
Isolating Determinism in Multi-threaded
Programs

Lukasz Ziarek, Siddharth Tiwary, and Suresh Jagannathan

Purdue University
{lziarek, stiwary, suresh}@cs.purdue.edu

Abstract. Futures are a program abstraction that express a simple form
of fork-join parallelism. The expression future (e) declares that e can
be evaluated concurrently with the future’s continuation. Safe-futures
provide additional deterministic guarantees, ensuring that all data de-
pendencies found in the original (non-future annotated) version are re-
spected. In this paper, we present a dynamic analysis for enforcing de-
terminism of safe-futures in an ML-like language with dynamic thread
creation and first-class references. Our analysis tracks the interaction
between futures (and their continuations) with other explicitly defined
threads of control, and enforces an isolation property that prevents the
effects of a continuation from being witnessed by its future, indirectly
through their interactions with other threads. Our analysis is defined
via a lightweight capability-based dependence tracking mechanism that
serves as a compact representation of an effect history. Implementation
results support our premise that futures and threads can extract addi-
tional parallelism compared to traditional approaches for safe-futures.

1 Introduction

A future is a program construct used to introduce parallelism into sequential
programs. The expression future(e) returns a future object F that evaluates e
in a separate thread of control that executes concurrently with its continuation.
The expression touch(F) blocks execution until F completes. A safe-future im-
poses additional constraints on the execution of a future and its continuation to
preserve sequential semantics. By doing so, it provides a simple-to-understand
mechanism that provides deterministic parallelism, transforming a sequential
program into a safe concurrent one, without requiring any code restructuring.
The definition of these constraints ensures that (a) the effects of a continuation
are never witnessed by its future, and (b) a read of a reference r performed by
a continuation is obligated to witness the last write to r made by the future.

In the absence of side-effects, a program decorated with safe-futures behaves
identically to a program in which all such annotations are erased, assuming all
future-encapsulated expressions terminate. In the presence of side-effects, how-
ever, unconstrained interleaving between a future and its continuation can lead
to undesirable racy behavior. The conditions described above which prevent

such behavior can be implemented either statically through the insertion of syn-
chronization barriers [1, 2], or dynamically by tracking dependencies [3], treating
continuations as potentially speculative computations, aborting and rolling them
back when a dependence violation is detected.

Earlier work on safe-futures considered their integration into sequential pro-
grams. In this context, the necessary dependence analysis has only to ensure that
the effects of concurrent execution adhere to the original sequential semantics. As
programs and libraries migrate to multicore environments, it is likely that com-
putations from which we can extract deterministic parallelism are already part
of multi-threaded computations, or interact with libraries and/or other program
components that are themselves explicitly multi-threaded.

When safe-futures are integrated within an explicitly concurrent program
(e.g., to extract additional concurrency from within a sequential thread of con-
trol), the necessary safety conditions are substantially more complex than those
used to guarantee determinacy in the context of otherwise sequential code. This is
because the interaction of explicitly concurrent threads among one another may
indirectly induce behavior that violates a safe-future’s safety guarantees. For ex-
ample, a continuation of a future F created within the context of one thread may
perform an effectful action that is witnessed by another thread whose resulting
behavior affects F ’s execution, as depicted in the following program fragment:

let val x = ref 0

val y = ref 0

in spawn(... future (... !y ...); x := 1);

if !x = 1

then y := 1

end

In the absence of the future annotation, the dereference of y (given as !y) would
always yield 0, regardless of the interaction between the future’s continuation
(here, the assignment x := 1) and the second thread1. (The expression spawn(e)
creates a new thread of control to evaluate e with no deterministic guarantees.)

In this paper, we present a dynamic program analysis that tracks interactions
between threads, futures, and their continuations that prevents the effects of con-
tinuations from being witnessed by their futures through cross-thread dataflow,
as described in the example above. Our technique allows seamless integration
of safe-futures into multi-threaded programs, and provides a mechanism that
enables extraction of additional parallelism from multi-threaded code without
requiring any further code restructuring, or programmer-specified synchroniza-
tion. To the best of our knowledge, ours is the first analysis to provide lightweight
thread-aware dynamic dependence tracking for effect isolation in the context of
a language equipped with dynamic thread creation, first-class references, to sup-
port deterministic parallelism.

