Quasi-Static Scheduling for Safe Futures

Armand Navabi

Xiangyu Zhang

Suresh Jagannathan

Purdue University, Department of Computer Science, Weftyledte, Indiana 47907
{anavabi,xyzhang,suresh}@cs.purdue.edu

Abstract

Migrating sequential programs to effectively utilize ngenheration
multicore architectures is a key challenge facing appbcatlevel-
opers and implementors. Languages like Java that support co
plex control- and dataflow abstractions confound classaceib-
matic parallelization techniques. On the other hand, thtoing
multithreading and concurrency control explicitly intoograms
can impose a high conceptual burden on the programmer, apnd ma
entail a significant rewrite of the original program.

In this paper, we consider a new technique to address this is-
sue. Our approach makes usefafures a simple annotation that
introduces asynchronous concurrency into Java programgro-
vides no concurrency control. To ensure concurrent exacuatbes
not yield behavior inconsistent with sequential execufica, ex-
ecution yielded by erasing all futures), we present a newr-int
procedural summary-based dataflow analysis. The analysists
lightweight barriers that block and resume threads exeguii-
tures if a dependency violation may ensue. There are noredmist
on how threads execute other than those imposed by theserbarr

Our experimental results indicate futures can be leveraged
transparently ensure safety and profitably exploit pdisite in
contrast to earlier efforts, our technique is completelstgdae, and
requires no modifications to the underlying JVM.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guage§ Language Constructs and Features—Concurrent program-
ming structures

General Terms Algorithms, Languages, Reliability, Performance

Keywords concurrency control, future, static program analysis

1. Introduction

Migrating existing sequential programs to next-generatinulti-
core and many-core architectures is a key challenge cdirigpn
application developers, implementors, and architectiriguages
such as Fortran in which computation is mostly expressetyana
able control-flow abstractions (e.g., loops), automatialeliza-
tion technigues that expose concurrent execution acrags ite
erations is a feasible way to exploit available parallelismlan-
guages like Java which include more complex dataflow andalbnt
flow mechanisms, these techniques are not likely to be astisfie
While programmers can leverage Java’'s support for muléatiing

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’08, February 20-23, 2008, Salt Lake City, Utah, USA.
Copyright(© 2008 ACM 978-1-59593-960-9/08/0002. . . $5.00.

to expose concurrency, this flexibility comes at a price. Ravg
programs to be explicitly multi-threaded is non-triviagquiring
deep knowledge of the program’s intended behavior. Wedlkn
problems such as data races, deadlocks, etc. can easily Becu
cent work that leverages higher-level abstractions sucofiware
transactions [12, 14] can alleviate some of these issuethdonus
still remains on the programmer to inject transactions (atated
concurrency abstractions) correctly, to ensure that thdtiag pro-
gram maintains the invariants assumed by the original.

In this paper, we consider an alternative that exploits tioth
analytical capability of compilers, and a programmer’s dom
specific knowledge. Informally, parallelizing a programmsists of
two major tasks: (a) identifying program points where conent
execution may be initiated, and (b) incorporating conaquryecon-
trol to ensure threads access shared data safely, witholattivig
intended dependencies. The former is arguably simplerttreatat-
ter: making an unwise choice for where concurrency shoulish-be
troduced can lead to poor performance, but failure to ctyreco-
tect shared data can lead to erroneous results. Building tiniin-
tuition, our approach only requires programmers to speafyor-
tunities for concurrencyyithoutrequiring them to also specify con-
currency control. Our goal is to provide a portable and ligtight,
mostly transparent, translation mechanism for languageslava
that allows simply annotated sequential programs to ephuial-
lel computing resources when possible. While it is true ilhabme
cases effective utilization of these resources will regiaimajor re-
structuring of the original sequential program, includthg intro-
duction of possibly complex concurrency control mechasiswe
believe that there is a broad class of applications for wbarhpiler
analysis, along with minimal runtime support can be levedamp
avoid such drastic surgery.

We usefutures as our concurrency abstraction. Futures are
found in thej ava. uti | . concurrent package which is part
of the Java 2 Platform Standard Edition 5.0. The future fater
is extremely simple, and effectively serves as an annotatio
method calls that allows the call to be executed asynchsinou
A subsequentlaim operation on the future serves as a barrier that
blocks until the future completes. Simply using futureitodduce
concurrency into Java programs is unfortunately insuffici@vith-
out appropriate safeguards such as locks to ensure contiyrre
executing futures access shared data correctly, a futuretated
program may exhibit races, deadlocks, and other ill-ddsire-
havior. Notably, even the introduction of appropriate $yoaiza-
tion on shared data may be insufficient since interleavirecex
tion among futures may lead to race and deadlock-free exesut
that are nonetheless inconsistent with the behavior of tiggnal
(future-erased) sequential program.

Earlier work on this subject has adapted techniques based on
thread-level speculation and transactional memory toreafde-
sired safety properties. The basic idea is to execute thresgate-
senting futures in a conceptual sandbox. If a thread maatigsi|
shared data in ways that violate program dependencies,ré- is

voked, and all of its effects discarded. By requiring thetime

to detect and remedy dependency violations, these apmsdice
the programmer from explicitly weaving a concurrency colro-

tocol within the application. Unfortunately, these tecjuds also
require hardware support [21, 16] or a heavyweight runti8@g.[
Because sandbox maintenance requires support for objesibrre
ing, operation logging, additional metadata on object begdetc.,
performance results can vary widely, and in some calEgease
substantially. More importantly, portability is sacrifecsince in-
corporating these mechanisms entails non-trivial lovelenodifi-

cations to the JVM and/or underlying architecture.

In this paper, we explore technigues that shift much of the bu
den for enforcing safety from the runtime to the compiler. We
present a novel summary-based interprocedural statigsiaain
programs annotated with futures, and a program transfasmat
that injects synchronization primitives based on the asialput-
come. These primitives only require lightweight runtimesort.
The idea is that a synchronization barrier is introducednelier a
potential dependency violation as defined by the sequesgiabn-
tics may occur. Notification barriers are also inserted velten a
potentially offending shared access operation complétesad or
write operation on shared data also manipulated by futastanmti-
ated earlier must block until these futures complete thegesses.
We describe both the compiler framework and the runtime @ech
nisms used to inject and execute these barriers. There atheo
constraints on how threads execute other than those impgnsed
these barriers.

