
Protocol Inference using Static Path Profiles

Murali Krishna Ramanathan1 Koushik Sen2

Ananth Grama1 Suresh Jagannathan1

1 Department of Computer Science, Purdue University
{rmk, ayg, suresh}@cs.purdue.edu

2 Electrical Engineering and Computer Science, University of California, Berkeley
ksen@eecs.berkeley.edu

Abstract. Specification inference tools typically mine commonalities
among states at relevant program points. For example, to infer the
invariants that must hold at all calls to a procedure p requires examining
the state abstractions found at all call-sites to p. Unfortunately, existing
approaches to building these abstractions require being able to explore
all paths (either static or dynamic) to all of p’s call-sites to derive
specifications with any measure of confidence. Because programs that
have complex control-flow structure may induce a large number of
paths, naive path exploration is impractical.

In this paper, we propose a new specification inference technique that
allows us to efficiently explore statically all paths to a program point.
Our approach builds static path profiles, profile information constructed
by a static analysis that accumulates predicates valid along different
paths to a program point. To make our technique tractable, we employ
a summarization scheme to merge predicates at join points based on
the frequency with which they occur on different paths. For example,
predicates present on a majority of static paths to all call-sites of any
procedure p forms the pre-condition of p.

We have implemented a tool, marga, based on static path profiling.
Qualitative analysis of the specifications inferred by marga indicates
that it is more accurate than existing static mining techniques, can be
used to derive useful specification even for APIs that occur infrequently
(statically) in the program, and is robust against imprecision that may
arise from examination of infeasible or infrequently occurring dynamic
paths. A comparison of the specifications generated using marga with a
dynamic specification inference engine based on cute, an automatic unit
test generation tool, indicates that marga generates comparably precise
specifications with smaller cost.

1 Introduction

The importance of clearly defined specifications to software development, main-
tenance, and testing is well-understood. Model-checking [5, 14, 26], type sys-
tems [9, 10, 7], typestate interpretation [17, 13] and related static analyses [26]

are valuable only when proper specifications are available. The absence of spec-
ifications can also lead to improper reuse of program components and weaken
the effectiveness of testing mechanisms[12, 22, 11].

In some cases, specifications are relatively easy to express (e.g., procedure p must
always be called after data structure d is initialized), or are well-documented
(e.g., a call to socket must be present before a call to bind and the return value
of socket must be checked for erroneous conditions). In many cases, however,
specifications are unknown, and even when available, are often informal.

To remedy this issue, there has been much recent interest in devising techniques
that automatically extract program properties by mining program behavior. The
effectiveness of mining critically depends on a sufficient number of use cases that
can be examined. For example, if we are interested in inferring the pre-conditions
that must hold prior to a call to a procedure p, we benefit by examining multiple
calls to p. The more calls analyzed, the greater the likelihood we can effectively
distinguish between predicates present at these calls that are truly part of p’s
specification from those that, although present, are nonetheless irrelevant. In
general, the confidence in a mined pre-condition is significantly higher if it is
observed in 90,000 out of 100,000 occurrences, compared to when it is observed
in 9 out of 10 occurrences, even though the underlying percentage of occurrences
are the same [15].

With a sufficient number of test cases, dynamic mining techniques can generate
execution traces which contain a potentially large number of calls to p. Unfor-
tunately, the cost to generate these traces may be high if we wish to ensure that
these traces define a comprehensive enumeration of all possible executions of
the program [12, 22, 11]. On the other hand, static techniques can only rely on
static properties to identify call points; for example, if a call to p occurs at m

different static program points in the source, only the predicates present at those
m points can be mined. On the benchmarks used in our study, we observed that
on an average, 80-85% of the procedures in these benchmarks are not invoked
more than five times statically.

Furthermore, existing static techniques do not take into account the number of
paths leading to different call-sites of the same procedure. Consider a predicate
π that occurs at one call-site c1, but which is absent at another call-site c2 of
the same procedure p. Static inference techniques would naturally deduce that
π is not part of p’s pre-condition. However, the number of paths leading to c1

may significantly be greater than c2 (e.g., c2 may be part of an infrequently
occurring error-inducing path). Indeed, it may be precisely the absence of π at
c2 that leads to an error.

