
A

Proof-Directed Parallelization Synthesis by Separation Logic

MATKO BOTINČAN, University of Cambridge

MIKE DODDS, University of York1

SURESH JAGANNATHAN, Purdue University

We present an analysis which takes as its input a sequential program, augmented with annotations indicating

potential parallelization opportunities, and a sequential proof, written in separation logic, and produces a

correctly-synchronized parallelized program and proof of that program. Unlike previous work, ours is not
a simple independence analysis that admits parallelization only when threads do not interfere; rather, we

insert synchronization to preserve dependencies in the sequential program that might be violated by a näıve

translation. Separation logic allows us to parallelize fine-grained patterns of resource-usage, moving beyond
straightforward points-to analysis. The sequential proof need only represent shape properties, meaning we

can handle complex algorithms without verifying every aspect of their behavior.

Our analysis works by using the sequential proof to discover dependencies between different parts of the
program. It leverages these discovered dependencies to guide the insertion of synchronization primitives

into the parallelized program, and to ensure that the resulting parallelized program satisfies the same
specification as the original sequential program, and exhibits the same sequential behavior. Our analysis is

built using frame inference and abduction, two techniques supported by an increasing number of separation

logic tools.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Program Verification—Correctness

proofs; D.3.3 [Programming Languages]: Language Constructs and Features—Concurrent programming

structures

General Terms: Languages, Theory, Verification

Additional Key Words and Phrases: Separation Logic, Abduction, Frame Inference, Deterministic Paral-

lelism

1. INTRODUCTION

In many cases concurrency is an optimization, rather than intrinsic to the functional behav-
ior of a program. That is, a concurrent program is often intended to achieve the same effect
of a simpler sequential counterpart, but faster. Error-free concurrent programming remains
a tricky problem, beyond the capabilities of most programmers; consequently, an attractive
alternative to manually synchronising a concurrent program is to automatically synthesize
one. In this approach, the programmer writes a sequential program, which is then automat-
ically transformed into a concurrent one exhibiting the same behavior. Programmers can

1Work completed while at the University of Cambridge.

This work was supported by the Gates trust, by EPSRC grants EP/H010815/1, EP/H005633/1,
EP/F036345 and by NSF grant CCF-0811631.
Author’s addresses: M. Botinčan, Computer Laboratory, University of Cambridge; M. Dodds, Department
of Computer Science, University of York, UK; S. Jagannathan, Department of Computer Science, Purdue
University.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 0164-0925/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 Proof-Directed Parallelization Synthesis by Separation Logic

work in the simpler, more reliable sequential setting, yet reap the performance benefit of
concurrency.

Optimizations also make it more complex to verify the correctness of a program. Low-
level abstractions such as locks obfuscate higher-level notions such as atomicity and lin-
earizability, likely to be exploited by the programmer when writing programs. To be useful
in practice, concurrent verification tools must (a) explore a potentially large number of
interleavings, and (b) construct precise flow- and path-sensitive abstractions of a shared
heap. This complexity is often at odds with the straightforward intentions of the program-
mer, expressed in the original sequential programs. Consequently, the verification problem is
rendered significantly more tractable by synthesising concurrency. Understanding and ver-
ifying a concurrent program reduces to first verifying the sequential program, and second,
verifying the parallelizing transformation.

We propose a program analysis and transformation that automatically yields a paral-
lelized program given a sequential one. Our approach is built on verification technology;
our analysis is guided by a lightweight proof of the sequential program, written in sepa-
ration logic. We assume that the programmer annotates points in the sequential program
where concurrency might be profitably exploited, without supplying any additional concur-
rency control or synchronization. The result of the transformation is a concurrent program
with corresponding behavior, and a safety proof for the concurrent program; in this sense,
parallelized programs are verified by construction.

Our transformation ensures that the input-output behavior of the sequential program is
preserved by requiring that the concurrent program respects sequential data dependencies.
In other words, the way threads access and modify shared resources never results in behavior
that would not be possible under sequential evaluation. To enforce these dependencies, the
transformation injects synchronization barriers, signalling operations that regulate when
threads are allowed to read or write shared state. These barriers can be viewed as resource
transfer operations that acquire and relinquish access to shared resources such as shared-
memory data structures and regions when necessary.

Our analysis is built on separation logic [Reynolds 2002]. The input safety proof is used to
discover how resources are demanded and consumed within the program, and to synthesize
barriers to precisely control access to these resources. Our approach relies on frame infer-
ence [Berdine et al. 2005b] and abduction [Calcagno et al. 2011], two techniques that gen-
erate fine-grained information capable of describing when resources are necessary and when
they are redundant. This information enables optimizations that depend on deep structural
properties of the resource—for example, we can split a linked list into dynamically-sized
segments and transmit portions between threads piece-by-piece.

The input proof supplied to our analysis must state all resources that are used by the
program such as the shape of all data-structures (for example, that a data-structure is a
linked list). However, it need not establish the functional correctness of the algorithm. Our
analysis protects all dependencies that are relevant to the program’s input-output behavior,
not just those specified in the proof. Thus we can apply our approach to complex algorithms
without verifying every aspect of the program’s behavior.

Our analysis thus enforces sequential order over visible input-output behaviors, while
allowing parallelization when it would have no visible effect. Insofar as our technique safely
transforms a sequential program into a concurrent one, it can also be viewed as a kind of
proof-directed compiler optimization.

Contributions.

(1) We present an automated technique to synthesize a parallel program given a partially-
specified sequential program augmented with annotations indicating computations that
are candidates for parallelization. The provided specifications are used to define relevant
loop invariants.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Proof-Directed Parallelization Synthesis by Separation Logic A:3

(2) We leverage abduction and frame inference to define a path- and context-sensitive
program analysis capable of identifying per program-point resources that are both
redundant— resources that would no longer be used by the thread executing this com-
putation; and, needed—resources that would be required by any thread that executes
this computation, but which are not known to have been released at this point.

(3) We use information from the above analysis to inject grant and wait barriers into the
original program; their semantics enable resource transfer from redundant to needed
resource points. The analysis also constructs a safety proof in separation logic which
validates the correctness of the barrier injections.

(4) We prove that our transformation is specification-preserving: the parallelized program
is guaranteed to satisfy the same specification as the sequential program. Moreover, for
terminating programs that do not dispose memory, we also show that the transformed
program preserves the behavior of the original.

Paper structure. An overview of the approach and motivating examples are given in §2.
Extension for dealing with loops and recursive data structures (such as lists) are discussed
in §3. Technical details of the analysis are given §4, §5, and §6. Observations about the way
the choice of parameters affects the analysis are given in §7. Limitations of the analysis
are discussed in §8. A formal semantics is given in §9 and the soundness results—behavior
preservation and termination—are presented in §10 and §11. §12 discusses related work.

2. OVERVIEW

The objective of our analysis is to take a sequential program, annotated to indicate seg-
ments that might be feasible candidates to execute in parallel, and to produce a parallelized
program. This new program should be observationally equivalent to the sequential original;
i.e. it should have identical input-output behavior. To do this, we execute all the iden-
tified segments in parallel, but insert sufficient synchronization barriers to enforce those
dependencies that can affect the input-output behavior of the program.

In a sequential program execution, a dependency exists between two events if the effect of
one event can affect the behavior of a subsequently executed one; these effects can be based
on control-flow (e.g., the outcome of a conditional expression) or data-flow (e.g., assigning
a value to a location that is subsequently read). If new dependencies are introduced or
removed during parallelization, the input-output behavior of the program may change. Our
analysis uses separation logic to discover sequential dependencies, and to ensure that they
are preserved by parallelization.

We assume that the original program is accompanied by a proof, written in sequential
separation logic. The proof need not establish full functional correctness; it suffices that
it establishes that the program does not fault (e.g., does not access a data structure in-
correctly). This proof is used to drive the parallelization process, allowing our analysis to
calculate precisely which statements access what resources (i.e., mutable state such as data
structures or components thereof). Intuitively, once our analysis detects that a resource
will not be accessed for the remainder of a program segment, it can be safely accessed
concurrently without adding or removing dependencies. Until this point, no other program
statements that access this resource may run concurrently in any transformed parallelized
version of the program.

2.1. Overview of the Parallelization Process

In the simplest scenario, the input sequential program is just a sequential composition
C1;C2 of two sub-programs C1 and C2. (Later we will extend our analysis to more complex
target programs). We assume the programmer has identified C1 and C2 as candidates for
parallelization. The intended semantics is that C1 and C2 may run in parallel, but that the
visible behavior will be identical to running them in sequence; this semantics provides a

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 Proof-Directed Parallelization Synthesis by Separation Logic

simple but useful form of data parallelism in which concurrently executing computations
may nonetheless access shared state.

To ensure behavior preservation, we often need to insert synchronization operations. For
example, consider the following program:

f(1); f(2)

where f() is a procedure manipulating shared locations x and y:

f(int i) {
int v = *x;
if (v>=i) *y = v;
else *x = 0;

}

How can we parallelize this program without introducing any unwanted new behaviors, i.e.,
behaviors not possible under sequential execution? Näıvely, we might simply run both calls
in parallel, without synchronization. That is:

f(1) || f(2)

In some situations this parallelization is good, and introduces no new observable behaviors
(e.g., if the initial value stored at x is 0). But, under others, the second call to f() may
write to a memory location that is subsequently read by the first call to f(), violating the
intended sequential ordering. For example, consider the case when the value stored at x is
initially 1; sequential execution would produce a final result in which the locations pointed
to by x and y resp. are 0 and 1, while executing the second call to completion before the
first would yield a result in which the location pointed to by y remains undefined.

We say one portion of a parallelized program occurs logically earlier than another if the
two portions were sequentially ordered in the original source program. In the above example,
the call f(1) occurs logically earlier than f(2). To be sure that no new observable behavior
is introduced during a parallelization transformation, we must ensure that:

— a computation cannot read from a location that was already written to by a computation
that occurs logically later; and

— a computation cannot write to a location that was already read from or written to by a
computation that occurs logically later.

Note, crucially, that a computation that occurs logically later from another need not always
wait for the earlier one—synchronization is only needed when reads and writes to a par-
ticular memory location could result in out-of-order behavior. In other words, we want to
enforce only salient dependencies, while allowing beneficial race-free concurrency.

In this section, we considered parallelizing only a single sequentially-composed pair of
program segments that access fixed memory locations. Later we will consider parallel-for
loops that execute all iterations concurrently (§3.1), over dynamic data-structures (§3.2).

2.2. Dependency-Enforcing Barriers

In order to enforce the logical ordering in the parallelized program, our analysis inserts
barriers enforcing the logical order over resources, giving the modified procedures f1() and
f2(). The safely parallelized program is then:

f1(1) || f2(2)

To enforce the ordering between calls to f(), we introduce grant(), a barrier that signals
that the resource it protects can safely be accessed by a computation that occurs logically
afterwards; and wait(), a barrier that blocks until the associated resource becomes available
from a computation that occurs logically before it [Dodds et al. 2011].

How do we use these barriers to enforce sequential dependencies? The exact pattern of
parallelization depends on the granularity of our parallelization analysis. In the best case,

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Proof-Directed Parallelization Synthesis by Separation Logic A:5

f1(i){
int v = *x;
if (v>=i) {
grant(wx);
*y = v;
grant(wy);

}
else {
grant(wy);
*x = 0;
grant(wx);

}
}

f2(i){
wait(wx);
int v = *x;
if (v>=i) {
wait(wy);
*y = v;

}
else {
*x = 0;
wait(wy);

}
}

Fig. 1. Parallelization of the two calls to f().

there are no dependencies between successive calls (e.g., each invocation operates on a
different portion of a data structure). In this case, we need no barriers, and all invocations
run independently. However, our example program shares the locations x and y, meaning
barriers are required.

In the simplest parallelization of our example, the call to f1() would end with a call
to grant(), while the call to f2() would begin with a call to wait()—this would enforce
a total sequential ordering on the invocations. A better (although still relatively simple)
parallelization is shown in Fig. 1. Two channels, wx and wy, are used to mediate signalling
between f1 and f2—wx (resp. wy) is used to signal that the later thread can read and write
to the heap location referred to by x (resp. y).

Our analysis inserts a grant() barrier when the associated resource will no longer be
accessed. Similarly, it injects a wait() barrier to wait for the resource to become available
before it is accessed.

How does our analysis generate these synchronization barriers? The example we have
given here is simple, but in general our analysis must cope with complex dynamically-
allocated resources such as linked lists. It should deal with the partial ownership (for exam-
ple, read-access), and with manipulating portions of a dynamic structure (for example, just
the head of a linked list, rather than the entire list). We therefore need a means to express
complex, dynamic patterns of resource management and transfer.

To achieve this, our analysis assumes a sequential proof, written in separation logic, rather
than just an undecorated program. This proof need not capture full functional correctness—
it is sufficient just to prove that the program does not fault. We exploit the dependencies
expressed within this proof to determine the resources that are needed at a program point,
and when they can be released. Our analysis inserts barriers to enforce the sequential
dependencies represented in this proof. As our proof system is sound, these dependencies
faithfully represent those in the original sequential program.

2.3. Resources, Separation and Dependency

Our analysis works by calculating the ways that resources are used in the source sequential
program. By resource, we mean mutable state that can generates dependencies between
program statements. For example: heap cells in memory; objects built from heap cells such
as linked lists; portions of objects, such as linked-list segments; and other kinds of mutable
objects such as channels. If two program statements access the same resource, there may
be a dependency between them. If they do not, then a dependency cannot exist.

At the heart of our analysis is automated reasoning using separation logic [Reynolds 2002;
O’Hearn 2007]. Separation logic is a Hoare-style partial correctness logic for reasoning about

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 Proof-Directed Parallelization Synthesis by Separation Logic

mutable resources. It allows us to represent the use of resources in the sequential program,
and to soundly manipulate the flow of resources to give a parallelized program.

The power of separation logic lies in its ability to cleanly represent and compose resources.
Indeed, resources in our analysis are simply separation logic assertions. Two assertions can
be composed using the ∗ operator (the separating conjunction) to give a larger assertion.
An assertion P ∗ F is satisfied if P and F hold, and the resources denoted do not overlap.
Loosely speaking, if one program statement only accesses the resource P and another F ,
there can be no dependency between them. In the case of heap resources, separation by ∗
corresponds to disjointness of heap address spaces.

As well as establishing the absence of faults, judgements in separation logic also establish
the resource bounds of a program. A judgement {P} C {Q} can be be read as saying: “if
C is run in a resource satisfying P , it (1) will not fault, (2) will give a resource satisfying
Q if it terminates, and (3) will only access resources held in P or acquired through resource
transfer”.

This property – that all resources be described in preconditions or acquired explicitly –
is an essential feature of separation logic (it is sometimes called the tight interpretation of
specifications). A judgement {P} C {Q} means that C does not access any resources not
described in P (conversely, P can include resources that C does not access). For example,
the following judgement is invalid in separation logic:

{x 7→ v′1} *y = 5 {x 7→ v′2}

(We write a 7→ b to indicate that the address a maps to the value b in the heap. By con-
vention, primed variables are implicitly existentially quantified.) This judgement is invalid
because x and y might point to different locations, meaning the program might write to a
resource not mentioned in its precondition. In classical Hoare logic this judgement would
be valid.

The tight interpretation is essential for the soundness of our analysis. Suppose we prove a
specification for a program (or portion thereof); resources outside of the precondition cannot
be accessed by the program, and cannot affect its behavior. If two program statements
access disjoint resources, then there can be no dependencies between the two statements.2

– consequently such resources can be safely transferred to other program segments that are
intended to be executed in parallel.

The key proof rule of separation logic is the frame rule, which allows small specifications
to be embedded into a larger context.

{P} C {Q}
{P ∗ F} C {Q ∗ F}

Frame

The concurrent counterpart of the frame rule is the parallel rule. This allows two threads
that access non-overlapping resources to run in parallel, without affecting each other’s be-
havior.

{P1} C1 {Q1} {P2} C2 {Q2}
{P1 ∗ P2} C1‖C2 {Q1 ∗Q2}

Parallel

The parallel rule enforces the absence of data-races between C1 and C2. The two threads
can consequently only affect each other’s behavior by communicating through race-free
synchronization mechanisms, such as locks or barriers, that act as shared resources.

Assertion language. Separation logic is aimed at reasoning about resources. In general,
a resource can be anything for which ownership can be partitioned (‘separated’) between
different threads [Calcagno et al. 2007]. In practice, resources are heap-allocated structures

2However, there is an important caveat regarding memory allocation and disposal – see §6 for a discussion.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Proof-Directed Parallelization Synthesis by Separation Logic A:7

such as lists, trees, locks, etc, where separation corresponds to disjointness between under-
lying heap addresses.

As well as the separating conjunction ∗ and the standard first-order logical operators, ∨,
∧, ∃, we assume a number of basic assertions for representing heap states. The simplest is
emp, which asserts that the local heap is empty. We have already encountered the points-
to assertion a 7→ v, which says that the heap cell with address a holds value v. Where
the object at an address can have more than one field, we write a.f 7→ v to represent an
individual field f . Assertions in separation logic represent ownership, so this assertion also
says that the thread is allowed to read and write to address a freely. By convention, primed
variables are implicitly existentially quantified.

We also assume a fractional points-to assertion in the style of [Bornat et al. 2005] to allow

a location to be shared between threads. An assertion a
f7−→ v for some f ∈ (0, 1] means that

the current thread holds read-only permission f on address a. Fractional permissions can
be split and recombined according to the following rules:

a
f1+f27−−−−→ v ⇐⇒ a

f17−→ v ∗ a f27−→ v a 7→ v ⇐⇒ a
17−→ v

Using fractional permissions, read-only access can be shared between several threads in the
system. Read-write permission can be recovered if some thread collects together all of the
fractional permissions for the address.

To represent lists, we assume a predicate lseg(x, t), which asserts that a segment of a
linked list exists with head x and tail-pointer t. We write node(x, y) to represent a single
node in the list:

node(x, y) , x.val 7→ v′ ∗ x.nxt 7→ y

We then define lseg as the least separation logic predicate satisfying the following recursive
equation:

lseg(x, t) , (x = t ∧ emp) ∨ (node(x, y′) ∗ lseg(y′, t))

The behavior of the analysis depends strongly on the choice of these resource predicates.
We discuss alternatives to lseg, node, etc. in §7.

Automatic inference. Automated reasoning and symbolic execution in separation logic
revolves around two kinds of inference questions: frame inference and abduction. These
questions form the basis of symbolic execution in separation logic [Berdine et al. 2005a;
Calcagno et al. 2011]. Intuitively, frame inference lets us reason forwards, while abduction
lets us reason backwards.

The first question, frame inference, calculates the portion of an input assertion which is
‘left over’, once another desired assertion has been satisfied. Given an input assertion S and
desired assertion P , an assertion F? is a valid frame if S ` P ∗ F?. We write the inference
question as follows:

S ` P ∗ [F?]

(Throughout the paper, we use square brackets to indicate the portions of an entailment
that should be computed.)

Frame inference is used during forwards symbolic execution to calculate the effects of
commands. Suppose we have a symbolic state represented by an assertion S, and a command
c with specification {P} c {Q}. If we calculate the frame in S ` P ∗ [F?], the symbolic
state after executing c must be Q ∗ F?. For example, consider the following command and
specification:

{x 7→ v′} *x = 42 {x 7→ 42}

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 Proof-Directed Parallelization Synthesis by Separation Logic

With initial symbolic state S = x 7→ 5 ∗ y 7→ 7 and desired precondition P = x 7→ v′ we
obtain the frame y 7→ 7. By combining this with the command’s postcondition, we get the
symbolic state after executing the command, x 7→ 42 ∗ y 7→ 7.

The second kind of inference question, abduction, calculates an antiframe – the ‘missing’
assertion that must be combined with an input assertion in order to satisfy some desired
assertion. Given an input assertion S and a desired assertion P , an assertion A? is a valid
antiframe if S ∗A? ` P . We write the inference question as follows:

S ∗ [A?] ` P

Abduction is used during a backwards analysis to calculate what extra resources are neces-
sary to execute the command safely. Suppose we have a symbolic state represented by an
assertion S, and a command c with specification {P} c {Q}. It might be that S doesn’t in-
clude sufficient resources to execute c. In this case, if we calculate the antiframe S∗[A?] ` P ,
the assertion S ∗A? will be sufficient to execute c safely. For example, suppose we have the
following command and specification:

{x 7→ v′1 ∗ y 7→ v′2} if (*y==0) *x = 42 {x 7→ v′3 ∗ y 7→ v′4}

With symbolic state S = x 7→ 5 ∗ z 7→ 7 and desired precondition P = x 7→ v′1 ∗ y 7→ v′2,
abduction will obtain the antiframe A? = y 7→ v′. The combined assertion x 7→ 5 ∗ z 7→
7 ∗ y 7→ v′ suffices to execute the command safely.

The tight interpretation of specifications is necessary for this kind of reasoning. Because
a specification must describe all the resources affected by a thread, any resources in the
frame must be unaccessed. Conversely, if we calculate the antiframe S ∗ [A?] ` P , it must
be the case that before executing c, we must first acquire the additional resource A? (as
well as S).

Redundant and needed resources. In a separation logic proof, the assertion at a particular
program point may describe resources that are not needed until much later in the program
(or that are not needed by any subsequent command). Different commands access different
resources, but the tight interpretation means that each assertion expresses all the resources
used by the program at any point during its execution (aside from those gained and lost by
resource transfer). Thus at a given point in the program, many resources that are represented
in the proof will be redundant.

Resources that become redundant will not be accessed by the current thread, and thus can
be accessed by a parallel thread without generating data-races. Redundant resources can
be seen as over-approximating independence: a resource that is redundant at a particular
point in a thread cannot subsequently generate dependencies between it and other threads.
Our parallelization analysis uses the input separation logic proof to identify resources that
are redundant, and uses grant() and wait() signalling to transfer them to the logically
next point at which they are needed.

Thus our analysis is likely to be most effective for programs with complex specifica-
tions encompassing many resources, and with programs which modify resources in very few
places, and where the resources accessed change over the course of the program. The move()
example we discuss below in §3.2 has precisely these characteristics.

We use frame inference to determine redundant resources—resources that will not be
accessed in a particular portion of the program, and which can thus be safely transferred to
other threads. Conversely, we use abduction to determine needed resources—resources that
must be held for a particular portion of the program to complete, and which must thus be
acquired before the program can proceed safely.

In our analysis, we calculate the redundant resource from the current program point to
the end of the current parallelized program segment. This resource can be transferred to the
logically next program segment with a grant() barrier. We calculate the needed resource

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Proof-Directed Parallelization Synthesis by Separation Logic A:9

from the start of current segment to the current program point. This resource must be
acquired from the logically preceding segment using a wait() barrier before execution can
proceed further.