Our contributions are as follows:

1 For the purposes of the example, we assume no compiler optimizations that reorders
statements.

1. We present a dynamic analysis that isolates the effects of a continuation C
from its future F even in the presence of multiple explicit threads of control.
The isolation property is selective, allowing C to interact freely with other
threads provided that the effects of such interactions do not leak back to F .

2. We introduce future capabilities, a new dependence analysis structure, that
enables lightweight dynamic tracking of effects, suitable for identifying de-
pendence violations between futures and their continuations.

3. We describe an implementation of futures and threads in MultiMLton, an
optimizing compiler for Standard ML, and show benefits compared to tra-
ditional safe-futures.

2 Safe Futures and Threads

Safe futures are intended to ensure deterministic parallelism; they do so by guar-
anteeing the following two safety properties: (1) a future will never witness its
continuation’s effects and (2) a continuation will never witness the future’s in-
termediate effects. In a sequential setting, the second condition implies a con-
tinuation must witness the logically last effects of a future.

To illustrate these properties, consider the two example programs given in
Fig. 1. The code that is executed by the future is highlighted in gray. When
a future is created it immediately returns a placeholder, which when touched
will produce the return value of the future. A touch defines a synchronization
point between a future and its continuation; execution following the touch are
guaranteed that the future has completed.

Initially: x=0, y=0
Program 1 Program 2

let fun f() = x := 1
 val tag = future (f)
in !x ; touch (tag)
end

let fun f() = !y
 val tag = future (f)
in y := 1 ; touch (tag)
end

Fig. 1. Two programs depicting the safety properties that must be enforced to achieve
deterministic parallelism for sequential programs annotated with futures.

In the program on the left, the future writes 1 to the shared variable x. The
continuation (the code following in) reads from x. To ensure that the behavior
of this program is consistent with a sequential execution, the continuation is only
allowed to read 1. In the program on the right, the future reads from the shared
variable y while the continuation writes to y. The future cannot witness any
effects from the continuation, and therefore can only read 0 for y. To correctly
execute the futures in programs 1 and 2 concurrently with their continuations

we must ensure that the future is isolated from the effects of the continuation
and that the future’s final effects are propagated to the continuation.

2.1 Interaction with Threads

The creation of new threads by either the future or the continuation requires
reasoning about the created threads’ actions. If a future internally creates a
thread of control T , T ’s shared reads and writes may need to be isolated from
the continuation’s effects. We need to ensure that if a future witnesses a write
performed by the thread it created, the future’s continuation cannot witness any
prior writes. On the other hand, a future must be isolated from the effects of any
threads that a continuation creates. These threads are created logically after the
future completes and therefore the future cannot witness any of their effects. To
illustrate, consider the two examples programs given in Fig. 2.

let fun g() = x := 1
 fun f() = spawn (g)
 if !x = 1
 then y := 2
 val tag = future (f)
in !x ; !y; touch (tag)
end

Initially: x=0, y=0, z=0
Program 1 Program 2

let fun h() = z := 2
 fun f() = !z
 val tag = future (f)
in z := 1; spawn(h);
 touch (tag)
end

Fig. 2. Two programs depicting the safety properties that must be enforced to achieve
deterministic parallelism for futures and continuations which spawn threads.

In the program on the left, the future creates a thread which writes to the
shared variable x. The future then branches on the contents of x, and if x

contains the value 1 it writes 2 to y. The continuation reads from both x and y.
There are two valid outcomes: (1) if the body of the future executes before the
assignment of x to 1 by the internally created thread, the continuation could
read 0 for x and 0 for y; or (2), if the body of the future executes after the
assignment by the internally created thread, the continuation would read 1 for x

and 2 for y. An invalid result would be for the continuation to read 0 for x and
2 for y - this would imply that the continuation witnessed an intermediate value
for x (here 0) that was not the last value witnessed by its future (which observed
x to be 1). In the program on the right, the continuation creates a thread which
writes to the shared variable z. Since the thread that the continuation creates
should logically execute after the completion of the future, the future should
only see the value 0 for z.