The underlying premise of our work is that we can effectively apply the benefits of
a dynamic analysis (i.e., generating a desired quantity of data for the purposes of
mining) to a static specification mining algorithm. However, exploring all paths
and generating the traces associated with each path statically has two significant
disadvantages: (a) there are an exponential number of paths that would need

to be examined, and (b) if only a subset of all paths are explored, then this
approach has the same disadvantage of incompleteness common to any dynamic
mining strategy.

Our main contribution in this paper is the development of an intelligent com-
prehensive path enumeration and summarization scheme that does not lead to
exponential time and space costs. This goal is achievable because we are inter-
ested in deriving properties that are not path specific, but merely valid over a
majority of the paths examined.

We define an inter-procedural, path-based static analysis that collects a set of
program predicates that define potential pre-conditions to procedure calls. If
procedure p has pre-condition π, it means that that all the predicates comprising
π should hold before any call to p. These predicates can encode control flow
(e.g., a call to bind must be preceded by a call to socket) as well as dataflow
properties (e.g., the return value of socket is always validated before a call to
bind). To compute pre-conditions, we analyze the predicates present along each
control flow edge in the program’s control-flow graph. At any join point j, where
multiple paths merge, we keep track of the number of paths, nj , leading to the
join point and the number of times a predicate π is valid on these nj paths.
This information, which we refer to as a static path profile, is transferred to
outgoing edges, and the process repeated until all control flow edges are traced.
We use procedure summaries to make the approach scalable for inter-procedural
analysis. To compute the pre-conditions of a procedure p, we take the cumulative
sets of predicates associated with its different call-sites and their associated path
profiles to derive the required specifications.

We have implemented a tool, marga, for computing path profiles for C pro-
grams. Note that an essential assumption underlying our approach is that the
probability of occurrence of a dynamic path is likely to be equal to that of a static
path. Clearly, such an assumption need not hold in general. Static paths may
be infeasible, i.e., not be traversable under any dynamic execution. Similarly, a
path that occurs frequently statically may occur infrequently dynamically be-
cause there may be stringent runtime conditions that dictate when the path can
be traversed that are not captured by a static analysis. Conversely, a path that
occurs frequently dynamically (e.g. the back edge of a long-lived loop) may occur
infrequently statically. Fortunately, for the purposes of specification inference, we
demonstrate that static path profiling is robust against inaccuracies introduced
by failing to recognize (statically) infeasible, or infrequently occurring static and
dynamic paths.

To support this claim, we have also implemented a dynamic specification in-
ference engine that mines comprehensive dynamic executions of the program
generated by cute [22], an automatic test generation tool. A comparison of the
specifications inferred by marga and the dynamic inference engine reveals that
infeasibility of program paths (or lack of correlation between probabilities of
static vs. dynamic paths) has little impact on the quality of the specifications
generated.

Bugs in programs present another challenge to specification inference since they
may invalidate correct predicates from a specification or introduce incorrect ones.
Test generation tools can help identify commonly occurring bugs since such bugs
by definition must occur on many dynamic paths. Because these bugs can be
fixed, we assume programs are mostly free of errors. Bugs that are found on
infrequently occurring dynamic paths are not always captured by unit testing.
However, the paths on which these bugs occur must therefore necessarily corre-
spond to profiled static paths with small weights. Consequently, the influence of
these bugs on derived specifications is small.

Our experimental results using marga show that the analysis (a) can effec-
tively infer specifications even for procedures with a small number of statically
apparent call-sites; (b) exhibits fewer false negatives compared to static specifi-
cation inference techniques that do not take path profiles into consideration, and
(c) displays precision closer to that of an exhaustive dynamic path exploration
technique.

2 Motivation

Dynamic specification inference techniques suffer from the problem of under

approximation i.e., a set of predicates Θu = {π1, π2, . . . πn} is declared to hold
before a call to procedure p even when only a subset of the predicates found in
Θu are valid elements of p’s pre-condition set; this is possible because not all
possible paths to the call may have been examined, and these unexamined paths
may invalidate the inclusion of some of the πi in Θu.

Similarly, static specification inference techniques suffer from the problem of over

approximation, i.e., a set of predicates Θo is considered to hold before a call to
procedure p, even though other predicates (not present in Θo) should also be
included; this is possible because a particular predicate that cannot be proven
to hold along a certain path may result in its omission from Θo, even if that
path is infeasible (e.g., the path follows a branch that could never be taken) or
erroneous.