Note that these two resources need not be disjoint. A resource may be used early in
a segment, in which case it will be both needed up to the current point, and redundant
from the current point. Note also that redundant and needed resources need not cover the
entire state—some resource described in the proof may never be accessed or modified by
the program.

2.4. Algorithm Overview

We assume the user supplies a sequential program with parallelizable segments identified,
as well as a sequential proof written in separation logic establishing relevant memory safety
properties of the program. The high-level structure of our algorithm is as follows:

(1) A resource usage analysis uses abduction and frame inference to discover redundant
and needed resources for different portions of the program.

(2) A parallelizing transformation that consists of the following three parts leverages this
information to construct a parallelized program and associated separation logic proof
of correctness:
(a) The parallelization phase converts the sequential program into a concurrent program

by replacing all the identified parallelizable segments with parallel threads.
(b) The resource matching phase matches redundant resources in each parallel thread

with needed resources in the logically following parallel thread.
(c) The barrier insertion phase modifies each parallel thread to insert grant() and

wait() barriers consistent with the discovered resource-transfer.

Algorithm properties. Our algorithm does not guarantee optimal parallelization; there
may be programs that it does not find which are more parallel. However, the resulting
parallelized program is guaranteed to be race-free and memory-safe, and the analysis con-
structs a separation logic proof that the parallelized program satisfies the same safety spec-
ification as the original sequential program. This new proof differs from the proof of the
original sequential proof, reflecting parallelization and injected synchronization. If the orig-
inal sequential program is terminating and does not dispose memory, then parallelization
is behavior-preserving: every input-output behavior of the parallelized program is also a
behavior of the original sequential program.

2.5. Resource Usage Analysis

Consider once again the program that we introduced at the start of this section:

f(1); f(2)

and the following specification for f(), covering any input value i:

{x 7→ a ∗ y 7→ b} f(i) {(a ≥ i ∧ x 7→ a ∗ y 7→ a) ∨ (a < i ∧ x 7→ 0 ∗ y 7→ b)}

The precondition of this specification says that f(i) accesses two distinct memory locations,
x and y. As is standard in Hoare logic, we use ghost variables a and b to record the values
stored in x and y. The postcondition gives two possibilities: if a is greater than i, then both
x is unmodified and y are set to a; otherwise, x is set to 0 and y unmodified. Fig. 2 shows
a proof of this specification.

Needed resources. At the core of the analysis is computing needed resources for intervals
between pairs of program points. The needed resource for a particular interval is the resource
that must be held to execute from the start of the interval to the end without faulting.
Needed resources are used to work out when wait-barriers must be injected. Resources

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Proof-Directed Parallelization Synthesis by Separation Logic

1 {x 7→ a ∗ y 7→ b}
2 void f(i) {
3 int v = *x;

4 {v = a ∧ x 7→ a ∗ y 7→ b}
5 if (v >= i) {

6 {v = a ∧ v ≥ i ∧ x 7→ a ∗ y 7→ b}
7 *y = v;
8 }
9 else {

10 {v = a ∧ v < i ∧ x 7→ a ∗ y 7→ b}
11 *x = 0;
12 }
13 }

14 {(a ≥ i ∧ x 7→ a ∗ y 7→ a) ∨ (a < i ∧ x 7→ 0 ∗ y 7→ b)}

Fig. 2. Separation logic proof of the function f().

1 n:{emp}
2 void f(i) {
3 int v = *x;

4 n:{x 7→ a}
5 if (v >= i) {

6 n:{a ≥ i ∧ x 7→ a}
7 *y = v;

8 n:{a ≥ i ∧ x 7→ a ∗ y 7→ b}
9 }

10 else {

11 n:{a < i ∧ x 7→ a}
12 *x = 0;

13 n:{a < i ∧ x 7→ a}
14 }
15 }

16 n:{(a ≥ i ∧ x 7→ a ∗ y 7→ b) ∨ (a < i ∧ x 7→ a)}

Fig. 3. Needed resources from the start of f() to all other program points.

must be acquired before they are used in a program segment. Thus, needed resources are
calculated from the start of the segment, to every other program point.

In our example, wait() barriers are injected into the second call to f(). These needed
resources are shown in Fig. 3. For example, the resource calculated for the start of the
else-branch (Fig. 3, line 11) is:

a < i ∧ x 7→ a

That is, to reach this program point from the start of f(), the thread only requires access
to the heap cell x, provided a < i. Access to x is needed because it is dereferenced in line 3.

Redundant resources. To calculate where grant() barriers can be inserted, the analysis
computes redundant resources for particular program intervals. The redundant resource in
an interval is the portion of the currently-held resource that is not needed to execute to end
of the interval. Resources that are redundant to the end of the segment can be transferred

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Proof-Directed Parallelization Synthesis by Separation Logic A:11

1 n:{x 7→ a ∗ (a ≥ i ∧ y 7→ b)}
r :{emp}

2 void f(i) {
3 int v = *x;

4 n:{(v ≥ i ∧ y 7→ b) ∨ (v < i ∧ x 7→ a)}
r :{(v = a ∧ v ≥ i ∧ x 7→ a) ∨ (v < i ∧ y 7→ b)}

5 if (v >= i) {

6 n:{y 7→ b}
r :{v = a ∧ v ≥ i ∧ x 7→ a}

7 *y = v;

8 n:{emp}
r :{v = a ∧ v ≥ i ∧ x 7→ a ∗ y 7→ b}

9 }
10 else {

11 n:{x 7→ a}
r :{v < i ∧ y 7→ b}

12 *x = 0;

13 n:{emp}
r :{v = a ∧ v < i ∧ x 7→ a ∗ y 7→ b}

14 }
15 }

16 n:{emp}
r :{x 7→ a ∗ y 7→ b}

Fig. 4. Redundant resources from all program points to the end of f(), along with the needed resources
used to calculate them. Needed resources are prefixed with n and redundant resources are prefixed with r.

to logically-later program segments using grant(). Consequently, the redundant resource
is calculated from each program point, to the end of the segment.

To calculate a redundant resource, the analysis first calculates the needed resource for the
interval. It then subtracts the needed resource from the resource described in the sequential
proof.

The redundant resources, along with the needed resources used to calculate them, for the
first call to f() are shown in Figure 4. For example, the needed resource at the start of the
else-branch (Fig. 4, line 11) is:

x 7→ a

According to the sequential proof in Fig. 2, such a thread actually holds the following
resource at this point:

v = a ∧ v < i ∧ x 7→ a ∗ y 7→ b

To calculate the redundant resource, we pose the following frame inference question, com-
puting the frame F?.

v = a ∧ v < i ∧ x 7→ a ∗ y 7→ b ` x 7→ a ∗ [F?]

The resulting redundant resource is as follows:

F? : v < i ∧ y 7→ b

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 Proof-Directed Parallelization Synthesis by Separation Logic

In other words, the thread no longer requires access to the heap cell y beyond line 11 in
f(), and we also know that v < i. Note however, that we do not know that v is the same
as the value pointed to by x, because this fact can change later in the segment.

2.6. Parallelizing Transformation

As described above, the parallelizing transformation has three phases. First, the program
is divided into two parallel threads.

f1(1) || f2(2)

The transformation specializes f() into distinct functions f1() and f2() because each
thread has different synchronization.

Next, the analysis looks for needed resources in the second thread f2(), and matches them
against redundant resources in the first thread f1(). In this case, the analysis identifies two
distinct needed resources, nx and ny:

nx : x 7→ v′1 ny : y 7→ v′2

nx becomes needed in f2() at line 3. It becomes redundant in f1() at lines 6 and 13 of Fig
4. ny becomes needed at lines 6 and 13. It becomes redundant at lines 8 and 11.

The final stage of the analysis is to inject synchronization corresponding to these dis-
covered resources. Specifically, grant-barriers are injected at the points that the resources
become redundant, while wait-barriers are injected at the points the resources become
needed. Synthesising barriers follows a four-step process:

(1) Identify a needed resource r at some point in the later segment. This point may be
chosen with assistance from the programmer, or heuristically, for example by favoring
bigger needed resources – see §7.2 for a discussion.

(2) Down all other control-flow paths in the later segment, find a program point such that
the needed resources is covered by r. This step ensures that the identified resources r is
received down all possible paths in the program.

(3) Down all control-flow paths in the earlier segment, find a program point such that the
redundant resource covers r. This step ensures that the resource r is satisfied down all
possible paths in the program.

(4) Synthesize a channel name, and insert wait() into the later segment, and grant() into
the earlier segment at the identified program points.

After each iteration of this process, the needed and redundant resources are updated to
reflect the new synchronization. The analysis halts when no needed resources remain.

The parallelized version of f() is shown in Fig. 1. The needed resources associated with
barriers are selected heuristically. The analysis could also safely choose a single needed
resource:

x 7→ v′1 ∗ y 7→ v′2

This resource overapproximates both nx and ny. However, this resource would need to
be acquired at a dominating program point for nx and ny, which would sequentialize the
program by forcing the wait-barrier to the start of the second thread.

As there are only two heap locations, it is trivial to see that nx and ny are a sensible
choice of needed resource. Choosing needed resources becomes more tricky when resources
are dynamic structures such as linked lists (see §3.2).

3. GENERALISING THE ANALYSIS

In the previous section we informally presented the core of our analysis. In this section, we
discuss how it can be generalized to handle (a) an unbounded number of threads, and (b)
dynamic (heap-allocated) data structures.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Proof-Directed Parallelization Synthesis by Separation Logic A:13

chan wx = newchan();
chan wy = newchan();
chan wx’, wy’;
grant(wx);
grant(wy);
for (i=0; i++; i<n) {
wx’ = newchan();
wy’ = newchan();
fork(f(i,wx,wy,wx’,wy’));
wx = wx’; wy = wy’;

}
wait(wx);
wait(wy);

f(i, wxp, wyp, wx, wy){
wait(wxp);
int v = *x;
if (v >= i) {
grant(wx);
wait(wyp);
*y = v;
grant(wy);

}
else {
wait(wyp);
grant(wy);
*x = 0;
grant(wx);

}
}

Fig. 5. Parallelization of our f(), generalized to deal with n threads.

3.1. Unbounded Iterations: Parallel-For

Until this point we have assumed that the programmer identifies a fixed number of static
program segments for parallelization – in the example, the two calls to f(). However, our
analysis can support unbounded segments running in parallel. To do this, we introduce
the new construct pfor (parallel-for). The intended semantics of a pfor is identical to a
standard for-loop, but in which all iterations may run in parallel, with the analysis injecting
synchronization as required.

For example, we might have the following program:

pfor(i=1; i++; i<n) {
f(i);

}

The externally-visible input-output behavior will be the same as the sequential composition:

f(1); f(2); f(3); ... f(n);

Internally, however, each call to f() runs concurrently.

Parallelization. Fig. 5 shows the parallelization of the example pfor. A pfor is translated
to a sequential for loop, in which each iteration forks a new copy of the parallelized loop
body. Resources are transferred between the threads in order of thread-creation. That is, the
nth iteration of the pfor acquires resources from the logically-preceding (n− 1)th iteration,
and releases resources to the logically (n+ 1)th iteration.

This ordering is implemented through shared channels; a thread shares with its predeces-
sor and successor a set of channels for receiving (i.e., waiting) and sending (i.e., granting)
resources, resp. The number of threads—and so, the required number of channels—is po-
tentially decided at run-time. Consequently, channels are dynamically allocated in the main
for-loop using the newchan() operation [Dodds et al. 2011]. Each iteration creates a set of
new channels, and passes the prior and new set to the forked thread.

The parallelized version of f() (Fig. 5) takes four channel arguments, a pair of each
for x and y. The prior channels are used for resource transfer with the logically-preceding
thread (here wx, wy), and the new channels are used to communicate resource transfer with
the logically-following thread (here, wx’, wy’). As each iteration calls both wait() and
grant(), to receive and send resources, the injected synchronization in Fig. 5 combines the
synchronization for both threads given in Fig. 1.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 Proof-Directed Parallelization Synthesis by Separation Logic

move(s, l) {
i = 0;
x = s.nxt;
p = s;
while (i<l && x.nxt!=null) {
i++;
p = x;
x = x.nxt;

}
while (x.nxt!=null)
x = x.nxt;

if (p.nxt!=x) {
tmp = p.nxt.nxt;
p.nxt.nxt = null;
x.nxt = p.nxt;
p.nxt = tmp;

}
}

Fig. 6. Example function move.

3.2. Loops and Dynamic Data Structures

Up to this point, we have dealt with channels transferring single heap locations injected
into straight-line code. Our analysis can in fact handle more complicated heap-allocated
data structures such as linked lists, and control-flow constructs such as loops. To illustrate,
consider the function move(), shown in Fig. 6. This function searches a linked list for the
node at a particular position in the list (controlled by the parameter l) and moves that
node to the end of the list.

We assume that the following specification holds:

{node(s, n′1) ∗ node(n′1, n
′
2) ∗ lseg(n′2, null)}

move(s, l)

{node(s, n′3) ∗ node(n′3, n
′
4) ∗ lseg(n′4, null)}

This specification is simple: all it says is that executing move() on a list of length two or
more results in a list of length two or more. A proof of this specification is given in Fig. 7.

An important feature of our approach is that the input safety proof need not specify
all the relevant sequential properties; all sequential dependencies are enforced. Thus we
can view this program as representative of a class of algorithms and implementations that
traverse the head of a list, then mutate the tail. With minor modifications, the same proof
pattern would cover assigning to the values in the list, or sorting the tail of the list.

We consider the parallelization of a sequential program consisting of pair of calls to the
move():

move(s,a); move(s,b);

The parallelized version of this program consists of two parallel calls to modified versions
of move:

move1(s,a) || move2(s,b)

The wait() and grant() barriers in move1() and move2() must enforce the following
properties:

— move2() must not write to a list node until move1() has finished both reading from and
writing to it. Consequently, move2() must wait for move1() to finish traversing a segment
of the list before moving a node inside the segment.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Proof-Directed Parallelization Synthesis by Separation Logic A:15

{
node(s, n′1) ∗ node(n′1, n

′
2) ∗ lseg(n′2, null)

}
move(s, l) {
i = 0;
x = s.nxt;
p = s;{
node(s, x) ∗ node(x, n′) ∗ lseg(n′, null) ∧ s = p

}
while (i<l && x.nxt!=null) {{

lseg(s, p) ∗ node(p, x) ∗ node(x, n′) ∗ lseg(n′, null)
}

i++;
p = x;
x = x.nxt;

}{
lseg(s, p) ∗ node(p, x) ∗ node(x, n′) ∗ lseg(n′, null)

}
while (x.nxt!=null) {{

lseg(s, p) ∗ node(p, n′1) ∗ lseg(n′1, x) ∗ node(x, n′2) ∗ lseg(n′2, null)
}

x = x.nxt;
}{
lseg(s, p) ∗ node(p, n′) ∗ lseg(n′, x) ∗ node(x, null)

}
if (p.nxt!=x) {{

lseg(s, p) ∗ node(p, n′1) ∗ node(n′1, n
′
2) ∗ lseg(n′2, x) ∗ node(x, null)

}
tmp = p.nxt.nxt;
p.nxt.nxt = null;
x.nxt = p.nxt;
p.nxt = tmp;{
lseg(s, p) ∗ node(p, tmp) ∗ lseg(tmp, x) ∗ node(x, n′) ∗ node(n′, null)

}
}

}{
node(s, n′1) ∗ node(n′1, n

′
2) ∗ lseg(n′2, null)

}
Fig. 7. Separation logic proof of move(), a list-manipulating program whose automated parallelization
requires reasoning over complex assertions and predicates.

— move2() must not read from a list node until move1() has finished writing to it. Conse-
quently, move2() must wait for move1() to finish moving a node before it traverses over
that point in the list.

This example is substantially more subtle to analyse and parallelize than our earlier one,
because the list is not divided into statically apparent reachable segments. (A simple points-
to analysis would be insufficient to discover the salient partitioning, for example.) In the
worst case, a wait() at the start of move2() and a grant() at the end of move1() enforces
sequential order. However, by reasoning about the structure of the manipulated list using
the safety proof given in Fig. 7, our approach can do considerably better.

The parallelized program synthesized by our algorithm is shown in Fig. 8. This paral-
lelization divides the list into two segments, consisting of the portions read and modified
by move1(). A shared heap-location pr, introduced by our algorithm, stores the address
of the starting node of the portion modified by move1(). The thread move2() uses pr to
synchronize access to the second segment of the list.

Handling dynamic structures means dealing with allocation and disposal. Fortunately,
separation logic handles both straightforwardly. Updates to the data structure and object
allocation are by assumption reflected in the invariants of the original sequential proof. Thus
updates and allocations are also reflected in the invariants which our analysis constructs
to represent the contents of channels. However, introducing allocation and disposal affects

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 Proof-Directed Parallelization Synthesis by Separation Logic

move1(s, l) {
i = 0;
x = s.nxt;
p = s;
while (i<l && x.nxt!=null) {
i++;
p = x;
x = x.nxt;

}
*pr = p;
grant(i1);
while (x.nxt!=null)
x = x.nxt;

if (p.nxt!=x) {
... // omitted

}
grant(i2);

}

move2(s, l) {
i = 0;
wait(i1);
if (s==*pr || s.nxt==*pr) wait(i2);
x = s.nxt;
p = s;
while (i<l && x.nxt!=null) {
if (x.nxt==*pr) wait(i2);
i++;
p = x;
x = x.nxt;

}
while (x.nxt!=null) {
if (x.nxt==*pr) wait(i2);
x = x.nxt;

}
if (p.nxt!=x) {
... // omitted

}
}

Fig. 8. Parallelization of move() for two threads.

move1(s, l) {{
emp

}
i=0;
x=s.nxt;
p=s;
while (i<l && x.nxt!=null) {{

lseg(s, p)
}

i++;
p=x;
x=x.nxt;

}{
lseg(s, p)

}
while (x.nxt!=null) {{

lseg(s, p)
}

x=x.nxt;
}{
lseg(s, p)

}
if (p.nxt!=x) {
... // omitted
}

}{
node(s, n′1) ∗ node(n′1, n

′
2) ∗ lseg(n′2, null)

}

move2(s, l) {
i=0;
x=s.nxt;{
node(s, n′)

}
p=s;
while (i<l && x.nxt!=null) {{

lseg(s, n′1) ∗ node(n′1, x) ∗ node(x, n′2)
}

i++;
p=x;
x=x.nxt;

}{
lseg(s, n′1) ∗ node(n′1, x) ∗ node(x, n′2)

}
while (x.nxt!=null) {{

lseg(s, n′1) ∗ node(n′1, x) ∗ node(x, n′2)
}

x=x.nxt;
}{
lseg(s, n′) ∗ node(n′, x) ∗ node(x, null)

}
if (p.nxt!=x) {
... // omitted

}
}{

lseg(s, n′) ∗ node(n′, x) ∗ node(x, null)
}

Fig. 9. Redundant resources (from the start to other program points) and needed resources (from other
program points to the end) for move().

the behavior-preservation result discussed in §6; this result ensures the program behavior
is unaffected by the translation (i.e. the translation enforces deterministic parallelism).

Handling list segments. We run our resource-usage analysis over the program to determine
redundant and needed resources. The results of the analysis are shown in Fig. 9.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Proof-Directed Parallelization Synthesis by Separation Logic A:17

Consider the point in Fig. 9 just before the start of the second while loop. Our analysis
discovers that only the resource lseg(p, null) is needed to execute from the start of this loop
to the end of the function. Comparing this resource to the corresponding invariant in the
sequential proof reveals that the resource lseg(s, p) is redundant at this point. This assertion
represents the segment of the list that has already been traversed by move1(), from the head
of the list to p.

Injecting barriers. grant() and wait() barriers are injected into move() as discussed
above, in §2.6. Barriers wait() and grant() should only be called once for any given
channel in the program. For simplicity, in Fig.8, we write move2() with wait() controlled
by conditionals. However, in general this approach requires us to modify loop invariants,
which is often difficult. In the formal definition of the analysis, we only inject barriers into
loop-free code, and perform syntactic loop-splitting to expose points in loops where barriers
can be called conditionally. Details are given in §5.2.

Value materialization. In order to safely transfer a redundant resource to logically-later
program segments we need the assertion to be expressed in global variables, and to be
invariant from the point in time that the resource is released, to the point it is received in
the subsequent thread. The assertion lseg(s, p) initially generated by the analysis satisfies
neither condition, because it is partly expressed in terms of the local variable p, which
changes during execution of move1(). The current thread may invalidate it by changing the
value stored in x.

To satisfy this requirement, we could simply existentially quantify the offending variable,
p, giving the redundant resource

∃y. lseg(s, y)

However, such a weakening loses important information, in particular the relationship be-
tween the resource, and the list tail beginning at p. To retain such dependency relationships,
our analysis stores the current value of p into a global location pr shared between move1()
and move2(). (We call storing a snapshot of a local value in this way materialization). An
assignment is injected into move1() at the start of the second loop:

...
*pr = p;
while (x.nxt!=null)
...

After the assignment, the proof needs to be modified to accommodate the new global lo-
cation pr. In this case, this amounts to simply modifying the invariant to add an extra
points-to assertion representing the new location:

lseg(s, p) ∗ node(p, x) ∗ node(x, n′) ∗ lseg(n′, null) ∗ pr 7→ p

The redundant state can now be described as follows:

lseg(s, y′) ∗ pr
1/27−−→ y′

The assertion pr
1/27−−→ y′ represents fractional, read-only permission on the shared location

pr. This binds together the head of the list and the remainder of the list when they are
recombined, and thus helps preserve the list invariant.

When traversing the list, move2() compares its current position with pr. If it reaches the
pointer stored in pr, it must wait to receive the second, remainder segment of the list from
move1().

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 Proof-Directed Parallelization Synthesis by Separation Logic

void f(i) {
`1 : int v = *x;
`2 : if (v >= i) {
`3 : *y = v;

}
else {

`4 : *x = 0;
}

}

fs : x 7→ a ∗ y 7→ b
`1 : x 7→ a ∗ y 7→ b
`2 : v = a ∧ x 7→ a ∗ y 7→ b

`2`3 : v = a ∧ v ≥ i ∧ x 7→ a ∗ y 7→ b
`2(`2)te : v = a ∧ v ≥ i ∧ x 7→ a ∗ y 7→ a
`2`4 : v = a ∧ v < i ∧ x 7→ a ∗ y 7→ b

`2(`4)fe : v = a ∧ v < i ∧ x 7→ 0 ∗ y 7→ b
fe : (a ≥ i ∧ x 7→ a ∗ y 7→ a) ∨ (a < i ∧ x 7→ 0 ∗ y 7→ b)

Fig. 10. Left: labels for commands in function f() from §2. Right: associated assertions in the sequential
proof of f().

