desired number of replicas k is

varied from 1 to 100, and the value of c is fixed and equal to 2. This value of c is sufficient to

guarantee the accuracy of the protocol, as discussed in Section III-A.4, and it also minimizes

the network overhead by allowing a small number (twice the value of k) of peers to participate

in the second phase of the protocol.

1) Message Overhead: We first investigate the scalability of our protocols with respect to the

total number of messages exchanged in the system. Figure 4 shows the number of messages for

the two duplicate elimination approaches applied to a file with varying replication fraction, and

with different values of k. In the PQ approach, the parameter k has no impact on the number

of messages – the results are identical for all values of k. This is expected, since the protocol

consists of a single round in which all peers containing a replica send the same number of

messages to the quorum members. The decision to delete a file is made locally based on the

1e+8

1e+7

1e+6

1e+5

1e+4

1e+3
 0 5 10 15 20 25 30 35 40 45 50

To
ta

l N
um

be
r o

f M
es

sa
ge

s

Percentage of Duplicates

PQ
RE(k=1)

RE(k=10)
RE(k=50)

RE(k=100)

Fig. 4. Total number of messages in the system vs Percentage of Duplicates.

responses received. This protocol, however, does not scale well when the percentage of duplicates

increases in the network. When the file is replicated at 50% of the nodes, the number of messages

in the PQ protocol is more than an order of magnitude greater than the worst case (k = 100)

of the RE protocol. This shows that the RE is more resilient to the number of duplicates in the

network.

2) Load Distribution: We evaluate the load at each node in the system with respect to the

number of messages handled. We study the load when the percentage of duplicates is 50% and

k = 100, which corresponds to the highest load among the different parameters studied. Figure 5

shows the number of messages handled by each node. For each approach, the nodes are sorted

independently based on the number of messages processed. We only compare the nodes in the

figure based on its ranking, ranked by the number of messages processed in the two approaches.

The load per node is greater using the PQ protocol than RE due to the larger number of total

messages in the former case. Recall that RE eliminates roughly half the contenders at each

round, thus significantly reducing the number of messages processed in subsequent rounds.

The load is evenly spread across all nodes in the system for the PQ approach. We can see that

the biased random walk using the Metropolis-Hastings algorithm is able to select peers uniformly

from the network. We refer the reader to [2] for a survey of uniform sampling algorithms and

an extensive evaluation of their parameters. For the RE approach, however, we observe a slight

 1

 10

 100

 1000

 0 10000 20000 30000 40000 50000

Nu
m

be
r o

f M
es

sa
ge

s
pe

r N
od

e

Nodes

PQ
RE

Fig. 5. Number of messages received per node (Y-axis in Log Scale).

discrepancy in which a small set of nodes process more messages. This is due to an optimization

we use in the implementation of the protocol. The winners of each round should pick new sets

of mediators in a way that any node can be selected uniformly from the network. However,

in our simulation, the winners include the same set of mediators from a previous round in

the set of mediators for the new round, and only select additional nodes from the network to

satisfy the number of mediators for the new round. Therefore, the mediators picked by the nodes

that eventually retain the files must process more messages than the rest of the nodes in the

system. This simple optimization, however, does not interfere with the accuracy of the protocol,

as discussed below.

3) Different Objects: In a second experiment, we evaluate how the two schemes scale to

the number of different objects in the network. We install different objects in the network with

different levels of popularity for each object. The number of different objects is varied as a

function of the number of nodes in the network. We vary this value from 1% of the number of

nodes up to 200%. In this experiment, the maximum number of different objects is, therefore,

100,000. For each object, we place different number of replicas. The number of replicas is

varied from 10% up to 50% of the nodes. We perform a single election for each experiment

using aggregation, instead of one election per object. We assume that each message can store a

maximum of 20 file descriptors. If a node has more than 20 different files, multiple messages

have to be sent to the mediators. Figure 6 shows the comparison of the two protocols in terms

of number of messages sent in the network. The number of messages sent by RE is divided by

the number of messages sent by PQ. We can see that RE performs much better than PQ when

the number of different objects in the network is relatively small, sending less than 20% of the

number of messages sent by PQ in the best case shown. As the number of different objects

increases, PQ outperforms RE. This result is expected, since a single election is performed and

a node with multiple objects may lose in the first phase for some objects, but still go to the

second phase with other objects. Since the second phase of RE is an execution of PQ with an

expected smaller number of contenders, if the contenders are not pruned due to different objects,

the second phase of RE may, in the worst case, include all the initial contenders. In this case,

the first phase becomes an extra overhead.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