5
4

321

π1 π2π1,π2

π1,π2π1,π2

pp

(a)
Under Approximation

4
53

21

π1,π2
π1,π2

π1,π2

π1,π2π1,π2

p p

(b)
Correct Pre-conditions

5
4

321

π1,π2

π1,π2

π1,π2
π1,π2 π1

pp

(c)
Over Approximation

Fig. 1. An example illustrating under- and over-approximation of predicates

We elaborate on these points using the example shown in Figure 1. Before every
call to procedure p, there are certain predicates that hold. For example, in Fig-
ure 1(a), there are two call-sites to p. There are two paths, labeled 1 and 2 , to
one of the call-sites; on path 1 , predicate π1 holds and on path 2 , predicates
π1 and π2 hold. There are three paths leading to the other call-site to p (the
call-site on the right of Figure 1(a)); these paths are labeled 3, 4 and 5 , with
predicates π1 and π2 valid on paths 3 and 4 , and π2 valid on path 5 . In a
dynamic analysis scheme, if the paths 2, 3 and 4 are the only ones traversed,
we may erroneously conclude that both π1 and π2 hold always before a call to
procedure p. Note that this case is difficult to distinguish from the scenario il-
lustrated in Figure 1(b) where π1 and π2 indeed form the precondition for p.
Ensuring that the paths 1 and 5 in Figure 1(a) are traversed depends upon the
comprehensiveness of the test suite.

The problem of over approximation is illustrated in Figure 1(c). Here, there is
one infeasible path (path 5) to a call-site of p. A typical static analysis would
conclude that one call to p (through paths 1 and 2) has a set of predicates that
include π1 and π2. Because of the absence of π2 on the infeasible path 5 , the
analysis would conclude that the other call to p (accessed through paths 3, 4

and 5) does not include π1 and π2. Thus, given only two (static) calls to p, no
statistically meaningful determination of p’s pre-conditions can be made.

399 add listen addr(ServerOptions *options, char *addr, u short port)

. . .

403 if (options->num ports == 0)

404 options->ports[options->num ports++] = SSH DEFAULT PORT;

. . .

407 if (port == 0)

408 for (i = 0; i < options->num ports; i++)

409 add one listen addr(options, addr, options->ports[i]);

410 else

411 add one listen addr(options, addr, port);

Fig. 2. Motivating Example for over-approximation from openssh-4.2p1

We provide further motivation for over approximation using a real-world exam-
ple – statically deriving a specification for the bind system call in the Linux
socket library. Part of the documented specification is that the address (second
parameter to bind) corresponds to a specific address family (e.g., AF UNIX,
AF INET). There are eight call-sites of bind in openssh-4.2p1 of which all

paths to five of the call-sites satisfy this specification. However, as shown in
Figure 2, there exists a path to one of the call-sites where the address fam-
ily is not set (add one listen addr is not invoked). This happens when both
port and options->num ports are 0. This path is infeasible since both port

and options->num ports cannot be 0 simultaneously (line 404). Nevertheless,

without the assistance of a theorem prover, static mining implementations must
conservatively conclude that this is indeed a feasible path, and thus would be
unable to conclude that the address family must be set prior to the call to bind .
Using static path profiles, on the other hand, we will correctly weight the like-
lihood of this path occuring, and will not take into serious consideration the
absence of the assignment to the address family.

3 Deriving Specifications

A simple technique to derive specifications is to trace each path in the program
and then infer the set of valid pre-conditions from the traced paths. Consider
the example shown in Figure 3(a). There are seven paths on total to a call-site
of some procedure p. If every path is traced statically, it is clear that among five
out of the seven paths, the predicate π holds and is a precondition for p with
confidence 71.42%. Although this scheme is simple, the cost associated with
tracing each path is exponential in the number of edges in the program.

π

ππ

p

(a) Full Path Exploration

(2,0,1)(2,2,1)

(2,0,1)

(2,2,1)

(1,1,0) (1,0,0) (1,0,0)

(7,0,5)

π

π

π

p

(b) Static Path Profiles

Fig. 3. Illustrative example. Rectangles indicate predicates, circles indicate call-sites.
Empty rectangles/circles indicate arbitrary predicates/procedure calls.

