
Quasi-Static Scheduling for Safe Futures

Armand Navabi Xiangyu Zhang Suresh Jagannathan
Purdue University, Department of Computer Science, West Lafayette, Indiana 47907

{anavabi,xyzhang,suresh}@cs.purdue.edu

Abstract
Migrating sequential programs to effectively utilize nextgeneration
multicore architectures is a key challenge facing application devel-
opers and implementors. Languages like Java that support com-
plex control- and dataflow abstractions confound classicalauto-
matic parallelization techniques. On the other hand, introducing
multithreading and concurrency control explicitly into programs
can impose a high conceptual burden on the programmer, and may
entail a significant rewrite of the original program.

In this paper, we consider a new technique to address this is-
sue. Our approach makes use offutures, a simple annotation that
introduces asynchronous concurrency into Java programs, but pro-
vides no concurrency control. To ensure concurrent execution does
not yield behavior inconsistent with sequential execution(i.e., ex-
ecution yielded by erasing all futures), we present a new inter-
procedural summary-based dataflow analysis. The analysis inserts
lightweight barriers that block and resume threads executing fu-
tures if a dependency violation may ensue. There are no constraints
on how threads execute other than those imposed by these barriers.

Our experimental results indicate futures can be leveragedto
transparently ensure safety and profitably exploit parallelism; in
contrast to earlier efforts, our technique is completely portable, and
requires no modifications to the underlying JVM.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Concurrent program-
ming structures

General Terms Algorithms, Languages, Reliability, Performance

Keywords concurrency control, future, static program analysis

1. Introduction
Migrating existing sequential programs to next-generation multi-
core and many-core architectures is a key challenge confronting
application developers, implementors, and architects. Inlanguages
such as Fortran in which computation is mostly expressed analyz-
able control-flow abstractions (e.g., loops), automatic paralleliza-
tion techniques that expose concurrent execution across loop it-
erations is a feasible way to exploit available parallelism. In lan-
guages like Java which include more complex dataflow and control-
flow mechanisms, these techniques are not likely to be as effective.
While programmers can leverage Java’s support for multi-threading
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to expose concurrency, this flexibility comes at a price. Rewriting
programs to be explicitly multi-threaded is non-trivial, requiring
deep knowledge of the program’s intended behavior. Well-known
problems such as data races, deadlocks, etc. can easily occur. Re-
cent work that leverages higher-level abstractions such assoftware
transactions [12, 14] can alleviate some of these issues, but the onus
still remains on the programmer to inject transactions (andrelated
concurrency abstractions) correctly, to ensure that the resulting pro-
gram maintains the invariants assumed by the original.

In this paper, we consider an alternative that exploits boththe
analytical capability of compilers, and a programmer’s domain-
specific knowledge. Informally, parallelizing a program consists of
two major tasks: (a) identifying program points where concurrent
execution may be initiated, and (b) incorporating concurrency con-
trol to ensure threads access shared data safely, without violating
intended dependencies. The former is arguably simpler thanthe lat-
ter: making an unwise choice for where concurrency should bein-
troduced can lead to poor performance, but failure to correctly pro-
tect shared data can lead to erroneous results. Building upon this in-
tuition, our approach only requires programmers to specifyoppor-
tunities for concurrency,withoutrequiring them to also specify con-
currency control. Our goal is to provide a portable and lightweight,
mostly transparent, translation mechanism for languages like Java
that allows simply annotated sequential programs to exploit paral-
lel computing resources when possible. While it is true thatin some
cases effective utilization of these resources will require a major re-
structuring of the original sequential program, includingthe intro-
duction of possibly complex concurrency control mechanisms, we
believe that there is a broad class of applications for whichcompiler
analysis, along with minimal runtime support can be leveraged to
avoid such drastic surgery.

We use futures as our concurrency abstraction. Futures are
found in thejava.util.concurrent package which is part
of the Java 2 Platform Standard Edition 5.0. The future interface
is extremely simple, and effectively serves as an annotation on
method calls that allows the call to be executed asynchronously.
A subsequentclaim operation on the future serves as a barrier that
blocks until the future completes. Simply using futures to introduce
concurrency into Java programs is unfortunately insufficient. With-
out appropriate safeguards such as locks to ensure concurrently
executing futures access shared data correctly, a future annotated
program may exhibit races, deadlocks, and other ill-desired be-
havior. Notably, even the introduction of appropriate synchroniza-
tion on shared data may be insufficient since interleaving execu-
tion among futures may lead to race and deadlock-free executions
that are nonetheless inconsistent with the behavior of the original
(future-erased) sequential program.

Earlier work on this subject has adapted techniques based on
thread-level speculation and transactional memory to enforce de-
sired safety properties. The basic idea is to execute threads repre-
senting futures in a conceptual sandbox. If a thread manipulates
shared data in ways that violate program dependencies, it isre-



voked, and all of its effects discarded. By requiring the runtime
to detect and remedy dependency violations, these approaches free
the programmer from explicitly weaving a concurrency control pro-
tocol within the application. Unfortunately, these techniques also
require hardware support [21, 16] or a heavyweight runtime [30].
Because sandbox maintenance requires support for object version-
ing, operation logging, additional metadata on object headers, etc.,
performance results can vary widely, and in some cases,decrease
substantially. More importantly, portability is sacrificed since in-
corporating these mechanisms entails non-trivial low-level modifi-
cations to the JVM and/or underlying architecture.

In this paper, we explore techniques that shift much of the bur-
den for enforcing safety from the runtime to the compiler. We
present a novel summary-based interprocedural static analysis on
programs annotated with futures, and a program transformation
that injects synchronization primitives based on the analysis out-
come. These primitives only require lightweight runtime support.
The idea is that a synchronization barrier is introduced whenever a
potential dependency violation as defined by the sequentialseman-
tics may occur. Notification barriers are also inserted whenever a
potentially offending shared access operation completes.A read or
write operation on shared data also manipulated by futures instanti-
ated earlier must block until these futures complete their accesses.
We describe both the compiler framework and the runtime mecha-
nisms used to inject and execute these barriers. There are noother
constraints on how threads execute other than those imposedby
these barriers.