2.001.000.500.100.01

Fr
ac

tio
n

of
 M

es
sa

ge
s

Se
nt

 b
y

RE
 c

om
pa

re
d

wi
th

 P
Q

Different Objects as a Fraction of Nodes in the Network

Pop=10%
Pop=20%
Pop=30%
Pop=40%
Pop=50%

Fig. 6. Comparison of the number of messages sent by the two elimination algorithms. The X-axis shows the number of

different objects as a function of the number of nodes in the network. The number of different objects is varied from 0.01 to

2.00 times the number of nodes in the network. The Y-axis show the comparison of the two algorithms, the total number of

messages sent by RE is divided by the total number of messages sent by PQ. The different curves represent the number of

copies of each object as a function of the number of nodes in the network.

4) Accuracy of the Protocols: The eventual goal of both protocols is to delete all duplicates

while retaining k copies in the network. To evaluate how close each protocol gets to this goal,

we fix the object popularity to 1% (500 copies) and vary k from 1 to 100. In 10,000 different

runs with different seeds, the number of copies left in the network matched the values of k in

99.8% of the runs. This indicates that both protocols are highly accurate in achieving the target

replica count.

B. PlanetLab Experiment

Although PlanetLab is smaller than what we would expect from a large-scale storage system

(and what our simulation results measure), it is nonetheless a useful testbed for evaluating the

performance of our application, and addressing important issues that arise in a real implemen-

tations that are not captured in a simulation study. These include memory requirements and

realistic message delays. In PlanetLab, nodes are spread around the world, and are connected

to the Internet with varying bandwidths. The message delays are actual processing and network

delays and mimic the delays that a large scale application would encounter in a real scenario.

Nodes in PlanetLab consist of PCs with Pentium IV processors with at least 512MB of RAM

and run Linux as their operating system [23].

In our experiments, we use a separate application (command center) to control data collection

and initialization of the nodes. The command center informs the nodes which file systems they

should use and how they should connect to each other. The number of (overlay) connections at

each node is generated using a zipf-like distribution. Once the nodes are connected, the command

center informs the nodes that they can start the elimination protocol. After receiving the start

notification, the nodes wait for a random time interval before starting the elimination protocol.

1) File Traces: The file traces we use in our experiments are data sets obtained from [9].

These traces correspond to 10, 568 file systems from 4,801 Windows machines in a commercial

environment. The trace contains information about 140 million files with total storage requirement

of 10.5 TB. The trace does not contain file contents, only the names and the sizes in bytes of the

files. For our experiments in PlanetLab, we were able to consistently acquire 250 nodes to run

our application; we run four processes per machine, resulting in a network with 1,000 peers. We

randomly choose 1,000 file systems from the trace and assign one file system to each process.

We process the obtained trace to eliminate any duplicates within the same file system, and thus

our results do not reflect duplicate elimination of files that belong to the same file system.

Maximum number of files in a FS 31,533

Minimum number of files in a FS 0

Average number of files per FS 6,719.15

Maximum FS size 4,678MB

Minimum FS size 0KB

Average FS size 653MB

Total space used 86,232MB

Unique files in the system 420,487

PlanetLab nodes 250

Peers 1,000

TABLE I

PLANETLAB EXPERIMENT SYSTEM PARAMETERS.

A unique ID of 20 bytes is generated for each file within the file system by hashing the

file name plus the file size. The file systems are assigned at random to the PlanetLab nodes

without considering the storage, bandwidth, and processing power of the nodes, or any specific

topological relationship among the nodes. We assume these traces correspond to backed up data

on the peers that are subject to duplicate elimination. The characteristics of the file systems used

in our experiments, as well as the other parameters are shown in Table I.