This paper makes the following contributions:

¢ We propose a technique callgdasi-static schedulinthat au-
tomatically inserts lightweight synchronization prinaés to
ensure safety given a future-annotated program. Our seffiety
teria ensures that execution of the program will have theesam
observable (deterministic) behavior as the sequentiajrpro
derived by erasing all futures. Our analysis is interprocaktl
and handles many Java features including dynamic threading

We devise a novel lightweight runtime that distributes eonc
rency control defined by the synchronization barriers ieser

by the analysis among the threads executing the computation

encapsulated by futures, rather than requiring the use eha c
tralized scheduler.

o We experimentally evaluate our techniques on a set of Java

class Exp{

1
int foo (Object x, int op) { foo " 9 s0;
1. S0; Rx;
2. switch (op) { S1;
3. case 1: S3;
4. Ry foo ()
5. S1; S0;
6. case 2: Ry;
7. Wi S1;
8. S2; S3;
9. } foo ()*
10. 33; r SO
1.} Wx;
12. .. S2;
13 tl =foo (x, 1); S3;
14, t2=foo (x, 1); foo ()* > So:
15. t3=foo (x,2); R >
16. t4=foo (x,1); Slx',
17. ; >
S4; s3.
) h \
(a). Code (b). Sequential Execution

Figurel. A Motivating Example.

fl = new future (foo (x, 1));
2 = new future (foo (x, 1));
3 = new future (foo (x, 2));
f4 = new future (foo (x, 1));
S4;

foo ()'
foo ("
foo 0%

PNAN D DD

. 2=12.get();
- t3=13.get();
. td="flget();
. tl =fl.get ();
yli4

Figure2. Concurrent Evaluation Using Futures.

evaluation of different calls tboo still yields deterministic behav-
ior consistent with a sequential version of the same program
To introduce concurrency, we ugetures a simple program-

benchmarks including some taken from the Java Grande [27] ming abstraction that permits the introduction of asynnbrs

and DaCapo [3] benchmark suites, OO7 [6], an object-oréente
database application, and a red-black tree implementétion
Our results confirm our hypothesis that quasi-static sdivegiu
can be an effective technique to easily migrate sequential p
grams to multicore systems with minimal restructuring.

2. Overview

Consider the example shown in Fig. 1(a). Methiab(. . .) per-
forms various operations on objextdepending on the parame-
ter op. More specifically, it read-accessesf op==1 and write-
accesseg if op==2. In this sample progranf,oo is called four
times, performing in order two read operations, a write apen,
and then another read operation on the same okj&ymbolf 0o*
denotes théth call of method oo.

Suppose we wish to execute the calld o in parallel. Con-
current execution of these calls must still adhere to thedépncy
requirements imposed by sequential evaluation: a readsquEr-
formed in one call must not witness a write access perfornyed b
a later one, and a write access in one call must not follow d rea
performed by a later one. Thus, we wish to ensure that cosurr

computation into a sequential program. While first intragtlién
the context of Lisp, futures are also found intheva. uti |l . co-
ncur r ent package in the Java 2 Platform Standard Edition 5.0.

In Fig. 2, a call tof ut ure() divides the current execution
into two concurrent parts, one being the method call passebea
parameter, e.gf,00(. .) , which we refer to as thiuture and the
other the remainder of the computation, which we refer thha$u-
ture’s continuation For instance, the first cdllut ur e() spawns
a futuref 1, which executes thieoo method; the remaining execu-
tion, which includes three other calls two, S4, etc., constitutes
the continuation of 1. A future is claimed through the function
get () when the result of the computation produced by the future
is needed. At the claim point, the future and its continuaj@n.
For examplef 1 is claimed at line 13 in Fig. 2. Note that a contin-
uation or a future can further spawn futures and continnatie.g.,
futuresf 3 andf 4 are part of the continuation 6f2.

Significantly, the translation from the sequential program
Fig. 1(a) to the concurrent version using futures does nwb-in
duce any concurrency control: there are no locks, trarmastior
other synchronization mechanisms that enforce race-freesaes
to shared data manipulated withimo. Moreover, while concur-
rency control mechanisms like locks can be used to guaraatee

freedom, our requirements are stronger: we are only irtexteén
concurrent executions in which the observable behavidn@pto-
gram is consistent with a sequential execution of the sawgram
with all future annotations erased (i.e., the executionign E(b)).

In this example, enforcing this condition requires thatuinite ac-
cess performed bf/3, which is part of the continuation of future
f 2, wait for f 1 andf 2 to finish their read accesses. Similarly, the
read access performed by futdré must wait for the write access
in f 3 to complete. Simply protecting concurrent accesses t@ghar
data using locks cannot enforce these constraints.

Previously, researchers have proposed speculative thpaach-
ing and lazy recovery facilitated by software transactionemory
[30, 29] to address these safety issues. Fig. 3 explains dyesafe
futures [30] parallelize our sample program. The féwo oper-
ations are speculatively spawned as separate threads and ru
parallel. We elide details about the spawn and get opeafion
brevity. In the safe futures approach, versioning is usddlarate
shared write accesses, i.e., a shared write to an objetesraaew
version of the object. A shared read searches for the rigistare
For example in Fig. 3, the write access by the third futureegates
a new version ok. Although the read irf oo() ? happens after
the write, it gets the correct value from an older versiora tead
occurs before a write to the same variable which is in the'sead
logical past, e.g., the read froo() %, the continuation perform-
ing the offending read has to be revoked and re-executed &Suc
method supports speculative parallelization through anheeight
runtime without requiring static dependency analysis.

The use of a heavyweight runtime to track read and write ac-
cesses significantly limits the simplicity benefits of sgfeaula-
tive asynchronous methods for a number of reasons: (1)b&H
and re-execution happen frequently if shared writes amguést,
and can substantially degrade performance; (2). EmploSifiyl
machinery to commit updates, detect conflicts, and versia fbr
fine-grained futures can be expensive because maintenémase o
sociated data is performed at every shared access; (3) ftimeu
has the typical limitations of most STMs such as the incdjpalbd
effectively handle irrevocable actions such as I/O.

foo ()' foo () foo ()* foo ()*
SO SO0; S0; S0;
Rx; Rx;
S1; Wy; S1;
S3; Rx; S2; S3;
S1; S3; SO;
S35 Rx;
Vm
commit commit commit roll back

Figure 3. Transaction Runtime Support.

We propose a technique that supports speculative threatspa
ing and guarantees our desired safety property by compiler i
serted synchronizations that only require lightweightime sup-
port. The basic idea is thatshared access performed by a continu-
ation can not be discharged until all other futures in itsilaj past
have completed performing any conflicting accesBes.example
in Fig. 1(a), the read access at line 4 in a future can only be di
charged if all other futures in its logical past have eittigrgntered
theop==1 branch, implying the future will not subsequently per-
form any conflicting write access, or (2) finished the writeess.

Fig. 4 illustrates how we might enforce these conditionse Th
read access at line 5 is preceded by the baatiewved(a,), which
only completes when all futures that are in the logical pasteh
granted conditiorax, namely they have either entered a branch in
which no further conflicting write access towill be performed,

or they have finished performing the write. Thus, a condit®a
guard on shared data accesses. In this example, the gugaitbsic
when read accesses to shared varialtan take place. The instru-
mentations at 3 and 9 grant the permission. alheved(a,) barrier
requires a total logical ordering among futures (a futffrereated
within a continuation of a futur¢ is logically ordered after); we
discuss efficient non-centralized approaches to enfoiseothler-
ing in Section 3.3.