This paper makes the following contributions:

• We propose a technique calledquasi-static schedulingthat au-
tomatically inserts lightweight synchronization primitives to
ensure safety given a future-annotated program. Our safetycri-
teria ensures that execution of the program will have the same
observable (deterministic) behavior as the sequential program
derived by erasing all futures. Our analysis is interprocedural,
and handles many Java features including dynamic threading.

• We devise a novel lightweight runtime that distributes concur-
rency control defined by the synchronization barriers inserted
by the analysis among the threads executing the computation
encapsulated by futures, rather than requiring the use of a cen-
tralized scheduler.

• We experimentally evaluate our techniques on a set of Java
benchmarks including some taken from the Java Grande [27]
and DaCapo [3] benchmark suites, OO7 [6], an object-oriented
database application, and a red-black tree implementation[1].
Our results confirm our hypothesis that quasi-static scheduling
can be an effective technique to easily migrate sequential pro-
grams to multicore systems with minimal restructuring.

2. Overview
Consider the example shown in Fig. 1(a). Methodfoo(...) per-
forms various operations on objectx depending on the parame-
ter op. More specifically, it read-accessesx if op==1 and write-
accessesx if op==2. In this sample program,foo is called four
times, performing in order two read operations, a write operation,
and then another read operation on the same objectx. Symbolfooi

denotes theith call of methodfoo.
Suppose we wish to execute the calls tofoo in parallel. Con-

current execution of these calls must still adhere to the dependency
requirements imposed by sequential evaluation: a read access per-
formed in one call must not witness a write access performed by
a later one, and a write access in one call must not follow a read
performed by a later one. Thus, we wish to ensure that concurrent

class Exp{

  int foo (Object x, int op) {

     S0;

     switch (op) {

       case 1:

Rx;

S1; 

       case 2:

Wx;

S2;

     }

     S3;

  }

  …

     t1 = foo (x, 1);

     t2 = foo (x, 1);

     t3 = foo (x, 2);

     t4 = foo (x, 1);

     S4;

  … 

}
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Figure 1. A Motivating Example.
     …   

     f1 = new future (foo (x, 1) );

     f2 = new future (foo (x, 1) );

     f3 = new future (foo (x, 2) );

     f4 = new future (foo (x, 1) );

     S4;

     …

     … 

     … 

     … 

     t2 = f2.get ( );

     t3 = f3.get ( );

     t4 = f4.get ( );

     t1 = f1.get ( );   

     … 

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

foo ()
1

foo ()
2

foo ()
3

foo ()
4

Figure 2. Concurrent Evaluation Using Futures.

evaluation of different calls tofoo still yields deterministic behav-
ior consistent with a sequential version of the same program.

To introduce concurrency, we usefutures, a simple program-
ming abstraction that permits the introduction of asynchronous
computation into a sequential program. While first introduced in
the context of Lisp, futures are also found in thejava.util.co-
ncurrent package in the Java 2 Platform Standard Edition 5.0.

In Fig. 2, a call tofuture() divides the current execution
into two concurrent parts, one being the method call passed as the
parameter, e.g.,foo(..), which we refer to as thefuture, and the
other the remainder of the computation, which we refer to as the fu-
ture’scontinuation. For instance, the first callfuture() spawns
a futuref1, which executes thefoo method; the remaining execu-
tion, which includes three other calls tofoo, S4, etc., constitutes
the continuation off1. A future is claimed through the function
get() when the result of the computation produced by the future
is needed. At the claim point, the future and its continuation join.
For example,f1 is claimed at line 13 in Fig. 2. Note that a contin-
uation or a future can further spawn futures and continuations, e.g.,
futuresf3 andf4 are part of the continuation off2.

Significantly, the translation from the sequential programin
Fig. 1(a) to the concurrent version using futures does not intro-
duce any concurrency control: there are no locks, transactions, or
other synchronization mechanisms that enforce race-free accesses
to shared data manipulated withinfoo. Moreover, while concur-
rency control mechanisms like locks can be used to guaranteerace-



freedom, our requirements are stronger: we are only interested in
concurrent executions in which the observable behavior of the pro-
gram is consistent with a sequential execution of the same program
with all future annotations erased (i.e., the execution in Fig. 1(b)).
In this example, enforcing this condition requires that thewrite ac-
cess performed byf3, which is part of the continuation of future
f2, wait for f1 andf2 to finish their read accesses. Similarly, the
read access performed by futuref4 must wait for the write access
in f3 to complete. Simply protecting concurrent accesses to shared
data using locks cannot enforce these constraints.

Previously, researchers have proposed speculative threadspawn-
ing and lazy recovery facilitated by software transactional memory
[30, 29] to address these safety issues. Fig. 3 explains the way safe
futures [30] parallelize our sample program. The fourfoo oper-
ations are speculatively spawned as separate threads and run in
parallel. We elide details about the spawn and get operations for
brevity. In the safe futures approach, versioning is used totolerate
shared write accesses, i.e., a shared write to an object creates a new
version of the object. A shared read searches for the right version.
For example in Fig. 3, the write access by the third future generates
a new version ofx. Although the read infoo()2 happens after
the write, it gets the correct value from an older version. Ifa read
occurs before a write to the same variable which is in the read’s
logical past, e.g., the read infoo()4, the continuation perform-
ing the offending read has to be revoked and re-executed. Such a
method supports speculative parallelization through a heavyweight
runtime without requiring static dependency analysis.

The use of a heavyweight runtime to track read and write ac-
cesses significantly limits the simplicity benefits of safe specula-
tive asynchronous methods for a number of reasons: (1). Rollback
and re-execution happen frequently if shared writes are frequent,
and can substantially degrade performance; (2). EmployingSTM
machinery to commit updates, detect conflicts, and version data for
fine-grained futures can be expensive because maintenance of as-
sociated data is performed at every shared access; (3) The runtime
has the typical limitations of most STMs such as the incapability to
effectively handle irrevocable actions such as I/O.
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Figure 3. Transaction Runtime Support.

