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Abstract
Recent advances in verification have made it possible to envision
trusted implementations of real-world languages. Java with its
type-safety and fully specified semantics would appear to be an
ideal candidate; yet, the complexity of the translation steps used
in production virtual machines have made it a challenging target
for verifying compiler technology. One of Java’s key innovations,
its memory model, poses significant obstacles to such an endeavor.
The Java Memory Model is an ambitious attempt at specifying the
behavior of multithreaded programs in a portable, hardware agnostic,
way. While experts have an intuitive grasp of the properties that the
model should enjoy, the specification is complex and not well-suited
for integration within a verifying compiler infrastructure. Moreover,
the specification is given in an axiomatic style that is distant from the
intuitive reordering-based reasonings traditionally used to justify or
rule out behaviors, and ill suited to the kind of operational reasoning
one would expect to employ in a compiler. This paper takes a step
back, and introduces a Buffered Memory Model (BMM) for Java. We
choose a pragmatic point in the design space sacrificing generality in
favor of a model that is fully characterized in terms of the reorderings
it allows, amenable to formal reasoning, and which can be efficiently
applied to a specific hardware family, namely x86 multiprocessors.
Although the BMM restricts the reorderings compilers are allowed
to perform, it serves as the key enabling device to achieving a
verification pathway from bytecode to machine instructions. Despite
its restrictions, we show that it is backwards compatible with the
Java Memory Model and that it does not cripple performance.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.1 [Specifying and
Verifying and Reasoning about Programs]

Keywords Concurrency; Java; Memory Model; Verified Compila-
tion

1. Introduction
Formally verified systems are becoming a reality [20, 22]. Recent
successes have shown that it is possible to construct reasonably
efficient compilers along with a machine-checked proof of correct-
ness. Building on our experience with the Fiji real-time virtual
machine [28] and verified compilation for relaxed memory archi-
tectures (CompcertTSO) [35], we have embarked on a project to
produce a verified platform for a variant of the Java language that
abides by the Safety Critical Specification for Java [13]. To build a
verifying compiler requires starting from a formal semantics of the
source language and, simultaneously, developing and proving the
correctness of optimizations and transformations, with an associated
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x←0 y←0 z←0

r1←z r2←x
if (r1 = 1) {x←1; y←1} r3←y
else {y←1; x←1} if (r2 = 1 & r3 = 1) z←1

Figure 1. JMM. x, y and z are shared memory variables, ri are local.
In the JMM, no execution yields r1 = r2 = r3 = 1. However, manually
reordering the writes to x and y so that they performed in the same order
in both branches allows the compiler to eliminate the conditional and hoist
the assignments above the store to r1, thus making such an execution
permissible. Alternative definitions of the JMM [5] allow this execution, but
the justification is complex, involving subtle notions of speculations and
non-local reasoning over execution traces.

formal operational semantics developed for each of the compiler’s
intermediate representations all the way through to the backend
target. Although we expected Java to be a challenge because of the
complexity of the transformations used in high-performance virtual
machines like Fiji, the Java memory model [24] also complicates
the task of devising a tractable formal semantics for the source and
intermediate representations.

The Java Memory Model (JMM) was designed to specify the
behavior of concurrent programs across all modern architectures
and compiler optimizations currently in use in production virtual
machines. The complexity underlying the JMM stems from the need
to give a semantics to all programs, even racy ones, and the desire to
be maximally portable. This degree of generality comes at the price
of complexity. When explaining the semantics of racy programs,
textbooks [12] elide key JMM notions such as the definition of
a legal execution. This issue remains the subject of much active
research [4, 5, 11, 16, 23]. Consider Fig. 1 which shows a program
where, according to [24], no execution can yield r1 = r2 = r3 =1.
But, if the programmer were to manually reorder the instructions
in the else-branch, a seemingly insignificant refactoring, this result
would be allowed. Such unintuitive behavior is unfortunate. From
the verifying compiler writer’s point of view, the situation is not
much better – it is an open problem to write correctness proofs for
a compiler with respect to the JMM’s current definition, especially
if the target platform enforces its own relaxed (or weak) memory
semantics. Indeed, even in the absence of formal proofs, existing
Java compilers are not JMM compliant [39]. (And in the process of
writing this paper we discovered that our own virtual machine was
not JMM compliant.)

Often the JMM is informally discussed in terms of allowed
instruction reorderings combined with sequentially consistent (SC)
interleavings. To illustrate, assume for a moment that reordering of
independent, non-volatile, statements was allowed, then we could
admit r1=r2=1 as the value of the program on the left.

x←0 y←0
r1←x r2←y
y←1 x←1

reordering with−−−−−−−−→
speculative loads

x←0 y←0
y←1 x←1
r1←x r2←y

This would be true because after reordering, the result is an SC
execution. With this approach, reasoning would be easy – determin-
ing the validity of an execution would boil down to considering
combinations of permitted reorderings. Unfortunately, the JMM
reorderings are complex, and reasoning about transformations is



rarely intuitive. To rule an execution illegal requires showing that
it is not an SC execution if the program is data-race free, or that it
includes an out-of-thin-air read. Formalizing these notions leads to
a complex definition involving race-committing sequences. This is
a level of complexity that is challenging for most programmers to
tackle. In [5], four test cases from Pugh et al. [30] were found to be
flawed, but a later paper [37], using an automatic verification tool,
contradicted this interpretation on two of the examples. Such a lack
of clarity for programs less than 10 instructions long does not bode
well for the viability of the model.