4. TECHNICAL BACKGROUND

In §2 and §3 we gave an overview of our analysis. We now turn to a formal description,
which we start with a technical background about the programming language, the assertion
language and the proof representation.

4.1. Programming Language and Representation

We assume the following heap-manipulating language:

e ::= x | nil | t(ē) | . . . (expressions)

b ::= true | false | e = e | e 6= e | . . . (booleans)

a ::= x := e | x := ∗e | ∗x := e | x := alloc() | . . . (primitive commands)

C ::= C; C | ` : skip | ` : a | ` : if(b) {C } else {C } | ` : while(b) {C }

To avoid an extra construct, we define for(C1;C2; b){C3} as C1; while(b){C2;C3}.
We define our algorithm for the multi-iteration construct pfor defined in §3.1. To simplify

the exposition, we assume a fixed input program P of the following form:

global r̄;

work(x̄){
local ȳ;
C;

}

main(void){
pfor(C1; C2; b) {
work();

}
}

Parallelization generates a new program Ppar that executes a transformed version of work
in separate threads.

Labelling of commands. We assume that every command C ∈ Cmd in the program is
indexed by a unique label ` ∈ Label; the function identifier work is also treated as a label. We
identify a particular command by its label, and when needed denote by cmd(`) the command
at the label `. Functions pred, succ : Label ⇀ Label return the label of the previous (the next,
resp.) command in a block. For a label ` corresponding to a while loop, the predecessor
of the first command and successor of the last command in the block are denoted by `s
and `e, respectively. For ` corresponding to if-else, `ts (`te) and `fs (`fe) are labels of the
predecessor of the first (the successor of the last) commands in the if and else branches,
respectively. The left-hand side of Fig. 10 shows a labelling of the function f() from §2.

Program representation. The program’s work function is represented by a variant of ab-
stract syntax tree (formally, an ordered forest) T with Label ∪ {works, worke} as the set of
nodes and as the set of edges all pairs (`, `′) where ` is a label of an if-else block and `′

a label of a command within the encompassed if or else branches. Labels ` and `′ that
belong to the same block are siblings in the tree. They are ordered ` < `′ if there exists

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Proof-Directed Parallelization Synthesis by Separation Logic A:19

n ≥ 1 such that `′ = succn(`). We denote by `↑ and `↓ the smallest (resp. largest) label in
the block containing `. We write [`, `′〉 to denote the sequence of labels between ` inclusively
and `′ exclusively, and P[`,`′〉 for the corresponding program fragment from ` (inclusively)
to `′ (exclusively).

Program paths. A program path is a finite sequence of nodes in the tree T . Each program
path determines a sequence of conditionals that need to be traversed in order to reach a
particular point in the program. We denote the set of all program paths by Paths.

We often want to manipulate and compare program paths. For γ = `1 . . . `n ∈ Paths, we
write γ[i] to denote `i, γ[i..j] to denote `i . . . `j and |γ| to denote the length n. For program
paths γ and γ′, γ f γ′ denotes their longest common prefix, i.e., for k = |γ f γ′| we have
∀j ≤ k, γ f γ′ = γ[j] = γ′[j] and if |γ|, |γ′| > k then γ[k + 1] 6= γ′[k + 1]. We define a
partial order ≺ on Paths as follows. We say that γ ≺ γ′ iff γ f γ′ = γ and |γ| < |γ′|, or for
k = |γ f γ′| we have |γ|, |γ′| > k and γ[k+ 1] < γ′[k+ 1]. (Intuitively, two paths are related
in this way if they share a prefix, and one takes predecessor branch to the other in the same
block). We say that γ � γ′ iff γ ≺ γ′ or γ = γ′.

Lemma 4.1. (Paths,�) is a lattice with least element works and greatest element worke.

For Γ ⊆ Paths we define max(Γ) as max(Γ) , {γ ∈ Γ | ¬∃γ′ ∈ Γ . γ ≺ γ′}. We define min(Γ)
analogously. For Γ,Γ′ ⊆ Paths we write Γ � Γ′ if for all γ ∈ Γ, there exists γ′ ∈ Γ′ such
that γ � γ′.

4.2. Assertion Language

We assume that the assertions in the program proof are expressed using a class of separation
logic formulae called symbolic heaps. A symbolic heap ∆ is a formula of the form ∃x̄ .Π ∧ Σ
where Π (the pure part) and Σ (the spatial part) are defined by:

Π ::= true | e = e | e 6= e | p(e) | Π ∧ Π

Σ ::= emp | s(e) | Σ ∗ Σ

Here x̄ are logical variables, e ranges over expressions, p(e) is a family of pure (first-order)
predicates (such as e.g., arithmetic inequalities, etc), and s(e) a family of spatial predicates
(such as e.g., points-to x 7→ e, singly-linked list lseg(e, e), doubly-linked lists, trees, etc).
We refer to the pure and the spatial part of an assertion ∆ as ∆Π and ∆Σ respectively. We
extend Π with the ∨ connective to give the set of quantifier-free first-order formulae Π∨.

We often need to substitute variables, for example when recasting an assertion into a
different calling context. If % = x̄ 7→ ē is a mapping from variables in x̄ to ē then ∆[%] denotes
the formula obtained by substituting every occurrence of xi in ∆ with the corresponding
ei. We denote by δ−1 the inverse variable mapping, if δ is injective3.

We treat a disjunction of symbolic heaps as a set and interchangeably use the ∪ and ∨
operators. Such disjunctions will often arise in assertions at join points in the program. The
set of all symbolic heaps is denoted by SH and the set of all disjunctive symbolic heaps by
P(SH). We overload the ∧ and ∗ operators in a natural way: for ∆i = Πi ∧ Σi, i = 1, 2, we
define

∆1 ∗ ∆2 , (Π1 ∧ Π2) ∧ (Σ1 ∗ Σ2)

Π ∧ ∆i , (Π ∧ Πi) ∧ Σi

Σ ∗ ∆i , Πi ∧ (Σ ∗ Σi)

3In our framework, substitutions are always guaranteed to be injective because the variables being substi-
tuted correspond to heap locations and channel resources whose denotations are guaranteed to be distinct;
if the substitution involves values, then they must be implicitly existentially quantified, and can therefore
be assumed to be distinct.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 Proof-Directed Parallelization Synthesis by Separation Logic

Operators ∧ and ∗ distribute over ∨, thus we allow these operations on disjunctive heaps
just as if they were on symbolic heaps and furthermore use the same notation ∆ to refer to
both symbolic and disjunctive symbolic heaps.

4.3. Theorem Prover

Our resource-usage analysis relies on a sufficiently powerful (automated) prover for separa-
tion logic that can deal with three types of inference queries:

— ∆1 ` ∆2 ∗ [∆F] (frame inference): given ∆1 and ∆2 find the frame ∆F such that
∆1 ` ∆2 ∗ ∆F holds;

— ∆1 ∗ [∆A] ` ∆2 (abduction): given ∆1 and ∆2 find the “missing” assumption ∆A such
that ∆1 ∗ ∆A ` ∆2 holds;

— ∆1 ∗ [∆A] ` ∆2 ∗ [∆F] (bi-abduction): given ∆1 and ∆2 find ∆A and ∆F such that
∆1 ∗ ∆A ` ∆2 ∗ ∆F holds.

As before, square brackets denote the portion of the entailment to be computed. We some-
times write [] for a portion that should be computed but that is existentially quantified
and will not be reused.

None of these queries has a unique answer in general. However, for the soundness of
our resource-usage analysis any answer is acceptable (though some will give rise to a better
parallelization than the others). Existing separation logic tools generally supply only a single
answer.

We note that the theorem prover support for these inference queries is required indepen-
dently of how the program proof has been obtained (constructed by a program analysis tool
or provided manually by a programmer). That is, our resource-usage analysis is crucially
dependent on the underlying theorem prover but not on the program analysis (or manual
effort) that constructed the original sequential proof.

4.4. Sequential Proof

We assume a separation logic proof of the function work, represented as a map P : Label→
P(SH).4 Assertions in the proof have the property that for any label ` executing the program
from a state satisfying P(`) up to some subsequent label `′ will result in a state satisfying
P(`′), and will not fault. Our approach is agnostic to the method by which the proof is
created: it can be discovered automatically (e.g., by a tool such as Abductor [Calcagno et al.
2011]), prepared by a proof assistant, or written manually.

We assume that the structure of the proof is modular, i.e., that primitive commands
and loops at each label use specifications which are given a priori “in isolation”, inherent
only to the underlying programming language and agnostic to the particular context in
which the specification is used. (This property is a standard feature of separation logic). We
assume functions Pre,Post : Label ⇀ P(SH) associating labels of primitive commands with
such modular pre- and post-conditions, respectively. That is, the command at label ` has a
specification

{Pre(`)} cmd(`) {Post(`)},
which is applied in the actual proof by using the frame rule and appropriate variable substi-
tutions. We also assume a function Inv : Label ⇀ P(SH) associating while labels with loop
invariants, which are used similarly as specifications.

Specifications and loop invariants are formally applied in the proof by using a mapping
Ω from labels to variable substitutions such that Ω(`) = x̄ 7→ x̄′ maps formal variables x̄ in

4We use the disjunctive (the powerset) completion of symbolic heaps as the domain of proof assertions to
signify use of the logical ∨ as the join operation. We made this design choice to the sake of simplicity,
however, more elaborate join operations (e.g. [Yang et al. 2008]) could be accommodated.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Proof-Directed Parallelization Synthesis by Separation Logic A:21

the specification assertion to actual variables x̄′ in the proof assertion at a label `. We write
∆[Ω(l)] to represent the heap constructed by applying the substitutions defined by Ω(l) to
the assertion ∆.

We also assume a function F : Label ⇀ P(SH) returning the framed portion of the asser-
tion at a particular program label. Then at each label ` we have P(`) ` Pre(`)[Ω(`)] ∗ F(`)
and Post(`)[Ω(`)] ∗ F(`) ` P(succ(`)). If ` is a while label then Pre(`) and Post(`) are
replaced by a single Inv(`).

We extend functions P and F from labels to program paths by taking the assertion
associated with the last label. That is, if γ = `1 . . . `n then we define P(γ) , P(`n) and

F(γ) , F(`n). The right-hand side of Fig. 10 shows a proof for the function f() from §2
laid out with respect to the associated program paths.

5. PARALLELIZATION ALGORITHM

We now formally define our parallelization algorithm. The goal of our approach is to con-
struct a parallelized version of the input program P. In particular, our approach generates
a new function work′ in Ppar such that

mainPpar(void) {

// channel initialization.
for(C1; C2; b) {
// channel creation.

fork(work′, ...);
}
// channel finalization.

}

As described in the intuitive development in §2.4, our parallelization algorithm is com-
prised of a resource usage analysis (§5.1) and parallelizing transformation (§5.2). The paral-
lelizing transformation should be viewed as just one application of the resource usage anal-
ysis; more optimized proof-preserving parallelizing transformations are certainly possible.
Our overall aim for this section is to present a framework for resource-sensitive dependency-
preserving analyses.

5.1. Resource Usage Analysis

The resource usage analysis computes two maps:

needed : Paths× Paths ⇀ P(SH)

redundant : Paths× Paths ⇀ P(SH)

For γs, γe ∈ Paths, such that γs ≺ γe, needed(γs, γe) gives the resources that might be
accessed during execution from γs to γe. In parallelization, these are the resources that must
be acquired before execution of the current thread can proceed. Similarly, redundant(γs, γe)
gives the resources that are guaranteed not to be accessed by the program between γs and
γe. In parallelization, these are the resources that can safely be transferred to other parallel
threads.

We calculate needed resources in a program by using two functions: Needed-Block, which
computes needed resources between labels within the same program block, and Needed,
which computes needed resources between arbitrary program paths, spanning possibly dif-
ferent blocks. Intuitively, the needed resources computation can be seen as a liveness analysis
for resources—a resource R which is needed between program paths γs and γe is live in the
sense that on the way from γs to γe some command might access R by virtue of command’s
specification mentioning R.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 Proof-Directed Parallelization Synthesis by Separation Logic

ALGORITHM 1: Computing needed resources locally using backward symbolic execution.

1 Needed-Block((`′, `′′) : Label× Label,∆: P(SH))
2 begin
3 ` := `′′;
4 while ` 6= `′ do
5 ` := pred(`);
6 if cmd(`) matches if(b) {C } else {C′ } then
7 ∆ := P(`)Π ∧

(
Needed-Block((`ts, `

t
e),∆) ∪ Needed-Block((`fs, `

f
e),∆)

)
;

8 end
9 if cmd(`) matches while(b) {C } then

10 Inv(`)[Ω(`)] ∗ [∆A] ` ∆ ∗ [];

11 ∆ := P(`)Π ∧ (Inv(`)[Ω(`)] ∗ ∆A);
12 end
13 else
14 Post(`)[Ω(`)] ∗ [∆A] ` ∆ ∗ [];

15 ∆ := P(`)Π ∧ (Pre(`)[Ω(`)] ∗ ∆A);
16 end
17 end
18 return ∆;
19 end

The function Needed-Block (Alg. 1) uses backward symbolic execution to compute
needed resources between a pair of labels (`′, `′′) located within the same program block.
The execution process starts by an arbitrary symbolic heap ∆, representing the resources
we have at the end of the block. By pushing ∆ backwards along the preceding commands,
Needed-Block successively discovers missing resources that are needed to execute the com-
mands in the block. The algorithm poses bi-abduction queries to determine the sufficient
precondition of primitive commands and loops (using the loop invariants as specifications)
and dives recursively into the blocks of if and else branches. The existing pure components
of the sequential proof are used to strengthen the abduced solutions returned by the prover.
The use of pure assertions from the sequential proof is essential in practice—abducing miss-
ing pure assertions is much harder than abducing spatial resources and would likely fail
often. Upon completion, Needed-Block returns a symbolic heap sufficient to execute the
program block P[`′,`′′〉.

The key step of the algorithm is performed on lines 14 and 15. These two steps “simulate”
backward execution of the command at label `, cmd(`), by using its specification. The goal
of such process is to discover the eventually missing resources that cmd(`) needs for safe
execution. Let us explain how these two steps work in more detail.

The command at label ` has a specification {Pre(`)} cmd(`) {Post(`)}. Let ∆ be the
symbolic heap representing the needed resources for safe execution of commands below
label ` that we have computed in previous iterations. For cmd(`) to have been executed
safely, it must have been able to establish Post(`) upon completion. Since in general we
do not know in which capacity ∆ contains the resources described by Post(`), we pose a
bi-abduction query

Post(`)[Ω(`)] ∗ [∆A] ` ∆ ∗ [],

forcing the post-state after execution of cmd(`) to become Post(`)[Ω(`)] ∗ ∆A. By framing
∆A away and using the specification of cmd(`), we obtain Pre(`)[Ω(`)] ∗ ∆A as the pre-
state before the execution of cmd(`). Finally, we enrich the computed pre-state with the
pure assertion P(`)Π from the sequential proof and store the resulting symbolic heap as the
new ∆.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Proof-Directed Parallelization Synthesis by Separation Logic A:23

ALGORITHM 2: Computing needed resources between blocks.

1 Needed(γs : Paths, γe : Paths)
2 begin
3 k := |γe|;
4 ∆ := P(γe)

Π ∧ emp;
5 while k > |γs f γe|+ 1 do
6 ∆ := Needed-Block((γe[k]↑, γe[k]),∆);
7 k := k − 1;
8 end
9 ∆ := Needed-Block((γe[k], γs[k]),∆);

10 while k < |γs| do
11 k := k + 1;
12 ∆ := Needed-Block((γs[k], γs[k]↓),∆);
13 end
14 return ∆;
15 end

Lemma 5.1. For every ∆, the symbolic heap returned by Needed-Block((`′, `′′),∆) is a
sufficient precondition for P[`′,`′′〉.

Proof. Follows by iteratively applying the disjunctive version of the frame rule:

{P}C {
∨
i∈I Qi} ∆ ∗

∨
j∈J ∆A

j ` P ∗
∨
k∈K∆F

k

{
∨
j∈J (∆ ∗ ∆A

j)}C {
∨
i∈I,k∈K(Qi ∗ ∆F

k)}

and Hoare’s rule of composition.

The function Needed (Alg. 2) lifts Needed-Block from within blocks to between blocks
and calculates sufficient precondition between arbitrary program paths. Given two asser-
tion points represented as program paths γs and γe, Needed(γs, γe) works by successively
pushing backwards the assertion P(γe)

Π∧emp from γe to γs. In the first while loop (line 5),
the algorithm steps backwards from γe towards the nearest ancestor block containing both
γs and γe, designated by their longest common prefix. After stepping through that block,
in the second while loop (line 10) the algorithm keeps stepping backwards, proceeding in-
wards towards γs. Both phases of the algorithm use Alg. 1 to compute the needed resources
in-between program blocks.

The following diagram illustrates the behavior of Alg. 2:

b1{
 b2{
 b3{
 ...
 }
 }
}
...
b4{
 b5{
 b6{
 ... �e

�s f �e

�s

2

1

Arrow 1 corresponds to the first while loop in the algorithm (line 5), while arrow 2 corre-
sponds to the second while loop (line 10).

We tabulate the results computed by Needed() into a map needed as follows:

— if P(γs) ` Needed(γs, γe) ∗ [], then needed(γs, γe) := P(γs)
Π ∧ Needed(γs, γe);

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 Proof-Directed Parallelization Synthesis by Separation Logic

ALGORITHM 3: Computing redundant resources

1 Redundant(γs : Paths, γe : Paths)
2 begin
3 P(γs) ` Needed(γs, γe) ∗ [∆R];
4 return ∆R;
5 end

`2 `2`3 `2(`2)te `2`4 `2(`2)fe fe

`1 x 7→ a

(a ≥ i∧
a ≥ i∧ a ≥ i∧ a < i∧ a < i∧ x 7→ a ∗ y 7→ b)
x 7→ a x 7→ a ∗ y 7→ b x 7→ a x 7→ a ∨ (a < i∧

x 7→ a)

`2

(v = a ∧ v ≥ i∧
v = a∧ v = a ∧ v ≥ i∧ v = a∧ v = a ∧ v < i∧ y 7→ b)
v ≥ i y 7→ b v < i x 7→ a ∨ (v = a ∧ v < i∧

x 7→ a)

`2`3
v = a ∧ v ≥ i∧ v = a ∧ v ≥ i∧

y 7→ b y 7→ b

`2(`2)te v = a ∧ v ≥ i

`2`4
v = a ∧ v < i∧ v = a ∧ v < i∧

x 7→ a x 7→ a

`2(`2)fe v = a ∧ v < i

Fig. 11. The needed map for the function f() from §2 (some entries omitted).

— otherwise, needed(γs, γe) := P(γs).

Lemma 5.2. needed(γs, γe) is a sufficient precondition to execute P from γs to γe.

For further steps of the parallelization algorithm, we must ensure that the needed map is
monotonic with respect to program paths, i.e., that ∀γ, γ′, γ′′ ∈ Paths such that γ ≺ γ′ ≺ γ′′
we have needed(γ, γ′′) ` needed(γ, γ′)∗[]. This ensures that the resources needed to reach a
particular point include all the resources needed to reach preceding points. If the underlying
theorem prover behaves consistently with respect to failing and precision then this property
will hold. If that is not the case, we post-process the map and insert additional assertions
from the sequential proof as needed.

We now turn to computing redundant resources. The redundant resource between two
program paths is a portion of the proof assertion in P that is not required by the needed
map. We calculate this portion by frame inference, as shown in function Redundant (Alg.
3). We tabulate redundant resources in the map redundant by setting redundant(γs, γe) :=
Redundant(γs, γe).

Lemma 5.3. If P(γs) ` redundant(γs, γe) ∗ [∆] then ∆ is a sufficient precondition to
execute P from γs to γe.

Consider the function f() from §2. The map obtained by Needed is shown in Fig. 11. Fig. 12
shows the map computed by Redundant with respect to the program path fe.

5.2. Parallelizing Transformation

We now describe the parallelizing transformation based on our resource-usage analysis. The
construction proceeds in two phases. First, we compute program points for resource transfer
and the associated resources that will be transferred between threads. Then we inject grant
and wait barriers to realise this resource transfer. The resource transfer mechanism transfers

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Proof-Directed Parallelization Synthesis by Separation Logic A:25

fe

`1 a < i ∧ y 7→ b
`2 (v = a ∧ v ≥ i ∧ x 7→ a) ∨ (v = a ∧ v < i ∧ y 7→ b)
`2`3 v = a ∧ v ≥ i ∧ x 7→ a
`2(`2)te v = a ∧ v ≥ i ∧ x 7→ a ∗ y 7→ b
`2`4 v = a ∧ v < i ∧ y 7→ b
`2(`2)fe v = a ∧ v < i ∧ x 7→ a ∗ y 7→ b

Fig. 12. The redundant map with respect to the program path fe for the function f() from §2.

a resource from one invocation of the work function to another in the parallelized version
of the program.

Conditions on released and acquired resources. In the first phase we determine resources
that should be released and acquired at particular points in the parallelized program. Re-
leased resources cannot be revoked, i.e., each released resource should be included in the
redundant map from the point of the release to the end of the work function—this way we
know the resource will not be needed further. Acquired resources are held by the executing
thread until released. Resources that are acquired along a sequence of program paths should
contain what is prescribed by the needed map between each of the program paths.

We represent the result of this phase of the algorithm via the following maps:

— resource : ResId→ P(SH), denoting resource identifiers that identify released and acquired
resources selected by the algorithm;

— released : Paths ⇀ ResId × Subst, representing resources that are going to be released at
a program path together with the variable substitution applied at that point;

— acquired : Paths ⇀ ResId, representing resources that are going to be acquired at a pro-
gram path.

We require the following well-formedness properties of the maps:

(1) ∀γ ∈ dom(released) .

∀γ′ � γ . released(γ) = (r, ρ)⇒ (redundant(γ, γ′) ` resource(r)[ρ] ∗ []);

(2) ∀γ ∈ Paths .

~r∈dom(resource){resource(r) | ∃γ′ ≺ γ ∧ acquired(γ′) = r} ` needed(γ, worke) ∗ [];

(3) ∀γ ∈ dom(released) .

~r∈dom(resource){resource(r) | ∃γ′ ≺ γ ∧ acquired(γ′) = r} ` released(γ) ∗ [].