We propose a technique that supports speculative thread spawn-
ing and guarantees our desired safety property by compiler in-
serted synchronizations that only require lightweight runtime sup-
port. The basic idea is thata shared access performed by a continu-
ation can not be discharged until all other futures in its logical past
have completed performing any conflicting accesses.For example
in Fig. 1(a), the read access at line 4 in a future can only be dis-
charged if all other futures in its logical past have either (1) entered
theop==1 branch, implying the future will not subsequently per-
form any conflicting write access, or (2) finished the write access.

Fig. 4 illustrates how we might enforce these conditions. The
read access at line 5 is preceded by the barrierallowed(ax), which
only completes when all futures that are in the logical past have
granted conditionax, namely they have either entered a branch in
which no further conflicting write access tox will be performed,

or they have finished performing the write. Thus, a conditionis a
guard on shared data accesses. In this example, the guard dictates
when read accesses to shared variablex can take place. The instru-
mentations at 3 and 9 grant the permission. Theallowed(ax) barrier
requires a total logical ordering among futures (a futuref ′ created
within a continuation of a futuref is logically ordered afterf ); we
discuss efficient non-centralized approaches to enforce this order-
ing in Section 3.3.

Note that similar instrumentation is required for the writeac-
cess. We omit it in Fig. 4 for brevity. Given this instrumentation,
the resulting runtime schedule is shown in Fig. 5. Thegrant barrier
in the first future discharges theallowed in the second future, which
requires all logically preceding futures (the first future in this case)
to grant permission. Theallowed in the first future returns immedi-
ately as it has no preceding future. Theallowed in the fourth future
does not return until the three preceding futures grant the condition.

The placement ofgrant barriers is key to the degree of par-
allelism achieved. In our example, a future immediately issues a
grant after it enters theop==1 branch and discharges other futures
so that the read access and its following statementsS1 andS3 can
run in parallel with other futures. A sub-optimal solution is to have
the grant barriers at lines 3 and 9 combined and placed after the
switch block. Despite being safe, it unnecessarily preventsRx;
S1 from running concurrently with statements in other futuresor
continuations. Note that if theallowed barrier is placed at the begin-
ning of a future andgrant barrier is placed at the end, the resulting
scheduling induces a completely sequential execution.

   ...

   switch (op) {

     case 1:

grant(ax);

        allowed(ax);

        Rx;

        S1;

     case 2:

        Wx;

grant(ax);

S2;

      ...
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Figure 4. Instrumentation.

Compared to a STM-inspired solution [30, 29], our approach
features a very lightweight runtime. Synchronization conditions
such as the parameterax in Fig. 4 are assigned at every program
point that performs a shared access instead of per object. Our tech-
nique requires no rollback support since the placement ofallowed
andgrant barriers guarantees safety. While a static analysis leads
to low runtime overheads, the approximations it uses to enforce de-
pendencies may be more conservative than necessary. For example,
if the write access in the execution in Fig. 1 is for a different object
than that accessed by concurrent reads, but the analysis concludes
they are potentially aliases, the opportunity to execute all opera-
tions in the four futures concurrently would be missed. Nonethe-
less, we believe our technique is better suited to facilitate easy mi-
gration of sequential programs to multi-core environmentsbecause
it does not burden implementations with the significant requirement
of a highly-tuned sophisticated runtime to enforce safety.

3. Analysis
From the example in the previous section, the challenges entailed
by our techniques become clear. First, we need a static analysis
that identifies all program points that perform conflicting accesses.
Second, we need to insert synchronizations accordingly andensure
that they are deadlock free. Third, we need to devise a lightweight
runtime to provide implementation support for these annotations.
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Figure 5. Runtime Schedule.

3.1 Future Analysis

A future analysiscomputes the set of futures that may run in
parallel with a program pointl. In other words,l belongs to the
continuations of these futures. Based on the analysis result, allowed
andgrant barriers are inserted to enforce the safety property.

     void A ( )

     {

          x = new (…);

          B (x);

          if (x.future != NULL) {

                x.future.get( );

          }

     }

1.

2.

3.

4.

5.

6.

7.

     void B (... o )

     {

          f1 = new future (…);

          if (… )

                C (f1);

          else 

                o.future = f1;

     }                

     void C (… y)

     {

           y.get ( );          

     }
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17.

Figure 6. A more complex example illustrating the need for inter-
procedural analysis.

Ordinarily, the return point for a method or procedure call im-
mediately follows the call-site, in the absence of exceptions. In a
method call encapsulated within a future, this property need not
hold. Indeed, it is likely that the point at which the future is claimed
is far removed from the point at which future is created. As shown
in Figure 6, a future is spawned in methodB, and is claimed either
in C, or escapes fromB and is then claimed inA. Determining the
set of active futures at any given point becomes even more complex
in the presence of aliasing.

To analyze the set of futures that can run in parallel for a pro-
gram point in circumstances as described above, we perform afu-
ture analysison a program representation called aFuture Spawning
Graph (FSG). If a method is spawned as a future, aspawn edgeis
introduced between the spawning point in the caller and the callee.
A claim edgeis introduced between the exit of a spawned method
and its corresponding claim point, indicated by a call of theget()
method. Figure 7 shows part of the FSG for the example in Sec-
tion 2. As can be seen, for futuresf1 andf2, two spawn edges
L1 → L3, L2 → L3, and two claim edgesL4 → L5, L4 → L6
are inserted.

 f1=future (…)

 f2=future (…)

S4;

S0

 t2=f2.get( )

 t1=f1.get ( );

…… 

…… 
switch (op)

RX

S1

WX

S2

foo ( …)

S3

…… 

spawn edges

claim edges

L1

L2
L3

L4

L5

L6

Spawnin={ }

Claimin={ }

Futurein={ }

Spawnin={L1}

Claimin={ }

Futurein={ L1}

Spawnin={L1,L2}

Claimin={ }

Futurein={ L1,L2}

Spawnin={L1}

Claimin={ }

Futurein={L1}

Spawnout={ }

Claimout={ }

Futureout={ L1}

L7
L8

Figure 7. The Future Spawning Graph.