2) Experimental Results: Our main goal in the PlanetLab experiments is to measure adminis-

trative overheads, such as memory usage and messages processed, in a realistic scenario. Since

RE is a more complex protocol and includes PQ as its second phase, we show only the results for

RE. Our experiments examine the effectiveness and overheads of the protocol as the minimum

file size for duplicate elimination is varied. Files below a minimum size are not considered by

the protocol. The minimum file size is varied from 1KB to 10MB. The following parameters

are investigated in our experiments:

• Total Space Reclaimed: This reflects the total amount of space reclaimed in the entire

system. We show this value to be close to optimal, which is the sum of all the sizes of all

unique files in the system.

• Communication Overhead: This indicates the total number of messages including RE-

QUEST TO KEEP, ACK, and NAK messages in the system.

• Storage per node: This parameter gives the file size distribution with respect to the nodes

in the system. At the end of the protocol, the space used at each node should decrease as

a percentage of the number of duplicates it originally held.

• Memory Overhead per node: Each node in the system can potentially act as a mediator.

Measuring memory load, the maximum memory used at any point of the execution, helps

us in identifying the additional memory needed by the system to support the protocol.

 3.5e+11

 4e+11

 4.5e+11

 5e+11

 5.5e+11

 6e+11

 6.5e+11

 7e+11

 7.5e+11

 8e+11

 0 2e+06 4e+06 6e+06 8e+06 1e+07
 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 2e+07

To
ta

l S
to

ra
ge

 (i
n

By
te

s)

M
es

sa
ge

s
Pr

oc
es

se
d

Minimum File Size

Initial Storage
Unique Storage

Final Storage(k=1)
Final Storage(k=10)

Messages Processed

Fig. 7. The X-axis represents the minimum file size for which the duplicate elimination was performed, the Y-axis scale on

the left represents the system storage size, the Y-axis scale on the right represents the total number of messages processed in

the system. Initial and final storage system sizes along with the unique storage size is also shown.

Figure 7 presents the main results of the experiments. We calculate the initial storage system

size by obtaining file system sizes from each node. Similarly, from the file systems used, we

find the number of unique files separately for all the file systems used and the corresponding

storage size. The unique storage system size is the optimal storage size. The initial and unique

storage system sizes are represented by horizontal lines in the figure. We perform the RE protocol

for varying minimum file sizes, from 10KB to 10MB. Only files greater than the established

minimum file size are considered for duplicate elimination. Upon conclusion of the protocol,

we obtain the final file system sizes for each node and compute the final storage system size.

As the figure shows, with increase in the minimum file size, the final storage size deviates from

the optimum storage. When the minimum file size is 10KB, the final storage size is close to the

optimum, which is around 50% of the initial storage size. In other words, the protocol performs

better when the percentage of files considered for duplicate elimination increases, as expected.

The total number of messages processed in the system is also presented on the right Y-axis

of the figure. With increase in the minimum file size, the number of messages exchanged in

the system reduces. The presence of the messages processed along with the final storage space

gives an approximate estimate of the minimum file size that needs to be used. For example,

when the minimum file size is set at 100KB, the number of messages processed is quite low

with final storage space slightly deviating from the optimum storage space. There is a clear

trade-off between the space reclaimed as a function of the minimum file size and the message

overhead. By increasing the minimum file size, the message overhead is reduced, but the number

of duplicates in the system is increased.

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 0 100 200 300 400 500 600 700 800 900 1000

St
or

ag
e

Si
ze

 (i
n

by
te

s)

Nodes (Sorted by Storage Size)

Initial Storage
Final Storage, Min. File Size = 10K

Final Storage, Min. File Size = 500K

Fig. 8. Storage size per node for varying minimum file sizes. Nodes are sorted based on the initial file size.

We also study the amount of storage reclaimed per node. Figure 8 presents the initial storage

requirement for each node in the system. The results for minimum file size of 10K and 500K

are shown in the figure. We use only these two for clarity in presentation. The results for other

minimum file sizes show a similar pattern. It is clear that for both minimum file sizes, the amount

of storage per node decreases for the majority of the nodes. Furthermore, the storage reclaimed

per node when the minimum file size is 10K is greater than when it is 500K. This is due to the

elimination of a larger number of smaller-sized files.