The first property states we can release only resources that are not needed between the
given program path and any subsequent one. The second property states that the resources
needed at a program path must have already been acquired. The third property states that
only the resources that have been previously acquired can be released.5

In general, there are many solutions satisfying properties 1–3. For instance, there is always
a trivial solution that acquires needed(works, worke) before the first command and releases
it after the last, causing each invocation of work to be blocked until the preceding invocation
finishes the last command. Of course, some solutions are better than others. Determining a
solution’s practical quality a priori would need to take into account the runtime behavior
of synchronization, and that kind of analysis is beyond the scope of this paper. However, to

5We could relax the third requirement if we extended our barriers to support renunciation [Dodds et al.
2011], the ability to release a resource without first acquiring it. Renunciation allows a resource to ‘skip’
iterations, giving limited out-of-order signalling.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 Proof-Directed Parallelization Synthesis by Separation Logic

ALGORITHM 4: A heuristic algorithm for computing released and acquired resources.

1 N := needed; R := redundant;
2 C := max{γ ∈ Paths | N(works, γ) = emp};
3 while C 6= {worke} do
4 Σr := N(choose({(γ, γ′) | γ ∈ C ∧ γ′ ∈ Paths ∧ γ ≺ γ′}))Σ;
5 CN := {γ ∈ C | ∃γ′ ∈ Paths.N(γ, γ′) ` Σr ∗ []};
6 % := x̄ 7→ x̄′, where x̄′ fresh;
7 Σ′r := Σr[%];

8 CR := min{γ′ ∈ Paths | R(γ′, worke)Σ ` Σ′r ∗ [] ∧ ∃γ ∈ CN. γ � γ′};
9 if CN � CR then

10 r := fresh resource id;
11 resource(r) := Σ′r;
12 forall the γ ∈ CR do
13 released(γ) := (r, %);
14 forall the γ′ s.t. γ � γ′ do
15 R(γ′, worke)Σ ` Σr ∗ [∆];
16 R(γ′, worke) := ∆;
17 end
18 end
19 forall the γ ∈ CN do
20 acquired(γ) := r;
21 forall the γ′, γ′′ s.t. γ � γ′ � γ′′ do
22 N(γ′, γ′′) ∗ [] ` Σ′r ∗ [∆];
23 N(γ′, γ′′) := ∆;
24 end
25 end
26 C := max{γ′ ∈ Paths | ∃γ ∈ C.N(γ, γ′) = emp};
27 end
28 end

demonstrate how one might compute solutions in practice, we present a heuristic algorithm
that works well on our examples.

Computing released and acquired maps. Algorithm 4 constructs released, acquired and
resource maps satisfying properties 1–3. Each iteration of the algorithm heuristically picks
a needed resource from some subset of program paths, and then iteratively searches for
matching redundant resources along all preceding paths. The algorithm maintains a set
C of all program paths up to which no more resources are needed. It terminates once no
unsatisfied needed resources remain (line 3).

At the start of the main loop (line 4) the algorithm picks a still-needed resource between
a program path in C and some further program path. The picking of the needed resource
is governed by a heuristic function choose, which picks a pair of program paths (γ, γ′) such
that γ ∈ C, γ′ ∈ Paths and γ ≺ γ′. We do not make any specific assumption about how
these program paths are being picked. For our examples, we introduced a simple partial
order reflecting the size of heap resources and picked program paths that lead to largest
resources with respect to that order being picked first. We discuss the resource selection
heuristic further in §7.2.

The key step of the algorithm is performed on line 8:

CR := min
{
γ ∈ Paths R(γ, worke)Σ ` Σ′r ∗ [] ∧ ∃γ′ ∈ CN. γ′�γ

}
Here R(γ, worke) is the redundant resource from γ to the end of the work function, Σ′r is
the candidate resource that we want to acquire, and CN the set of paths along which the

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Proof-Directed Parallelization Synthesis by Separation Logic A:27

resource Σr needs to be acquired. The constructed set CR is a set of program paths along
which we can satisfy the candidate needed resource. In line 9, the algorithm checks whether
CR covers all paths from CN, .

Resources stored in needed contain various first-order conditions embedded in the pure
part of the symbolic heap. Since we can transfer resources between potentially different
program paths, we only take the spatial part of the resource into consideration when asking
entailment questions; this is denoted by a superscript Σ. Moreover, since the acquired re-
source is being sent to a different function invocation, we substitute a fresh set of variables
(line 6).

If the check CN � CR succeeds, the remainder of the algorithm is devoted to constructing
the new resource (line 11), and updating released (lines 12–18), acquired (lines 19–25), and
C (line 26).

Lemma 5.4. Maps resource, released and acquired computed by Algorithm 4 satisfy prop-
erties 1–3.

Consider the run of the Algorithm 4 on our running example (Fig. 11 and Fig. 12). If
choose picks (`1, `2) in the first iteration and (`2`3, `2(`2)te) in the second iteration, then
the end result of Alg. 4 is resource = {r1 7→ (x 7→ a), r2 7→ (y 7→ b)}, released = {`2`3 7→
(r1, ∅), `2(`2)fe 7→ (r1, ∅), `2(`2)te 7→ (r2, ∅), `2`4 7→ (r2, ∅)} and acquired = {`1 7→ r1, `2`3 7→
r2, `2`4 7→ r2}.

Inserting grant and wait barriers. In this phase we transform the sequential program P
into a parallel program Ppar by inserting grant and wait barriers. The inserted barriers
realise the resource transfer established by Algorithm 4 with the maps released and acquired.

We generate the parallel function work′(ī
(p)
r , īr, env

(p), env) in Ppar as follows:

(1) To each r ∈ ResId we assign a unique channel name ir. Denote by i
(p)
r the corresponding

channel of the previous thread in the sequence.
(2) Let env be an associative array that for each channel maps (escaped) local variable

names to values. Let env(p) be such map from the previous thread in the sequence. env
and env(p) are used for materialization (see below).

(3) For each γ ∈ dom(acquired) such that acquired(γ) = r we insert a wait barrier wait(i
(p)
r)

between program paths pred(γ) and γ.
(4) For each γ ∈ dom(released) such that released(γ) = (r,), between program paths

pred(γ) and γ we insert a sequence of assignments of the form env(ir)[“y
′′] := y for

every local variable y, followed by a grant barrier grant(ir).

Each invocation of work′ creates a fresh set of local variables that are bound to the scope
of the function. If the structure of some shared resource depends on local variables from a
previous invocation, we use the env map to transfer the values from the previous thread
in a sequence to the next thread in a sequence. The preceding thread materializes the
variables by storing them in the env map (see rule (4) above), which is passed as env(p) to
the subsequent thread. Whenever the subsequent thread needs to access a variable from a
previous invocation, it refers to the variable using the env(p) map. For instance, the variable
*pr in the move() example from §3.2 (Fig. 8) would be referred to as env(p)(i1)[“p′′].

The main function mainPpar in Ppar first creates the set of “dummy” channels; then in
the while loop repeatedly creates a set of new channels for the current iteration, forks a

new thread with work′ taking the channels from the previous (ī
(p)
r) and the current (īr)

iteration, as well as the maps env(p) and env, and at the end of the loop body assigns the
new channels to the previous channels; and, after the while loop completes, waits on the
channels in the last set.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 Proof-Directed Parallelization Synthesis by Separation Logic

We generate the parallel proof Ppar from the sequential proof P using the following
specifications for newchan, grant and wait from [Dodds et al. 2011]:

{emp} i := newchan() {req(i, R) ∗ fut(i, R)}
{req(i, R) ∗ R} grant(i) {emp}

{fut(i, R)} wait(i) {R}

The predicates req and fut, corresponding to the required (resp. future) resource, track the
ownership of the input and output ends of each channel: req(i, R) states that by calling
grant on i when holding a resource satisfying R, the thread will lose this resource, and
fut(i, R) states that by calling wait on i, the thread will acquire a resource satisfying R.
In the proof Ppar, we instantiate each variable R associated with a channel ir with the
corresponding resource resource(r).

Fig. 13 illustrates the use of req and fut predicates in the parallel proof of the parallelized
function f() from §2.

To reason about threads, we use the standard separation logic rules for fork-join disjoint
concurrency [Gotsman et al. 2007]:

{P} f(x̄) {Q}
{P [ē/x̄]} t = fork(f, ē) {thread(t, f, ē)}

fork

{P} f(x̄) {Q}
{thread(t, f, ē)} join(t) {Q[ē/x̄]}

join

Upon forking a new thread, the parent thread obtains the assertion thread that stores
information about passed arguments for program variables and gives up ownership of the
precondition of the function. Joining requires that the executing thread owns the thread
handle which it then exchanges for the function’s postcondition.

Theorem 5.5. Ppar is a proof of the parallelized program Ppar, and defines the same
specification for mainPpar

as P does for mainP.

Loop-splitting. The approach presented so far treats a loop as a single command with a
specification derived from its invariant. Acquiring or releasing resources within a loop is
subtle, as it changes the sequential loop invariant. In our algorithm we take a pragmatic
approach that performs heuristic loop-splitting of the sequential loop before the parallel
code generation so that the conditions guarding acquiring and releasing of the resources
become explicit.

The example in §3.2 uses two channels to transfer the segment of the list traversed after
the first and the second while loop, respectively. The resource released via channel i1 in
Fig. 8 is lseg(s, y) ∗ pr 7→ y. In the following iteration, the needed resource for the whole
loop is lseg(s, p) ∗ node(p, x) ∗ node(x, n′). If we try to match released against needed, the
entailment R(γ, worke)Σ ` Σ′r ∗ [] in Algorithm 4 will fail. This is because the value of p
upon exiting the loop cannot be a priori determined, meaning we cannot establish whether
the released resource will cover the needed resource.

One way to resolve this would be to acquire the entire list before the first loop, but this
would result in a poor parallelization. Instead, we modify the structure of the loop to expose
the point at which the second list segment becomes necessary:

(1) We split the spatial portion of the resource needed by the whole loop into a “dead”
(already traversed) and a “live” (still to be traversed) part. In our example, lseg(s, p)
would be the “dead” and node(p, x) ∗ node(x, n′) ∗ lseg(n′, null) the live part. This kind
of splitting is specific to some classes of programs, e.g., linked list programs that do not
traverse a node twice.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Proof-Directed Parallelization Synthesis by Separation Logic A:29

1 {fut(wxp, x 7→ a) ∗ fut(wyp, y 7→ b) ∗ req(wx, x 7→ a′) ∗ req(wy, y 7→ b′)}
2 f(i, wxp, wyp, wx, wy) {
3 wait(wxp);

4 {x 7→ a ∗ fut(wyp, y 7→ b) ∗ req(wx, x 7→ a′) ∗ req(wy, y 7→ b′)}
5 int v = *x;

6

{
v = a ∧ x 7→ a ∗ fut(wyp, y 7→ b) ∗
req(wx, x 7→ a′) ∗ req(wy, y 7→ b′)

}
7 if (v >= i) {

8

{
v = a ∧ v ≥ i ∧ x 7→ a ∗ fut(wyp, y 7→ b) ∗
req(wx, x 7→ a′) ∗ req(wy, y 7→ b′)

}
9 grant(wx);

10 {v = a ∧ v ≥ i ∗ fut(wyp, y 7→ b) ∗ req(wy, y 7→ b′)}
11 wait(wyp);

12 {v = a ∧ v ≥ i ∗ y 7→ b) ∗ req(wy, y 7→ b′)}
13 *y = v;

14 {v = a ∧ v ≥ i ∗ y 7→ a) ∗ req(wy, y 7→ b′)}
15 grant(wy);

16 {v = a ∧ v ≥ i}
17 }
18 else {

19

{
v = a ∧ v < i ∧ x 7→ a ∗ fut(wyp, y 7→ b) ∗
req(wx, x 7→ a′) ∗ req(wy, y 7→ b′)

}
20 wait(wyp);

21

{
v = a ∧ v < i ∧ x 7→ a ∗ y 7→ b ∗
req(wx, x 7→ a′) ∗ req(wy, y 7→ b′)

}
22 grant(wy);

23 {v = a ∧ v < i ∧ x 7→ a ∗ req(wx, x 7→ a′)}
24 *x = 0;

25 {v = a ∧ v < i ∧ x 7→ 0 ∗ req(wx, x 7→ a′)}
26 grant(wx);

27 {v = a ∧ v < i}
28 }
29 }

30 {emp}

Fig. 13. The parallel separation logic proof of the parallelized function f() from §2.

(2) We match the resource against the “dead” part of the loop invariant and infer the
condition under which the two resources are the same. In our example, after unfolding
the special cases of list length one and two, the entailment between the two resources
holds if x.nxt = ∗pr. This condition can be inferred by asking a bi-abduction question
R(γ, worke)Σ ∧ [c] ` Σ′r ∗ [] with the pure fact c to be abduced.

Now we can syntactically split the loop against the inferred condition c = (x.nxt = ∗pr)
and obtain a transformed version that ensures that after entering the true branch of the if
statement the condition c holds. The transformation of our example is shown in Fig. 14.

Formally, we define splitting of a command (comprising possibly multiple loops) against
a condition c as in Alg. 5. For simpler exposition, we assume that every command ends
with skip. The condition c′ is obtained from c by replacing a reference to every primed

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 Proof-Directed Parallelization Synthesis by Separation Logic

...
pr:=envp(i1)["p"];
while (i<l && x.nxt!=null && x.nxt!=*pr) {
i++;
p=x;
x=x.nxt;

}
if (i<l && x.nxt!=null && x.nxt==*pr) {
i++;
p=x;
x=x.nxt;
while (i<l && x.nxt!=null) {
i++;
p=x;
x=x.nxt;

}
// remainder skipped.
...

else {
...

Fig. 14. Loop-splitting for the move() example.

ALGORITHM 5: Loop-splitting.

1 Split(C : Cmd, c : Π∨) match C with
2 case while(b) {C′ }; C′′ →
3 while(b ∧ ¬c′) {C′ }; if(b ∧ c′) {C′; while(b) {C′ }; C′′ } else {Split(C′′, c) }
4 case C′; C′′ → C′; Split(C′′, c);
5 case skip→ skip

6 end

variable y′ by a reference to env(p)(i
(p)
r)[”y”], where ir is the channel name associated to

the resource. It is not difficult to see that the accompanying proof of C can be split in a
proof preserving way against c. This transformation can either be applied to P between the
resource-usage analysis and parallelization, or embedded within Alg. 4.

5.3. Implementation

We have validated our parallelization algorithm by crafting a prototype implementation on
top of the existing separation logic tool, coreStar [Botinčan et al. 2011]. While our imple-
mentation is not intended to provide full end-to-end automated translation, it is capable of
validating the algorithms on the examples given in the paper, and automatically answering
the underlying theorem proving queries.

Our parallelization algorithm does not require a shape invariant generator, except possibly
to help construct the sequential proof. Soundness is independent of the “cleanliness” of the
invariants (the analysis will always give a correct result, in the worst case defaulting to
sequential behavior). The invariants generated automatically by coreStar were sufficient to
validate our examples. Other efforts [Calcagno et al. 2011] indicate that bi-abduction works
well with automatically-generated invariants produced by shape analysis, even over very
large code bases.

5.4. Computational Complexity

Deciding entailment of symbolic heaps is solvable in polynomial time for the standard
fragment built from the points-to and the inductive linked-list predicate [Cook et al. 2011].

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Proof-Directed Parallelization Synthesis by Separation Logic A:31

Although a complete syntactic proof search may require an exponential number of proofs
to be explored in the worst case [Berdine et al. 2005a], our implementation uses heuristic
proof rules that yield polynomial complexity (the potential incompleteness never occurred
as a problem in practice). The same procedure is used for the frame inference, the prover
just searches for a different kind of leaves in the proof search tree.

Abduction, on the other hand, is a fundamentally harder problem than deduction. While
general abduction for arbitrary pure theories reaches the second level of polynomial hier-
archy (in fact, it is ΣP

2 -complete) [Eiter and Gottlob 1995; Creignou and Zanuttini 2006],
abduction of resources for the standard fragment of symbolic heaps is NP-complete. In our
implementation we use a polynomial heuristic algorithm (similar to [Calcagno et al. 2011]6)
which has roughly the same runtime cost as frame inference in practice.

Overall, our resource-usage analysis (Alg. 2 and Alg. 3) asks O(|Paths|2 · d · s) frame
inference and abduction queries, where d is the depth of the abstract syntax tree T repre-
senting the program, and s the arity (the maximum number of siblings) of nodes in T . The
heuristic algorithm for computing released and acquired resources (Alg. 4) asks roughly a
cubic number (in the cardinality of Paths) of prover queries.

6. SOUNDNESS OF THE ANALYSIS

A distinctive property of our parallelizing transformation is that it enforces sequential data-
dependencies in the parallelized program even if the safety proof does not explicitly reason
about such dependencies. The result is that our analysis preserves the sequential behavior
of the program: any behavior exhibited by the parallelized program is also a behavior
that could have occurred in the original sequential program. However, there are important
caveats relating to termination and allocation.

Termination. If the original sequential program does not terminate, our analysis may
introduce new behaviors simply by virtue of running segments of the program that would
be unreachable under a sequential schedule. To see this, suppose we have a pfor such that
the first iteration of the loop will never terminate. Sequentially, the second iteration of the
loop will never execute. However, our parallelization analysis will execute all iterations of
the loop in parallel. This permits witnessing behaviors from the second (and subsequent)
iterations. These behaviors were latent in the original program, and become visible only as
a result of parallelization.

Allocation and disposal.. If the program both allocates and disposes memory, the paral-
lelized program may exhibit aliasing that could not occur in the original program. To see
this, consider the following sequential program:

x=alloc(); y=alloc(); dispose(x).

For simplicity, we have avoided re-structuring the program to use data parallelism via
pfor—this example could easily be encoded as such, however. Parallelization might give us
the following program:

(x=alloc(); grant(wx); y=alloc()) || (wait(wx); dispose(x))

This parallelized version of the program is race-free and obeys the required sequential or-
dering on data. Depending upon the implementation of the underlying memory allocator,
however, x and y may be aliased if the dispose operation was interleaved between the two
allocations. Such aliasing could not happen in the original non-parallelized version.

Either kind of new behavior might result in further new behaviors—for example, we might
have an if-statement conditional on x==y in the second example above. These caveats are

6The related tool Abductor [Calcagno et al. 2011] has been successfully applied to several code bases counting
hundreds of thousands of lines of code.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 Proof-Directed Parallelization Synthesis by Separation Logic

common to our analysis and others based on separation logic—for example, see the similar
discussion in [Cook et al. 2010].

Behavior preservation. In §10 we prove our behavior preservation result (Theorem 10.12).
The proof establishes that each trace of the parallelized program corresponds to a trace of
the sequential program so that a simulation invariant between the states of the parallel
program and the states of the sequential program is preserved.

As will be seen in the proof, one attractive property is that it in fact does not place
explicit requirements on the positioning of barriers—it is sufficient that we can provide a
separation logic proof of the parallelized version of the program. The caveat on memory
disposition manifests in the way we establish our simulation invariant, which necessarily
assumes newly allocated data is always “fresh” and thus does not alias with any accessible
heap-allocated structure. The caveat on termination is necessary to ensure we can suitably
reorder threads in the parallelized program to yield a “sequentialized” trace.

In addition to inserting barriers, our analysis mutates the program by materialising
thread-local variables and splitting loops. Both of these can be performed as mutations on
the initial sequential program, and neither affect visible behavior. Loop-splitting is straight-
forwardly semantics-preserving, while materialized variables are only used to control barrier
calls.

Theorem 10.12 guarantees that parallelization does not introduce deadlocks; otherwise
the simulation relation would not exist. The ordering on barriers ensures that termination
in the sequential program is preserved in the resulting parallelized program.

7. ADJUSTING THE ANALYSIS

Our whole approach, assuming a fully-automated prover, can be seen as being parametric
in (1) abstract domain for resources, (2) resource selection procedure, and (3) the level of
path-sensitivity. In this section, we discuss the way the properties of the analysis change
under various choices of these parameters.

7.1. Resource Domain

Our analysis is generic in the choice of abstract domain; any separation logic predicate can
potentially be used in place of lseg, for example. The choice of resource predicates affects
the success of the analysis particularly strongly, as resources can only be accessed in parallel
if they can be expressed disjointly. Stronger domains allow the analysis to split resources
more finely, and so (in some cases) making the parallelization better. However, altering the
choice of resources may also force barriers earlier, making the parallelization worse.

In §3.2 we parallelized the move() example using the resource predicates lseg, representing

list segments, x 7→ a, representing individual heap cells, and x
c7−→ a, representing fractional

ownership of a cell. To see how the choice of abstract domain influences the analysis, in
this section, we consider two other resource predicates: list segments with length; and list
segments with membership.

List segment with length. The predicate lsegni(h, t, n, i) extends lseg with a parameter
n ∈ Z recording the length of the list segment, and with a parameter i ∈ (0, 1] recording
the permission on the list segment. If i = 1 the thread has read-write access; otherwise it
has read access only (this follows the behavior of permission on individual heap cells). We
define nodei and lsegni as follows:

nodei(x, y, i) , x.val
i7−→ v′ ∗ x.nxt

i7−→ y

lsegni(x, t, n, i) , (x = t ∧ n = 0 ∧ emp) ∨ (nodei(x, y′, i) ∗ lsegni(y′, t, n−1, i))

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Proof-Directed Parallelization Synthesis by Separation Logic A:33

move1(s, l) {{
lsegni(s, n′, l, j′)

}
i=0;
x=s.nxt;
p=s;
while (i<l && x.nxt!=null) {{

lsegni(s, n′, l, j′)
}

i++;
p=x;
x=x.nxt;

}{
lsegni(s, p, l, 1)

}
while (x.nxt!=null) {{

lsegni(s, p, l, 1)
}

x=x.nxt;
}{
lsegni(s, p, l, 1)

}
if (p.nxt!=x) {
... // omitted
}

}{
node(s, n′1) ∗ node(n′1, n

′
2) ∗ lseg(n′2, null)

}

move2(s, l) {
i=0;
x=s.nxt;{
nodei(s, n′, j′)

}
p=s;
while (i<l && x.nxt!=null) {{

lsegni(s, n′, i + 2, j′)
}

i++;
p=x;
x=x.nxt;

}{
lsegni(s, n′, l + 2, j′) ∨
(lsegni(s, null, k′, j) ∧ 2 ≤ k′ ≤ l + 1)

}
while (x.nxt!=null) {{

lsegni(s, n′1, k
′, j′) ∗

nodei(n′1, x, j
′) ∗ nodei(x, n′2, j

′)

}
x=x.nxt;

}{
lsegni(s, n′1, k

′, j′) ∗
nodei(n′1, x, j

′) ∗ nodei(x, null, j′)

}
if (p.nxt!=x) {
... // omitted

}
}{

node(s, n′1) ∗ node(n′1, n
′
2) ∗ lseg(n′2, null)

}
Fig. 15. Redundant and needed resources for move() calculated using the lsegni resource predicate.