Future analysis is a summary-based interprocedural data flow
analysis (see Fig. 8). Functions summaries are computed in a
bottom-up phase and the final results are computed in a follow-
ing top-down phase. Fig. 8 presents the detail of the analysis. It
assumes the results of a may points-to analysisPT. In the bottom-
up phase, given a methodm, a function summary is computed as
the transfer function.Spawnrepresents the set of futures that are
spawned inm or other functions called bym and not yet claimed.
Note that futures are identified by their static allocation sites.Claim
represents the set of claims of futures spawned outsidem, which is
mainly used to construct the function summary. BothSpawnand
Claim entail forward computation.Spawnrequires a union opera-
tion at a join point, whereasClaim requires an intersection since
a future can be considered claimed only if it is claimed alongall
incoming paths.

We consider the computation of theSpawnset for each state-
ment in turn. In the case of a spawn statementl: future(m
(...)) (wherel is the label denoting this program point), the
Spawnout set is computed by discarding elements in the kill-set
found in the summary of each methodT thatm may refer to, and
adding the corresponding elements inT’s gen-set. Labell is also
added to theSpawnout set as the future spawned atl may run con-
currently with statements following the creation of the future. In
the case of a function callm(...) that is not spawned as a future,
Spawnout is computed similarly, except the label is not added.

Consider a program pointg that spawns a futuref, and suppose
f is claimed in some methodm different from the method in which
g is found. The claim summary form can includeg provided that
there is no cyclic path (interprocedural or otherwise) throughg that
does not include a claim onf. This condition is necessary to ensure
that a claim on a future indeed kills all instances of that future.
For example, in the program below, althoughF [j] at 6 must point
to F [i] at 2, it cannot be easily determined statically whether the
get() operation at line 6 claims all the futures spawned at line 2.
Consequently, we have to assume that statementS0 at 8 may run
concurrently with any of the futures created at line 2.

1: for (i=...) {
2: F [i]= new future (...);
3: }
4: . . .;
5: for (j=...) {
6: F [j].get();
7: }
8: S0;

Computation of the claim set follows the same reasoning as
above. In the presence of a call to methodm, either spawned within
a future or executed sequentially, theClaimout set at a program
point is computed as the union of theClaimin at that point, and
the intersection of theSumClaim() sets over all methods thatm
may point to. In the presence of a call tof.get(), if f must point
to a future spawned externally atg andg cannot reach itself without
encountering its claim,g is added toClaimout.

Finally, SumSpawnand SumClaimare just the corresponding
SpawnandClaimsets at the exit point of the corresponding method.

During the second top-down phase, dataflow facts are propa-
gated from callers to callees to compute the finalfuturesets for each
statement. We conservatively compute theFutureout of a method
m’s entry point as the union of theFuture in sets of all call sites to
M.

Example. Figure 7 shows an example of the results computed by
the analysis. During the bottom-up phase, methodfoo is first ana-
lyzed. Since it does not spawn or claim any futures, it has thesum-
marySumSpawn=SumClaim=φ. This result is used in the analysis
of the main body. Thus,Spawn in(L2) = Spawnout(L1) = {L1}



Assumptions: PT : label → P(abstract location) represents the result of a may points-to analysis. Abstractlocations
can be object allocation sites, methods or future spawn sites.Single yields the points-to set of its argument if that set holds a single
abstract location, and the empty set otherwise.FM denotes intraprocedural control flow of methodM , IF denotes interprocedural
control flow.
Output: Future : label → P(abstract location) represents the set of futures that may run in parallel with a statement.
Initialization:
∀ label l in method m, Spawnout(l) = φ, Claimout(l) = Unknown

The bottom-up phase:

Spawnin(l) :=
S

(p,l)∈FM

(Spawnout(p))

Claimin(l) :=
T

(p,l)∈FM

(Claimout(p))

Spawnout(l) :=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(Spawnin(l) −
T

T∈PT (m)

SumClaim(T ))
S

(
S

T∈PT (m)

SumSpawn(T ))
S

{l} l : future (m(...));

(Spawnin(l) −
T

T∈PT (m)

SumClaim(T ))
S

(
S

T∈PT (m)

SumSpawn(T )) l : m(...);

Spawnin(l) − {g | g ∈ Single(f) and there is not a path
P : g → ... → g s.t.g is not claimed duringP} l : f.get();

Spawnin(l) otherwise.

Claimout(l) :=

8

>

>

>

>

<

>

>

>

>

:

Claimin(l)
S

(
T

T∈PT (m)

SumClaim(T )) l : future (m(...))

or l: m(...);
Claimin(l)

S

{g | g ∈ Single(f) andg is not local.
and there is not a pathP : g → ... → g s.t. g is not claimed duringP} l : f.get();

Claimin(l) otherwise.

SumSpawn(m) := Spawnout(EXIT ).
SumClaim(m) := Claimout(EXIT ).

The top-down phase:

Futureout(ENTRYmain) := φ
Futureout(ENTRYM) :=

S

(p,ENTRYM )∈IF

(Futurein(p))

Futurein(l) :=
S

(p,l)∈FM

(Futureout(p))

Futureout(l) := (Futurein(l) − Claimout(l))
S

Spawnin(l)

.

Figure 8. Future Analysis.

Assumptions: ReadWriteConflict : label× label→ {0, 1} has value 1 if two program locations have conflicting accessing
types, namely, if one of them is a write, and 0 otherwise.
Output: Mark : label → {0, 1} has value 1 if program pointc can conflict with a program point in futureM that is reachable
from l, and 0 otherwise.
Initialization:
∀l ∈ M, Markin(l) := 0

Analysis:
Markout(l) :=

S

(l,s)∈FM

(Markin(s))

Markin(l) :=



1 ∃x ∈ (Access(l)
T

PT (c)) andReadWriteConflict(l, c);
Markout(l) otherwise.

Access(l) :=

(
S

T∈PT (m)

SumAccess(T ) l: future (m(...)) or l: m(...);

PT (l) otherwise.