The key insight to our approach is that obtaining aggregate information asso-
ciated with multiple paths is sufficient for generating interesting pre-conditions.
Knowing the specific paths in which π holds is uninteresting from the perspective
of specification inference. A static path profile is the cumulative information of
predicates that hold across all possible paths to a specific call-site.

Path information is collected by examining the program’s control-flow graph.
Each node v in the CFG is annotated as a three tuple (nv, mv, qv) for every
predicate π under consideration, where the definition of the tuple components
is as follows:

– nv is the total number of paths leading to v,

– mv =

{

nv, if predicate π holds at v

0 otherwise

– qv = Σu max (mu, qu) where u ∈ predecessor(v) in the CFG.

At any given node, we can derive the number of paths any predicate π holds
by observing the three-tuple (nv, mv, qv) associated with the predicate π at that
node. The number of predicates examined at a node is directly proportional to
the number of variables. Intuitively, qv specifies the number of paths through
v in which the predicate is valid. If a predicate π is valid on some number of
incoming paths upto node v, but in addition also happens to be asserted at v, it
is clear π holds on all paths through v (mv = nv). The nodes downstream from
v decide the number of paths on which π holds using qv and mv. If the number
of paths for which π holds is i, then i = max (mv, qv); the fact that predicate π

holds on i paths is denoted as πi.

For example, consider the annotated graph counterpart of Figure 3(a) in Fig-
ure 3(b) associated with predicate π. Let one of the two nodes annotated
(2,0,1) be v. This annotation denotes the fact that there are two possible
paths to node v, predicate π is not explicitly valid at v, and the total number of
paths on which π is valid is one (written π1).

Loops pose complications for building path profiles because they represent a
potentially infinite set of executions. To make our approach tractable, we perform
a simple fixpoint calculation to compute the path profile for back-edges in loops.
Initially, we assume the back-edge does not contribute to the profile weights of
any path found within the loop. In subsequent iterations of the analysis, the back
edge on the loop contributes exactly once to the profile weights, albeit with the
predicates being derived propagated through the back edge multiple times. Since
the computation of the tuple is monotonic (since qv computes the maximum of
the profiles of its predecessors which is bounded by the number of paths in the
loop body that include the back-edge), the analysis is guaranteed to converge.

The annotation marking mechanism must also take into account nodes in the
control-flow graph that represent call-sites (e.g., the node labeled p). Path pro-
files distinguish between incoming and outgoing annotations. The incoming an-
notation in p’s case is (7,0,5) . Incoming annotations are used to generate
preconditions for p. Thus, to infer the pre-condition for p requires no inspection
of p’s body. In this case, π5 holds true at node p, i.e., five paths of the total
set of paths have π to be true. Outgoing annotations (not shown in the figure),
on the other hand, capture path profile summary information. The summary
information for some procedure p gives the number of paths within p for which
the predicate holds upon exit from p, which in turn is given by the annotation
at p’s return node. Summary information is used to define incoming annotations
for other call-sites downstream in the graph. We elaborate on this point in the
next section.

4 marga : Implementation Details

procedure Buildpredicates

⊲ Input: G(V,E) , directed, acyclic CFG of α ; V is topologically sorted;
⊲ Output: Annotated Graph G
⊲ Auxiliary Information:

predicates (u): predicates generated at u; flow (u): set of predicates valid at u;
precond (u): set of predicates that are used for generating preconditions associated with procedure at u;
callsite(u): true if u is a callsite; return(u): true if u is the return node from procedure α;

1 iterate ← true
2 while iterate do
3 iterate ← false
4 for each node u = 1 to |V|
5 oldflow ← flow (u)
6 for all predecessors v of u

7 nu ← nu + nv

8 flow (u) ← flow (u) ∪ predicates (v)
9 for each predicate π in flow (v)
10 qu(π) ← qu(π) + max (mv(π), qv(π))
11 mu(π) ← 0
12 flow (u) ← flow (u) ∪ predicates (u)
13 for each predicate π in data predicate (u)
14 mu(π) ← nu

15 if callsite(u) is true then
16 precond(u) ← flow(u)

17 flow(u) ← flow(u) ∪ proc summary [func (u)]
18 if return(u) is true then

19 proc summary [α] ← flow (u)
20 if oldflow 6= flow (u) then iterate ← true

Fig. 4. Algorithm for building predicates.