2.2 Transitive Effects

In the presence of multiple threads of control a future may incorrectly witness a
continuation’s effects transitively. Consider the sample program given in Fig. 3
that consists of two threads of control and one future denoted by the gray box.
Notice that the future and its continuation do not access the same memory
locations. The future simply reads from y and the continuation writes to x. Can
the future read the value 2 from the shared variable y? Reading the value 2 for
y would be erroneous because Thread 2 writes the value 2 to y only if x contains
the value 1, implying the continuation’s effects were visible to its future.

let fun f() = !y
 val tag = future (f)
in x := 1; touch (tag)
end

Initially: x=0, y=0, z=0

if x = 1
then y := 2
else y := 3

Can the future see y = 2?

Thread 1 Thread 2

Fig. 3. Although the future and continuation do not conflict in the variables they
access, the future, by witnessing the effects of Thread 2, transitively witnesses the
effects of the continuation.

Similarly, a continuation may incorrectly witness a future’s intermediate ef-
fects transitively (see Fig. 4). Here, functions g, h, and i force a particular
interleaving between the future and Thread 2. It is incorrect for the continua-
tion to witness the write of 1 to z by Thread 2 because Thread 2 subsequently
overwrites z and synchronizes with the future by writing to y and then waiting
until the future writes 2 to x. Thus, the continuation should only witness the
value 2 for z.

As another example, consider the program given in Fig. 5 consisting of two
explicitly created threads and one future denoted by the gray box. The functions
g() and h() encode simple barriers that ensure synchronization between the
future and Thread 2 - the future computation completes only after Thread 2
finishes. Is it possible for the continuation to read the value 1 for the shared
variable z? Notice that the future does perform a write of 1 to z and in fact this
is the last write the future performs to that shared variable. However, Thread 2
assigns 2 to z prior to assigning 2 to y. The future in Thread 1 waits, by executing
the function g, until Thread 2 writes 2 to y. Therefore, the continuation must
witness the write of 2 to z as this shared update logically occurs prior to the
completion of the future. The future’s write of 1 to z is guaranteed to occur
prior to the write of 2 to z in Thread 2, since Thread 2 waits until the write to
x to perform its update to z.

let fun g() = if !y = 2
 then ()
 else g()
 fun f() = x := 1;g();
 x := 2
 val tag = future (f)
in !z; touch (tag)
end

Initially: x=0, y=0, z=0

let fun h() = if !x = 1
 then z := 1
 else h()
 fun i() = if !x = 2
 then ()
 else i()
in h(); z:= 2; y := 2; i()
end

Can the continuation see z = 1?

Thread 1 Thread 2

Fig. 4. Although the future and continuation do not conflict in the variables they ac-
cess, the continuation may incorrectly witness the future’s intermediate effects through
updates performed by Thread 2.

let fun g() = if !y = 2
 then ()
 else g()
 fun f() = z := 1;
 x := 1; g()
 val tag = future (f)
in !z; touch (tag)
end

Initially: x=0, y=0, z=0

let fun h() = if !x = 1
 then ()
 else h()
in h(); z := 2; y := !z
end

Can the continuation see z = 1?

Thread 1 Thread 2

Fig. 5. The continuation cannot witness the future’s write to z as this is an interme-
diate effect. The write to z in Thread 2 is transitively made visible to the continuation
since the future synchronizes with Thread 2.

2.3 Future and future interaction

Similar issues arise when two futures witness each other’s effects (see Fig. 6).
Here, each thread creates a future; there are no dependencies between the future
and its continuation. Assuming no compiler reorderings, the continuation of the
future created by Thread 1 writes to x and the continuation of the future created
by Thread 2 writes to y. The futures created by Thread 1 and 2 read from y

and x respectively. It should be impossible for Thread 1 to read 1 from y and
Thread 2 to read 1 from x. However, executing the futures arbitrarily allows for
such an ordering to occur if the continuation of the future created by Thread
2 executes prior to the future in Thread 1 and the continuation of that future
executes prior to the future created by Thread 2. In such an execution the futures
witness values that logically should occur after their executions.

let fun g() = !x;
 val tag = future (g)
in y := 1; touch (tag)
end

let fun f() = !y;
 val tag = future (f)
in x := 1; touch (tag)
end

Initially: x=0, y=0, z=0

Can the future in Thread 1 see y = 1 and the future
in Thread 2 x = 1?

Thread 1 Thread 2

Fig. 6. Two futures created by separate threads of control may interact in a way that
violates sequential consistency even though each future has no violations.