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 2e+07

 0 100 200 300 400 500 600 700 800 900 1000

M
em

or
y

Us
ed

 (i
n

M
B)

Nodes

Min. File Size = 1KB
Min. File Size = 10KB
Min. File Size = 500KB
Min. File Size = 1MB
Min. File Size = 5MB

Fig. 9. Memory overhead (in MB) per node for varying minimum file sizes. Nodes are sorted based on the memory overhead.

The amount of memory consumed per node as a mediator is shown in Figure 9. The nodes are

sorted based on the amount of memory consumed and the experiment is executed for different

minimum file sizes. When the minimum file size is 10K, the average amount of memory

consumed across all nodes is approximately 7MB. Though most of the nodes have similar

memory consumption, there are a few nodes that have more memory overhead. This is similar

to the observations made in the simulation results. Mediators that are part of the mediator sets for

the nodes that eventually keep the file receive more messages than the rest. The same observations

made in Section III-A.2 about our implementation apply in this case. Observe, though, that the

deviation from average is not significant. The memory consumed reduces with increase in the

minimum file size, which is due to fewer number of files selected for duplicate elimination. Due

to the uniform selection of mediators, the memory consumed per node is not correlated to the

initial storage size per node. Recall that the initial storage at each node is non-uniform (Figure

8).

 10

 100

 1000

 10000

 100000

 1e+06

 0 100 200 300 400 500 600 700 800 900 1000

M
es

sa
ge

s
Pr

oc
es

se
d

(L
og

 S
ca

le
)

Nodes

Min. File Size = 1KB
Min. File Size = 5KB
Min. File Size = 1MB

Min. File Size = 10MB

Fig. 10. Messages processed per node with varying minimum file sizes. Nodes are sorted by the number of messages processed.

We evaluate the total number of messages processed per node with varying minimum file size

in Figure 10. For smaller minimum file size, the number of messages processed per node is

relatively higher than that for larger minimum file sizes. This corresponds to the total message

complexity as shown in Figure 7. The non-uniformity in the number of messages processed per

node for a given minimum file size can be attributed to the non-uniform nature of the initial

storage distribution.

IV. RELATED WORK

The duplicate elimination problem for wide-area storage systems has been addressed by

Douecer et al. [8]. They develop SALAD, a Self Arranging, Lossy, Associative Database, which

is a distributed data structure to aggregate file content and location information. The database

is distributed across machines, where each machine is a leaf and a group of leaves form a cell.

Records are sorted into buckets and buckets are assigned to a cell. By building this data structure,

an underlying structure is formed and must be maintained. This is similar to the distributed

indexing approach present in many popular structured peer-to-peer networks [30], [25]. We

address the more general problem of eliminating duplicates without making any assumptions on

the structure of the overlay network.

Pastiche [6] is a peer-to-peer backup system where each peer tries to minimize storage

overhead by selecting peers that share a significant amount of data. The problem of greedy

hosts was identified in [6] and solutions have been proposed. These solutions are based on

equivalence classes, solution of cryptographic puzzles, and various forms of electronic currency.

These solutions tend to be complicated and involve significant overhead. Cox and Noble [7]

revisits this problem and propose Samsara, a fairness enforcement mechanism. In this scheme,

each peer that requests storage space from another peer must agree to reserve some space in

its own disk to the peer it is requesting the storage from. The scheme addresses the problem of

greedy peers, but provides no solution to the problem of common data that are highly replicated

by different peers in the network.

Lillibridge et al [18] proposes a cooperative peer-to-peer backup system. The problem of

cheating peers is addressed using periodic random challenges to ensure peers hold the data they

committed to store. There is no mechanism for identifying and removing duplicate data in the

system.

A number of researchers have addressed the problem of duplicate data elimination in storage

systems. Kulkarni et al. [17] proposes a Redundancy Elimination at the Block Level (REBL)

scheme to eliminate redundant data. This approach uses data compression, duplicate block

suppression, and delta encoding among other techniques. Policroniades et al. [24] studies three

different techniques: whole file content hashing, fixed size blocking, and a chunking strategy

that uses Rabin fingerprints to discover identical portions of data. Both [17] and [24] focus on

eliminating redundancy within a single site. Our work is aimed at eliminating redundant data

from a wide-area unstructured storage system with multiple sites. We can certainly employ the

techniques presented in these other efforts before executing our protocol so that duplicates within

a site are eliminated. Our current implementation uses content hash of entire files. However, it

can be extended to eliminate duplicates at the block level, but with an added communication

cost.