We have implemented a tool name marga based on the above approach. It
takes as input the program source and a user-defined confidence threshold for
determining when a predicate should form part of a pre-condition, and produces
as output pre-conditions (i.e., a set of predicates) for every procedure. These
pre-conditions indicate the conditions that must hold prior to any call of the
associated procedure.

We first generate the control-flow graph for each procedure using Codesurfer [3].
The resulting graph is processed using the algorithm given in Figure 4. The
number of paths to each node in the graph is first computed. Subsequently, the
q value for the node is computed for each predicate by considering all its parent
nodes. If the node is a call-site, then the procedure summary associated with that
call is also added to the set of predicates that will flow into other adjacent nodes
in the graph. The procedure summary is the summary of predicate information
along with the total number of paths and the number of paths for which each
predicate holds at the return node of the procedure. This process is repeated until
a convergent path profile for the loop back-edge is computed.Yet another fix point
iteration is performed to ensure that dependencies crossing procedure boundaries
(as given by the procedure summary and return) are completely captured.

procedure Getpreconditions

⊲ Input: α: a procedure in the program;
C = {c1, c2, ...cn} is the set of call sites of α;
β = user-defined threshold for generating preconditions

⊲ Output:set of preconditions for α

1 for each node ci

2 for each predicate π in precond (ci)
3 qt(π) ← qt(π) + qci

(π)
3 nt(π) ← nt(π) + nci

4 flow t ← flow t ∪ precond (ci)
5 for each predicate π in flow t

6 if
qt
nt

> β

7 preconditions[α] ← preconditions[α] ∪ {π}

Fig. 5. Generate preconditions.

At the end of the fixed point calculation, the algorithm shown in Figure 5 is
executed to obtain the pre-conditions associated with each procedure in the
program. To generate the pre-condition for a procedure p, each call-site of p is
considered. The predicates that can be used in computing the preconditions from
each of these call-sites is extracted and the total number of paths in which the
predicate holds (qt) across all call-sites is computed. Similarly, the total number
of paths to all call-sites (nt) is also calculated. If the ratio of the number of
paths on which a predicate holds compared to the total number of paths at all
call-sites is greater than β, a user-defined threshold, the predicate is added to
the pre-condition for p.

5 Experiments

We validate the idea of using static path profiles on selected benchmark sources
to demonstrate scalability and effectiveness. We extract pre-conditions for six
sources: apache , buddy , zebra , openssh , osip2 , and procmail . Specific de-
tails about these benchmarks are provided in Table 1. The size of the benchmarks
varies from 9K to 273KLOC. Since default configurations are used to compile
these sources, we believe that the number of control flow nodes represents a
more reliable indicator of effective source size than lines of code. The number
of control flow nodes ranges from 10K to 143K. We also present the number of
user-defined procedures examined in the table.

We have implemented our tool in C++ and have performed our experiments
on a Linux 2.6.11.10 (Gentoo release 3.3.4-r1) system running on an Intel(R)
Pentium(R) 4 CPU machine operating at 3.00GHz, with 1GB memory. The
time taken for performing the analysis is presented in Table 1.

Source Version LOC CFG Procedure Avg. paths Total Analysis
nodes count to call-sites Specifications time (s)

zebra 0.95a 183K 145K 3342 4721.64 1323 555

apache 2.2.3 273K 102K 2079 7281.30 676 561

openssh 4.2p1 68K 88K 1281 7175.75 619 501

osip2 3.0.1 24K 34K 666 4028.32 158 104

procmail 3.22 9K 16K 298 33696.15 120 297

buddy 2.4 10K 10K 173 5653.23 133 140
Table 1. Benchmark Information.

5.1 Quantitative Assessment

We derive pre-conditions containing three different types of predicates – assign-
ment, comparison and precedence. As their names suggest, assignment predicates
reflect the assignment of values (or results of procedure calls) to variables; com-
parison predicates include six kinds of logical comparison operations (>, <, 6=,
=, ≥ and ≤) between variables and/or constants; a precedence predicate is an or-
dered sequence of procedures whose calls must precede the call to the procedure
being examined. The total number of pre-conditions generated for procedures,
where the predicates are valid on at least 70% of the paths is given in Table 1.
The size distribution (number of predicates within a pre-condition) for the gen-
erated pre-conditions is given in Figure 6. Among the generated pre-conditions,
the size of the predicate set is less than two for a majority of the procedures.
For example, observe that approximately 97% of the procedures in apache have
fewer than two predicates in their pre-conditions. The predicate size distribution
display a similar pattern for different types of predicates.