We use as input proof the original sequential proof shown in Fig. 7. The equivalence
lseg(h, t) ⇐⇒ lsegni(h, t, n′, 1) allows the analysis to exploit the lsegni predicate even
though the sequential proof is written using the coarser lseg predicate.

We will now use the lsegni and node predicates when parallelizing our running example
move() function. Once again, we parallelize a pair of calls to move:

move(s,a); move(s,b);

The needed and redundant resources for the first and second calls to move calculated using
lsegni are shown in Fig. 15.

In first call to move(), the resource lsegni(s, n′, l, j′) is redundant immediately. This is
because move() only needs read-write access to the list at the l-th node. It can pass read-
access to the second call to move(). Nodes earlier than l in the list can immediately be
accessed by the subsequent call.

Conversely, the while-loops in move() only need read-only access to the list. This is
reflected in the fact that the needed resources all use lsegni. It is only in the final if-statement
that move() requires write-access to the list.

Fig. 16 shows a parallelization of the example using lsegni. There are several changes over
the parallelization with lseg that we show in Fig. 8:

— The value lr shared between move1() and move2() has been changed from the address
of a node, to the position of the node to be moved.

— In move2(), the calls to wait(i2) are conditional on the position value stored in lr,
rather than on the address of the .nxt node.

— In move1 the call to grant(i1) has been pushed up past the first while-loop.
— The third call to wait(i2) has been moved up out of the while loop.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 Proof-Directed Parallelization Synthesis by Separation Logic

move1(s, l) {
i=0;
x=s.nxt;
p=s;
*lr=l;
grant(i1);
while (i<l && x.nxt!=null) {
i++;
p=x;
x=x.nxt;

}
while (x.nxt!=null)
x=x.nxt;

if (p.nxt!=x) {
... // omitted

}
grant(i2);

}

move2(s, l) {
i=0;
wait(i1);
if (2 >= *lr) wait(i2);
x=s.nxt;
p=s;
while (i<l && x.nxt!=null) {
if (i+2 >= *lr) wait(i2);
i++;
p=x;
x=x.nxt;

}
if (l+2 < *lr) wait(i2);
while (x.nxt!=null) {
x=x.nxt;

}
if (p.nxt!=x) {
... // omitted

}
}

Fig. 16. Parallelization of move using lsegni.

The first two changes make no difference to the degree of parallelization. The third, moving
the call to grant() upwards, makes the program more parallel: the subsequent call to
move2() needs to wait less time before it can proceed. The change in domain enables this
optimization because it allows the analysis to represent a list segment of a particular fixed
length, and to work out that it can be safely transferred to the second call to move().

The fourth change, moving the wait() upwards, makes the program less parallel. This is
a consequence of sharing the position of the node, rather than its address. In the original
parallelization, the loop could conditionally wait on the address of the node. However, the
second loop does not store it’s position in the list, meaning that it cannot check when it
needs to call wait(). To be conservative, it must wait for the resource before entering the
loop.

Thus, there is a subtle interplay between the choice of domain, the particular resources
chosen by the analysis, and the parallelization that can be achieved. (Of course, as the lsegni
domain includes the original lseg domain, the analysis could also construct the original
parallelization). However, simply making the domain richer does not automatically make
the parallelization more successful.

List segment with membership. The list predicates we have considered so far have remem-
bered the structure of the list, but not the values held in it. However, in some cases we can
get a better parallelization if the predicate records the values stored in the list. To do this,
we use the predicates nodev and lsegv. Respectively, these represent a list node holding a
particular value, and a list segment with an associated set of values:

nodev(x, y, v) , x.val 7→ v ∗ x.nxt 7→ y

lsegv(x, t, S) , (x = t ∧ S = ∅ ∧ emp) ∨
(nodev(x, y′, v′) ∗ (lsegv(y′, t, S \ {v′}) ∨ lsegv(y′, t, S)))

Note that in lsegv(x, y, S) the set of values S is a subset of all the values in the list: if a
value is in S, then it must be in the list, but not vice versa.

We apply nodev and lsegv to the functions build() and check(), defined in Fig. 17.
The build() function constructs a linked list a sequence of values matching the regular
expression 0+1+2+3. The check() function reads through the list and returns true if a

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Proof-Directed Parallelization Synthesis by Separation Logic A:35

build(){
s=malloc();
x=s;
do {
x.val=0;
x.nxt=malloc();
x=x.nxt;

} while(nondet);
do {
x.val=1;
x.nxt=malloc();
x=x.nxt;

} while(nondet);
do {
x.val=2;
x.nxt=malloc();
x=x.nxt;

} while(nondet);
x.val=3;
return s;

}

check(s){
x=s;
while(x != null) {
if (x.val==1)
return true;

}
return false;

}

Fig. 17. Functions build(), which constructs a linked list containing values 0+1+2+3, and check(), which
checks whether a 1-valued node is present.

1-value node is present, and zero otherwise. This example is inspired by similar build-and-
check examples defined in the SV-Comp benchmark suite [SV-Comp 2013].

We can parallelize the following program:

r = build(); check(r);

The possible parallelizations depend on the needed and redundant resources calculated
by the analysis. These in turn depend on the choice of resource predicates. The needed and
redundant resources calculated without and with lsegv are shown interleaved in the code in
Fig. 18.

Suppose we only use the lseg and node predicates: then the analysis can only establish that
the resources redundant in build() are list segments, without expressing any knowledge
of the values stored. With lseg, the analysis calculates that check() requires access to the
whole list. If we use lsegv, then the analysis computes that redundant resources in build()
are list segments containing particular values. It also calculates that check() either needs
access to a list segment containing 1, or a complete list segment—either will suffice.

The difference between parallelizations can be seen in Fig. 19. To make the exposition
clearer, we only inject barriers into loop-free code, rather than injecting barriers into the
loop. On the left, we have the parallelization possible using lseg. The grant-barrier in
build() waits until after the final loop has terminated. On the right, we have the paral-
lelization with lsegv. The analysis is able to work out that check() only needs access to a
list segment containing a 1-valued node. This needed resource be satisfied after the second
loop. The grant-barrier can thus been moved upwards above the third loop, resulting in a
better parallelization.

7.2. Resource Selection Procedure

Algorithm 4 is parameterized by a function choose governing resource selection. In a way,
choose can be seen as a proxy for external knowledge (e.g., hints provided by a programmer)
about likely points for parallelization. The way how choose picks program paths determining

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 Proof-Directed Parallelization Synthesis by Separation Logic

build(){
s=malloc();
x=s;
do {
x.val=0;
x.nxt=malloc();
x=x.nxt;

} while(nondet);

1.
{

node(s, n′) ∗ lseg(n′, x)
}

2.
{

lsegv(s, x, {0})
}

do {
x.val=1;
x.nxt=malloc();
x=x.nxt;

} while(nondet);

1.
{

node(s, n′) ∗ lseg(n′, x)
}

2.
{

lsegv(s, nx, {0, 1})
}

do {
x.val=2;
x.nxt=malloc();
x=x.nxt;

} while(nondet);
x.val=3;

1.
{

node(s, n′) ∗ lseg(n′, null)
}

2.
{

lsegv(s, x, {0, 1, 2, 3})
}

return s;
}

check(s){
x=s;

1.
{

node(s, n′)
}

2.
{

node(s, n′)
}

while(x != null) {
if (x.val==1)
return true;

}

1.
{

node(s, n′) ∗ lseg(n′, null)
}

2.
{

(node(s, n′) ∗ lseg(n′, null)) ∨ lsegv(s, n′, {1})
}

return false;
}

Fig. 18. Redundant and needed resources for build and check. Resources labelled (1) are calculated with
the default lseg predicate, while resources labelled (2) are calculated with the lsegv predicate.

the resource selection is not important for the correctness of the algorithm, but different
strategies can lead to better or worse parallelizations.

In our examples, we used a very simple, automatic greedy heuristic for the choose function.
We introduced a simple syntactic partial order � reflecting the coarse-grained size of heap
resources, under which:

emp � e 7→ f

emp � lseg(e, f)

e 7→ f � lseg(e′, f ′) ∧ e′ 6= f ′,

and Σ � Σ′ if for every conjunct S in Σ there exists a conjunct S′ in Σ′ such that S � S′.
We write Σ ./ Σ′ if Σ � Σ′ and Σ′ � Σ. Then, given a set of program path pairs {(γ, γ′) |
γ ∈ C ∧ γ′ ∈ Paths ∧ γ ≺ γ′}, we defined a partial order @ by letting (γ, γ′) @ (δ, δ′) if
N(δ, δ′) � N(γ, γ′) or N(γ, γ′) ./ N(δ, δ′), γ = δ and γ′ ≺ δ′. The choose function traversed
topologically sorted program path pairs and picked each pair in turn.

This choose function favored picking “large” resource that are encountered along program
paths first, which worked well for our examples. However, in some cases we might produce
better parallelizations by picking “smaller” resources first. Such preference of resources can
be easily tuned by redefining the partial order �.

7.3. Path-Sensitivity

While the resource-usage analysis (§5.1) is fully path-sensitive (modulo loops), the par-
allelizing transformation (§5.2) accounts for path-sensitivity only syntactically. During the

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Proof-Directed Parallelization Synthesis by Separation Logic A:37

build(){
s=malloc();
x=s;
do {
x.val=0;
x.nxt=malloc();
x=x.nxt;

} while(nondet);
do {
x.val=1;
x.nxt=malloc();
x=x.nxt;

} while(nondet);
do {
x.val=2;
x.nxt=malloc();
x=x.nxt;

} while(nondet);
x.val=3;
grant(i);
return s;

}

check(s){
x=s;
wait(i);
while(x != null) {
if (x.val==1)
return true;

}
return false;

}

build(){
s=malloc();
x=s;
do {
x.val=0;
x.nxt=malloc();
x=x.nxt;

} while(nondet);
do {
x.val=1;
x.nxt=malloc();
x=x.nxt;

} while(nondet);
grant(i);
do {
x.val=2;
x.nxt=malloc();
x=x.nxt;

} while(nondet);
x.val=3;
return s;

}

check(s){
x=s;
wait(i);
while(x != null) {
if (x.val==1)
return true;

}
return false;

}

Fig. 19. Left: parallelization of build() and check() using the lseg predicate. Right: parallelization using
lsegv.

execution of the parallelized program precisely one call to wait() and grant() should occur
for each channel. However, barriers may be injected into conditional branches, creating the
possibility of missed barriers or unwanted multiple calls to barriers. To ensure that barriers
are called exactly once, the parallelizing transformation follows the syntactic structure of
the program, forcing the calls to grant() to occur at program paths that are covering the
corresponding calls to wait() for the same channel (the condition CN � CR in line 9 of
Algorithm 4). This approach is sufficient for all of the examples that we consider in this
paper.

We could strengthen this approach by making the prover record explicit path conditions
in the assertions of the sequential proof and using these conditions semantically. To check
that all paths are covered by the points chosen for barrier injection, Algorithm 4 could then
disjoin the path conditions and check for tautology. More precisely, if we let pc : Paths→ Π∨
represent the path condition associated with each program path, then we would replace the
condition in line 9 of Algorithm 4 with

∨
γ∈CR pc(γ)⇔ true. To check that two paths cannot

be satisfied at the same time, the algorithm could check that the associated path conditions
contradict.

Enriching the parallelizing transformation in this way would allow a possibly better place-
ment of barriers down conditional branches. For example, the following barrier placement
would be forbidden by the syntactic approach, but allowed by the semantic path-sensitive
version:

if (P)
grant(i);

if (¬P)
grant(i);

if (Q)
wait(i);

if (¬Q)
wait(i);

8. LIMITATIONS

Loop handling. Our parallelizing transformation treats loops as opaque, with a loop-
splitting transformation used to allow mid-loop signalling. Since not all loops have a struc-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38 Proof-Directed Parallelization Synthesis by Separation Logic

ture amenable for such a transformation, it may not be always possible to discover paral-
lelization opportunities within loop-based computations. However, one can envision anal-
ogous transformations that would split according to different phase-switching patterns in
the loop body.

In the main parallel-for loop, we currently assume each iteration communicates with
only its immediate predecessor and successor. A technique called renunciation, discussed in
[Dodds et al. 2011], allows a thread to release a resource without having to first acquire it,
allowing resource transfers to skip iterations. It would be relatively straightforward to fold
such a technique into our analysis.

Procedures. The analysis we given in the body of the paper treats procedures in two ways:
either as inlined code, or opaquely, in terms of their sequential specifications. The latter lets
us deal with recursively-defined procedures, although it means that such procedures cannot
have barriers injected into them. This is a similar simplification to treating loops as opaque.
As with loops, we can develop a more sophisticated procedure-unrolling transformation
which would exploit parallelization opportunities across function calls. We present such an
inter-procedural version of the analysis in the online appendix (§A).

Achieving scalability. A näıve implementation of our proposed algorithm would not scale
due to rapid combinatorial explosion of program paths. However, the algorithm can be tuned
to avoid exploring paths that are unlikely to expose parallelism or, conversely, to explore
paths that involve intense computations worth running concurrently. We note that reducing
the depth of the abstract syntax tree unwinding only limits the potential for parallelization
but does not lead to unsoundness.

Tool support. An automated separation logic prover for solving frame inference, abduction
and bi-abduction queries is essential for our approach, and the quality of parallelization
depends strongly on the success of the prover. However, our analysis degrades gracefully
with imprecise abduction giving less precise parallelization. In the worst case, we obtain
sequentialization of the parallel threads, reflecting our analysis being unable to prove that
any other parallelization was safe with respect to our ordering assumptions.

Non-list domains. As discussed in §7, our analysis is generic in the choice of the abstract
domain; any separation logic predicate could be used in place of lseg, for example. However,
the success of automated parallelization is highly dependent on the power of the entailment
prover in the chosen domain. The lseg domain is one of the best-developed in separation
logic, and consequently automated parallelization is feasible using tools such as coreStar.
Other domains (such as trees) are far less developed so additional automated reasoning
support and special-purpose heuristics for abduction may be needed.

Alternative parallelization primitives. Our use of pfor as our primitive parallelization
construct is a design choice, rather than an essential feature of our algorithm. We could
use a more irregular concurrency annotation, for example safe futures [Navabi et al. 2008].
In this case, our resource-usage analysis would be mostly unchanged, but our parallelized
program would construct a set of syntactically-distinct threads, rather than a pipeline of
identical threads.

We emphasize that our parallelization algorithm is targetting programs where ordering
is important. As the analysis is syntactically driven by the structure of the loop and the
signalling order, it may impose order between iterations that are not strictly enforced by the
underlying data structure. For instance, if we would use unordered parallel-for (e.g., as in
the Galois system [Pingali et al. 2011]) our current analysis would generate a deterministic
parallel program that respects some specific sequential order of the loop iterator (contrary to
Galois that would, with its speculative parallel execution, allow nondeterminism). Removing
ordering between iterations could be achieved by replacing ordered grant-wait pairs with

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Proof-Directed Parallelization Synthesis by Separation Logic A:39

conventional locks, but this would introduce an extra obligation to show that locks were
always acquired as a set by a single thread at once.

9. SEMANTICS

In this section, we define operational semantics of the multithreaded core language to which
the programs generated by our parallelizing transformation are translated. The syntax of
this language is similar to the the sequential core language described in §4.1, but is addi-
tionally equipped with threads and operations on channels (newch, grant and wait).

Our semantics makes several simplifying assumptions: (1) We forbid disposal, and so can
assume that allocation always gives fresh locations. This restriction is introduced because
full memory allocation (with memory disposition and reuse) may allow parallelization to
introduce new behaviors (see §6); (2) to simplify the presentation, our semantics does not
include function definitions or calls. Data-races are interpreted as faults in this semantics.

The operational semantics has two levels, a labelled thread-local semantics (‘;’), and
a global semantics (‘Z=⇒’) defined in terms of the local semantics. Every transition in the
global semantics corresponds to a transition for some thread in the local semantics. Our
semantics is annotated in the sense that it keeps track of the resources that are associated
with threads and channels. These distinctions would not be present in the operational
semantics of the real machine.

Thread-local semantics. The semantics assumes the following basic sets: Prog, programs;
Tid, thread identifiers, ordered by <; Cid, channel identifiers; Var, variable names; Loc, heap
locations; Val, primitive values (which include locations). We assume that the sets Tid, Cid
and Loc are infinite, and that Tid] Cid] Loc ⊆ Val.

The thread-local semantics, whose rules are given in Fig. 20, is defined by a labelled
transition relation ; ∈ P(TState× TState× Label), with TState defined as follows:

σs ∈ Stack : Var ⇀ Val

σh ∈ Heap : Loc ⇀ Val

σ ∈ LState : Stack× Heap

(ωw, ωg) ∈ CState : P(Cid)× P(Cid)

TState : Prog × LState× CState× P(Tid)

The semantics associates each thread with a resource which can be safely manipulated
by that thread. Globally-visible events, meaning forking, creating channels, granting and
waiting, and heap allocation are modelled by labels on the thread-local transition relation.
These labels are used to ensure that global events are propagated to all threads. The set of
labels, Label, is defined as follows:

Label , ({fork } → Tid× Prog × LState× CState)

] ({newch} → Cid)

] ({wait,grant} → Cid× Heap)

] ({alloc} → Loc)

The rules use a join operator on heaps ⊕ : Heap × Heap by union of functions, defined
only if the two heaps’ domains are disjoint. The join operator ⊕ : LState× LState ⇀ LState
is defined as identity on stacks and join on heaps:

σ ⊕ σ′ , (σs, σh ⊕ σ′h) if σs = σ′s

A local state in LState consists of a stack mapping variables to values and a heap mapping
locations to values. Note that we do not support address arithmetic. A channel state in
CState consists of a pair of sets, respectively recording the channels the thread can wait for

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:40 Proof-Directed Parallelization Synthesis by Separation Logic

(σ, σ′) ∈ c
(c, σ, ω, γ) ; (skip, σ′, ω, γ)

¬∃σ′. (σ, σ′) ∈ c
(c, σ, ω, γ) ; abort

σ, ω 6|= P ∗ true

(fork[P]C, σ, ω, γ) ; abort

σ′, ω′ |= P σ = σ′ ⊕ σ′′ ω = ω′] ω′′ t fresh

(fork[P]C, σ, ω, γ)
fork (t,C,σ′,ω′)

; (skip, σ′′, ω′′, γ] {t})

s fresh

(x := newch ,σ, ω, γ)
newch (s)

; (skip, (σs[x 7→ s], σh), (ωw] {s}, ωg] {s}), γ)

σ, (∅, ∅) 6|= P ∗ true

(grant[P]E, σ, ω, γ) ; abort

[[E]]σs = s s ∈ ωg σ = σ′ ⊕ σ′′ σ′, (∅, ∅) |= P

(grant[P]E, σ, ω, γ)
grant (s,σ′)

; (skip, σ′′, (ωw, ωg \ {s}), γ)

[[E]]σs = s s ∈ ωw

(waitE, σ, ω, γ)
wait (s,σ′)

; (skip, σ ⊕ σ′, (ωw \ {s}, ωg), γ)

(C, σ, ω, γ) ; (C′, σ′, ω′, γ′)

(C;C′′, σ, ω, γ) ; (C′;C′′, σ′, ω′, γ′) (skip;C, σ, ω, γ) ; (C, σ, ω, γ)

(C, σ, ω, γ) ; abort

(C;C′, σ, ω, γ) ; abort

[[B]]σs = tt

(if (B)C1 elseC2, σ, ω, γ) ; (C1, σ, ω, γ)

[[B]]σs = ff

(if (B)C1 elseC2, σ, ω, γ) ; (C2, σ, ω, γ)

[[B]]σs = tt

(while (B)C, σ, ω, γ) ; (C;while (B)C, σ, ω, γ)

[[B]]σs = ff

(while (B)C, σ, ω, γ) ; (skip, σ, ω, γ)

l /∈ dom(σh)

(x := alloc, σ, ω, γ)
alloc(l)
; (skip, (σs[x 7→ l], σh] [l 7→ 0]), ω, γ)

Fig. 20. Annotated thread-local operational semantics.

and grant on. A thread state in TState consists of a program (i.e. command), a local state,
a channel state, and a set of thread identifiers of child threads.

The semantics assumes a set of primitive commands Prim : P(LState×LState). We assume
for any command c ∈ Prim that:

— For any states σ1 and σ2 such that (σ1⊕σ2, σ
′) ∈ c, if there exists a transition (σ1, σ

′
1) ∈ c

then σ′1 ⊕ σ2 = σ′.
— For any transition (σ, σ′) ∈ c and state σ2, if σ ⊕ σ2 is well-defined, then there exists a

transition (σ ⊕ σ2, σ
′′) ∈ c and σ′′ = σ′ ⊕ σ2.

— For any states σ1 and σ2, if there exists no σ′ such that such that (σ1 ⊕ σ2, σ
′) /∈ c, then

(σ1, σ
′) /∈ c.

Besides capturing a semantic relation between local states, primitive commands also have
a syntactic representation (e.g. , the name of the command itself). We overload these notions
in the rules to allow us flexibility in characterizing effects without having to choose a fixed
command set a priori. It is straightforward to define an interpretation function that maps
the nominal representation of a command with its relational definition.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Proof-Directed Parallelization Synthesis by Separation Logic A:41

The effect of evaluating primitive command c in state 〈c, σ, ω, γ〉 is a new state
〈skip, σ′, ω, γ〉 if (σ, σ′) ∈ c. If command c can effect no transition from local state σ,
the thread aborts.

A thread may fork a child. We associate a syntactic assertion P with a fork command
that captures the resources required by the child thread. (The existence of a syntactic
separation logic proof means we can always annotate a fork command with such assertions.)
If the assertion is not satisfiable within the current local state (i.e. , σ, ω 6|= P ∗ true), the
thread aborts. Otherwise, we can partition the state, associating the resources (memory and
channels) needed by the forked thread (denoted as σ′ and ω′ in the rule) from those required
by the parent. The effect annotation fork (t, C, σ′, ω′) records this action. We assume that
the fresh thread identifier t created on each fork invocation is strictly greater (with respect
to <) than previous ones.

Creating a new channel with newch augments the set of channel identifiers for both wait
and grant actions.

In order for a thread to grant resources to another thread, the assertion that defines
the structure of these resources must hold in the current local state; note that the only
resources that can be propagated along channels are locations and values in the thread’s
local state—channel identifiers can only be distributed at fork-time. If the assertion indeed
holds, then the resources it describes can be transferred on the channel. This semantics
ensures all concurrently executing threads operate over disjoint portions of shared memory.
The semantics of wait transfers a set of resources to the executing thread whose composition
is determined by the assertion on the corresponding grant that communicates on channel
s. The rules for sequencing and loops are standard.

Memory allocation annotates the transition with an allocation label alloc(l) for fresh
location l.