Note that similar instrumentation is required for the widie
cess. We omit it in Fig. 4 for brevity. Given this instrumetiuda,
the resulting runtime schedule is shown in Fig. 5. Ghent barrier
in the first future discharges tlal owed in the second future, which
requires all logically preceding futures (the first futunehis case)
to grant permission. Thallowed in the first future returns immedi-
ately as it has no preceding future. Tddeowed in the fourth future
does not return until the three preceding futures grantahelition.

The placement ofjrant barriers is key to the degree of par-
allelism achieved. In our example, a future immediatelyéssa
grant after it enters thep==1 branch and discharges other futures
so that the read access and its following statem®htandS3 can
run in parallel with other futures. A sub-optimal soluti@td have
the grant barriers at lines 3 and 9 combined and placed after the
swi t ch block. Despite being safe, it unnecessarily prevélts
S1 from running concurrently with statements in other futuoes
continuations. Note that if thedlowed barrier is placed at the begin-
ning of a future andyrant barrier is placed at the end, the resulting
scheduling induces a completely sequential execution.

1. switch (op) {
2 case 1:

3 grant(ay);
4 allowed(ay);
5. Rx;

6 S1;

7 case 2:

8. Wx;

9. grant(ay);
10. S2;

11.

Figure4. Instrumentation.

Compared to a STM-inspired solution [30, 29], our approach
features a very lightweight runtime. Synchronization dtads
such as the parametey in Fig. 4 are assigned at every program
point that performs a shared access instead of per objecteChr
nique requires no rollback support since the placemeatloived
andgrant barriers guarantees safety. While a static analysis leads
to low runtime overheads, the approximations it uses toreafde-
pendencies may be more conservative than necessary. Foplkexa
if the write access in the execution in Fig. 1 is for a différebject
than that accessed by concurrent reads, but the analysitudes
they are potentially aliases, the opportunity to execut®pera-
tions in the four futures concurrently would be missed. Nbae
less, we believe our technique is better suited to faciliegtsy mi-
gration of sequential programs to multi-core environméetsause
it does not burden implementations with the significant nessent
of a highly-tuned sophisticated runtime to enforce safety.

3. Analysis

From the example in the previous section, the challengesledt
by our techniques become clear. First, we need a static sisaly
that identifies all program points that perform conflictingesses.
Second, we need to insert synchronizations accordinglyeasdre
that they are deadlock free. Third, we need to devise a ligigiut
runtime to provide implementation support for these artimia.

foo ()! foo () foo ()° foo ()*
S0; S0, S0, S0,
grant(ay); .~ |grant(ay); grant(a,);
allowed(ay; ~-allowed(a);
Rx; Ry; ™ .
S1; SI; i
S3; S3; granifa); L
S2; ~atallowed(a,);
S3; Rx;
\j SI;
S3
\

Figure5. Runtime Schedule.

3.1 FutureAnalysis

A future analysiscomputes the set of futures that may run in
parallel with a program point. In other words] belongs to the
continuations of these futures. Based on the analysistredoived
andgrant barriers are inserted to enforce the safety property.

void A () void B (...0)

{ 8.
X =new (...); 9. f1 = new future (...);
B (x); 10. if(...)

NAUNE WD =

if (x.future = NULL) { 11. C (fl);
x.future.get(); 12. else
} 13. o.future = f1;
¥ 4.}
15. voidC(...y)
16.
17. y.get ();

}
Figure6. A more complex example illustrating the need for inter-
procedural analysis.

Ordinarily, the return point for a method or procedure caut i
mediately follows the call-site, in the absence of exceysidn a
method call encapsulated within a future, this propertydneet
hold. Indeed, it is likely that the point at which the futuseclaimed
is far removed from the point at which future is created. Aangh
in Figure 6, a future is spawned in methBdand is claimed either
in C, or escapes frorB and is then claimed iA. Determining the
set of active futures at any given point becomes even mor@lesm
in the presence of aliasing.

To analyze the set of futures that can run in parallel for a pro
gram point in circumstances as described above, we perfdtm a
ture analysison a program representation calleBuwture Spawning
Graph (FSG). If a method is spawned as a futurspawn edgés
introduced between the spawning point in the caller and dfiee
A claim edgeis introduced between the exit of a spawned method
and its corresponding claim point, indicated by a call of ge()
method. Figure 7 shows part of the FSG for the example in Sec-
tion 2. As can be seen, for futuréd andf 2, two spawn edges
L1 — L3,L2 — L3, and two claim edges4 — L5,L4 — L6
are inserted.

Spawn;,={ }
L1 N
foo () »»»»»»»»» (fl=future (...) Claim;,={ }
L3 T omedees . Future;,={ }
spawn edges L2 ‘
777777777 e f2=future (...))Spawni={L1}
777777 Claim;,={ }
Future;,={ L1}
L7
Spawn;,={L1,L2}
Claim;,={ }
Future;,={ L1,L2}
Spawng,={ } (S:;laa‘wnm:{{i‘])
Claima{ | -
Future,,={ L1} Future,={L 1}

Figure7. The Future Spawning Graph.

Future analysis is a summary-based interprocedural data flo
analysis (see Fig. 8). Functions summaries are computed in a
bottom-up phase and the final results are computed in a follow
ing top-down phase. Fig. 8 presents the detail of the armlysi
assumes the results of a may points-to analy3isin the bottom-
up phase, given a methad, a function summary is computed as
the transfer functionSpawnrepresents the set of futures that are
spawned imm or other functions called bgyn and not yet claimed.
Note that futures are identified by their static allocatitesClaim
represents the set of claims of futures spawned outsjdehich is
mainly used to construct the function summary. BSgrawnand
Claim entail forward computatiorSpawnrequires a union opera-
tion at a join point, wherea€laim requires an intersection since
a future can be considered claimed only if it is claimed alafig
incoming paths.

We consider the computation of ti&pawnset for each state-
ment in turn. In the case of a spawn statemlent f ut ur e(m
(...)) (wherel is the label denoting this program point), the
Spawn,,,. Set is computed by discarding elements in the kill-set
found in the summary of each methddhat mmay refer to, and
adding the corresponding elementsTia gen-set. Label is also
added to theSpawn ,,, set as the future spawned ainay run con-
currently with statements following the creation of theuft In
the case of a function catl(. . .) thatis not spawned as a future,
Spawn,,,, is computed similarly, except the label is not added.

Consider a program poitgtthat spawns a futurk and suppose
fis claimed in some methau different from the method in which
g is found. The claim summary fan can includeg provided that
there is no cyclic path (interprocedural or otherwise) tigtog that
does not include a claim dnThis condition is necessary to ensure
that a claim on a future indeed kills all instances of thaufet
For example, in the program below, althougfy] at 6 must point
to F'[¢] at 2, it cannot be easily determined statically whether the
get () operation at line 6 claims all the futures spawned at line 2.
Consequently, we have to assume that staterg@rdt 8 may run
concurrently with any of the futures created at line 2.