>=4
3
2
1
0

 0%

 20%

 40%

 60%

 80%

 100%

zebraprocmailpostgresqlosipopensshbuddyapache

P
er

ce
nt

ag
e

of
 fu

nc
tio

ns

Benchmarks

Fig. 6. Predicate distributions.

<=2
 3−5
 6−10
 11−15
 >15

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

zebraprocmailosipopensshbuddyapache

N
or

m
al

iz
ed

 p
re

co
nd

iti
on

s

Benchmarks

Fig. 7. Comparison with non-profile based inference

We experimentally compare our approach with a non-profile based inference
mechanism that does not leverage path profiles [21]. Briefly, the comparison
metric is an analysis that requires a predicate to be satisfied along all paths to a
call-site in order to be a valid candidate for inclusion as part of a procedure call’s
pre-condition. After accumulating the predicates at each call-site, we declare a
predicate as a pre-condition, if the predicate is valid in at least the user-defined
threshold percentage of call-sites. We use the same user-defined threshold (70%)
in deriving the predicates, i.e., if a predicate is valid in seven out of 10 call-sites,
we declare the predicate as a pre-condition in the non-profile based inference
scheme. In the path-profiling approach, we declare a predicate to be a pre-
condition if it is valid in 70% of the paths to call-sites of the procedure.

Figure 7 presents the percentage of pre-conditions derived by non-profile based
specification inference as compared to those derived using static path profiling.
For example, for procedures with three to five call-sites in zebra , the former
discovers roughly only half the predicates discovered by the path profile analysis.
As expected, for procedures with fewer than three call-sites, the non-profile based
inference scheme is not able to derive any pre-conditions. For example, in the
case of openssh , no pre-condition is derived for procedures that have fewer than
three statically apparent call-sites.

We also observe that in many cases, the set of pre-conditions generated with
the non-profile based inference is a proper subset of the pre-conditions generated
using the static path profiling approach. This is consistent with our expectation
that typical static analyzes can lead to over approximation by eliminating valid
predicates from pre-conditions. In some cases, however, such as osip or zebra ,
this hypothesis does not hold. Path profiling weights predicates based on the
number of paths on which they hold across all call-sites. Consider a predicate
π which occurs on k paths at n call-sites to procedure p. Suppose that paths

are not evenly distributed among these n call-sites. If on m call-sites, π occurs
on all paths, and m is greater than the threshold cutoff, the non-profile based
inference will record π as a valid pre-condition. However, if the number of paths
that flow into these m call-sites is much less than k, then the path profile analysis
will nonetheless not include π as part of p’s pre-conditions. In other words, a
predicate that does not hold on a majority of paths may still hold on the paths
to a majority of call-sites. Path profiling thus provides finer control over both
the inclusion and exclusion of predicates than non-profile based inference.

5.2 Qualitative Assessment

We want to identify the impact of infeasible paths and approximations intro-
duced by static path weights in the program on the quality of the specifications
inferred. To do so, we compare our approach with a dynamic inference mecha-
nism. Rather than using an existing test-suite to generate dynamic traces, we
use cute, an automatic test generation tool, that provides extended coverage
of the program, and thus helps reduce the possibility of under-approximation
(compared to other dynamic analysis systems) as described in Section 2.

The test generation process initially runs with some random input and collects
constraints {C1, ..., Ck−1, Ck} symbolically along the execution. To explore a pre-
viously unexplored path, a new input is generated that satisfies the constraints
{C1, ...Ck−1,¬Ck}. If this path was explored earlier, then the set of constraints
{C1, ...¬Ck−1} is used to explore a different path. This process repeats until all
paths in the program are explored. There are several issues that must be handled
by the input generation process. Most importantly, when it becomes difficult to
reason with symbolic constraints, concrete values from the program execution
replace symbols to ensure progress of the test input generation process. We refer
the reader to [22] for a more detailed description.

We track the predicates along different execution paths of the program and for
each call to a procedure, group the set of predicates that precede it from the
start of the execution. Thus, across multiple executions, we would generate many
such groups of predicates. To generate the precondition for the procedure, we
apply frequent item-set mining [6]. The frequently occurring predicates across
all the groups form the precondition.