SumAccess(M) :=
S

l∈M

Access(l)

Figure 9. Given a program pointc and a futureM of c, mark the statements inM that may reach an access that may conflict withc.



as a future is spawned atL1. Spawn in(L5) = {L1,L2} since two
futures are spawned atL1 andL2. Spawn in(L6) = {L1} because
f2 at L5 must point toL2 and thusL2 is claimed. Note thatL5
does not add to itsClaimset as it does not claim an external future.
During the top-down phase,Futuresets are computed in the main
body and then propagated tofoo. Futureout(ENTRY foo) =
Future in(L1)

S

Future in(L2) = {L1}. As the localSpawnsets
are all empty, according to the dataflow equation forFutureout,
each point infoo has the same final resultFutureout = {L1}.

3.2 Concurrency Control Primitives Insertion

The next step of our analysis computes conflicting memory ac-
cesses and insertsallowed and grant barriers accordingly. Recall
that the critical invariant that must be satisfied is thata statement
that accesses a shared object has to wait for the completion of all
conflicting accesses in concurrently executing futures.The set of
parallel futures at any given point is computed using the analysis
described above.

More precisely, our analysis inserts anallowed barrier for each
shared accessc, whoseFuture set is not empty. Given a method
M that is pointed to by an element inFuture(c), the analysis
described in Figure 9 is used to figure out program points to insert
grant barriers inM.

The analysis marks statements inM that may perform an access
which conflicts withc along some path. The analysis is a backward
dataflow analysis – a statement is marked if any of its successors
are marked. Hence, the confluence operator is defined as set-union.
A conflicting access is defined as a non-empty intersection between
the points-to set ofc and the points-to set of the current statement
in which both statements are not reads. Note that if the statement
is a method call, the set of accesses of the statement is the union of
the summaries of all the methods that can be applied at that point.

Given the analysis, the instrumentation rule is thatif a statement
is not marked but its control flow predecessor is marked, this
statement is the earliest point along a path to promise no conflict
until the end of the future, and thus agrant barrier can be inserted
immediately before it.

Example. Consider the example in Figure 7. Twoallowed bar-
riers are inserted before the shared accesses atL7 and L8. Let
us focus on insertinggrant barriers accordingly forL7. Since
Futureout(L7) = {L1} and methodfoo is the only future
spawned atL1, L7 may run in parallel with other operations in
foo. Hence, the analysis in Figure 9 is applied toL7 andfoo.
StatementsS1, S2, S3, andL7 are not marked since they do not
conflict with the read of shared variablex at L7. StatementL8 is
marked because the read ofx at L7 conflicts with the write ofx at
L8. SinceL7 is not marked and its predecessor, the switch state-
ment, is marked (because its successor atL8 is), according to the
insertion rule, agrant barrier is thus inserted beforeL7. Similarly,
anotherallowed is inserted after the write and beforeS2. The re-
sulting instrumentation related toL7 is exactly the same as that
presented in Fig. 4.

f1

E

State2

f2

f3 f4
f5

f6

State1

spawn point state sequencial execution

Figure 10. Dynamic Spawn Graph.

3.3 Runtime

An efficient lightweight runtime is critical for our technique to
work well in practice. As the safety property demands a shared
access not be discharged until all concurrently executing futures
have completed their conflicting accesses, anallowed barrier on a
condition ensures that all futures in the logical past have granted the
condition. A naive implementation would maintain a sequentially
ordered list of all futures, and would consult this list prior to any
shared access to determine if there is the possibility of conflicts
from any future in the logical past of the one performing the access.

While simple, such a design is highly inefficient. Consider the
graph shown in Fig. 10 that reveals the spawning relationship be-
tween futures. We omit points where futures are claimed fromthe
figure. A node denotes a future spawn site, and the left and right
edges represent the spawned future and its continuation, respec-
tively. An edge represents a segment of sequential execution. For
example, edgeE belongs to futuref6; more precisely, it occurs
as the continuation of the future spawned byf6 denoted asf5.
Thus, the actions performed byf1, f2, f3, f4 (and their as-
sociated continuations) as well as the operations performed byf5
constituteE’s logical past. Note thatf6’s continuation is not in-
cluded in the set; it logically executesafterE completes. However,
since the interleaving of futures and the order in which theycom-
plete is dependent on scheduling decisions that are not manifest in
the program, at any particular point of time, a future in the logical
past of a statement may not yet have even been spawned.

In Fig. 10, dotted edges are used to represent possible states
of program execution. For instance,State1 represents a possible
runtime image, in whichf1, f2, f3, f5 andf6 are spawned
but notf4. If at this moment,E is about to execute a shared access,
a runtime check on the futures that have currently been spawned
would omitf4 and lead to a safety violation.

In addition to these correctness concerns, maintaining thelist
of active futures corresponding to a logical sequential order may
be expensive because the order in which futures are spawned and
scheduled may be completely different from the desired sequential
order. ConsiderState2, in which f1, f2, and f4 are active.
Either f3 or f6 could be the next spawned future, even though
f3 precedesf6 in the desired sequential execution order.

The main problem with our naive design is the maintenance of
a central image of active futures. Thus, rather than trying to enforce
a global time ordering, our runtime distributes the ordering among
individual threads responsible for executing futures. Each thread
maintains a local image of active futures in the order in which
they were created within this thread. This image is propagated
from a parent to its future children. For example in Fig 10, the
main thread spawnsf1. During its execution, denoted by the edge
f1 → f6 in the main thread,f1 is the only active future in the
thread’s local image. In other words, althoughf1 further spawns
f2, f3 and f4, the main thread is unaware of these actions.
From its point of view, these futures are indistinguishablefrom
ordinary sequential method calls and the execution of thegrant
barriers performed by their ancestorf1 promise the safety property
for accesses it performs. More precisely,f1 does not grant the
condition for a shared access until all its future children containing
these conflicting accesses indicate it is safe to do so. Our static
analysis helps ensure this behavior. When the main thread spawns
f6, the thread responsible for executing this future inheritsthe
image of active futures from its parent (the main thread) andthus
has the active list{f1}. Whenf6 spawnsf5, the active list is
changed to be{f1, f5}. Note that the order these active futures
are spawned follows the sequential order.