: for (i=...){
F[i]= new future (...);

(=)
F[j].9et();

 for

NoukwdhE
-

8: SO:

Computation of the claim set follows the same reasoning as
above. In the presence of a call to metmekither spawned within
a future or executed sequentially, tii#aim,.: set at a program
point is computed as the union of thi@aim;, at that point, and
the intersection of th&umClaim() sets over all methods that
may point to. In the presence of a callftoget () , if f must point
to a future spawned externallyg@andg cannot reach itself without
encountering its claing is added toClaimoq:.

Finally, SumSpawrand SumcClaimare just the corresponding
SpawrandClaimsets at the exit point of the corresponding method.

During the second top-down phase, dataflow facts are propa-
gated from callers to callees to compute the ffotiresets for each
statement. We conservatively compute #gure,,: of a method
nis entry point as the union of thButure;,, sets of all call sites to
M.

Example. Figure 7 shows an example of the results computed by
the analysis. During the bottom-up phase, method is first ana-
lyzed. Since it does not spawn or claim any futures, it hastime-
mary SumSpawnSumClainF¢. This result is used in the analysis
of the main body. Thus$pawn,,, (L2) = Spawn,,,,(L1) = {L1}

out

Assumptions: PT : [abel — P(abstract [ocati on) represents the result of a may points-to analysis. Abskoaations
can be object allocation sites, methods or future spawas. sitegle yields the points-to set of its argument if that set holdsnglsi
abstract location, and the empty set otherwigg. denotes intraprocedural control flow of methdfl 7 F' denotes interprocedural
control flow.

Output: Future : | abel — P(abstract | ocati on) represents the set of futures that may run in parallel witagement.
Initialization:

Vv labell in method mSpawneu: (1) = ¢, Claimou:(l) = Unknown

Thebottom-up phase:

Spawnin(l) == U (Spawnou:(p))
(p,l)EFm
Claimin(l) := [(Claimout(p))
(p,l)EFM
(Spawni, (1) — (N SumClaim(T))J(U SumSpawn(T))U{l } :future (n(...));
TePT(m) TePT(m
(Spawni, (1) — (N SumClaim(T))J(U SumSpawn(T)) Lom(...);
Spawneut(l) := TePT(M TEPT(m)
Spawnin(l) — {g | g € Single(f) and there is not a path
P:g— .. — gs.t.gisnotclaimed during’} l:f.get();
Spawn;n (1) otherwise.
Claimm()U(N SumClaim(T)) l:future (nm(...))
TEPT(m)
Claimou(l) := or 1o (.);

Claimin (1) | U{g | g € Single(f) andg is not local.

and thereisnotapath : ¢ — ... — g s.t. g is not claimed during?} [:f.get();
Claimin (1) otherwise.
SumSpawn(m := Spawneut(EXIT).
SumClaim(m := Claimou (EXIT).

Thetop-down phase:
Futureout(ENTRYmain) = ¢

Futureou(ENTRY) = U (Futurein(p))
(P, ENTRYp1)EIF
Futurein (1) = U (Futureou(p))
(p,l)EFN
Futureou: (1) = (Futurein (1) — Claimou: (1)) U Spawnin (1)

Figure 8. Future Analysis.

Assumptions. ReadWriteCon flict : T abel xTabel — {0,1} has value 1 if two program locations have conflicting access
types, namely, if one of them is a write, and 0 otherwise.

Output: Mark : | abel — {0,1} has value 1 if program pointcan conflict with a program point in futur®/ that is reachable
from {, and O otherwise.

Initialization:

Vie M, Markin(l) :==0

Analysis:
Markout (1) = U (Markin(s))
(I,s)eFps
Mark. (1 1 Jz € (Access(l) () PT(c)) and ReadWriteCon flict(l, c);
arkin(l) T Markout(l) otherwise.
U SumAccess(T) |: future (n(...)) or l: n(...);
Access(l) =4 TePT(m)
PT(1) otherwise.
SumAccess(M) := |J Access(l)

leM

Figure9. Given a program point and a futureM of ¢, mark the statements it/ that may reach an access that may conflict with

as a future is spawned ht. Spawn,,, (L5) = {L1,L2} since two
futures are spawned kL andL2. Spawn,,,(L6) = {L1} because
f2 at L5 must point toL2 and thusL2 is claimed. Note that5
does not add to it€laim set as it does not claim an external future.
During the top-down phas&uture sets are computed in the main
body and then propagated f®o. Futureou:(ENTRY fo0) =
Future;n (L1) | Future;n(L2) = {L1}. As the localSpawnsets
are all empty, according to the dataflow equation fature o,
each point irf oo has the same final resuluture o, = {L1}.

3.2 Concurrency Control Primitives Insertion

The next step of our analysis computes conflicting memory ac-
cesses and insertdlowed and grant barriers accordingly. Recall
that the critical invariant that must be satisfied is thatatement
that accesses a shared object has to wait for the complefiati o
conflicting accesses in concurrently executing futulidee set of
parallel futures at any given point is computed using thdyasim
described above.

More precisely, our analysis inserts alhowed barrier for each
shared access whoseFuture set is not empty. Given a method
M that is pointed to by an element iRuture(c), the analysis
described in Figure 9 is used to figure out program pointsgerin
grant barriers inM.

The analysis marks statementdrthat may perform an access
which conflicts withc along some path. The analysis is a backward
dataflow analysis — a statement is marked if any of its suocgess
are marked. Hence, the confluence operator is defined asisgi-u
A conflicting access is defined as a non-empty intersectitwmdsn
the points-to set of and the points-to set of the current statement
in which both statements are not reads. Note that if the ratte
is a method call, the set of accesses of the statement is e ofin
the summaries of all the methods that can be applied at tlait po

Given the analysis, the instrumentation rule is thatstatement
is not marked but its control flow predecessor is marked, this
statement is the earliest point along a path to promise ndlicon
until the end of the future, and thusggaant barrier can be inserted
immediately before .it

Example. Consider the example in Figure 7. Tvatlowed bar-
riers are inserted before the shared accessés/ &ndL8. Let
us focus on insertinggrant barriers accordingly folL7. Since
Futureow:(L7) = {L1} and methodf oo is the only future
spawned at 1, L7 may run in parallel with other operations in
f 00. Hence, the analysis in Figure 9 is appliedLid andf oo.
Statements$1, S2, S3, andL7 are not marked since they do not
conflict with the read of shared variabkeat L7. Statement.8 is
marked because the readxoft L7 conflicts with the write ofk at
L8. SincelL7 is not marked and its predecessor, the switch state-
ment, is marked (because its successdr&ais), according to the
insertion rule, arant barrier is thus inserted befoter. Similarly,
anotherallowed is inserted after the write and befo&. The re-
sulting instrumentation related 107 is exactly the same as that
presented in Fig. 4.

fl State,

sequencial execution

O spawn point

Figure 10. Dynamic Spawn Graph.