We performed our comparison on buddy , an open source package that imple-
ments operations over Binary Decision Diagrams (BDD). We ran cute for a
bounded number of iterations (1000), which took approximately 30 minutes,
and in that process collected specifications for 24 procedures. Of these 24 pro-
cedures, only two procedures(F1) had more than 10 call-sites, three procedures
(F2) had call-sites between five and 10 and the remaining 19 procedures(F3) had
less than five call-sites. Using existing documentation, and manual inspection,
we computed a reference specification for each of these procedures.

Figure 8 presents the results associated with our qualitative analysis. We applied
three different schemes, (a) dynamic inference (b) non-profile based inference,

 total number of procedures
 dynamic inference
 non−profile based inference
 static profile based inference

 0

 5

 10

 15

 20

F3F2F1
N

um
be

r
of

 p
ro

ce
du

re
s

Number of call−sites

Fig. 8. Correctness of different inference schemes.

and (c) path-profile based inference on this benchmark. For the set of two pro-
cedures in F1, all techniques provide similar precision and were able to detect
preconditions correctly for one procedure. Under-approximation confounds the
precision of dynamic inference for the set of three procedures in F2. The analysis
for the procedures in F3 is more interesting. Because of the lack of frequency
of call-sites for the procedures in this set, non-profile based static inference is
ineffective in producing specifications with any degree of confidence. In contrast,
path-profile based inference correctly identified the correct specification for 17 of
the 19 procedures. Surprisingly, under-approximation still poses a problem even
for a comprehensive test generation tool like cute; it failed to correctly generate
specifications for 7 of the procedures that were successfully analyzed using static
path profiling.

6 Related Work

Many interesting static mining approaches exist for specification inference.
Kremenek et al. [16] develop a inference mechanism based on using factor graphs.
Even though, many useful specifications were generated, the approach requires
either machine learning or user specifications to generate initial annotation prob-
abilities, employs naming conventions for improving accuracy and is domain-
specific. Ramanathan et al. [21] present an annotation-free approach to infer
data flow specifications using frequent item-set mining and control flow spec-
ifications (precedence relations [20]) using sequence mining. This approach is
path-sensitive, but does not take static path profiles into account: if a predicate
does not hold at a majority of call-sites to a procedure, it is not included as
part of the procedure’s pre-condition. Shoham e al. [23] propose an approach
for client-side mining of temporal API specifications based on static analysis.
Li and Zhou present PR-Miner [18], a tool that relies on mining to identify
frequently occurring program patterns. As this approach is not path-sensitive,

spurious specifications can be generated even if a predicate holds in at least one
path leading to a majority of call sites. Mandelin et al. [19] present a technique
for synthesizing jungloid code fragments automatically based on the input and
output types that describe the code and is useful for reusing existing code. An
automatic specification mining technique that uses information about exceptions
to identify temporal safety rules is presented in [25]. Because none of the above
techniques performs mining on generated paths, the confidence in the derived
specifications is statistically low. Due to the ability of our approach to simulate
dynamic behavior and succinctly maintain data that covers all possible program
paths, we are able to derive useful specifications with high confidence.

Ball and Larus [4] propose an approach for efficient path profiling. In their
approach, dynamic runs of a program are profiled to gather information about
different path executions. Recently, Vaswani et al. [24], present a scheme to
identify a subset of interesting paths and use a compact numbering scheme
using arithmetic coding techniques. Our approach is motivated by the algorithm
presented by Ball and Larus [4] and is applied statically.

Ammons et al. [1] perform specification mining by summarizing frequent inter-
action patterns as state machines that capture temporal and data dependencies
when interacting with API’s or abstract data types. An approach to debug de-
rived specifications using concept analysis is subsequently proposed by Ammons
et al. in [2]. Daikon [8] is a tool for dynamically detecting invariants in a program.
Yang et al. [27] present a technique for automatically inferring temporal proper-
ties by exploring event traces across versions of a program. All these approaches
critically rely on test input providing comprehensive coverage. Our approach is
independent of test inputs and covers all possible program paths.

Acknowledgements

This work is supported in part by the National Science Foundation under grant
CNS-509387. We also like to thank the anonymous reviewers for their construc-
tive feedback.