3 High Level Semantics

In this section, we define an operational semantics to formalize the intuition
highlighted by the examples presented above; the semantics is given in terms of a
core call-by-value functional language with first-class threads and references. The
safety conditions are defined with respect to traces (τ̄). The language includes
primitives for creating threads (spawn), creating shared references (ref), reading
from a shared reference (!), and assigning to a shared reference (:=). We extend
this core language with primitives to construct futures (future) and to wait on
their completion (touch) (see Fig. 7).

Our language omits locking primitives; locks ensure that multiple updates
to shared locations occur without interleavings from other threads. For our pur-
poses, it is sufficient to track reads and updates to shared locations to character-
ize the safety conditions underlying the examples given in the previous section.
As such, locks do not add any interesting semantic issues and are omitted for
brevity.

In our syntax, v ranges over values, l over locations, e over expressions, x
over variables, `f over future identifiers, `c to label computations associated with
the continuation of a future, and t over thread identifiers. A program state is
defined as a store (σ), a set of threads (T), and a trace (τ̄). We decorate thread
identifiers that are associated with futures with the identifier of the future, its
continuation, or φ if the thread was created via a spawn operation. We assume
future identifiers embed sufficient information about ancestry (i.e. futures cre-
ated by another future or continuation) so that we can create fresh identifiers
based on the parent’s identifier (freshI) [2].

A trace (τ̄) is a sequence of actions represented by four types of trace ele-
ments: (1) R(id , l) to capture the identifier id of the thread or future performing
the read as well as the location (l) being read, (2), W (id, l) defined similarly for
writes, S(id, id′) to record spawn actions for a newly created thread with identi-
fier id ′ created by thread id , and (4) F (id, id′) to record the parent/child relation
for newly created futures either from other futures or threads.

v ∈ Value
`f , `c ∈ Id
t ∈ TID

l ∈ Location

T ∈ Thread := (tId, e)

id ∈ ID := tφ + t`f + t`c

σ ∈ Store := Location
fin→ Value

τ ∈ TraceElement := R(id, l) + W (id, l) +
S(id, id) + F (id, id) + A(id,)

T := T | T || T

e := unit | x | v | λx.e | e e
| spawn e | ref e | touch e
| e := e | !e | future e

v := unit | l | ` | λx.e
E := · | E e | v E | touch E

| E := e | l := E | ref E | !E

Safety

τ̄ ; τ̄ ′ safe(τ̄ ′)

safe(τ̄)

∀t`f ∈ τ̄ | max (τ̄ , t`f) <τ̄ min(τ̄ , t`c)

safe(τ̄)

Dependency Preserving Permutation

τ3 = A(id,) A(id,) /∈ τ̄2

τ̄ = τ̄1 : τ̄2 : τ3 : τ̄4

τ̄ ′ = τ̄1 : τ3 : τ̄2 : τ̄4

dep(τ̄ , τ̄ ′)

τ̄ ; τ̄ ′

Inter-Thread Dependencies

τ̄ = τ̄1 : τ̄2 : R(id, l) : τ̄3 τ̄ ′ = τ̄1 : R(id, l) : τ̄2 : τ̄3

W (id′, l) /∈ τ̄2 S(id′, id) /∈ τ̄2 F (id′, id) /∈ τ̄2 id′ 6= id

dep(τ̄ , τ̄ ′)

τ̄ = τ̄1 : τ̄2 : W (id, l) : τ̄3 τ̄ ′ = τ̄1 : W (id, l) : τ̄2 : τ̄3

R(id′, l) /∈ τ̄2 S(id′, id) /∈ τ̄2 F (id′, id) /∈ τ̄2 id′ 6= id

dep(τ̄ , τ̄ ′)

Fig. 7. Language Syntax and Grammar

There are two safety rules that capture the notion of a well-behaved execu-
tion defined in terms of traces. The first rule states that an execution is safe if
its trace enforces serial execution between all futures and their continuations.
Serializability holds if the last action of a future precedes the first action of its
continuation. The auxiliary relations min and max are defined in the obvious
manner and return the first trace element and last trace element for a given
identifier respectively. We use the notation <τ̄ to order two trace elements in
the trace τ̄ .