3.3 Runtime

An efficient lightweight runtime is critical for our technig to
work well in practice. As the safety property demands a share
access not be discharged until all concurrently executirtigrés
have completed their conflicting accessesalhowed barrier on a
condition ensures that all futures in the logical past hametgd the
condition. A naive implementation would maintain a seqistiyt
ordered list of all futures, and would consult this list prto any
shared access to determine if there is the possibility oflicts
from any future in the logical past of the one performing tbeesss.

While simple, such a design is highly inefficient. Consides t
graph shown in Fig. 10 that reveals the spawning relatignbbi
tween futures. We omit points where futures are claimed fiioen
figure. A node denotes a future spawn site, and the left ard rig
edges represent the spawned future and its continuatispece
tively. An edge represents a segment of sequential execufior
example, edgé& belongs to futurd 6; more precisely, it occurs
as the continuation of the future spawnedflfy denoted ag 5.
Thus, the actions performed by., f2, f3, f4 (andtheir as-
sociated continuations) as well as the operations perfoioyd 5
constituteE’s logical past. Note that 6’s continuation is not in-
cluded in the set; it logically executaster E completes. However,
since the interleaving of futures and the order in which tbem-
plete is dependent on scheduling decisions that are notfesam
the program, at any particular point of time, a future in thgidal
past of a statement may not yet have even been spawned.

In Fig. 10, dotted edges are used to represent possibles state
of program execution. For instanc®;ate; represents a possible
runtime image, inwhicti1, f2, f3, f5andf6 are spawned
but notf 4. If at this momentE is about to execute a shared access,
a runtime check on the futures that have currently been spawn
would omitf 4 and lead to a safety violation.

In addition to these correctness concerns, maintainindishe
of active futures corresponding to a logical sequentiakorday
be expensive because the order in which futures are spawtkd a
scheduled may be completely different from the desired esatipl
order. ConsiderStates, in which f1, f2, andf 4 are active.
Eitherf 3 or f 6 could be the next spawned future, even though
f 3 precedes 6 in the desired sequential execution order.

The main problem with our naive design is the maintenance of
a central image of active futures. Thus, rather than tryingrtforce
a global time ordering, our runtime distributes the ordgi@mong
individual threads responsible for executing futures.Ethread
maintains a local image of active futures in the order in Wwhic
they were created within this thread. This image is propbat
from a parent to its future children. For example in Fig 1@ th
main thread spawrfsl. During its execution, denoted by the edge
f1 — £6 in the main threadf 1 is the only active future in the
thread’s local image. In other words, althouigh further spawns
f2, f3 andf 4, the main thread is unaware of these actions.
From its point of view, these futures are indistinguishafotam
ordinary sequential method calls and the execution ofgitaat
barriers performed by their ancestdt promise the safety property
for accesses it performs. More precisdly, does not grant the
condition for a shared access until all its future childrentaining
these conflicting accesses indicate it is safe to do so. QGitic st
analysis helps ensure this behavior. When the main thressirsp
f 6, the thread responsible for executing this future inhetits
image of active futures from its parent (the main thread) thwog
has the active lis{f 1}. Whenf 6 spawnsf 5, the active list is
changed to bdf 1, f 5}. Note that the order these active futures
are spawned follows the sequential order.

The pseudocode of our runtime is presented in Fig. 11. Msthod
spawn and get maintain the list of local active futures. When a
future is spawned, the current thread acquires a globalridht

Tablel. A Sample Run with The Runtime Support.

Timestamp main fl f2 3 f4 conditiona
AL=¢ AL=¢ AL={f1} [AL={[1, f2} [AL={[1, f2, [3}
1 fl= new future (foo...) 0...00
2 f2= new future (foo...) SO 0...00
3 f3= new future (foo...) grant(a) SO 0...01
4 f4= new future (foo...) | allowed(a) grant(a) SO 0..011
5 S4 R: allowed(a) SO 0..011
6 S1 R. grant(a) 0..01011
7 S3 S1 W, allowed(a) 0..01011
8 S3 grant(a) 0..01111
9 S2 R 0..01111
void spawn (Future) void get (Future f) foo (... , int op, int n) Two futures with the form of

1. 15.{ ' ' 1.4 foo (...,2) are spawned

2. sync.hronﬁzed (gidLock) { 16. active.remove(f.id); 2. if (In) return;

3. fid= gid ++ 17.} 3. switch (op) { foo (...2)" foo (...2)*

2: a}lctive.add(f.id); ig void allowed (Condition c) 4 caseli if (n); if (tm);

6. need2Wait.setAll(); 20. { . 2 aRl)l:wed(a) ’ aRll?wed(a) d

7.} 21. if ('need2Wait[c]) return; : ’ X

8. 22. l=active.length(); 7. 8L 8Ly

9. 23. for (i=0; i<l; i++) 8. case2: foo(....,1);

10. 24 if (lc.getbit (active.get(i).id)) { 9. Wx; if ('n);

11. void grant (Condition c) 25. getCurrentThread().yield(); i(l) y S2; aR”"WEd(a);

12. 26. i--; . X5

13. c.setbit (getCurrentFuture().id); 27. continue; 12. foo (x, op, n-1); S1;

14. 3} 28. } 13. grant(a); foo(...,0);

29. need2Wait[c]=FALSE; } . return;
} grant(a); R
Figure11. Runtime. v grani(@); *yallowed(a);

new future and adds it to the list. The flaged2Wai t serves
as a shortcut to avoid redundant permission checking (dee/be
Each shared access has an associated condition whichreoatai
bitvector to maintain the status of all spawned futures. flitare
has performed the conflicting accesses, it callsgrant barrier
on the associated condition to set its bit. In the implentériaof
the allowed barrier,need2Wai t is first checked; if it is false, the
thread has earlier blocked on this condition and furtheckitay is
not necessary. If true, the operation scans the condittmtvector
and sees if the bits corresponding to the active futures haea
set. To avoid redundant checking, it stalls at individuaetrbits.