The complexity of the JMM arises in large part by its desire
to be portable across all platforms and thus hardware agnostic.
But, this is a challenging goal given the vastly different relaxed
memory subsystems found on modern architectures, and the range of
optimizations modern compilers perform, many of which are often
ill-understood. For example, operational definitions of the Power
architecture [33] are substantially different from those defined for
x86 [36]; the former supports out-of-order unbounded speculative
executions and subtle notions of partial coherence, while the latter
is expressed in terms of more intuitive store buffers and limited
memory reorderings. It is unclear how one might define a tractable
formal language memory model that can be effectively tailored to
both. Neither is there a clear specification of the optimizations that
ought to be supported.

Of course, we could greatly simplify the problem by drastically
limiting the behaviors admitted by Java with an easily understood
albeit more restrictive model such as sequential consistency. Valid
program executions would be limited to those that can be expressed
purely in terms of a sequential interleaving of thread actions; but
under SC, reordering of shared-memory reads and writes is prohib-
ited. While simple to state and easy to understand, we choose to
not follow this approach because SC would likely cripple perfor-
mance of Java programs on all modern microprocessors due to the
large number of fences needed to enforce SC on relaxed hardware;
this would be especially true for racy programs implementing so-
phisticated lock-free algorithms of the kind found, for example, in
optimized libraries such as java.util.concurrent.

Instead, we propose an alternative memory model that has a
tractable semantics and designed to be mapped to x86 multiproces-
sors that support a Total Store Ordering relaxed memory seman-
tics [32, 36] We introduce the Buffered Memory Model (BMM), a
memory model for Java that can be fully characterized in terms
of the memory reorderings it allows on top of sequentially con-
sistent executions. The BMM comes in two forms. The first is an
axiomatic specification that can be used to relate it to the JMM, and
which provides an intuitive method to describe valid and invalid
program executions. The second form is a fully operational abstract
machine with write buffers attached to each thread. This seman-
tics can be readily used by a verifying compiler infrastructure like
CompcertTSO. BMM is backwards compatible: existing software
that has been written against the JMM can be run directly since the
JMM is a superset of the BMM (i.e., every legal BMM execution
is legal under the JMM). This ensures that legacy software that has
been validated and tested with the JMM in mind will remain correct.
The contributions of this paper are thus as follows:

• An axiomatic definition of the BMM, an alternative memory
model for Java programs, fully characterized in term of memory
event reorderings, and a compliance proof with the JMM.

• A formalization of BMMo, an operational definition of the
semantics of Java programs, equipped with a simple mapping to
the Total Store Order (TSO) memory model enabling it easily
be used with the x86 family of multiprocessor architectures
and with verified compilers like CompcertTSO targeting such
platforms.

• A proof that BMM and BMMo are equivalent. We prove the
data race freedom (DRF) theorem for BMM and the legality of
reordering optimizations under the BMM.

• An upper bound on the cost of preserving BMM semantics
on a production virtual machine running on a TSO hardware,
benchmark results measuring the cost and overhead of BMM
enforcement, compared to JMM-compliant implementations,
and an illustration of the subtle performance implications of
the memory model with a case study on the implementation of
biased locking.

We note that the design rationale for the BMM is very much dictated
by our overarching goal of constructing a verifying compiler for Java.
As a result, BMM is not intended to be general-purpose, and does
not apply directly to all architectures and compiler optimizations.
Instead, we view it as a starting point for further research on verified
compilation and memory models.

The BMM, the statements of our results and key lemmas are
expressed in Coq; our proofs are rigorous but non-mechanised. The
details of both are available online, along with the version of Fiji and
LLVM used for our benchmarks: http://r.cs.purdue.edu/bmm

2. Related Work
Language Memory Models. Languages like Java and C++ have
sophisticated memory models to answer questions related to data
visibility and updates for concurrent programs. The JMM does
this using committing-sequences, that make it subtle, complex,
and unsound [11, 39]. Huisman and Petri [16] proved its DRF
guarantee. They tackled the inconsistencies of [24], related to
memory initialization by adding hypotheses. Aspinall and Ševčı́k [5]
proposed an alternative definition of the JMM that does not suffer
from these issues. They restrict their definition to the finite case, as
we do here. Recently, Lochbihler [23] extended the formalization
by including infinite executions and dynamic allocations. This work
proves type-safety for correctly synchronized programs. Such a
mechanized proof is a tour de force since it covers a large fragment
of Java. However, the proof structure is quite different from the
simulation proof we need to perform within the scope of a verified
optimizing compiler. There has also been recent work on memory
models for C++. Boehm and Adve [7] provide a semantics for data-
race free C++ programs, including a semantics for low-level atomics.
In Java, it is mandatory to also give well-defined semantics to racy
programs to avoid security breaches.