The second rule defines an equivalence relation over safe traces in terms of a
dependency preserving permutation: given an execution having a safe trace, any
safe permutation of that trace (as defined by this relation) is also safe, and thus

App

σ, τ̄ , (tI , E[(λx.e) v]) || T →
σ, τ̄ , (tI , E[e[v/x]]) || T

Ref

l fresh τ = W (tI , l)

σ, τ̄ , (tI , E[ref v]) || T →
σ[l 7→ v], τ̄ .τ, (tI , E[l]) || T

Touch

T = (t`f , v) || T
′

σ, τ̄ , (tI , E[touch `f]) || T → σ, τ̄ , (tI , E[v]) || T

Spawn

t′ fresh τ = S(tI , t′φ)

σ, τ̄ , (tI , E[spawn e]) || T → σ, τ̄ .τ, (t′φ, e) || (tI , E[unit]) || T

Future

t′ fresh `f , `c freshI τ = F (tI , t`f)

σ, τ̄ , (tI , E[future e]) || T → σ, τ̄ .τ, (t`c , e) || (t′`f , E[`]) || T

Read

τ = R(tI , l)

σ, τ̄ , (tI , E[! l]) || T →
σ, τ̄ .τ(tI , E[v]) || T

Write

τ = W (tI , l)

σ, τ̄ , (tI , E[l := v]) || T →
σ[l 7→ v], τ̄ .τ(tI , E[unit]) || T

Fig. 8. Evaluation rules.

any execution that yields such a trace is well-behaved. The permutation rules
preserve two types of dependencies: (1) intra-thread dependencies that ensure
logical consistency of a given thread of control and (2) inter-thread dependencies
that define a happens-before relationship among threads. The wild card trace
element (A(id,)) matches any action performed by a future, continuation, or
thread with the identifier id. A trace element can be permuted to the left of a
series of actions τ̄2 as long as that sub-trace does not contain any trace elements
with the same identifier.

Inter-thread dependencies are defined by the relation dep that compares the
permuted trace to the original trace. There are two rules that assert that inter-
thread dependencies are preserved, one for reads and one for writes. The two
relations mirror one another. A trace element R(id , l) commutes to the left of
a trace subsequence τ̄2 if τ̄2 does not contain an action performed by another
that either writes to l (which would result in a read-after-write dependence), or
does not spawn a thread or a future with identifier id . A similar right-mover [4]
construction applies to writes.

The evaluation rules used to generate traces are given in Fig. 8, and are
standard. To illustrate the rules, consider the unsafe execution of the program
shown Fig. 6. Let the trace be F (1, 3f) F (2, 4f) W (4c, y) W (3c, x) R(3f , y)
R(4c, x). Here, F (1, 3f) denotes the creation of the future by thread 1 with label
3f , F (2, 4f) denotes the creation of the future in thread 2 with label 4f , W (4f , y)
denotes the write of variable y by this future’s continuation, W (3c, x) denotes
the write of variable x by future 3f’s continuation, R(3f , y) denotes the read of
y by the first future, and R(4c, x) captures the read of x by the second future.

In the above trace, not all continuation actions occur after their future’s.
Because it is not a trivially serial trace, we need to consider whether it can
be safely permuted. We can permute this trace to F (1, 3f) F (2, 4f) W (4c, y)
R(3f , y) W (3c, x) R(4f , x); such a permutation preserves all inter-thread de-
pendencies found in the original. But, no further permutations are possible; in
particular, commuting R(4f , x) to the left of W (4cy) would break the depen-
dency between W (3c, x) and R(4f , x). Similar reasoning applies if we permuted
the actions of the second future with its continuation. Hence, we conclude the
trace is unsafe.

4 Implementation

To enable scalable construction of safe futures, we formulate a strategy that as-
sociates capabilities with threads, futures, as well as the locations they modify
and read. Abstractly, capabilities are used to indicate which effects have been
witnessed by a future and its continuation, either directly or indirectly, as well as
to constrain which locations a future and its continuation may read or modify.
Capabilities ensure that happens-before dependencies are not established that
would violate sequential consistency for a given thread of control. Thus, ca-
pabilities guarantee that an execution is equivalent to an execution where the
future completes prior to its continuation’s start in much the same way that the
depedency preserving permutation asserts equivalence between traces.