Example. Consider the execution in Table 1 with the instrumenta-
tion shown in Fig. 4. The main thread spawns four futuresad$-
tamps 1, 2, 3 and 4. The futures have the active list (Alg),d$ 1},
{f1, f2},{f1, f2, f3} respectively. Futurel sets the first
bit of conditiona at timestamp 3. Befork1 discharges the read, it
executes thallowed barriers, which returns right away f4’s ac-
tive list is empty. Futuré 2 sets the second bit afat timestamp 4.
Because the first bit is sdt2’'s execution ofallowed at timestamp
5 can return immediately without blocking. In contrast, aHewed
barrier performed by 4 is blocked until timestamp 9 becaut8

is a member of 4’s active list andf 3 does not notify until it has
completed its write. The safety property is thus guaranteed

4, Limitations

Figure 12. The Problem of Infeasible Paths.

later than necessary. Consider the example in the left hidiedo$
Fig. 12. It is very similar to our earlier example in Fig 1 egte
that S3 is instantiated with a recursive call to methbdo itself
and SO is replaced with a recursion termination check. This code
fragment summarizes the control structure in a frequentigked
method in OO7 [6], one of the benchmarks we consider in the
following section. The instrumentation that allows disdfiag the
read access is highlighted in the figure. As we can see, olysi®a
puts thegrant after the recursive call, even though it would be safe
to insert it at the same points as in Fig 4, namely, beRyrend after

W.. The reason is that the analysis is not capable of determihat
variableop does not change during recursive calls so that once the
method reaches the read access, it is infeasible for theigordo
reach the write access; subsequent recursive calls arardaad to
not change thep predicate. As a result, the analysis conservatively
assumes that both the read and write accesses may occur finsid
recursive call regardless of the path taken, which prevéetgrant
from being hoisted. Suppose two futures with the recursieptid
n=2 are spawned; their interleavings are depicted on the rigid h
side of Fig. 12. As we can see, the read access of the secamd fut
has to wait until the end of the series of recursive callsqgreréd

by the first, effectively sequentializing execution. Astpafr our
future work, we plan to integrate a theorem proving engite @ur
static analysis to alleviate this issue. Currently, ourlangentation
requires programmers to explicitly indicate infeasibléhgaso they
are not considered by the analysis.

Because a substantial component of our approach is based on a

static analysis, our safety guarantees are conservative.

For example, our technique can fail to sometimes explaériat
concurrency due to the presence of infeasible paths; ttatke pan
confound the analysis, and cause notification actions toderted

5. Experiments

For our experiments we annotated a set of Java benchmars wit
futures and then used our technique to statically insertwoancy

Table 2. Benchmark Characteristics.

Benchmark | Lines of Static Dynamic | Futures
Code Barrier # | Barrier# | Spawned
series 750 0 0 2
nc 3460 0 0 60000
| usear ch 34371 7 176 32
o7 2080 21 3350 500
Tr eeMap 1850 11 2080 400

control to guarantee safety. In general, annotating thelheark
programs required only minimal understanding of the codar O
experiments compare the performance of the transformechben
mark to its sequential version.

Our benchmarks were compiled with Sup'avac 1.5.0 com-
piler. We used the future implementation in thava. util . co
ncur r ent package. We used Soot version 2.2.4 for the analysis
and transformation. In particular, the SPARK [20] flow-insiive,
context-insensitive, and field-sensitive may points-talgsis was
used. We also used Soot to identify objects created in a riditiad
never escape as local objects. The analysis does not isene
rency barriers for field accesses of such objects. The erpets
were run on Java HotSpot(TM) 64-bit Server VM 1.5.0. Our hard
ware platform is an 1.8GHz Dual Core AMD Opteron(tm) Proces-
sor 865, with 8 dual-core CPU'’s, and 32GB of RAM running Linux
kernel version 2.6.9-34. We report results on 2 dual-cavegssors
(4 cores) and 8 dual-core processors (16 cores).

5.1 Benchmarks

As shown in Table 2, our experiments were performed on twa Jav
Grande benchmarks [27], nameder i es andnt, | usear ch
from the DaCapo benchmark suite (version 2006-10) [3], O&)7 [
and a Java tree map implementation that uses a red-blagk]tree
The Java Grande benchmarks are representative of conguutati
ally intensive programs where one can easily identify cad#iens
or methods where concurrency may be achietetsear ch is a
multi-threaded benchmark with explicit concurrency cohivhich
we transform to use futures. OO7 represents a complex laegu
database application, and the tree-map benchmark perfopms
erations on a dynamic mutable data structure. Because ot O
and tree-map manipulate complex data structures, exHiagiag,
and complicated sharing across procedure boundariesatbdgss
amenable to traditional loop-based parallelization tégpines.

Three out of the five benchmarks considersér(i es, nt
and Tr eeMap) were annotated by a simple syntactic inspection

serted by the analysis, and the number of futures spawneati e
execution. More details are provided below.

5.1.1 Java Grande

The seri es benchmark performs Fourier coefficients computa-
tion. The code calculates two terms for each coefficient by ca
ing the methodr apezoi dl nt egr at e twice. We annotated the
two calls toTr apezoi dl nt egr at e to be spawned as futures.
Then we claimed the result of the two futures. Our analysierele
mines that there is no need to insaltowed/grant barriers as the
method does not access any shared data.

The nt benchmark is an implementation of a Monte Carlo
Simulation. Our future version was a straightforward résvsuch
that the body of the main loop was spawned as a future. The
future initializes a local price stock object and perfornmns
computation on the object. After futures are spawned in thenm
loop, they are claimed in another loop and their results ddead
to the global vector as in the sequential benchmark. Oulyaisal
recognizes that each future performs calculations on lologcts
and therefore does not insert aayowed/grant barriers.

5.1.2 Lusearch from DaCapo

The |l usear ch benchmark is a text search tool that is part of
the DaCapo benchmark suite. The benchmark creates an index a
searches for keywords in large text files. The original bemeantk
creates 32 threads and each thread searches for apprdyiB&Q6
distinct words.

The threads create local search indexes and operate orolpcal
jects until they complete their search. Once a thread hapleted
searching the thread updates an integer field in the sharedtpa
object that spawned the threads. Access to this sharediarifa
protected by a monitor on the parent object.

In our experiments we replaced threads with futures and re-
moved all synchronization. To measure the computationedlpa
lelism exploited by futures, we isolated the computationdaging
the query files and the search indexes into memory beforenperf
ing the searches. Our analyses injected seven synchrionizas.
The calls were injected for field accesses of the parent &tlass
the futures. These accesses were the same as those prdigcted
explicit concurrency control mechanisms in the originalgram.

513 007

of the code, with no deeper understanding of the semantics of The underlying data structure in OO7 consists of a set offrgrapd

the benchmarkLusear ch was annotated by removing threads
and explicit synchronization primitives and replacing nthavith
futures. Annotating OO7 required a modest understandindpeof
underlying data and control structure (see Section 4). Alhe
rewrites of sequential programs required either changiisgtieg
method calls into future calls or moving the body of a looiat
future call with no further changes to the control flow or saties
of the application. In particular, our parallelizationsl diot con-
sist of partitioning arrays into sub-arrays or any othetrtesuring
of the code. Not all benchmarks we considered were amenable t
future insertion. We originally considered two other Javartgle
benchmarkspol dyn andr ayt r acer, but found that they are
not amenable to futures without a significant rewrite of tbdec
For example, theol dyn benchmark was naively translated from
C code, and thus all variables, including loop counters eva-
clared as class fields instead of local variables. Thergéomgsim-
ple translation from a method to a future requires that thietds
be considered as shared variables, and thus our techniquid wo
introduce a large number aflowed/grant barriers, making the ex-
ecution essentially sequential.