Global semantics. The global semantics is defined as a transition relation Z=⇒ ∈
P(GState× GState), with GState defined as follows:

δ ∈ TMap : Tid ⇀ TState

η ∈ CMap : Cid ⇀ Heap] {M,O}
κ ∈ GState : TMap× CMap× P(Loc)

The rules of the global semantics are given in Fig. 21. Every transition in the global
semantics corresponds to a transition for some thread t in the local semantics. The global
semantics models the pool of active threads with a thread-map in TMap, and models the
resources held by channels with a channel-map in CMap. The set of locations in P(Loc)
represents unallocated locations in the heap. Because we never return locations to this set,
all allocated locations are fresh.

Given a channel map η ∈ CMap, a given channel s ∈ dom(η) can be either allocated
but unused, denoted by η(s) = M, in use, denoted by η(s) ∈ Heap, or finalized, denoted
by η(s) = O. Once finalized, a channel identifier cannot be reused (fortunately we have
an infinite supply of fresh channel identifiers). The semantics enforces consistency between
calls to wait, grant and newchan. A thread can only take a local transition acquiring or
releasing a resource if it is consistent with the global channel map.

Thread-local steps are mirrored in the global semantics by updating the state of the
thread in the thread map. A fork operation augments the thread map by associating the
thread identifier with a new thread-local configuration whose components are specified on
the local transition. Creating a new channel is permissible only if the channel identifier
does not already exist. A grant action is allowed if the channel is unused; after the action
the channel is associated with the heap resources provided by the grant. A wait action is
allowed if the resources demanded by the wait are provided by the channel (via a grant); if

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:42 Proof-Directed Parallelization Synthesis by Separation Logic

(C, σ, ω, γ) ; (C′, σ′, ω′, γ′)

([t 7→ C, σ, ω, γ]] δ, η,L) Z=⇒ ([t 7→ C′, σ′, ω′, γ′]] δ, η,L)

(C, σ, ω, γ)
fork (t2,C2,σ2,ω2)

; (C′, σ′, ω′, γ′)

([t1 7→ C, σ, ω, γ]] δ, η,L) Z=⇒ ([t1 7→ C′, σ′, ω′, γ′]] [t2 7→ C2, σ2, ω2, ∅]] δ, η,L)

(C, σ, ω, γ)
newch (s)

; (C′, σ′, ω′, γ′) s /∈ dom(η)

([t 7→ C, σ, ω, γ]] δ, η,L) Z=⇒ ([t 7→ C′, σ′, ω′, γ′]] δ, η] [s 7→ M],L)

(C, σ, ω, γ)
grant (s,σ)

; (C′, σ′, ω′, γ′) η(s) = M
([t 7→ C, σ, ω, γ]] δ, η,L) Z=⇒ ([t 7→ C′, σ′, ω′, γ′]] δ, η[s 7→ σ],L)

(C, σ, ω, γ)
wait (s,σ)

; (C′, σ′, ω′, γ′) η(s) = σ

([t 7→ C, σ, ω, γ]] δ, η,L) Z=⇒ ([t 7→ C′, σ′, ω′, γ′]] δ, η[s 7→ O],L)

(C, σ, ω, γ)
alloc(l)
; (C′, σ′, ω′, γ′) l ∈ L

([t 7→ C, σ, ω, γ]] δ, η,L) Z=⇒ ([t 7→ C′, σ′, ω′, γ′]] δ, η,L \ {l})

(C, σ, ω, γ) ; abort

([t 7→ C, σ, ω, γ]] δ, η,L) Z=⇒ abort

Fig. 21. Annotated global operational semantics.

so, the channel becomes finalized. Allocation removes the location from the set of available
locations.

Definition 9.1. For a global state κ = 〈δ, η,L〉 and thread t ∈ dom(δ) such that δ(t) =

〈C, σ, (ωw, ωg), γ〉, we define waits(κ, t) , ωw and grants(κ, t) , ωg.

Definition 9.2 (well-formedness). A global state κ = 〈δ, η,L〉 is well-formed if:

(1) The set of all heap locations either allocated and referred to in δ and η is disjoint from
L, the set of unallocated heap locations.

(2) The thread-local states in δ and states stored in the channel map η can be joined using
⊕ to give a well-defined state. Note that, as ⊕ is associative and commutative, this
state is unique, and also that any pair of states from δ and η can be joined to give a
well-defined result.

(3) For any channel c ∈ Cid, there exists at most one thread t1 such that c ∈ grants(κ, t1)
and at most one thread t2 such that c ∈ waits(κ, t2). If c ∈ grants(κ, t1), then η(c) = M.
If c ∈ waits(κ, t2), then η(c) ∈ Heap] {M}.

Well-formedness expresses fundamental linearity assumptions on states and channels;
essentially, it ensures elements of the state can be owned by only one thread at once.

Lemma 9.3. The global transition relation Z=⇒ preserves well-formedness.

Assumption 1. We assume all global states are well-formed, unless explicitly stated
otherwise.

Definition 9.4 (trace). A trace is a (finite or infinite) sequence of global states K =
κ0κ1 . . . such that for every i, κi Z=⇒ κi+1. A finite (infinite) trace is called terminating
(nonterminating).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Proof-Directed Parallelization Synthesis by Separation Logic A:43

Definition 9.5 (child thread, thread order). Each local state 〈C, σ, ω, γ〉 includes the set
γ of forked child thread identifiers. For convenience, we define child(κ, t) as the set of
children for thread t in global state κ. The children of a thread are ordered with a relation
< that follows the order in which they were created. That is, suppose we have a trace K
with initial state 〈δ, η,L〉 such that c1, c2 /∈ dom(δ). Given an arbitrary state κi ∈ K, if
{c1, c2} ∈ child(κ, t) and c1 < c2, then c1 was created earlier in the trace than c2.

We denote by Z=⇒∗ the reflexive transitive closure of the global transition relation. We

sometimes write ‘
tZ=⇒’ to denote a global transition resulting from the thread t taking a

step, and call it a transition over thread t.

Definition 9.6 (sequentialized trace). We define the sequentialized transition relation

Z=⇒s ⊆ Z=⇒ as the transition relation in which a step κ
tZ=⇒ κ′ can only be taken if all

threads in child(κ, t) have reduced to skip. We say that a trace K is sequentialized with
respect to t if every transition over thread t is in Z=⇒s. We denote this transition relation
by Z=⇒s(t).

10. PROOF OF BEHAVIOR PRESERVATION

We now prove the soundness of our analysis, i.e., that our parallelizing transformation does
not introduce any new behaviors to the original program. We prove our result using the
semantics from § 9 for both the sequential and the parallelized program. In this setting, the
sequential program is represented with a sequential thread7 possibly executing concurrently
with other sequential threads—this degenerates into the purely sequential case when there
are no other runnable threads.

10.1. Informal Description of the Proof

The proof of the behavior preservation (Theorem 10.12) is based on a simulation argument:
each trace of the parallelized program must correspond to a trace of the sequential program
and preserve as an invariant a given binary relation between states of the parallelized and
the sequential program. The proof is structured as follows:

(1) We establish a simulation invariant between the parallelized program and the sequential
program in two steps: first for a program decorated with calls to grant, wait and newch
and a program with these calls erased (Lemma 10.1), and then for a program addition-
ally decorated with fork calls and a fork-erased program (Lemma 10.2). The combined
invariant relates every nonfaulting sequentialized trace of the fully decorated program
with a trace of the sequential program. By sequentialized, we mean that forked children
must execute to completion before their parent threads can be scheduled (Def. 9.6).

(2) We show that, under the assumption that forked child threads never wait for chan-
nels granted by their parent or later-forked child threads, any terminating nonfaulting
trace of the parallelized program can be reordered into a sequentialized trace with the
same thread-local behavior. This is established by showing that traces of the program
parallelized by our analysis have signalling barriers aligned with the thread ordering
(Lemma 10.8), and that any such trace can be reordered into a sequentialized trace
(Lemma 10.7).

(3) Previous steps establish behavior-preservation for non-aborting traces. Inserting grant,
wait, newch and fork may introduce aborts. However, our parallelizing transformation
is proof-preserving so the parallelized programs is also verified using separation logic.
This establishes, for every state satisfying the program precondition, that the program
cannot abort.

7A thread is sequential if it does not call fork.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:44 Proof-Directed Parallelization Synthesis by Separation Logic

10.2. Details of the Proof

We start with a lemma that establishes a simulation invariant between a program decorated
with calls to grant, wait and newch and a program with these calls replaced with skip.

Lemma 10.1 (wait, grant, newch insertion).

Let J−K↓ch be a program transformation which replaces calls to newch, grant and wait
with skip. Let κ = 〈δ, η,L〉 and κ′ be global states. We say that the invariant I(t, κ, κ′) is
satisfied if:

— The thread identifier t is in dom(δ).
— For δ(t) = 〈C, σ, ω, γ〉, the program C executed by t does not contain fork.
— The thread waits for all channels it grants on, i.e., ωg ⊆ ωw, and all channels in ωw \ωg

have already been granted on but are not yet finalized, i.e., ∀c∈ωw\ωg
. η(c) /∈ {O,M}.

— Let σch ,�c∈ωw\ωg
. η(c) be all resources the thread does not grant but waits for. Then

there exists η′ ⊆ η such that κ′ = 〈δ[t 7→ 〈JCK↓ch, σ ⊕ σch, (∅, ∅), γ〉], η′,L〉 and for all
channels c held by threads other than t, η′(c) = η(c).

For any states κ, κ′, κ2, if I(t, κ, κ′) and κ Z=⇒ κ2, then there exists a state κ′2 such that
κ′ Z=⇒∗ κ′2 and I(t, κ2, κ

′
2). This property can be alternatively represented by the following

diagram:

κ
I(t)−→ κ′

Z=⇒

Z=⇒
∗

κ2
I(t)−→ κ′2

Intuitively, the invariant I expresses the simulation relation between programs containing
wait, grant and newch (left-hand side of the diagram), and the equivalent program without
them (right-hand side).

Proof. In Appendix A.1.

Next lemma establishes a simulation invariant between a program containing calls to fork
and a program with these calls replaced with skip.

Lemma 10.2 (fork insertion). Let J−K↓fk be a program transformation which replaces
calls to fork with skip. We say that the invariant J(t, κ, κ′) is satisfied if:

— The thread identifier t is in dom(δ).
— For δ(t) = 〈C, σ, ω, γ〉, any calls to fork in C do not themselves include calls to fork.
— Let σfk = � {σc | c ∈ child(t) ∧ δ(c) = 〈Cc, σc, ωc, γc〉} be thread-local states and
ωfk =

⊎
{ωc | c ∈ child(t) ∧ δ(c) = 〈Cc, σc, ωc, γc〉} channel states of forked child threads

conjoined. By the well-formedness condition on global states (Assumption 9.2), both of
these must be well-defined.

— There exists at most one child thread c ∈ child(t) such that δ(c) = 〈Cc, σc, ωc, γc〉 and
Cc 6= skip.

— Either of the following two cases holds:

— If ∀c ∈ child(t). δ(c) = 〈skip, σc, ωc〉, then κ′ = 〈δ[t 7→ 〈JCK↓fk, σ ⊕ σfk, ω] ωfk〉], η,L〉.
(In other words, all child threads of t have terminated, and the main thread corresponds
to the original sequential state.)

— If ∃!c ∈ child(t). δ(c) = 〈Cc, σc, ωc, γc〉 ∧ Cc 6= skip, then C = skip;C1 and κ′ =

〈δ[t 7→ 〈Cc; JC1K
↓
fk, σ ⊕ σfk, ω] ωfk, ∅〉], η,L〉.

(In other words, there exists exactly one unterminated child thread, and join of the
states of the child threads and main thread correspond to the original sequential state.)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Proof-Directed Parallelization Synthesis by Separation Logic A:45

For any states κ, κ′, κ2, if J(t, κ, κ′), and κ Z=⇒s(t) κ2, then there exists a state κ′2 such that
κ′ Z=⇒∗ κ′2 and J(t, κ2, κ

′
2). This property can be alternatively represented by the following

diagram:

κ
J(t)−→ κ′Z=⇒

s(t)

Z=⇒
∗

κ2
J(t)−→ κ′2

The invariant J expresses the simulation relation between programs containing fork (left-
hand side of the diagram) and the equivalent program without it (right-hand side).

Proof. In Appendix A.2.

The previous two lemmas combined establish an invariant relating nonfaulting sequen-
tialized traces of the parallelized program with traces of the sequential program. It remains
to show that terminating nonfaulting traces of the parallelized program can be reordered
into sequentialized traces with the same thread-local behavior. We do this by introducing
a well-founded order on traces in which sequentialized traces are minimal elements, and
showing that each signal-ordered trace (i.e., having its signalling barriers aligned with the
thread ordering) can be reordered to a behaviorally equivalent trace smaller with respect to
the well-founded order, eventually leading to a behaviorally equivalent sequentialized trace.

Definition 10.3. We say that traces K1 and K2 are behaviorally equivalent if, for each
thread identifier t, the sequence of transitions over t in K1 and K2 are identical.

We first show that consecutive transitions of two different threads can be reordered if
the second thread does not wait for any channel that the first thread grants on. We use
this property in the subsequent lemma to inductively construct a behaviorally equivalent
sequentialized trace.

Lemma 10.4 (trace reordering). Suppose we have a two-step trace:

K = 〈δ1, η1,L1〉
t1Z=⇒ 〈δ2, η2,L2〉

t2Z=⇒ 〈δ3, η3,L3〉
such that t1 6= t2, and that t1, t2 ∈ dom(δ1). Let δ1(t1) = 〈C, σ, ω, γ〉 and δ1(t2) =
〈C ′, σ′, ω′, γ′〉. Suppose that t2 does not wait for any channel that t1 grants on, i.e., that
ωg ∩ω′w = ∅ holds. Then there exists a thread environment η′, an unallocated set L′, and a
two-step trace:

K′ = 〈δ1, η1,L1〉
t2Z=⇒ 〈δ1[t2 7→ δ3(t2)], η′,L′〉 t1Z=⇒ 〈δ3, η3,L3〉

The new trace K′ is behaviorally equivalent (Def. 10.3) to K.

Proof. In Appendix A.3.

Definition 10.5 (signal order). We describe a trace K as signal-ordered with respect to t
if t is a thread identifier such that for all states κ = 〈δ, η,L〉 ∈ K:

∀c ∈ child(κ, t).∀k ∈ waits(κ, c).

((∃c′ ∈ child(κ, t). c′ < c ∧ k ∈ grants(κ, c′)) ∨ (η(k) /∈ {⊥,O,M}))
(In other words, if a child of t can wait on a channel k, some earlier child must be able to
grant on it, or the channel must already be filled.)

Definition 10.6 (degree of sequentialization). Let K be a trace. If K is not sequentialized
with respect to t, let c ∈ child(t) be the earliest thread in the child order with an unsequen-
tialized transition (that is, for all other children c′ with unsequentialized transitions, c′ > c).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:46 Proof-Directed Parallelization Synthesis by Separation Logic

Now, let F be the number of transitions from the originating fork transition for c and the
end of the trace. Let K be the number of transitions over c after the first unsequentialized
transition. Let D be the number of intervening transitions between the originating fork
and the first unsequentialized transition.

We call such a tuple (F,K,D) the degree of sequentialization with respect to t. We order
such tuples lexicographically, with left-to-right priority, and lift this order to give a partial
order on traces <t. This order on traces is well-founded, with sequentialized traces occupying
the minimum position in the order.

Using the ordering on traces introduced in Definition 10.6 we now show that a trace that
is signal-ordered with respect to a thread t can be reordered to a behaviorally equivalent
trace that is sequentialized with respect to t.

Lemma 10.7 (sequentialization). Let K be a trace such that

—K is signal-ordered with respect to t; and
— Let κ = 〈δ, η,L〉 be the final state in K and let t′ be the maximum thread in child(κ, t) with

transitions in K. For all threads t′′ ∈ child(κ, t) such that t′′ < t′, . δ(t′′) = 〈skip, σ, ω, γ〉
for some σ, ω, γ. (Note this holds automatically if K is terminating.)

Then there must exist a trace K′ sequentialized with respect to t such that K is behaviorally
equivalent to K′.

Proof. In Appendix A.4.

We now establish that the pattern of barriers that we insert into the program during our
parallelization analysis results in a trace that is signal-ordered. Recall from §5 that the
parallelized program constructed by our analysis has the following form8:

ci := newch();
grant(ci);
C1;
while(B) {
C2;
cj := newch();
fork[P](C3);
ci := cj;

}
wait(ci);

Here we assume that we only need a single active pair of channels ci/cj—the argument
generalizes straightforwardly to the case with n channels. In addition, we assume the sub-
programs C1 and C2 do not include wait, grant, newch and fork, and that they do not
assign to the variables ci and cj.

The assertion P is defined so that: P ` fut(ci, P1) ∗ req(cj, P2) ∗F , for some P1, P2 and
F ; and F 0 fut(x, P ′) and F 0 req(x, P ′) for any x and P ′. (In other words, the forked
thread can only wait for ci and grant on cj.)

Lemma 10.8 (construction of signal-ordered traces). Let κ = 〈δ, η,L〉 be a
state and t a thread identifier such that δ(t) = 〈C, σ, (∅, ∅), ∅〉 and C matches the stan-
dard form for parallelized programs, described above. Let K be a trace with initial state κ.
Then K is signal-ordered with respect to t.

Proof. In Appendix A.5.

8Recall also that we define for in terms of while.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Proof-Directed Parallelization Synthesis by Separation Logic A:47

In Lemma 10.8 we assumed a specific program form constructed by the parallelizing
transformation from §5.2. However, the soundness proof could be adapted to hold for other
parallelization backends. As long as the analysis generates a parallelized program with traces
that are signal-ordered we could establish an analogue of Lemma 10.8 and proceed with
other steps of the soundness proof in the same way.

Lemma 10.9 (synchronization erasure). Let C be a sequential program, and Cpar be

a program resulting from applying our parallelization analysis. Then C = JJCparK
↓
fkK
↓
ch, where

the (syntactic) equality of programs is defined up to insertion/erasure of skip statements—
that is syntactic manipulation using the identity C = C; skip.

Proof. Our analysis only inserts channels and calls to fork. The result follows triv-
ially.

Lemma 10.10 (materialized variables). Materialising local variables, as described
in §3.2, has no effect on the operational behavior of a program.

Proof. Let C be a program, and let C ′ be a corresponding program in which the local
variables are materialized. Let K be a trace in which the program C is executed. When
inserted, the materialized variables are written but not read (they are subsequently used
in conditionals after loop-splitting). Therefore, there must be a trace K′ in which C ′ is
substituted for C, which is identical to K aside from the materialized variables.

Lemma 10.11 (loop-splitting). Loop-splitting, as described in §5.2, has no effect on
the operational behavior of the program.

Proof. By the fact that either a conditional or its negation must hold, and a straight-
forward appeal to the semantics of loops.

Finally, we prove the main theorem stating the soundness of our parallelization analysis.

Theorem 10.12 (parallelization soundness). Let C be a sequential program, and
let Cpar be the program resulting from applying our parallelization analysis to C (including
variable materialization and loop-splitting). Let K be a nonfaulting terminating trace with
initial state κ = 〈δ, η,L〉, and let t be a thread identifier such that δ(t) = 〈Cpar, σ, (∅, ∅), ∅〉.
Then there exists a trace K′′ with initial state κ′′ = 〈δ[t 7→ 〈C, σ, (∅, ∅), ∅〉], η,L〉 such that:

(1) For all thread identifiers t′ defined in K′′ such that t 6= t′, their thread-local behavior in
K is identical to K′′.

(2) Let κΩ be the final state in K, and κ′′Ω the final state of K′′. Let σ be the local state
associated with thread t in κΩ and σ′′ the corresponding state associated with t in κ′′.
There exists a state σ′ such that σ ⊕ σ′ = σ′′.

Proof. By Lemma 10.8 the trace K must be signal-ordered with respect to t. Therefore
by Lemma 10.7 there exists a behaviorally-equivalent trace Kseq that is sequentialized with
respect to t. Because t has no child threads in κ, we can choose Kseq such that κ is also its
initial state.

We now show that there exist traces K′ and K′′, such that transitions in K are related
to K′ by the invariant J(t) (Lemma 10.2) and transitions in K′ are related to K′′ by the
invariant I(t) (Lemma 10.1).

We proceed by induction on the length of a prefix of Kseq. By Lemma 10.9, C =

JJCparK
↓
fkK
↓
ch. From this, it is straightforward to see that there exists a state κ′ = 〈δ[t 7→

〈JCparK
↓
fk, σ, (∅, ∅), ∅〉], η,L〉 such that J(t, κ, κ′) and I(t, κ′, κ′′).

Assume traces K′ and K′′ exist for the first n transitions of Kseq. Let κn be the final
state in this prefix. By assumption there exist states κ′n and κ′′n such that J(t, κn, κ

′
n) and

I(t, κ′n, κ
′′
n). Now show that for the next transition κn Z=⇒s(t) κn+1 there exist transitions

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:48 Proof-Directed Parallelization Synthesis by Separation Logic

κ′n Z=⇒∗ κ′n+1 and κ′′n Z=⇒∗ κ′′n+1 such that J(t, κn+1, κ
′
n+1) and I(t, κ′n+1, κ

′′
n+1). This can

be visualized by the following diagram:

κn
J(t)−→ κ′n

I(t)−→ κ′′nZ=⇒
s(t)

Z=⇒
∗

Z=⇒
∗

κn+1
J(t)−→ κ′n+1

I(t)−→ κ′′n+1

This is an immediate consequence of Lemmas 10.1 and 10.2.
By induction, this suffices to establish the existence of the trace K′′. Corresponding

thread-local behavior for threads t′ 6= t, and corresponding final state for thread t follow
immediately from the definitions of I(t) and J(t).

This result also holds if our analysis performs variable materialization and loop-splitting—
to show this, we need only appeal to Lemma 10.10 and Lemma 10.11.

Corollary 10.13. If the chosen post-condition in the proof of the program is precise,
then the result of parallelization is an equality, not a sub-state.

Proof. Consequence of the fact that at most one sub-state of a given state can satisfy
a precise assertion.

11. TERMINATION

In this section we prove that our analysis cannot introduce nontermination to the paral-
lelized program.

Lemma 11.1 (ensuring grant). Let Cpar be a program resulting from applying our
parallelization analysis to some sequential program C. Let K be a trace with initial state
κ = 〈δ, η,L〉, such that δ(t) = 〈Cpar, σ, (∅, ∅), ∅〉. For all states in κ′ = 〈δ, η,L〉 ∈ K and all
children c ∈ child(κ′, t) if c has terminated in κ′ (i.e. reduced to skip) then grants(κ′, c) = ∅.