Bolosky et al. [4] addresses the problem of multiple copies of the same file in a file system.

The Single Instance Store (SIS), a component of Windows 2000 that implements links with

the semantics of copies for files, is proposed. SIS uses copy-on-close to implement the copy

semantics of its links. This again is a solution that manages space within a single site, while

our paper solves the problem of managing space efficiently across multiple sites.

V. CONCLUSION

This paper addresses the problem of duplicate elimination in storage systems in the context

of unstructured peer-to-peer networks in which there is no a priori binding between an object

and its location. We abstract the problem of retaining a copy of a data item to one of electing

leaders in a distributed system. We show analytically, as well as using simulation and a prototype

implementation in PlanetLab, that our protocols are scalable with respect to message complexity

and to node resource utilization. The experimental results show that RE performs better than

PQ when the number of duplicates in the network is high and the content is similar among the

nodes. When the number of different objects in the network is high (nodes have unique objects),

PQ performs better than RE. The reason for this behavior is that the first phase of RE is not able

to prune the number of contenders, and, therefore, becomes an extra overhead. To the best of

our knowledge, our work is the first to address the duplicate elimination problem in unstructured

networks.

ACKNOWLEDGEMENTS

This research has been partially funded by National Science Foundation grants CNS 0551658,

CCF 0444285, CNS 0334141, CCF 0325227, and STI-5011078. The first author has also been

funded by CNPq and UFMS, Brazil.

REFERENCES

[1] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer, and

R. P. Wattenhofer. FARSITE: Federated, Available, and Reliable Storage for an Incompletely Trusted Environment. In

Proceedings of OSDI’02, Dec 2002.

[2] A. Awan, R. Ferreira, A. Grama, and S. Jagannathan. Distributed Uniform Sampling in Large Real-World Networks.

Technical Report, Department of Computer Sciences, Purdue University, October 2004.

[3] M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani. Estimating Aggregates on a Peer-to-Peer Network. Technical

Report, Computer Science Department, Stanford University, 2003.

[4] W.J. Bolosky, S. Corbin, D. Goebel, and J.R. Douceur. Single Instance Storage in Windows 2000. In Proceedings of the

4th USENIX Windows Systems Symposium, August 2000.

[5] S. Boyd, P. Diaconis, and L. Xiao. Fastest Mixing Markov Chain on a Graph. SIAM Review, problems and techniques

section., 46(4):667–689, December 2004.

[6] L. Cox, C. Murray, and B Noble. Pastiche: Making Backup Cheap and Easy. In Proceedings of OSDI ’02, Boston, MA,

December 2002.

[7] L. Cox and B. Noble. Samsara: Honor Among Thieves in Peer-to-Peer Storage. In Proceedings of SOSP 2003, Bolton

Landing, NY, October 2003.

[8] J. Douceur, A. Adya, W. Bolosky, D. Simon, and M. Theimer. Reclaiming Space from Duplicate Files in a Serverless

Distributed File System. In Proceedings of ICDCS’02, Vienna, Austria, July, 2002.

[9] J.R. Douceur and W.J. Bolosky. A Large-Scale Study of File-System Contents. In Proceedings of SIGMETRICS’99, pages

59–70, 1999.

[10] R. Ferreira, M. K. Ramanathan, A. Awan, A. Grama, and S. Jagannathan. Search with Probabilistic Guarantees in

Unstructured Peer-to-Peer Networks. In Proceedings of IEEE P2P’05, Konstanz, Germany, August 2005.

[11] Freenet. http://freenet.sourceforge.net/.

[12] C. Gkantsidis, M. Mihail, and A. Saberi. Random walks in peer-to-peer networks. In Proceedings of IEEE INFOCOM,

2004, Hong Kong, March 2004.

[13] Gnutella. http://gnutella.wego.com/.

[14] A.G. Goldberg and P.N. Yianilos. Towards an Archival Intermemory. In Proceedings of IEEE Advances in Digital Libraries

(ADL), 1998.