Table 2 also shows the number of lines in the original bench-
mark, the number of static and dynanaitowed/grant barriers in-

indices that are intended to simulate an object-orientedbadae
system. Each graph has a multi-level complex index to leatrsh
contain severatomposite partseach composed of document
and links to a graph oftomic parts The execution of OO7 is
dominated by data traversals. A traversal chooses a sirglte p
through the index graph and at the leaf level chooses a fixetbau
of composite parts to visit. This number is configurable; wedi
16 composite parts in our experiments.

For our experiments we used a single graph with seven levels
and each intermediate level has three children. There aotah t
of 500 composite parts at the leaf level, each correspontdirey
graph of 100000 atomic parts. We rewrote the sequentiadtsals
so that the composite parts were traversed concurrentigeShe
data structure contains 500 composite parts, the execafitime
future version spawns 500 future.

5.1.4 MultiTreeMap

The final benchmark perfornput andget operations on a red-
black tree implementation of a map. The MultiTreeMap [1] is a
TreeMap much likg ava. uti | . Tr eeMap except it allows du-
plicate keys to be entered. Our benchmark allows the usesrto ¢
figure the percenget operations and the percgmtit operations.

L] 2 procs (4 cores)
| 8 procs (16 cores)

0.8
0.6 T
0.4

0L

Elapsed time (normalized)

0.2

series mc lusearch 007 TreeMap

Figure 13. Elapsed time (normalized)

The sequential version of the benchmark loops 400 times @nd f
each iteration of the loop randomly selects operationscheandhe
configured parameters. For the future version, we simplywepd
each iteration of the loop as a future.

5.2 Results

Figure 13 reports the elapsed time for the future versionaghe
benchmark normalized against the average elapsed timeeof th
sequential version of the benchmark for 2 processors (4rara

8 processors (16 cores).

We also ran experiments to measure the fundamental overhea

of our runtime. The overhead was calculated by running theéu
version of each benchmark such that the calls to spawn fdlidre
not spawn any threads, and the futures were run synchrgnassl
ordinary methods, but with the synchronization overheatsed
by allowed/grant primitives. The overhead of our approach ranged
from less than a percent to roughly 3%.

5.2.1 Java Grande

The reported times for the Java Grande benchmarks are the ari
metic mean of 4 runs of each benchmark.

The speedups for the future version of #e&r i es benchmark
were approximately 1.75 and 1.70 over the sequential vefsio2
processors (4 cores) and 8 processors (16 cores) resphecliis
result is to be expected since only two futures are spawnéakin
future version, thus at most 3 cores are being used (2 foutess
and 1 for the continuation). The computation that is not lplized
makes the speedup less than 2.

The future version of thet benchmark demonstrates speedups

mark. As our analysis decides all traversals access the aame
stract data, a write traversal in the future version of thechenark
requires that all previous traversals, reads and writeaptete be-
fore continuing. Furthermore, it blocks traversals thdiofe it in
the logical time order. Thus, the improvement of runtimeultss
from concurrent read traversals of composite parts.

5.2.4 MultiTreeMap

The analysis forces thget operation to wait for any previoysut
operations to complete, but does not need to wait for anyiquev
get operations sincget operations are read-only. That oper-
ation, on the other hand, will need to wait for all previgest and
put operations to complete. Thggt operations can run concur-
rently, but anyput operation will force all previous operations to
complete before running. Therefore, the results mainlyeddppon
the distribution ofyet /put operations, which is roughly 4:1 in our
experiment. As shown in Fig 13, the resultant speedups ford4 a
16 cores are 2.17 and 2.56, respectively.

6. Related work

Automatic Program Parallelization. Traditional automatic pro-
gram parallelization exploits concurrency across loogatiens us-
ing array dependence analyses [2, 10]. In programs whiclbiéxh
more complex dataflow and control-flow mechanisms, thede tec
nigues are not likely to be as effective. Parallelizing gahgequen-
ial programs in the presence of side-effects has been epla
he context of Jade [25]. A Jade programmer is responsibldeo
limiting code fragments (tasks) that could be executed woratly
and explicitly specifying invariants describing how diffat tasks
access shared data. The run-time system is then respofsikebe
ploiting available concurrency and verifying data accesariants
in order to preserve the semantics of the serial program.mgdax
tivity analysis [24] exploits coarse-grained parallelifon object-
oriented programs using symbolic execution to decide if tywer-
ations can commute and thus run in parallel.

Recent work by Harris and Singh [13] describe a profiling in-
frastructure for Haskell that can be used to identify tramsptly
opportunities for parallelism in Haskell programs. Theipeoach
profiles compiled thunks to identify promising sources ofgba
lelism, rewrites the program to speculatively execute kistiden-
tified as good candidates for concurrent execution, and fieedi
the language runtime to monitor when speculative threadghimi
perform unsafe 1/0 operations; these threads are suspeaddd
resumed only when necessary.

Recently, speculative parallel execution through threactll

of 3.23 and 6.76 over the sequential version for 4 cores and 16 speculation [21, 16, 28, 31] and transactions [15, 12, 14kha

cores respectively. The futures in the benchmark perform local
computations concurrently and then the continuation daihe
results. The continuation sequentially updates a globatbvevith
the results of the local computations.

5.2.2 Lusearch from DaCapo

The reported results were obtained by runningsear ch on
DaCapo’s default input for this benchmark 4 times and takimeg
arithmetic mean. We report speedups of 3.42 and 7.45 foréscor
and 16 cores respectively. The future version of the bendhma
allows futures to execute concurrently until the first ascsthe
shared integer field in the parent class. Our analysis anihran
ensures that the futures perform race-free accesses tdneds
field in the order the futures were spawned.

523 007

The reported results were for 70% shared read traversal3G#td
shared write traversals. Our results show approximated$ and
6.67 speedup for 4 cores and 16 cores respectively for thishbe

been proposed. These techniques speculatively executercent
threads and revoke execution in the presence of conflict&akni
et al [19] present their experience in parallelizing twakscale
irregular applications using speculative parallelizati@ompared
to these techniques, our method does not require prograsnimer
significantly rewrite the program to spawn threads or defor c
currency control, does not hinge on complex hardware oiment
support, and thus enables portability and applicability.

Futures. Futures were first introduced in Multilisp [11] as
a high level concurrency abstraction for functional largpsa
The semantics of futures [9] and their implementation [18] 2
have been well-studied in the context of functional langsalike
Scheme [17]. More recently, the Java 2 Platform Standartidadi
5.0. also includes support for futures; unfortunately, ¢hecifica-
tion makes no guarantees about safety. Safe futures [3@pbsune
late futures within software transactions so that safetjations
can be prevented or remedied. Implicit Parallelism with éded
Transactions (IPOT) [29] proposes a concurrency abstrasim-
ilar to futures except that a spawned speculative subtasklis

allowed to spawn a unique successor. This restriction #iepl
concurrency management and dependence tracking, at thefcos
potential loss of parallelism. Most recently, an efficienmplemen-
tation [8] of a similar parallel execution model is propoded
unsafe languages like C.