A capability is defined as a binding between a label `, denoting the dynamic
instances of a future, and a tag. There are three tags of interest: F to denote that
a thread or location has been influenced by a future, C to denote hat a thread or
location has been influenced by a continuation, and FC to denote that a thread
or location that first was influenced by a future and later by its continuation. It
is illegal for a computation to witness the effects of a continuation and then the
continuation’s future (i.e., there is no CF tag). Tracking multiple labels allows
us to differentiate between effects of different futures.

When a future with label ` is created, a constraint is established that relates
the execution of the thread executing this future with its continuation. Namely,
we add a mapping from ` to F for the thread executing the future and a mapping
from ` to C for the thread executing the continuation. When the future or con-
tinuation reads or writes from a given location, we propagate its constraints to
that location. Therefore, capabilities provide a tainting property that succinctly

records the history of actions performed by a thread, and which threads as well
as locations those actions have influenced.

To ensure a thread T ’s read or write is correct, it must be the case that
either (a) T has thus far only read values written by the future `; (b) T has thus
far only witnessed values written by the continuation of future `; or (c) T had
previously read values written by the future, but now only reads values written
by the future’s continuation. If T has previously read values written by the future
`, and then subsequently read values written by its continuation; allowing T to
read further values written by the future would break correctness guarantees
on the future’s execution. Thus, prior to a read or a write to a location, if that
location has capabilities associated with it, we must ensure that the thread which
is trying to read or write from that location also has the same capabilities.

4.1 Capability Lifting

Capabilities can be lifted in the obvious manner. A capability can be lifted to a
new capability that is more constrained. A thread or location with no capability
for a given label ` can lift to either C or F. A thread which has a capability of F
can lift the capability to FC and similarly a thread with a capability C can lift the
capability to FC. A future and its continuation can never lift their capabilities
for their own label. We allow a given thread to read or write to a location if its
capabilities are equal to those for the given location. When a future completes,
it is safe to discard all capabilities related to the future.

Based on capability mappings, we can distinguish between speculative and
non-speculative computations. A continuation of a future is a speculative compu-
tation until the future completes. Similarly, any thread which communicates with
a continuation of a future, becomes speculative at the communication point. On
the other hand, any thread which has only F capabilities or an empty capability
map is non-speculative. A future may in turn be speculative. As an example,
consider the following program fragment which creates nested futures:

let fun g() = ...

fun h() = ... future(g) ...

fun i() = ... future(h) ...

in i()

end

At the point of the creation of the future to evaluate g, the remainder of the
function h (the future evaluating g’s continuation) is speculative. The thread
evaluating g as a future would have capabilities `g 7→ F and `h 7→ F and the
thread evaluating the continuation would have capabilities `g 7→ C and `h 7→ F.

Using our notion of capabilities, we can handle future to future interactions
by ensuring that the future and its continuation have consistent capabilities upon
the futures completion. Since multiple threads of control can create futures (as
in our example in Fig. 6) it is possible for a continuation of a future f to witness
the effects of some other future g while the future f witnesses the effects of
g’s continuation. This would violate the dependencies imposed by sequential
evaluation of both threads of control. To account for this, we check that a future

and its continuation have consistent capabilities when a future completes. In
addition, when a location or thread that has a speculative capability (i.e. C, FC)
acquires a capability for a future ` (i.e. ` 7→ F) we impose an ordering constraint
between the future of the speculative capability and the future `. Namely, the
future ` logically must occur after the future of the continuation whose effect
was witnessed. The manifestation of these checks directly mirrors the dependency
preserving permutation rules described earlier.

4.2 Evaluation

To illustrate the benefits of our capability mechanism to provide safety in pres-
ence of both futures and threads, we tested our prototype implementation, com-
paring traditional safe-futures to threads and futures. All experiments were ex-
ecuted on a 16-way 3.2 Ghz AMD Opteron with 32 GB main memory. We exe-
cuted the benchmark in two configurations. The first was a traditional safe-future
implementation that leveraged capabilities for commit checks. This configura-
tion did not include any mechanisms to track future to thread dependencies nor
the rollback mechanism to revert multiple threads. The second configuration was
our futures and threads implementation described above.

180 2 4 6 8 10 12 14 16

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

Number of Cores

N
or

m
al

iz
ed

 S
pe

ed
up

write-dominant

read-dominant

Fig. 9. Comparison of safe futures to futures and threads on all-pairs shortest path.