References

1. G. Ammons, R. Bodik, and J. Larus. Mining specifications. In Proceedings of

POPL ’02, pages 4–16, 2002.

2. G. Ammons, D. Mandelin, R. Bodik, and J. Larus. Debugging temporal specifica-
tions with concept analysis. In Proceedings of PLDI ’03, pages 182–195, 2003.

3. P. Anderson, T. Reps, and T.Teitelbaum. Design and implementation of a fine-
grained software inspection tool. IEEE Trans. on Software Engineering, 29(8):721–
733, August 2003.

4. T. Ball and J. Larus. Efficient path profiling. In MICRO-29, December 1996.

5. T. Ball and S.K. Rajamani. Automatically validating temporal safety properties
of interfaces. In SPIN 2001, pages 103–122, May 2001.

6. D. Burdick, M. Calimlim, J. Flannick, J. Gehrke, and T. Yiu. Mafia: A performance
study of mining maximal frequent itemsets. In FIMI’03, 2003.

7. B. Chin, S. Markstrum, and T. Millstein. Semantic type qualifiers. In Proceedings

of PLDI ’05, pages 85–95, 2005.
8. M. Ernst, J. Cockrell, W. Griswold, and D. Notkin. Dynamically discovering likely

program invariants to support program evolution. IEEE TSE, 27(2):1–25, February
2001.

9. J. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type qualifiers. In Proceedings

of PLDI ’02, 2002.
10. M. Furr and J. Foster. Checking type safety of foreign function calls. In Proceedings

of PLDI ’05, 2005.
11. P. Godefroid. Compositional dynamic test generation. In POPL ’07, pages 47–54,

2007.
12. P. Godefroid, N. Klarslund, and K. Sen. Dart: Directed automated random testing.

In Proceedings of PLDI ’05, pages 213–223, Chicago, Il, 2005.
13. T. Henzinger, R. Jhala, and R. Majumdar. Permissive interfaces. SIGSOFT Softw.

Eng. Notes, 30(5):31–40, 2005.
14. G.J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.

Addison-Wesley, 2004.
15. A.S. Kapadia, W.Chan, and L.A. Moye. Mathematical Statistics With Applications.

CRC, 2005.
16. T. Kremenek, P. Twohey, G. Back, A. Ng, and D. Engler. From uncertainty to

belief: Inferring the specification within. In Proceedings of OSDI ’06, 2006.
17. P. Lam, V. Kuncak, and M. Rinard. Generalized typestate checking for data

structure consistency. In VMCAI, 2005.
18. Z. Li and Y. Zhou. Pr-miner: Automatically extracting implicit programming rules

and detecting violations in large software code. In Proceedings of ESEC-FSE ’05,
Sep, 2005.

19. D. Mandelin, L. Xu, R. Bodik, and D. Kimelman. Jungloid mining: Helping to
navigate the api jungle. In Proceedings of PLDI ’05, pages 48–61, 2005.

20. M.K. Ramanathan, A. Grama, and S. Jagannathan. Path-sensitive inference of
function precedence protocols. In Proceedings of ICSE ’07, May 2007.

21. M.K. Ramanathan, A. Grama, and S. Jagannathan. Static specification inference
using predicate mining. In Proceedings of PLDI ’07, pages 123–134, 2007.

22. K. Sen, D. Marinov, and G. Agha. Cute: A concolic unit testing engine for c. In
Proceedings of ESEC-FSE, pages 263–272, 2005.

23. S. Shoham, E. Yahav, S. Fink, and M. Pistoia. Static specification mining using
automata-based abstractions. In ISSTA ’07: International Symposium on Software

Testing and Analysis, pages 174–184, July 2007.
24. K. Vaswani, A.V. Nori, and T.M. Chilimbi. Preferential path profiling: compactly

numbering interesting paths. In Proceedings of POPL ’07, Nice, France, Jan 2007.
25. W. Weimer and G. Necula. Mining temporal specifications for error detection. In

Proceedings of TACAS ’05, pages 461–476, April 2005.
26. Y. Xie and A. Aiken. Scalable error detection using boolean satisfiability. In

Proceedings of POPL ’05, 2005.
27. J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das. Perracotta: Mining tem-

poral api rules from imperfect traces. In Proceedings of ICSE’06, May 2006.