The pseudocode of our runtime is presented in Fig. 11. Methods
spawn and get maintain the list of local active futures. When a
future is spawned, the current thread acquires a global id for the



Table 1. A Sample Run with The Runtime Support.
Timestamp main f1 f2 f3 f4 conditiona

AL=φ AL=φ AL={f1} AL={f1, f2} AL={f1, f2, f3}

1 f1= new future (foo...) 0...00
2 f2= new future (foo...) S0 0...00
3 f3= new future (foo...) grant(a) S0 0...01
4 f4= new future (foo...) allowed(a) grant(a) S0 0..011
5 S4 Rx allowed(a) S0 0..011
6 ... S1 Rx grant(a) 0..01011
7 ... S3 S1 Wx allowed(a) 0..01011
8 ... S3 grant(a) 0..01111
9 ... S2 Rx 0..01111
... ... ... ... ...

void spawn (Future f )

{

    synchronized (gidLock) {

        f.id= gid ++;

    }

    active.add(f.id);          

    need2Wait.setAll( );

}

void  grant (Condition c)

{

   c.setbit (getCurrentFuture( ).id);

 }

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

void get (Future f)

{

    active.remove(f.id);

}

void  allowed (Condition c)

{

  if (!need2Wait[c]) return;

  l=active.length( );

  for  (i=0; i<l; i++)

    if (!c.getbit (active.get(i).id) ) {

           getCurrentThread( ).yield( );

           i--;

           continue;

    }

    need2Wait[c]=FALSE;

}

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Figure 11. Runtime.

new future and adds it to the list. The flagneed2Wait serves
as a shortcut to avoid redundant permission checking (see below).
Each shared access has an associated condition which contains a
bitvector to maintain the status of all spawned futures. If afuture
has performed the conflicting accesses, it calls thegrant barrier
on the associated condition to set its bit. In the implementation of
theallowed barrier,need2Wait is first checked; if it is false, the
thread has earlier blocked on this condition and further blocking is
not necessary. If true, the operation scans the condition’sbitvector
and sees if the bits corresponding to the active futures havebeen
set. To avoid redundant checking, it stalls at individual unset bits.

Example. Consider the execution in Table 1 with the instrumenta-
tion shown in Fig. 4. The main thread spawns four futures at times-
tamps 1, 2, 3 and 4. The futures have the active list (AL) asφ, {f1},
{f1, f2}, {f1, f2, f3}, respectively. Futuref1 sets the first
bit of conditiona at timestamp 3. Beforef1 discharges the read, it
executes theallowed barriers, which returns right away asf1’s ac-
tive list is empty. Futuref2 sets the second bit ofa at timestamp 4.
Because the first bit is set,f2’s execution ofallowed at timestamp
5 can return immediately without blocking. In contrast, theallowed
barrier performed byf4 is blocked until timestamp 9 becausef3
is a member off4’s active list andf3 does not notify until it has
completed its write. The safety property is thus guaranteed.

4. Limitations
Because a substantial component of our approach is based on a
static analysis, our safety guarantees are conservative.

For example, our technique can fail to sometimes exploit latent
concurrency due to the presence of infeasible paths; these paths can
confound the analysis, and cause notification actions to be inserted

foo (… , int op, int n) 

{    

   if (!n) return;

   switch (op) {

     case 1:

allowed(a);

        Rx;

        S1;

     case 2:

        Wx;

S2;

   }

   foo (x, op, n-1);

grant(a);

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

foo (...2)
1

if (!n);

allowed(a);

RX;

S1;

foo(…,1);

     if (!n);

     allowed(a);

     RX;

     S1;

     foo(…,0);

        …   return;

grant(a);

grant(a);

foo (...2)
2

Two futures with the form of 

foo (…,2) are spawned 

if (!n);

allowed(a);

…   

Figure 12. The Problem of Infeasible Paths.

later than necessary. Consider the example in the left hand side of
Fig. 12. It is very similar to our earlier example in Fig 1 except
that S3 is instantiated with a recursive call to methodfoo itself
andS0 is replaced with a recursion termination check. This code
fragment summarizes the control structure in a frequently invoked
method in OO7 [6], one of the benchmarks we consider in the
following section. The instrumentation that allows discharging the
read access is highlighted in the figure. As we can see, our analysis
puts thegrant after the recursive call, even though it would be safe
to insert it at the same points as in Fig 4, namely, beforeRx and after
Wx. The reason is that the analysis is not capable of determining that
variableop does not change during recursive calls so that once the
method reaches the read access, it is infeasible for the execution to
reach the write access; subsequent recursive calls are guaranteed to
not change theop predicate. As a result, the analysis conservatively
assumes that both the read and write accesses may occur inside the
recursive call regardless of the path taken, which preventsthegrant
from being hoisted. Suppose two futures with the recursion depth
n=2 are spawned; their interleavings are depicted on the right hand
side of Fig. 12. As we can see, the read access of the second future
has to wait until the end of the series of recursive calls performed
by the first, effectively sequentializing execution. As part of our
future work, we plan to integrate a theorem proving engine into our
static analysis to alleviate this issue. Currently, our implementation
requires programmers to explicitly indicate infeasible paths so they
are not considered by the analysis.

5. Experiments
For our experiments we annotated a set of Java benchmarks with
futures and then used our technique to statically insert concurrency



Table 2. Benchmark Characteristics.
Benchmark Lines of Static Dynamic Futures

Code Barrier # Barrier # Spawned
series 750 0 0 2
mc 3460 0 0 60000

lusearch 34371 7 176 32
OO7 2080 21 3350 500

TreeMap 1850 11 2080 400

control to guarantee safety. In general, annotating the benchmark
programs required only minimal understanding of the code. Our
experiments compare the performance of the transformed bench-
mark to its sequential version.

Our benchmarks were compiled with Sun’sjavac 1.5.0 com-
piler. We used the future implementation in thejava.util.co
ncurrent package. We used Soot version 2.2.4 for the analysis
and transformation. In particular, the SPARK [20] flow-insensitive,
context-insensitive, and field-sensitive may points-to analysis was
used. We also used Soot to identify objects created in a method that
never escape as local objects. The analysis does not insert concur-
rency barriers for field accesses of such objects. The experiments
were run on Java HotSpot(TM) 64-bit Server VM 1.5.0. Our hard-
ware platform is an 1.8GHz Dual Core AMD Opteron(tm) Proces-
sor 865, with 8 dual-core CPU’s, and 32GB of RAM running Linux
kernel version 2.6.9-34. We report results on 2 dual-core processors
(4 cores) and 8 dual-core processors (16 cores).