Proof. Consequence of the fact that in our analysis, each grant is injected along every
control-flow path. Consequently, a terminating thread must call grant for every channel to
which it has access.

Lemma 11.2 (trace extension). Let K be a trace that is signal-ordered with respect
to t, and let κ = 〈δ, η,L〉 be the final state of K. Let t′ be the minimum child of t such that

δ(t′) = 〈C, σ, ω, γ, 〉 and C 6= skip. Then there exists a nonfaulting transition κ
t′Z=⇒ κ′.

Proof. By examination of the thread-local semantics, we can see that only calls to wait
can block without faulting. For all other commands, either the thread can take a step, or it
faults immediately. Consequently, the lemma reduces to asking whether every call to wait
in the thread t′ can take a step.
wait can only block if some prior thread has not called grant on some channel. By

the definition of signal-ordered (Def. 10.5), the channels for which t′ can wait must either
contain state, or must be held by some child thread earlier in the order. By assumption, we
know that all earlier threads have terminated, so by Lemma 11.1, we know that no thread
holds a pending grant. Consequently, the channel must contain state, and wait can take a
step.

Lemma 11.3 (trace erasure). Let K be a trace that is signal-ordered with respect to
t, and let κ = 〈δ, η,L〉 be the final state of K. Let t′ be the maximum child of t in dom(δ).
Then there exists a trace K′ such that K′ has no transitions over t′, and all threads other
than t′ have identical behavior in K and K′.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Proof-Directed Parallelization Synthesis by Separation Logic A:49

Proof. By induction over the number of transitions over t in the trace. identify the

final transition over t′ in K, κn
t′Z=⇒ κn+1. We erase this transition, and then re-execute the

remainder of the transitions from the trace. By the definition of signal-order (Def. 10.5) no
other child thread can call wait on any channel held by t. Consequently, we must be able
to run the same sequence of thread-local actions after erasing the transition. By applying
this process, we can erase all transitions over t′.

Theorem 11.4 (termination). Let C be a sequential program, and let Cpar be a pro-
gram resulting from applying our parallelization analysis to C. If C is guaranteed to termi-
nate, then so is Cpar.

Proof. If C is terminating, then for any initial state, there must be a maximum num-
ber of steps that the thread t running C can take. To prove the theorem, we prove the
contrapositive result: given that Cpar does not terminate, we can construct a trace for Cseq

where t takes more than this number of steps.
Suppose we have an initial state κ = 〈δ, η,L〉 such that δ(t) = 〈Cpar, σ, (∅, ∅), ∅〉. Suppose

that κ can result in a nonterminating trace over t—that is, given any arbitrary bound n,
there exists a trace with initial state κ and more than n steps over t and its child threads.

Construct a sequential state κseq = 〈δ[t 7→ 〈Cpar, σ, (∅, ∅), ∅〉], η,L〉, and identify a bound q
such that no trace starting with κ′′ can take more than q steps over t. Choose a trace K with
initial state κ such that t and its children take more than q steps, excluding synchronization
(that is, calls to fork, newch, signal and wait). Note that by Lemma 10.8, K is signal-
ordered.

Now we rearrange K to give a sequentialized trace of length greater than q.

— By applying Lemma 11.2, we extend the trace until the first n children of t together take
more than q non-synchronization steps, and all children but the nth have terminated.

— By applying Lemma 11.3, we erase the (n+1)th to maximum child threads of t, along
with associated calls to fork from t.

The resulting trace K has more than q non-synchronization transitions from t and its first n
children, and in the final state κ′, all but the nth child thread have terminated. By applying
Lemma 10.7, we can construct a trace K′′ that has equivalent thread-local behavior, and
that is sequentialized with respect to t.

We observe that, by Lemma 10.9, C = JJCparK
↓
fkK
↓
ch. By applying Lemmas 10.1 and 10.2,

construct a trace Kseq with initial state κseq. The invariants in Lemmas 10.1 and 10.2 only
erase synchronization transitions. Consequently, the resulting sequential trace has more
than q transitions over the thread t. This contradicts our assumption, and completes the
proof.

12. RELATIONSHIP TO OTHER APPROACHES

Traditional approaches to automatic parallelization are generally based on checking the
independence of program statements. Here, a compiler performs dependency analysis, gen-
erating constraints about program statements, and schedules statements that are indepen-
dent of each other for parallel execution. Dependency constraints are typically derived from
a program analysis that discovers how the result of one computation affects the result of
another.

These techniques have been successful for programs with simple data types, statically
allocated arrays, and structured control-flow operators, such as loops, but have been less
effective when programs manipulate pointers and make extensive use of dynamic data struc-
tures [Horwitz et al. 1989; Hendren and Nicolau 1990; Ghiya et al. 1998; Gupta et al. 1999].
In our work, we leverage separation logic because it provides a convenient means to ex-
press assertions about dynamic or recursively defined resources. For example, [Raza et al.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:50 Proof-Directed Parallelization Synthesis by Separation Logic

2009] investigates how a separation logic based analysis can be adapted to express memory
separation properties, thereby detecting independence between statements via interference
checking of proof assertions. In our approach, we do not check for such independence di-
rectly in the proof, but instead use the proof to discover what resources different parts of the
program depend on, and inject appropriate synchronization to ensure that the parallelized
version of the program respects these dependencies.

Thus, there are three main differences between our proposed technique and prior work:

— In contrast to other approaches where the proof produced by a compiler is of special form,
strictly targeted at checking independence, we do not make any assumptions about the
program proof except that it be written in separation logic. By virtue of separation logic’s
semantics, any such proof describes all resources accessed by the program—a property
that we crucially rely on to track fine-grained sequential dependencies.

— Our approach starts with an unconstrained parallelized version of the program, and
then inserts just enough synchronization to preserve sequential dependencies and guar-
antee preservation of observable behavior. By releasing the resources that a thread does
not need and acquiring the resources that it does, we implicitly establish (an over-
approximated) independence of certain parts of the program as a byproduct of our
analysis.

— While the main usage scenario that we have presented is do-across parallelization of for-
loops with heap-carried dependencies, our key concepts are in fact not dependent on a
specific loop structure. We foresee our approach being equally applicable to less regular
code patterns and other iteration structures.

12.1. Related Work in Detail

Resource-usage inference by abduction. We have defined an inter-procedural, control-flow-
sensitive analysis capable of determining the resource that will (and will not) be accessed
between particular points in the program. At its core, our analysis uses abductive reason-
ing [Calcagno et al. 2011] to discover redundancies—that is, state used earlier in the program
that will not be accessed subsequent to the current program point. Using abduction in this
way was first proposed in [Distefano and Filipović 2010], where it is used to discover memory
leaks, albeit without conditionals, procedures, loops, or code specialization.

In [Calcagno et al. 2009], abduction is used to infer resource invariants for synchroniza-
tion, using a process of counterexample-driven refinement. Our approach similarly infers
resource invariants, but using a very different technique: invariants are derived from a se-
quential proof, and we also infer synchronization points and specialise the program to reveal
synchronization opportunities.

Behavior-preserving parallelization. We expect our resource-usage analysis can be used
in other synchronization-related optimizations, but in this paper, we have used it as the
basis for a parallelising transformation. This transformation is in the style of deterministic
parallelism [Berger et al. 2009; Bocchino et al. 2009; Bergan et al. 2010; Burnim and Sen
2010]—although our approach does not, in fact, require determinacy of the source program.
In this vein, our transformation ensures that every behavior of the parallelized program
is a behavior of the source sequential program (modulo the caveats about allocation and
termination discussed in §6).

Previous approaches to deterministic parallelism have not used specifications to repre-
sent dynamically-allocated resources. This places a substantial burden on the analysis and
runtime to safely extract information on resource usage and transfer—information that is
readily available in a proof. As a result, these analyses tend to be much more conservative
in their treatment of mutable data. Our proof-based technique gives us a general approach
to splitting mutable resources; for example, by allowing the analysis to perform ad-hoc list
splitting, as we do with move().

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Proof-Directed Parallelization Synthesis by Separation Logic A:51

Loop parallelization. Our approach transforms a sequential for-loop by running all the
iterations in parallel and signalling between them, so it can be seen as a variant of a do-
across style of loop parallelization [Tang et al. 1994]. There has been a vast amount of work
in last couple of decades on do-across dependence analysis and parallelization for loop nests.
However, the focus of interest of these approaches are loop nests over linear data structures
(i.e., arrays). For instance, polyhedral models [Baskaran et al. 2009], the most powerful
dependence abstraction to date, assume affine iteration domain of loop nests. In contrast,
our approach does not require specific shape of the iteration domain or fixed data-structure
access patterns.

Instead of parallel-for, we could have used a more irregular concurrency annotation, for
example safe futures [Navabi et al. 2008], or an unordered parallel-for, as in the Galois
system [Pingali et al. 2011]. In the former case, our resource-usage analysis would be mostly
unchanged, but our parallelized program would construct a set of syntactically-distinct
threads, rather than a pipeline of identical threads. Removing ordering between iterations, as
in the latter case, would require replacing ordered grant-wait pairs with e.g., conventional
locks, and would then introduce an obligation to show that locks were always acquired
together, as a set.

Proof-driven parallelization. A insight central to our approach is that a separation logic
proof expresses data dependencies for parts of a program, as well as for the whole program.
These internal dependencies can be used to inject safe parallelism. This insight is due to
[Raza et al. 2009; Cook et al. 2010] and [Hurlin 2009], both of which propose parallelization
analyses based on separation logic. The analyses proposed in these papers are much more
conservative than ours, in that they discover independence which already exists between
commands of the program. They do not insert synchronization constructs, and consequently
cannot enforce sequential dependencies among concurrent computations that share and
modify state. Indeed, [Raza et al. 2009] does not consider any program transformations, since
the goal of that work is to identify memory separation of different commands, while [Hurlin
2009] expresses optimizations as reordering rewrites on proof trees.

Bell et al. [Bell et al. 2009] construct a proof of an already-transformed multithreaded
program parallelized by the DSWP transformation [Ottoni et al. 2005]. This approach
assumes a specific pattern of (linear) dependencies in the while-loop consistent with DSWP,
a specific pattern of sequential proof, and a fixed number of threads. In our move() example,
the outermost (parallelising) loop contains two successive inner loops, while the example
in Fig. 1 illustrates how the technique can deal with inter-procedural and control-flow
sensitive dependencies. In both cases, the resulting parallelization is specialized to inject
synchronization primitives to enforce sequential dependencies. We believe examples like
these do not fall within the scope of either DSWP or the proof techniques supported by [Bell
et al. 2009].

Outside separation logic, Deshmukh et al. [Deshmukh et al. 2010] propose an analysis
which augments a sequential library with synchronization. This approach takes as input a
sequential proof expressing the correctness criteria for the library, and generates synchro-
nization ensuring this proof is preserved if methods run concurrently. A basic assumption is
that the sequential proof represents all the properties that must be preserved. In contrast,
we also preserve sequential order on access to resources. Consequently, Deshmukh et al.
permit parallelizations that we would prohibit, and can introduce new behaviors into the
parallelized program. Another difference is that [Deshmukh et al. 2010] derives a lineariz-
able implementation given a sequential specification in the form of input-output assertions;
because they do not consider specialization of multiple instances of the library running con-
currently, it is unclear how their approach would deal with transformations of the kind we
use for move().

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:52 Proof-Directed Parallelization Synthesis by Separation Logic

Golan-Gueta et al. [Golan-Gueta et al. 2011] also explore adding locks to sequential li-
braries; in particular, they focus on tree- and forest-based data structures. They instrument
the library’s code so that it counts stack and heap references to objects, and then use
these reference counts to determine when to acquire and release locks to guarantee conflict-
serializability (and consequently, linearizability). The use of proofs in [Golan-Gueta et al.
2011] is, however, only indirect: they use a shape analyzer to check that the library’s heap
graph is tree-shaped and live variable analysis to eliminate redundant code. Another differ-
ence is that our analysis does not assume a specific heap structure at any single point in
the program nor it requires additional instrumentation of heap objects.

Raychev et al. [Raychev et al. 2013] describe synchronization inference alternative to ours.
They take as an input a nondeterministic program (obtained by e.g. “naively” parallelizing
the sequential program) and make it deterministic by inserting barriers that enforce a thread
schedule that avoids races. The thread ordering is determined by eliminating conflicts in
a thread-modular abstraction of the program, following a set of rules to decide between
feasible schedules. As a consequence, Raychev et al. end up with a determinization whose
behaviour is implied by these rules rather than by the behavior of the original sequential
program. From the technical side, to abstract the unbounded state they use a flow-insensitive
pointer analysis and numerical abstract domains, which works well for structured numerical
computations over arrays analyzed in their examples, but would be much less effective for
more irregular computations over dynamic data structures, as we consider. For convergence
they employ a simple widening strategy (they widen after a constant number of iterations
around the loop), which does not allow splitting of loop invariants, like we do in move().

Separation logic and concurrency. Separation logic is essential to our approach. It allows
us to localize the behavior of a program fragment to precisely the resources it accesses. Our
proofs are written using concurrent separation logic [O’Hearn 2007]. CSL has been extended
to deal with dynamically-allocated locks [Gotsman et al. 2007; Hobor et al. 2008; Jacobs
and Piessens 2009], re-entrant locks [Haack et al. 2008], and primitive channels [Hoare and
O’Hearn 2008; Bell et al. 2009; Villard et al. 2010; Leino et al. 2010]. Sequential tools for
separation logic have achieved impressive scalability—for example [Calcagno et al. 2011] has
verified a large proportion of the Linux kernel. Our work can be seen as an attempt to lever-
age the success of such sequential tools. Our experiments are built on coreStar [Botinčan
et al. 2011; Distefano and Parkinson J 2008], a language-independent proof tool for separa-
tion logic.

The parallelization phase of our analysis makes use of the specifications for paralleliza-
tion barriers proposed in [Dodds et al. 2011]. That paper defined high-level specifications
representing the abstract behavior of barriers, and verified those specifications against the
barriers’ low-level implementations. However, it assumed that barriers were already placed
in the program, and made no attempt to infer barrier positions. In contrast, we assume the
high-level specification, and define an analysis to insert barriers. The semantics of barriers
used in that paper and here was initially proposed in [Navabi et al. 2008].

Deterministic Parallelism. As questions regarding the programmability of multicore sys-
tems become increasingly vocal, deterministic parallelism offers an attractive simplified
programming model that nonetheless yield performance gains. Safe futures [Welc et al.
2005] provide deterministic guarantees for Java programs annotated with a future con-
struct using software transactional memory infrastructure; Grace [Berger et al. 2009] is
another runtime technique that uses memory protection hardware for the same purpose. In
both these systems, the observable behavior of the parallelized program is the same as a
sequential version, a version in which future creation operations are treated as no-ops.

Deterministic parallelism can also be profitably applied to explicitly parallel applications;
these systems guarantee that the program produces the same output regardless of the or-
der in which threads run, but this result need not necessarily match a sequential execution.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Proof-Directed Parallelization Synthesis by Separation Logic A:53

CoreDet [Bergan et al. 2010], is a compiler and runtime system that uses ownership informa-
tion along with a versioned memory to commit changes deterministically for multithreaded
C++ programs. Dthreads [Liu et al. 2011] works at a higher level as a direct replacement
for the pthreads library, improving the scalability with an efficient commit protocol and
amortization of overheads. Deterministic Parallel Java [Bocchino et al. 2009] uses a type
and region effect system to enforce deterministic guarantees for concurrent Java programs.

ACKNOWLEDGMENTS

The authors would like to thank to Dino Distefano, Matthew Parkinson, Mohammad Raza, John Wickerson

and the anonymous reviewers for POPL 2012 and TOPLAS for many helpful comments and suggestions.

APPENDIX

A.1. Proof of Lemma 10.1

Proof. There are two cases: either κ Z=⇒ κ2 is a transition over t, or it is a transition
over some other thread t′ 6= t. If κ Z=⇒ κ2 is a transition over t, we proceed by structural
induction over C.

—C is a primitive command in Prim. In this case, the result holds by the assumption of
behavioral monotonicity for primitive commands.

—C is a grant or wait for some channel c. In both of these cases, the corresponding

command JCK↓ch will be skip. Consequently the transition κ′ Z=⇒ κ′2 will be a τ -transition,
meaning κ′ = κ′2.
By assumption, the join of the thread-local state σ and state σch stored in accessible
channels in κ is equal to the thread-local state in κ′. Calling a grant takes some local
state and pushes it into a channel, which preserves this property. Similarly calling a wait
pulls some state out of an accessible channel and into local state, which also preserves
the property.

—C is a newch. In this case, the corresponding command also be a skip, so κ′ = κ′2.
The effect of newch will be to initialise a fresh channel not already in η, and add these
channels to the channel state for κ2. These channels are erased by the invariant, so the
property is preserved.

—C is alloc. The set L of unallocated locations is the same in κ and κ′. Consequently, if
a location can be allocated in κ, it can also be allocated in κ′.

—C is a sequential composition, loop, or conditional. The result follows trivially by appeal
to the induction hypothesis.

Suppose now that the transition is over some other thread t′ 6= t. By assumption (the third
property of I), we know that the channels erased by the invariant are not shared with any
other thread. We can therefore establish straightforwardly that such a transition must be
replicated exactly between κ′ and κ′2. The invariant is not disturbed, because it does not
mutate the content of other threads.

A.2. Proof of Lemma 10.2

Proof. Unlike with Lemma 10.1, there are three cases: either κ Z=⇒s(t) κ2 is a transition
over t; or it is a transition over some member of the set child(t); or the transition is over
some other, unrelated thread. First suppose that the transition is over t. We proceed by
structural induction on C:

—C ∈ Prim. By assumption, any behavior in a small state σ will be reflected in a big one,
which suffices to ensure that the invariant holds.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:54 Proof-Directed Parallelization Synthesis by Separation Logic

—C is alloc. The set L of unallocated locations is the same for κ and κ′. By the same
argument as Lemma 10.1, the same allocation step is therefore possible in both global
states.

—C is wait or grant. By the well-formedness assumption, resources held by channels must
be disjoint from those held by other threads. This suffices to ensure that wait and grant
transitions can take place identically in the corresponding fork-free program.

—C is fork. This will correspond to a τ -transition in the fork-erased program. Because the
transition over the program with fork is sequentialized with respect to t, the transition
can only be over t if all the children of t have reduced to skip. Calling fork pushes some
state to the child thread, and results in exactly one active (non-skip) child thread.

—C is a loop, conditional, sequential composition. Property holds by appeal to the induc-
tion hypothesis.

Now suppose the transition is over some thread c ∈ child(t). By assumption (the fourth
property of J), there can be at most one such thread. The state held by the child thread
must be a substate of that held in the fork-free program. Consequently, an almost identical
structural induction argument suffices to show that the simulation property holds.

Finally, suppose that the transition is over some other thread t′ that is neither t nor a
child of t. Such threads cannot be affected by the behavior of t and its children. It is straight-
forward to show that any transition for the program can take place in the corresponding
fork-free program.

A.3. Proof of Lemma 10.4

Proof. We proceed by case-splitting on the shape of transitions over t1 and t2:

— One or both of the transition are thread-local (i.e. do not result in a labelled transition
in the thread-local semantics). It is straightforward to see that neither transition can
affect the other one, and the rearrangement result follows trivially.

— One or both of the transitions is a fork. The effect of such a transition is localized to
the parent and newly-created child thread. By assumption, neither thread was created
by either of these transitions. The rearrangement result follows straightforwardly.

— One or both transitions is a newch. Channels can only be transferred by fork, and by
assumption, neither transition created either of the threads. Consequently the effect of
a newch call is confined to the local thread.

— Both transitions are wait (resp. grant). The threads could only affect one another if both
waited (resp. granted) on the same channel, but this is ruled out by the well-formedness
assumption that each end of each channel is held by at most one thread.

— One transition is a wait and the other is a grant. Once again, the threads could only
affect one another if they waited and granted on the same channel. However, by assump-
tion of the lemma, the thread t1 cannot grant on any channel on which t2 can wait.
By the structure of the semantics, the transition t1 cannot wait for a channel that is
subsequently granted. So this case cannot occur.

— One or both transitions are a alloc. If one operation is a alloc and the other another
command, the threads trivially cannot affect one another. If both transitions are alloc,
the locations allocated must be distinct, and the transitions again can be exchanged
straightforwardly.

The constructed trace K′ is trivially behaviorally equivalent to K, since the thread-local
actions for each thread are identical.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Proof-Directed Parallelization Synthesis by Separation Logic A:55

A.4. Proof of Lemma 10.7

Proof. We show that any out-of-order trace K can be reordered by applying Lemma
10.4, to give a behaviorally equivalent trace with a lower degree of sequentialization w.r.t.
t.

Consider a trace K that is signal-ordered but not sequentialized. Let t2 be the earliest
thread in the child order for t that has an unsequentialized transition. By the assumption
that the transition is unsequentialized, the preceding transition in the trace must be on some
other thread t1 6= t2, and must not be the fork that created the out-of-order transition.
Note that t1 also must not be some child of t earlier in the child order—otherwise the
transition over t1 would be the earliest out-of-order transition.

By the definition of signal-ordering we know that wait(κ, t2) ∩ grant(κ, t1) = ∅. Conse-
quently, we can apply Lemma 10.4, and push the transition over t2 earlier than the transition
over t1. Call the resulting trace K′′.

By Lemma 10.4, K′′ is behaviorally equivalent to K. As a trivial consequence, K′′ is also
signal-ordered. As a deeper consequence, K′′ <t K (with respect to the order given in Def.
10.6). There are three cases:

— The transition shifts left, but is still unsequentialized. The number of intervening transi-
tions from the originating fork decreases, while the other two measures are unchanged.

— The left shift means the transition is sequentialized, but more transitions over the same
thread are unsequentialsed. The number of transitions from the first unsequentialized
transition decreases, while the distance from the initial fork to the end of the thread is
unchanged.

— The left shift means all transitions for the thread are sequentialized. The next target
thread must be later in the child order, meaning it is later in the trace. The number of
transitions from the initial fork to the end of the thread decreases.

As the order is well-founded, by repeatedly applying the lemma, we get a behaviorally-
equivalent trace that is sequentialized w.r.t. t.

A.5. Proof of Lemma 10.8

Proof. We establish this property by defining an invariant L(κ):

— Let κ = 〈δ, η,L〉 and δ(t) = 〈C, σ, ω, γ〉.
— There exists a channel c1 such that σs(ci) = c1, and waits(κ, t) = {c1}.
— Either η(c1) /∈ {⊥,O,M}, or ∃t′ ∈ child(κ, t). c1 ∈ grants(κ, t′).

We now show that signal-ordering holds for every step of the semantics, and that the
invariant holds for any state immediately preceding the execution of an iteration of the
main while-loop; that is, at any point when C = while(B){ ... }; wait(ci);.