[15] W. Hastings. Monte Carlo Sampling Methods Using Markov Chains and their Applications. Biometrika, 57(1):97–109,

1970.

[16] K. Horowitz and D. Malkhi. Estimating Network Size from Local Information. Information Processing Letters, 88(5):237–

243, December 2003.

[17] P. Kulkarni, F. Douglis, J. LaVoie, and J.M. Tracey. Redundancy elimination within large collection of files. In Proceedings

of the 2004 USENIX Annual Technical Conference, pages 59–72, Boston, MA, June 2004.

[18] M. Lillibridge, S. Elnikety, A. Birrel, and M. Burrows. A Cooperative Internet Backup Scheme. In Proceedings of 2003

Usenix Technical Conference, San Antonio, TX, June 2003.

[19] Nancy A. Lynch. In Distributed Algorithms. Morgan Kaufmann Publishers, Inc., 1996.

[20] D. Malkhi, M. Reiter, and R. Wright. Probabilistic Quorum Systems. In Proceedings of PODC ’97, pages 267–273, Santa

Barbara, CA, August 1997.

[21] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equations of State Calculations by Fast Computing

Machines. Journal of Chemical Physics, 21:1087–1091, 1953.

[22] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

[23] PlanetLab. http://www.planet-lab.org/.

[24] C. Policroniades and I. Pratt. Alternatives for detecting redundancy in storage systems data. In Proceedings of the 2004

USENIX Annual Technical Conference, pages 73–86, Boston, MA, June 2004.

[25] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable Content-Addressable Network. In Proceedings

of ACM SIGCOMM ’01, pages 247–254, San Diego, CA, August 2001.

[26] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object Location and Routing for Large-Scale Peer-to-Peer

Systems. In Proceedings of ACM SIGCOMM ’01, pages 247–254, San Diego, CA, August 2001.

[27] Y. Saito, C. Karamanolis, M. Karlsson, and M. Mahalingam. Taming Aggressive Replication in the Pangaea Wide-Area

File System. In Proccedings of OSDI ’02, Boston, MA, December 2002.

[28] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A Measurement Study of Peer-to-Peer File Sharing Systems. In Proceedings

of MMCN ’02, San Jose, CA, USA, January 2002.

[29] N. Sarshar, P. Boykin, and V. Roychowdhury. Percolation Search in Power-Law Networks: Making Unstructured Peer-to-

Peer Networks Scalable. In Proceedings of IEEE P2P’04, Zurich, Switzerland, August 2004.

[30] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A scalable Peer-To-Peer lookup service for

internet applications. In Proceedings of ACM SIGCOMM ’01, pages 149–160, San Diego, CA, August 2001.

[31] B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph. Tapestry: An infrastructure for fault-tolerant wide-area location and routing.

Technical Report UCB/CSD-0101141, UC Berkeley, Computer Science Division, April 2001.

Ronaldo A. Ferreira is a Ph.D. candidate in the Department of Computer
Science at Purdue University. He received his M.Sc. degree in computer science
from University of Campinas, Brazil, and his B.Sc. degree in computer science
from Federal University of Mato Grosso do Sul, Brazil. Prior to joining Purdue,
he worked as a lecturer at Federal University of Mato Grosso do Sul from 1995
to 2000. His research interests are in networking and distributed systems.

Murali Krishna Ramanathan is a Ph.d candidate in the Department of
Computer Science at Purdue University. He received his MS from Purdue
and his BE from CEG, Anna University, India. His research interests are in
program analysis and distributed systems.

Ananth Grama received his Ph.D. from the University of Minnesota in 1996.
He is currently a Professor of Computer Sciences and a University Faculty
Scholar at Purdue University. His research interests span the areas of parallel
and distributed computing architectures, algorithms, and applications. On these
topics, he has authored several papers and co-authored a text book ‘Introduction
to Parallel Computing’ with Anshul Gupta, George Karypis and Vipin Kumar.
He is a member of American Association for Advancement of Sciences.

Suresh Jagannathan is currently an associate professor at Purdue University.
Prior to joining Purdue, he was a senior research scientist at the NEC Research
Laboratories, Princeton. His interests span programming languages, concurrent
and distributed systems. He holds a Ph.D. from MIT.