We tested both implementations on an all-pairs shortest path algorithm
(Floyd-Warshall). The algorithm operates over a matrix representation of a
graph of 16 million nodes. It executes a phase to calculate the shortest path
through a given node in the graph, making the total number of phases pro-
portional to the number of nodes in the graph. The algorithm takes as input
the edge-weight matrix of a weighted directed graph and returns the matrix of
shortest-length paths between all pairs of nodes in the graph. The algorithm
works by first computing the shortest path between two given nodes of length
one. It then computes the shortest path between the two nodes by increasing
length.

Safe futures are able to extract parallelism between separate phases, allowing
the computation of distinct phases in parallel. Although each phase depends on
the phase prior, it is possible to execute multiple phases in parallel by stagger-
ing their executions. The amount of parallelism is limited by the dependencies
between phases. The futures and threads implementation can not only extract
parallelism between separate phases of the algorithm, but also parallelism within
a phase. This is accomplished using fork-join parallelism, and is not easily ex-
pressible using only safe futures without significant modifications to the program
structure. We observe that threads can be allocated to compute over different
parts of the matrix within a given phase by splitting the matrix into conceptual
chunks. Although this is easily expressed using threads, safe-futures require the
programmer to express the splitting of the matrix via control flow within each
phase. This occurs because there does not exists a mechanism to constrain the
execution of a future over a part of a data structure.

In addition, a safe futures-only strategy would enforce serializability between
each chunk, even though this is not necessary. Results are summarized in Fig. 9.
Notice that after executing 6 phases in parallel, the benefits of using only safe
futures decreases. This occurs due to the higher rate of aborts from the depen-
dencies between phases. In this workload, one future is created for each available
processor meaning that on four cores four phases are executed in parallel at any
given moment. In all cases roughly 16 million futures are created (one per phase),
but the number of phases executed in parallel depends on the availability of pro-
cessors. In the futures and threads implementation, we create one thread for
every two available processors per each phase. Each thread is split into a future
and continuation, allowing the computation of two phases in parallel. The to-
tal number of threads (and futures) is therefore 16 million times the number of
cores/2. In both implementations, it is not beneficial to create more speculative
work than the amount of processors available.

Fig. 9 shows the benefits of using futures with threads on two different types
of workloads for the all-pair shortest path problem, one containing 5% writes
(read-dominant) and the other 75% writes (write-dominant). The workloads are
generated using the observation that paths through nodes which are ranked
higher in the matrix are utilized in later phases. If the weights of edges between
higher ranked nodes are smaller more writes occur since new smaller paths are
found in successive phases. The read-dominant workload, on the other hand, is
generated by making the edge-wights between lower ranked nodes smaller than
the those between high ranked nodes. We see that futures with threads outper-
form using only safe futures in both styles of workload. In the read-dominant
workload, the number of aborts for having futures-only is roughly 2 times higher
(5432 aborts total). In comparison, in the write-dominant workload, the num-
ber of aborts for having just safe futures goes as high as 5 times (around 25255
aborts total) more than having both futures and threads. In both the workloads,
we see more aborts due to the large number of cross phase data dependencies.
This is especially true when speculating across more than four phases of the
algorithm as the benefits of staggering executions becomes muted. The write-

dominant workload results in more aborts as the number of data dependencies
between any two phases increases. The above experiment illustrates the bene-
fits of using futures with threads over just safe futures for a benchmark which
is more write-dominant. This occurs because the futures with threads scheme
can extract parallelism from within each phase, thereby limiting the number of
parallel speculative phases necessary to keep all processors busy.

5 Related Work and Conclusion

Futures are a well known programming construct found in languages from Multi-
lisp [5] to Java [6]. Many recent language proposals [7–9] incorporate future-like
constructs. Futures typically require that they are manually claimed by explicitly
calling touch. Pratikakis et. al [10] simplify programming with futures by pro-
viding an analysis to track the flow of future through a program and automating
the injection of claim operations on the future at points where the value yielded
by the future is required, although the burden of ensuring safety still rests with
the programmer.

There has been a number of recent proposals dealing with safe-futures. Welc
et. al [3] provide a dynamic analysis that enforces deterministic execution of
sequential Java programs. In sequential programs, static analysis coupled with
simple program transformations [1] can ensure deterministic parallelism by pro-
viding coordination between futures and their continuations in the presence of
mutable state. Unfortunately neither approach provided safety in the presences
of exceptions. This was remedied in [11, 2] which presented an implementation
for exception-handling in the presence of safe futures.