5.1 Benchmarks

As shown in Table 2, our experiments were performed on two Java
Grande benchmarks [27], namelyseries andmc, lusearch
from the DaCapo benchmark suite (version 2006-10) [3], OO7 [6],
and a Java tree map implementation that uses a red-black tree[1].
The Java Grande benchmarks are representative of computation-
ally intensive programs where one can easily identify code sections
or methods where concurrency may be achieved.Lusearch is a
multi-threaded benchmark with explicit concurrency control which
we transform to use futures. OO7 represents a complex irregular
database application, and the tree-map benchmark performsop-
erations on a dynamic mutable data structure. Because both OO7
and tree-map manipulate complex data structures, exhibit aliasing,
and complicated sharing across procedure boundaries, theyare less
amenable to traditional loop-based parallelization techniques.

Three out of the five benchmarks considered (series, mc
andTreeMap) were annotated by a simple syntactic inspection
of the code, with no deeper understanding of the semantics of
the benchmark.Lusearch was annotated by removing threads
and explicit synchronization primitives and replacing them with
futures. Annotating OO7 required a modest understanding ofthe
underlying data and control structure (see Section 4). All of the
rewrites of sequential programs required either changing existing
method calls into future calls or moving the body of a loop into a
future call with no further changes to the control flow or semantics
of the application. In particular, our parallelizations did not con-
sist of partitioning arrays into sub-arrays or any other restructuring
of the code. Not all benchmarks we considered were amenable to
future insertion. We originally considered two other Java Grande
benchmarks,moldyn andraytracer, but found that they are
not amenable to futures without a significant rewrite of the code.
For example, themoldyn benchmark was naively translated from
C code, and thus all variables, including loop counters, were de-
clared as class fields instead of local variables. Therefore, any sim-
ple translation from a method to a future requires that thesefields
be considered as shared variables, and thus our technique would
introduce a large number ofallowed/grant barriers, making the ex-
ecution essentially sequential.

Table 2 also shows the number of lines in the original bench-
mark, the number of static and dynamicallowed/grant barriers in-

serted by the analysis, and the number of futures spawned in each
execution. More details are provided below.

5.1.1 Java Grande

The series benchmark performs Fourier coefficients computa-
tion. The code calculates two terms for each coefficient by call-
ing the methodTrapezoidIntegrate twice. We annotated the
two calls toTrapezoidIntegrate to be spawned as futures.
Then we claimed the result of the two futures. Our analysis deter-
mines that there is no need to insertallowed/grant barriers as the
method does not access any shared data.

The mc benchmark is an implementation of a Monte Carlo
Simulation. Our future version was a straightforward rewrite such
that the body of the main loop was spawned as a future. The
future initializes a local price stock object and performs some
computation on the object. After futures are spawned in the main
loop, they are claimed in another loop and their results are added
to the global vector as in the sequential benchmark. Our analysis
recognizes that each future performs calculations on localobjects
and therefore does not insert anyallowed/grant barriers.

5.1.2 Lusearch from DaCapo

The lusearch benchmark is a text search tool that is part of
the DaCapo benchmark suite. The benchmark creates an index and
searches for keywords in large text files. The original benchmark
creates 32 threads and each thread searches for approximately 3500
distinct words.

The threads create local search indexes and operate on localob-
jects until they complete their search. Once a thread has completed
searching the thread updates an integer field in the shared parent
object that spawned the threads. Access to this shared variable is
protected by a monitor on the parent object.

In our experiments we replaced threads with futures and re-
moved all synchronization. To measure the computational paral-
lelism exploited by futures, we isolated the computation byloading
the query files and the search indexes into memory before perform-
ing the searches. Our analyses injected seven synchronization calls.
The calls were injected for field accesses of the parent classfrom
the futures. These accesses were the same as those protectedby
explicit concurrency control mechanisms in the original program.

5.1.3 OO7

The underlying data structure in OO7 consists of a set of graphs and
indices that are intended to simulate an object-oriented database
system. Each graph has a multi-level complex index to leaveswhich
contain severalcomposite parts, each composed of adocument
and links to a graph ofatomic parts. The execution of OO7 is
dominated by data traversals. A traversal chooses a single path
through the index graph and at the leaf level chooses a fixed number
of composite parts to visit. This number is configurable; we used
16 composite parts in our experiments.

For our experiments we used a single graph with seven levels
and each intermediate level has three children. There are a total
of 500 composite parts at the leaf level, each correspondingto a
graph of 100000 atomic parts. We rewrote the sequential traversals
so that the composite parts were traversed concurrently. Since the
data structure contains 500 composite parts, the executionof the
future version spawns 500 future.

5.1.4 MultiTreeMap

The final benchmark performsput andget operations on a red-
black tree implementation of a map. The MultiTreeMap [1] is a
TreeMap much likejava.util.TreeMap except it allows du-
plicate keys to be entered. Our benchmark allows the user to con-
figure the percentget operations and the percentput operations.



Figure 13. Elapsed time (normalized)

The sequential version of the benchmark loops 400 times and for
each iteration of the loop randomly selects operations based on the
configured parameters. For the future version, we simply spawned
each iteration of the loop as a future.

5.2 Results

Figure 13 reports the elapsed time for the future version of each
benchmark normalized against the average elapsed time of the
sequential version of the benchmark for 2 processors (4 cores) and
8 processors (16 cores).

We also ran experiments to measure the fundamental overhead
of our runtime. The overhead was calculated by running the future
version of each benchmark such that the calls to spawn futuredid
not spawn any threads, and the futures were run synchronously as
ordinary methods, but with the synchronization overhead caused
by allowed/grant primitives. The overhead of our approach ranged
from less than a percent to roughly 3%.

5.2.1 Java Grande

The reported times for the Java Grande benchmarks are the arith-
metic mean of 4 runs of each benchmark.