— Suppose we execute from the beginning of the program (the first command in C1) to the
beginning of the first iteration while. It is simple to see by inspection of the semantics
that the resulting state κ will satisfy the invariant L. We create the channel c1, and the
call to grant ensures η(c1) is associated with some state, as required by the invariant.

— Now suppose we execute a single iteration of the loop: that is, we assume the boolean
condition B holds, and apply the appropriate rule in the operational semantics. The
invariant cannot be disturbed by other running threads, because by definition they can
only call grant on the channel c1.
By assumption, the sub-program C2 cannot disturb the invariant. We call newch, which
creates a channel c2, associated with the variable cj. Now we observe that, by the
structure of P call to fork creates a thread t′ with waits(κ, t′) = {c1} and grants(κ, t′) =
{c2}. As a result, in the resulting state waits(κ, t) = {c2}. The final assignment associates
c2 to ci, which reestablishes the invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:56 Proof-Directed Parallelization Synthesis by Separation Logic

Each step in this execution satisfies signal-ordering. By induction this completes the
proof.

REFERENCES

Baskaran, M. M., Vydyanathan, N., Bondhugula, U., Ramanujam, J., Rountev, A., and Sadayappan,
P. 2009. Compiler-assisted dynamic scheduling for effective parallelization of loop nests on multicore
processors. In PPOPP. ACM, 219–228.

Bell, C. J., Appel, A., and Walker, D. 2009. Concurrent Separation Logic for Pipelined Parallelization.
In SAS. Springer, 151–166.

Berdine, J., Calcagno, C., and O’Hearn, P. W. 2005a. Smallfoot: Modular automatic assertion checking
with separation logic. In FMCO. Springer, 115–137.

Berdine, J., Calcagno, C., and O’Hearn, P. W. 2005b. Symbolic execution with separation logic. In
APLAS. Springer, 52–68.

Bergan, T., Anderson, O., Devietti, J., Ceze, L., and Grossman, D. 2010. CoreDet: A Compiler and
Runtime System for Deterministic Multithreaded Execution. SIGPLAN Not. 45, 3, 53–64.

Berger, E. D., Yang, T., Liu, T., and Novark, G. 2009. Grace: Safe multithreaded programming for
C/C++. In OOPSLA. ACM, 81–96.

Bocchino, Jr., R. L., Adve, V. S., Dig, D., Adve, S. V., Heumann, S., Komuravelli, R., Overbey, J.,
Simmons, P., Sung, H., and Vakilian, M. 2009. A Type and Effect System for Deterministic Parallel
Java. In OOPSLA. ACM, 91–116.

Bornat, R., Calcagno, C., O’Hearn, P., and Parkinson, M. 2005. Permission Accounting in Separation
Logic. In POPL. ACM, 259–270.

Botinčan, M., Distefano, D., Dodds, M., Griore, R., Naudžiūnienė, and Parkinson, M. 2011. coreStar:
The Core of jStar. In Boogie. 65–77.

Burnim, J. and Sen, K. 2010. Asserting and Checking Determinism for Multithreaded Programs. Commun.
ACM 53, 97–105.

Calcagno, C., Distefano, D., O’Hearn, P. W., and Yang, H. 2011. Compositional shape analysis by
means of bi-abduction. J. ACM 58, 6.

Calcagno, C., Distefano, D., and Vafeiadis, V. 2009. Bi-abductive Resource Invariant Synthesis. In
APLAS. Springer, 259–274.

Calcagno, C., O’Hearn, P. W., and Yang, H. 2007. Local Action and Abstract Separation Logic. In
LICS. IEEE Computer Society, 366–378.

Cook, B., Haase, C., Ouaknine, J., Parkinson, M. J., and Worrell, J. 2011. Tractable reasoning in a
fragment of separation logic. In CONCUR. Springer, 235–249.

Cook, B., Magill, S., Raza, M., Simsa, J., and Singh, S. 2010. Making Fast Hardware with Separation
Logic. Unpublished, http://cs.cmu.edu/~smagill/papers/fast-hardware.pdf.

Creignou, N. and Zanuttini, B. 2006. A complete classification of the complexity of propositional abduc-
tion. SIAM J. Comput. 36, 1, 207–229.

Deshmukh, J. V., Ramalingam, G., Ranganath, V. P., and Vaswani, K. 2010. Logical Concurrency
Control from Sequential Proofs. In ESOP. Springer, 226–245.

Distefano, D. and Filipović, I. 2010. Memory Leaks Detection in Java by Bi-abductive Inference. In
FASE. Springer, 278–292.

Distefano, D. and Parkinson J, M. J. 2008. jStar: Towards Practical Verification for Java. In OOPSLA.
ACM, 213–226.

Dodds, M., Jagannathan, S., and Parkinson, M. J. 2011. Modular Reasoning for Deterministic Paral-
lelism. In POPL. ACM, 259–270.

Eiter, T. and Gottlob, G. 1995. The complexity of logic-based abduction. J. ACM 42, 1, 3–42.

Ghiya, R., Hendren, L. J., and Zhu, Y. 1998. Detecting parallelism in c programs with recursive data
structures. In CC. Springer, 159–173.

Golan-Gueta, G., Bronson, N. G., Aiken, A., Ramalingam, G., Sagiv, M., and Yahav, E. 2011. Au-
tomatic fine-grain locking using shape properties. In OOPSLA. ACM, 225–242.

Gotsman, A., Berdine, J., Cook, B., Rinetzky, N., and Sagiv, M. 2007. Local Reasoning for Storable
Locks and Threads. In APLAS. Springer, 19–37.

Gupta, R., Pande, S., Psarris, K., and Sarkar, V. 1999. Compilation techniques for parallel systems.
Parallel Computing 25, 13-14, 1741–1783.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Proof-Directed Parallelization Synthesis by Separation Logic A:57

Haack, C., Huisman, M., and Hurlin, C. 2008. Reasoning about Java’s Reentrant Locks. In APLAS.
Springer, 171–187.

Hendren, L. J. and Nicolau, A. 1990. Parallelizing programs with recursive data structures. IEEE Trans.
Parallel Distrib. Syst. 1, 1, 35–47.

Hoare, C. A. R. and O’Hearn, P. W. 2008. Separation Logic Semantics for Communicating Processes.
ENTCS 212, 3–25.

Hobor, A., Appel, A. W., and Zappa Nardelli, F. 2008. Oracle semantics for concurrent separation logic.
In ESOP. Springer.

Horwitz, S., Pfeiffer, P., and Reps, T. W. 1989. Dependence analysis for pointer variables. In PLDI.
ACM, 28–40.

Hurlin, C. 2009. Automatic Parallelization and Optimization of Programs by Proof Rewriting. In SAS.
Springer, 52–68.

Jacobs, B. and Piessens, F. 2009. Modular full functional specification and verification of lock-free data
structures. Tech. Rep. CW 551, Katholieke Universiteit Leuven, Dept. of Computer Science.

Leino, K. R. M., Müller, P., and Smans, J. 2010. Deadlock-free Channels and Locks. In ESOP. Springer,
407–426.

Liu, T., Curtsinger, C., and Berger, E. D. 2011. Dthreads: efficient deterministic multithreading. In
SOSP. ACM, 327–336.

Navabi, A., Zhang, X., and Jagannathan, S. 2008. Quasi-static Scheduling for Safe Futures. In PPoPP.
ACM, 23–32.

O’Hearn, P. W. 2007. Resources, Concurrency and Local Reasoning. TCS 375, 271–307.

Ottoni, G., Rangan, R., Stoler, A., and August, D. I. 2005. Automatic Thread Extraction with De-
coupled Software Pipelining. In MICRO. IEEE Computer Society, 105–118.

Pingali, K., Nguyen, D., Kulkarni, M., Burtscher, M., Hassaan, M. A., Kaleem, R., Lee, T.-H.,
Lenharth, A., Manevich, R., Méndez-Lojo, M., Prountzos, D., and Sui, X. 2011. The Tao of
Parallelism in Algorithms. In PLDI. ACM, 12–25.

Raychev, V., Vechev, M., and Yahav, E. 2013. Automatic synthesis of deterministic concurrency. In SAS.
Springer.

Raza, M., Calcagno, C., and Gardner, P. 2009. Automatic Parallelization with Separation Logic. In
ESOP. Springer, 348–362.

Reynolds, J. C. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In LICS. IEEE
Computer Society, 55–74.

SV-Comp 2013. http://sv-comp.sosy-lab.org/2013/.

Tang, P., Tang, P., Zigman, J. N., and Zigman, J. N. 1994. Reducing Data Communication Overhead
for DOACROSS Loop Nests. In International Conference on Supercomputing. ACM, 44–53.

Villard, J., Lozes, É., and Calcagno, C. 2010. Tracking Heaps That Hop with Heap-Hop. In TACAS.
Springer, 275–279.

Welc, A., Jagannathan, S., and Hosking, A. 2005. Safe Futures for Java. In OOPSLA. ACM, 439–435.

Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., and O’Hearn, P. W. 2008.
Scalable shape analysis for systems code. In CAV. Springer, 385–398.

Received X; revised X; accepted X

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Online Appendix to:
Proof-Directed Parallelization Synthesis by Separation Logic

MATKO BOTINČAN, University of Cambridge

MIKE DODDS, University of York9

SURESH JAGANNATHAN, Purdue University

A. INTER-PROCEDURAL ANALYSIS

In this section we provide an inter-procedural version of our parallelization algorithm from
§5.

Programming language. We assume the following heap-manipulating programming lan-
guage with functions:

e ::= x | nil | t(ē) | . . . (expressions)

b ::= true | false | e = e | e 6= e | . . . (booleans)

a ::= . . . (primitive commands)

C ::= C; C | ` : skip | ` : a | ` : x := f(ē) | ` : return e
| ` : if(b) {C } else {C } | ` : while(b) {C }

Program representation. As in §4, we represent the program by an ordered forest T , with
the addition of edges (`, `′) such that ` corresponds to a label of a function call x := f(ē) and
`′ ∈ 〈fs, fe〉, where fs and fe are labels of the predecessor of the first (resp. the successor of
the last) command in the body of f. The left-hand side of Fig. 22 shows example labelling
containing a function call.

Sequential proof. The inter-procedural sequential proof P assumes use of modular specifi-
cation for each function. That is, each function is associated with a pre- and post-condition
which are applied in the proof by using the frame rule and variable substitutions. The
right-hand side of Fig. 22 shows a proof which is in such form.

To gain precision, our analysis will need to dive through function calls and refer to the
assertions in the local function with respect to the variables of the caller, all the way up
to the top-most work function. We therefore define a way for lifting local assertions from a
function to their global contexts.

For γ ∈ Paths such that |γ| = n and `1, . . . , `n are the labels corresponding to the function
calls (in the order of occurrence as in γ) we define the lifted (“inlined”) proof assertion P(γ)
as

F(`1) ∗ (F(`2) ∗ ... (F(`n) ∗P(γ[m])[Ω(`n)])[Ω(`n−1)]...)[Ω(`1)]

Intuitively, the assertion P(γ) represents the “global” proof state at γ (including the framed
portions) in terms of work’s variables.

Resource-usage analysis. The inter-procedural version of the resource-usage analysis re-
sembles the intra-procedural version, with the addition being the computation of needed
and redundant resources across function calls.

The function Needed-Func (Alg. 6) shows how we lift Needed-Block (Alg. 1) the from
within-blocks computation to the context-sensitive inter-procedural level. Given program
paths γs and γe, Needed-Func(γs, γe) works by successively pushing backwards P(γe)

Π ∧
emp similarly as Alg. 2. In phase A, it steps backwards from γe towards the outermost

c© YYYY ACM 0164-0925/YYYY/01-ARTA $10.00
DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

App–2 Proof-Directed Parallelization Synthesis by Separation Logic

void f(int i){
`1 : int v = *x;
`2 : if (v >= i){
`3 : g(y, v);

}
else{

`4 : g(x, 0);
}

}

void g(int* p,
int v){

`5 : *p = v;
}

fs : x 7→ x ∗ y 7→ y

`1 : x 7→ x ∗ y 7→ y

`2 : v = x ∧ x 7→ x ∗ y 7→ y

`3 : v = x ∧ v ≥ i ∧ x 7→ x ∗ y 7→ y

`4 : v = x ∧ v < i ∧ x 7→ x ∗ y 7→ y

fe : (x ≥ i ∧ x 7→ x ∗ y 7→ x) ∨ (x < i ∧ x 7→ 0 ∗ y 7→ y)

gs : p 7→ ∧ v = v

`5 : p 7→ ∧ v = v

ge : p 7→ v

Fig. 22. Left: inter-procedural version of the example from §2. Right: associated assertions in the sequential
proof.

ALGORITHM 6: Computing needed resources across function calls.

1 Needed-Func(γs : Paths, γe : Paths)
2 begin
3 k := |γe|;
4 ∆ := P(γe)

Π ∧ emp;
5 while k > |γs f γe|+ 1 do // Phase A
6 % := Ω(γe[1..k]);

7 ∆ := Needed-Block((γe[k]↑, γe[k]),∆[%−1])[%];
8 k := k − 1;

9 if cmd(γe[k]) is function call then ∆ := ∆[Ω(γe[k])−1];
10 end
11 % := Ω(γs[1..k]);

12 ∆ := Needed-Block((γe[k], γs[k]),∆[%−1])[%];
13 while k < |γs| do // Phase B
14 if cmd(γs[k]) is function call then ∆ := ∆[Ω(γs[k])];
15 k := k + 1;
16 % := Ω(γs[1..k]);

17 ∆ := Needed-Block((γs[k], γs[k]↓),∆[%−1])[%];
18 end
19 return ∆;
20 end

calling context in the function-invocation hierarchy. This context, represented as the longest
common prefix of γs and γe, is the dominator of the two functions in which γs and γe are
found in the function call graph. Phase B of the algorithm keeps stepping backwards, but
proceeds inwards into the function-invocation hierarchy towards γs. Both phases of the
algorithm use Alg. 1 to compute the needed resources in-between function call boundaries:
in phase A we establish the needed assertions from the dominating point to γe, and in phase
B from γs to the dominating point.

Since the invariants of the input proof are written in terms of the outermost calling
context, comparing locally-computed specifications with these invariants requires the local
specifications to be recast in terms of the outer context. In the first line of phase A we
construct a variable substitution % that recasts the assertion in terms of the calling context
at the start of γe. The second line constructs ∆[%−1]—the running state recast in terms of
γe’s starting context; this is typically the context defined by the work() function used in a

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Proof-Directed Parallelization Synthesis by Separation Logic App–3

f1(i, wx, wy) {
local v=*x;
if (v>=i) {
grant(wx);
ga1(y, v);

}
else {
grant(wy);
gb1(x, 0)

}
}

ga1(*p, v, wy) {
*p=v;
grant(wy);
}

gb1(*p, v, wx) {
*p=v;
grant(wx);
}

f2(i, wx, wy) {
wait(wx);
local v=*x;
if (v>=i) {
ga2(y, v);

}
else {
gb2(x, 0);
wait(wy);

}
}

ga2(*p, v, wy) {
wait(wy);
*p=v;
}

gb2(*p, v) {
*p=v;
}

Fig. 23. Parallelization of f() from Fig. 22. Only synchronization barriers between the first and second
iterations are shown (assuming only two iterations in the pfor loop).

pfor command. Needed-Block constructs a new needed state up to the start of the current
block. Finally, % recasts the resulting state back into the current context. When a function
call is reached, we unwind the variable substitution by one call since we now have moved
from the callee’s context to a caller’s. Operations in phase B are similar.

We calculate the redundant resources between arbitrary program paths analogously as in
function Redundant (Alg. 3).

Fig. 24 and Fig 25 show full needed and redundant maps computed by the intra-procedural
resource-usage analysis on the example in Fig. 22.

Parallelizing transformation. The inter-procedural version of the parallelizing trans-
formation is mainly the same as the intra-procedural version, with the difference be-
ing in how grant and wait barriers are inserted. To generate the parallel function

work′(ī
(p)
r , īr, env

(p), env) in Ppar we replace the intra-procedural steps (3) and (4) with
the following steps (3), (4) and (5):

(3) For each γ = `1 . . . `n ∈ dom(released) ∪ dom(acquired) let `k1 , . . . `km be the labels in
γ corresponding to function calls. Then for each γj := `1 . . . `kj we create in Ppar an
identical copy f′ of the function f called at `kj and replace the call to f with the call
to f′. Let us denote by tr(γ′) the program path in Ppar corresponding to γ′ after this
transformation has been applied for all γ ∈ dom(released) ∪ dom(acquired).

(4) For each γ ∈ dom(acquired) such that acquired(γ) = r we insert a wait barrier wait(i
(p)
r)

between program paths tr(pred(γ)) and tr(γ).
(5) For each γ ∈ dom(released) such that released(γ) = (r,), between program paths

tr(pred(γ)) and tr(γ) we insert a sequence of assignments of the form env(ir)[”y”] := y
for every local variable y, followed by a grant barrier grant(ir).

To exemplify the inter-procedural parallelizing transformation, in Fig. 23 we show the
outcome of the algorithm when applied to function f() from Fig. 22.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

App–4 Proof-Directed Parallelization Synthesis by Separation Logic

` 2
` 2
` 3

` 2
` 3
` 5

` 2
` 3
g
e

` 2
` 4

` 2
` 4
` 5

` 2
` 4
g
e

f
e

` 1
x
7→
x

x
≥

i
∧

x
7→
x

x
≥

i
∧

x
7→
x

x
≥

i
∧

x
7→

x
∗

y
7→
y

x
<

i
∧

x
7→
x

x
<

i
∧

x
7→
x

x
<

i
∧

x
7→
x

(x
≥

i
∧

x
7→

x
∗

y
7→
y
)
∨

(x
<

i
∧

x
7→
x

)
` 2

v
=
x
∧

v
≥

i
v

=
x
∧

v
≥

i
v

=
x
∧

v
≥

i
∗

y
7→
y

v
=
x
∧

v
<

i
v

=
x
∧

v
<

i
v

=
x
∧

v
<

i
∧

x
7→
x

(v
=
x
∧

v
≥

i
∗

y
7→
y
)
∨

(v
=
x
∧

v
<

i
∧

x
7→
x

)
` 2
` 3

v
=
x
∧

v
≥

i
v

=
x
∧

v
≥

i
∗

y
7→
y

v
=
x
∧

v
≥

i
∗

y
7→
y

` 2
` 3
` 5

v
=
x
∧

v
≥

i
∗

y
7→
y

v
=
x
∧

v
≥

i
∗

y
7→
y

` 2
` 3
g
e

v
=
x
∧

v
≥

i
` 2
` 4

v
=
x
∧

v
<

i
v

=
x
∧

v
<

i
∗

x
7→
x

v
=
x
∧

v
<

i
∗

x
7→
x

` 2
` 4
` 5

v
=
x
∧

v
<

i
∗

x
7→
x

v
=
x
∧

v
<

i
∗

x
7→
x

` 2
` 4
g
e

v
=
x
∧

v
<

i

F
ig
.
2
4
.

T
h

e
n
ee
d
ed

m
a
p

co
m

p
u

te
d

b
y

th
e

a
lg

o
ri

th
m

N
e
e
d
e
d

fo
r

th
e

ex
a
m

p
le

in
F

ig
.

2
2
.

(n
o
t

sh
o
w

n
tr

iv
ia

l
en

tr
ie

s;
em

p
ty

en
tr

y
m

ea
n

s
n

o
t

d
efi

n
ed

)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Proof-Directed Parallelization Synthesis by Separation Logic App–5

` 2
` 2
` 3

` 2
` 3
` 5

` 2
` 3
g
e

` 2
` 4

` 2
` 4
` 5

` 2
` 4
g
e

f
e

` 1
y
7→

y
(x
≥

i
∧

y
7→
y
)
∨

(x
<

i
∧

x
7→

x
∗

y
7→
y
)

(x
≥

i
∧

y
7→
y
)
∨

(x
<

i
∧

x
7→

x
∗

y
7→
y
)

x
<

i
∧

x
7→

x
∗

y
7→
y

(x
≥

i
∧

x
7→

x
∗

y
7→
y
)
∨

(x
<

i
∧

y
7→
y
)

(x
≥

i
∧

x
7→

x
∗

y
7→
y
)
∨

(x
<

i
∧

y
7→
y
)

(x
≥

i
∧

x
7→

x
∗

y
7→
y
)
∨

(x
<

i
∧

y
7→
y
)

x
<

i
∧

y
7→
y

` 2
v

=
x
∧

x
7→

x
∗

y
7→
y

v
=
x
∧

x
7→

x
∗

y
7→
y

(v
=
x
∧

v
≥

i
∧

x
7→
x

)
∨

(v
=
x
∧

v
<

i
∧

x
7→

x
∗

y
7→
y
)

v
=
x
∧

x
7→

x
∗

y
7→
y

v
=
x
∧

x
7→

x
∗

y
7→
y

(v
=
x
∧

v
≥

i
∧

x
7→

x
∗

y
7→
y
)
∨

(v
=
x
∧

v
<

i
∧

y
7→
y
)

(v
=
x
∧

v
≥

i
∧

x
7→
x

)
∨

(v
=
x
∧

v
<

i
∧

y
7→
y
)

` 2
` 3

v
=
x
∧

v
≥

i
∧

x
7→

x
∗

y
7→
y

v
=
x
∧

v
≥

i
∧

x
7→
x

v
=
x
∧

v
≥

i
∧

x
7→
x

` 2
` 3
` 5

v
=
x
∧

v
≥

i
∧

x
7→
x

v
=
x
∧

v
≥

i
∧

x
7→
x

` 2
` 3
g
e

v
=
x
∧

v
≥

i
∧

x
7→

x
∗

y
7→
y

` 2
` 4

v
=
x
∧

v
<

i
∧

x
7→

x
∗

y
7→
y

v
=
x
∧

v
<

i
∧

y
7→
y

v
=
x
∧

v
<

i
∧

y
7→
y

` 2
` 4
` 5

v
=
x
∧

v
<

i
∧

y
7→
y

v
=
x
∧

v
<

i
∧

y
7→
y

` 2
` 4
g
e

v
=
x
∧

v
<

i
∧

x
7→

x
∗

y
7→
y

F
ig
.
2
5
.

T
h

e
re
d
u
n
d
a
n
t

m
a
p

co
m

p
u

te
d

b
y

th
e

a
lg

o
ri

th
m

R
e
d
u
n
d
a
n
t

fo
r

th
e

ex
a
m

p
le

in
F

ig
.

2
2
.

(n
o
t

sh
o
w

n
tr

iv
ia

l
en

tr
ie

s;
em

p
ty

en
tr

y
m

ea
n

s
n

o
t

d
efi

n
ed

)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