Flanagan and Felleisen [12] presented a formal semantics for futures, but did
not consider how to enforce safety (i.e. determinism) in the presence of muta-
ble state. Navabi and Jagannathan [13] presented a formulation of safe-futures
for a higher-order language with first-class exceptions and first-class references.
Neither formulation consider the interaction of futures with explicit threads of
control. Futures have been extend with support for asynchronous method calls
and active objects [14]. Although not described in the context of safe-futures,
[15] proposed a type and effect system that simplifies parallel programming by
enforcing deterministic semantics. Grace [16] is a highly scalable runtime sys-
tem that eliminates concurrency errors for programs with fork-join parallelism
by enforcing a sequential commit protocol on threads which run as processes.
Boudol and Petri [17] provide a definition for valid speculative computations
independent of any implementation technique. Velodrome [18] is a sound and
complete atomicity checker for multi-threaded programs that analyzes traces of
programs for atomicity violations.

This paper presents a dynamic analysis for enforcing determinism in an ex-
plicitly concurrent program for a higher-order language with references. Safety
is ensured dynamically through the use of a light weight capability tracking
mechanism. Our initial prototype indicates that futures and threads are able to
extract additional parallelism over a traditional safe-future approach.

Acknowledgements: This work is supported by the National Science Foun-
dation under grants CCF-0701832 and CCF-0811631.

References

1. Navabi, A., Zhang, X., Jagannathan, S.: Quasi-static Scheduling for Safe Futures.
In: PPoPP, ACM (2008) 23–32

2. Navabi, A., Zhang, X., Jagannathan, S.: Dependence Analysis for Safe Futures.
Science of Computer Programming (2011)

3. Welc, A., Jagannathan, S., Hosking, A.: Safe Futures for Java. In: OOPSLA, ACM
(2005) 439–435

4. Flanagan, C., Qadeer, S.: A Type and Effect System for Atomicity. In: PLDI.
(2003) 338–349

5. Halstead, R.: Multilisp: A Language for Concurrent Symbolic Computation. ACM
Trans. Program. Lang. Syst. 7 (1985) 501–538

6. http://java.sun.com/j2se/1.5.0/docs/guide/concurrency.
7. Allan, E., Chase, D., J. Hallett, V.L., Maessen, J., Ryu, S., Steele, G., Tobin-

Hochstadt, S.: The Fortress Language Specification Version 1.0. Technical report,
Sun Microsystems, Inc. (2008)

8. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von
Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster
computing. In: OOPSLA, ACM (2005) 519–538

9. Liskov, B., Shrira, L.: Promises: Linguistic Support for Efficient Asynchronous
Procedure Calls in Distributed Systems. In: PLDI, ACM (1988) 260–267

10. Pratikakis, P., Spacco, J., Hicks, M.: Transparent Proxies for Java Futures. In:
OOPSLA, ACM (2004) 206–223

11. Zhang, L., Krintz, C., Nagpurkar, P.: Supporting Exception Handling for Futures
in Java. In: PPPJ, ACM (2007) 175–184

12. Flanagan, C., Felleisen, M.: The semantics of future and an application. Journal
of Functional Programming 9 (1999) 1–31

13. Navabi, A., Jagannathan, S.: Exceptionally safe futures. In: COORDINATION,
Berlin, Heidelberg, Springer-Verlag (2009) 47–65

14. de Boer, F.S., Clarke, D., Johnsen, E.B.: A Complete Guide to the Future. In:
ESOP, Springer-Verlag (2007) 316–330

15. Adve, S.V., Heumann, S., Komuravelli, R., Overbey, J., Simmons, P., Sung, H.,
Vakilian, M.: A type and effect system for deterministic parallel java. In: OOPSLA.
(2009)

16. Berger, E.D., Yang, T., Liu, T., Novark, G.: Grace: safe multithreaded program-
ming for c/c++. In: OOPSLA, New York, NY, USA, ACM (2009) 81–96

17. Boudol, G., Petri, G.: A Theory of Speculative Computation. In: ESOP. (2010)
165–184

18. Flanagan, C., Freund, S.N., Yi, J.: Velodrome: a sound and complete dynamic
atomicity checker for multithreaded programs. In: PLDI. (2008) 293–303