The speedups for the future version of theseries benchmark
were approximately 1.75 and 1.70 over the sequential version for 2
processors (4 cores) and 8 processors (16 cores) respectively. This
result is to be expected since only two futures are spawned inthe
future version, thus at most 3 cores are being used (2 for the futures
and 1 for the continuation). The computation that is not parallelized
makes the speedup less than 2.

The future version of themc benchmark demonstrates speedups
of 3.23 and 6.76 over the sequential version for 4 cores and 16
cores respectively. The futures in themc benchmark perform local
computations concurrently and then the continuation claims the
results. The continuation sequentially updates a global vector with
the results of the local computations.

5.2.2 Lusearch from DaCapo

The reported results were obtained by runninglusearch on
DaCapo’s default input for this benchmark 4 times and takingthe
arithmetic mean. We report speedups of 3.42 and 7.45 for 4 cores
and 16 cores respectively. The future version of the benchmark
allows futures to execute concurrently until the first access to the
shared integer field in the parent class. Our analysis and runtime
ensures that the futures perform race-free accesses to the shared
field in the order the futures were spawned.

5.2.3 OO7

The reported results were for 70% shared read traversals and30%
shared write traversals. Our results show approximately 3.85 and
6.67 speedup for 4 cores and 16 cores respectively for this bench-

mark. As our analysis decides all traversals access the sameab-
stract data, a write traversal in the future version of the benchmark
requires that all previous traversals, reads and writes, complete be-
fore continuing. Furthermore, it blocks traversals that follow it in
the logical time order. Thus, the improvement of runtime results
from concurrent read traversals of composite parts.

5.2.4 MultiTreeMap

The analysis forces theget operation to wait for any previousput
operations to complete, but does not need to wait for any previous
get operations sinceget operations are read-only. Theput oper-
ation, on the other hand, will need to wait for all previousget and
put operations to complete. Thusget operations can run concur-
rently, but anyput operation will force all previous operations to
complete before running. Therefore, the results mainly depend on
the distribution ofget/put operations, which is roughly 4:1 in our
experiment. As shown in Fig 13, the resultant speedups for 4 and
16 cores are 2.17 and 2.56, respectively.

6. Related work
Automatic Program Parallelization. Traditional automatic pro-
gram parallelization exploits concurrency across loop iterations us-
ing array dependence analyses [2, 10]. In programs which exhibit
more complex dataflow and control-flow mechanisms, these tech-
niques are not likely to be as effective. Parallelizing general sequen-
tial programs in the presence of side-effects has been explored in
the context of Jade [25]. A Jade programmer is responsible for de-
limiting code fragments (tasks) that could be executed concurrently
and explicitly specifying invariants describing how different tasks
access shared data. The run-time system is then responsiblefor ex-
ploiting available concurrency and verifying data access invariants
in order to preserve the semantics of the serial program. Commuta-
tivity analysis [24] exploits coarse-grained parallelismfor object-
oriented programs using symbolic execution to decide if twooper-
ations can commute and thus run in parallel.

Recent work by Harris and Singh [13] describe a profiling in-
frastructure for Haskell that can be used to identify transparently
opportunities for parallelism in Haskell programs. Their approach
profiles compiled thunks to identify promising sources of paral-
lelism, rewrites the program to speculatively execute thunks iden-
tified as good candidates for concurrent execution, and modifies
the language runtime to monitor when speculative threads might
perform unsafe I/O operations; these threads are suspended, and
resumed only when necessary.

Recently, speculative parallel execution through thread level
speculation [21, 16, 28, 31] and transactions [15, 12, 14] have
been proposed. These techniques speculatively execute concurrent
threads and revoke execution in the presence of conflicts. Kulkarni
et al [19] present their experience in parallelizing two large-scale
irregular applications using speculative parallelization. Compared
to these techniques, our method does not require programmers to
significantly rewrite the program to spawn threads or define con-
currency control, does not hinge on complex hardware or runtime
support, and thus enables portability and applicability.

Futures. Futures were first introduced in Multilisp [11] as
a high level concurrency abstraction for functional languages.
The semantics of futures [9] and their implementation [18, 23]
have been well-studied in the context of functional languages like
Scheme [17]. More recently, the Java 2 Platform Standard Edition
5.0. also includes support for futures; unfortunately, thespecifica-
tion makes no guarantees about safety. Safe futures [30] encapsu-
late futures within software transactions so that safety violations
can be prevented or remedied. Implicit Parallelism with Ordered
Transactions (IPOT) [29] proposes a concurrency abstraction sim-
ilar to futures except that a spawned speculative subtask isonly



allowed to spawn a unique successor. This restriction simplifies
concurrency management and dependence tracking, at the cost of
potential loss of parallelism. Most recently, an efficient implemen-
tation [8] of a similar parallel execution model is proposedfor
unsafe languages like C.

Static Interference Analysis. Our technique is also related to
static analysis for interference. Rugina and Rinard [26] propose
an interprocedural, flow- and context-sensitive pointer analysis for
structured parallel programs written inCilk [4]. Escape analysis [7]
analyzes if an object escapes thread boundary. Boyland proposes
a type system [5] that checks interference using the conceptof
linear capabilities. None of these approaches are designedwith the
specific semantics of futures in mind.

Related to our work is Autolocker [22], a tool that converts
pessimistic atomic sections into lock-based code. Autolocker uses
a whole-program type-based analysis to generate a dependency
graph that is then used to insert lock operations that preserve neces-
sary ordering. Lock insertion is similar to our injection ofbarriers
to notify and block threads, but the structure of the two analyses are
quite different given the differences in semantics betweenfutures
and atomic sections.

7. Conclusions
Quasi-static scheduling is a new technique designed to facili-
tate the migration of sequential program to multi-core platforms.
The essence of the technique lies in an interprocedural summary-
based program analysis that computes dependencies among con-
currently executing threads. Potential violations are prevented us-
ing lightweight barriers. We have explored the use of quasi-static
scheduling in the context of Java futures, a concurrency abstraction
for Java that allows the specification of asynchronous method calls.
Experimental results reveal that our approach can allow future-
annotated programs to avail of additional computing cores,without
sacrificing safety, or requiring complex concurrency control.
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