Static Interference Analysis. Our technique is also related to
static analysis for interference. Rugina and Rinard [2&)ppse
an interprocedural, flow- and context-sensitive pointexysis for
structured parallel programs written@ilk [4]. Escape analysis [7]
analyzes if an object escapes thread boundary. Boylandgesp
a type system [5] that checks interference using the conoept
linear capabilities. None of these approaches are desigitedhe
specific semantics of futures in mind.

Related to our work is Autolocker [22], a tool that converts
pessimistic atomic sections into lock-based code. Aut@bases
a whole-program type-based analysis to generate a depgnden
graph that is then used to insert lock operations that preseces-
sary ordering. Lock insertion is similar to our injectiontHrriers
to notify and block threads, but the structure of the two psed are
quite different given the differences in semantics betwiegumres
and atomic sections.

7. Conclusions

Quasi-static scheduling is a new technique designed tdi-faci
tate the migration of sequential program to multi-core fplans.
The essence of the technigue lies in an interprocedural suyam

based program analysis that computes dependencies ambng co

currently executing threads. Potential violations aregméed us-
ing lightweight barriers. We have explored the use of qeaic

scheduling in the context of Java futures, a concurrenclyadison

for Java that allows the specification of asynchronous neketiadis.

Experimental results reveal that our approach can allowréut
annotated programs to avail of additional computing cométhiout

sacrificing safety, or requiring complex concurrency cointr

Acknowledgements
This work is supported in part by the National Science Fotioda

under grants CNS-0720516, CNS-0708464, CCF-0701832, CNS-

0509387, and by a grant from the Intel Corporation.

References
[1] Multitreemap. http://sourceforge.net/projects/tittéemap/.

[2] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Glemp
transformations for high-performance computilgCM Computing
Surveys26(4):345-420, 1994.

[3] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,ZS.
Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
A. Phansalkar, D. Stefanovi¢, T. VanDrunen, D. von Dingkla
and B. Wiedermann. The DaCapo benchmarks: Java benchmarkin
development and analysis. ®@OPSLA pages 169-190, 2006.

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuanl,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk:
an efficient multithreaded runtime systermdournal of Parallel
Distributed Computing37(1):55-69, 1996.

John Boyland. Checking interference with fractionatrpessions. In
SAS pages 55-72, 2003.

[6] Michael J. Carey, David J. DeWitt, and Jeffrey F. Naughtdlrhe
007 benchmark. I$IGMOD, pages 12-21, 1993.

[7] J. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and S. MidEiscape
analysis for Java. IOOPSLA pages 1-19, 1999.

[8] Chen Ding, Xipeng Shen, Kirk Kelsey, Chris Tice, Ruke Hgaand
Chengliang Zhang. Software behavior oriented parallidina In
PLDI, pages 223-234, 2007.

[4

fla.aer

5

—

[9] Cormac Flanagan and Matthias Felleisen. The semantifistore
and its use in program optimizations. ROPL

[10] Mary W. Hall, Brian R. Murphy, Saman P. Amarasinghe, i5Wei
Liao, and Monica S. Lam. Interprocedural analysis for peliahtion.
In LCPC, pages 61-80, 1995.

[11] R. Halstead. Multilisp: A Language for Concurrent Syotib
Computation. ACM Trans. Program. Lang. Syst(4):501-538,
1985.

[12] Tim Harris and Keir Fraser. Language Support for Lighigint
Transactions. I©OPSLA pages 388-402, 2003.

[13] Tim Harris and Satnam Singh. Feedback Directed Intpheiral-
lelism. InIFCP, pages 251-264, 2007.

[14] Maurice Herlihy, Victor Luchangco, Mark Moir, and Wadm N.
Scherer, Ill. Software Transactional Memory for Dynamized
Data Structures. IRODC, pages 92-101, 2003.

[15] Maurice Herlihy and J. Eliot B. Moss. Transactional nwewn
architectural support for lock-free data structures.IS€A pages
289-300, 1993.

[16] Troy A. Johnson, Rudolf Eigenmann, and T. N. Vijaykumislin-cut
program decomposition for thread-level speculationPLDI, pages
59-70, 2004.

[17] R. Kelsey, W. Clinger, and J. Rees. Revised 5 report emltporithmic
language schemeéligher-Order and Symbolic Computatiohl(3):7—
105, 1998.

[18] David Kranz, Robert H. Halstead, Jr., and Eric Mohr. MulA
High-Performance Parallel Lisp. PLDI, pages 81-90, 1989.

[19] Milind Kulkarni, Keshav Pingali, Bruce Walter, Gane§tama-
narayanan, Kavita Bala, and L. Paul Chew. Optimistic peliath
requires abstractions. PLDI, pages 211-222, 2007.

[20] O. Lhotak. Spark: A flexible points-to analysis frametdor java.
Master’s thesis, McGill University, 2002.

[21] Wei Liu, James Tuck, Luis Ceze, Wonsun Ahn, Karin Stsauese
Renau, and Josep Torrellas. Posh: a tls compiler that ¢xplamgram
structure. IPPPOPPR, pages 158-167, 2006.

[22] B. McCloskey, F. Zhou, D. Gay, and E. Brewer. Autolocker
Synchronization Inference for Atomic Sections. ROPL, pages
346-358, 2006.

[23] Rick Mohr, David Kranz, and Robert Halstead. Lazy tastation: A
technique for increasing the granularity of parallel pesgs. InLFP,
pages 185-197, 1990.

[24] Martin C. Rinard and Pedro C. Diniz. Commutativity ayssé: A
technique for automatically parallelizing pointer-basedhputations.
In IPPS pages 14-22, 1996.

[25] Martin C. Rinard, Daniel J. Scales, and Monica S. LandeJ& High-
Level, Machine-Independent Language for Parallel Progranm.
IEEE Computer26(6):28—38, 1993.

[26] R. Rugina and M. C. Rinard. Pointer analysis for streetuparallel
programs.ACM Trans. Program. Lang. Sys25(1):70-116, 2003.

[27] L. A. Smith, J. M. Bull, and J. Obdrzalek. A parallel jagaande
benchmark suite. IACM Supercomputingage 8, 2001.

[28] J. Greggory Steffan, Christopher B. Colohan, AntonlkaiZ and
Todd C. Mowry. A scalable approach to thread-level spemratin
ISCA pages 1-12, 2000.

[29] C. von Praun, L. Ceze, and C. Cascaval. Implicit paliafte with
ordered transactions. PPOPPR, pages 79-89, 2007.

[30] Adam Welc, Suresh Jagannathan, and Antony Hoskinge fédires
for java. INOOPSLA pages 439-453, 2005.

[31] L. Rauchwerger Y. Zhan and J. Torrellas. Hardware facsiative
run-time parallelization in distributed shared-memoryltiptoces-
sors. INHPCA, pages 162-173, 1998.