Weak Memory Model Formalizations. Work in this area has fo-
cussed primarily on characterizing hardware memory models. Early
studies [1, 2, 14] outlined a range of hardware memory models,
and attempted to rigorously formalize the vendor’s documentations.
Alglave et al. [3] defined a general framework for formalizing hard-
ware models using partial orders. Operational characterizations have
been examined in [27, 32, 33]. Burckhardt et al. [10] define an ex-
pressive denotational framework where a memory model is a set of
dynamic reorderings, aggregation or splitting rewriting rules. TSO
boils down to a store-load reordering and a store-load aggregation
rule. The BMM follows this line of work by providing provably
equivalent axiomatic and operational models that make it intuitive
and suitable to verification.

Proofs, Verified Compilation, and Weak Memory Models. Defin-
ing multithreaded semantics in terms of reordering is also the ap-
proach taken by Miné [26]: the semantics of multithreaded C pro-
grams is defined as the interleavings of the programs possibly ob-
tained by the syntactic transformations defining the memory model.
From a certified compiler perspective, an operational definition of
the JMM is desirable. There are several attempts to provide such
a semantics [8, 9, 11, 17] but none of them has been used in a



proof assistant. Our operational semantics is inspired by the TSO
memory model proposed in [35] which has been formalized in Coq.
Ševčı́k [38] identifies some trace transformations that are valid under
the JMM. Transformations are however defined semantically. This
gap is filled in [34] where the program transformations are proved
to be correct, but this is done under a DRF assumption. [34] also
identifies the need for characterizing memory models in terms of
the transformations they permit, and this is the goal of the axiomatic
formalization of BMM.

3. BMM: Two Models for the Price of One
While the BMM covers the whole of Java, the most challenging parts
of reasoning about concurrent programs are those that manipulate
shared memory in a potentially racy way. Following the JMM’s
design, we separate operations that are purely thread-local from
those that deal with shared memory. The BMM is parametrized by
an abstract notion of intra-thread semantics to deal with the former.
We mention a few of the high-level concepts and our design choices
before focusing on the memory model proper. (More details about
this part of our model is in the online Coq development.)

Java Values. The JVM operates on two kinds of values: primitives
and references. Primitives include long and double values that
are 64-bits wide. Updates to these variables is not guaranteed to be
atomic on a 32-bit machine. Our intra-thread semantics captures
this. The treatment of references is delicate. Several instruction
like instanceof, checkcast, invokevirtual require reading
the class of an object pointed to by a reference. These operations are
not relevant to the memory model because they refer to immutable
meta-data. We explicitly avoid reading from shared memory in
those cases since that would directly entail reasoning about the
memory model. Instead, our semantics attaches type information
to references in the spirit of formalizations of the bytecode verifier.
As a consequence, the type of an object can be conceptually read
without going to shared memory. We also give to each thread its
own allocation pool. This matches the notion of field initialization
that is advocated in the JMM. We do not need to initialize objects
with a default value when we allocate them because each memory
address has a well-typed initial value from the very beginning of the
program execution.

Final Fields. The JMM provides complex rules for fields anno-
tated final. Compilers are allowed to perform aggressive optimiza-
tions on reads. The surprising thing is that final fields may change
between reads. This occurs if the programmer leaks an object during
its construction. The result is a very non-intuitive semantics which
stands more as a warning for the programmer who does not follow
a safe publication pattern than a real semantics. Our position is to
forbid unsafe publications [15] (which happens to be a restriction
imposed by Safety Critical Java as well). This allows us to keep an
intuitive semantics for final fields and let compilers aggressively
optimize them.

Class Initialization. Lazy class loading is an important mecha-
nism for concurrent programming; see for example the initialization
on demand holder idiom [29]. Our semantic supports this by tracking
the current initialization status of each class.

Synchronization Actions. Their treatment in the paper is slightly
simplified. Our formal semantics needs to handle more synchroniza-
tion actions than those explained here. For example, when spawn-
ing a thread, an exception IllegalThreadStateException can
occur if the thread has already been started. It means that, for a
given execution and a given thread, there can be only one successful
spawn event but several other failed spawn events. A so-called JMM
synchronizes-with edge must exist between the successful spawn
and all failed spawn events.

3.1 A Reordering-based Memory Model
We propose a memory model that can be fully characterized by
reorderings over SC executions and that has a simple specification.
In the BMM, (1) all SC executions are allowed and, (2) any
execution from which an SC execution can be derived by reordering
a non-volatile read action with a preceeding non-volatile write action
is allowed; both actions must operate over disjoint memory locations
and the actions can be separated by a sequence of reads that see the
write action. Thus, for instance in the following program

x←0 y←0

x←1 y←1
r1←y r2←x

r1 = r2 = 0 is allowed

it suffices to reorder one of the threads for the result to be permissible
under an SC execution. Fig. 2 gives some prohibited executions.
Thanks to this reordering-based definition, all three examples are
easily seen to be illegal since no reordering is applicable and no SC
execution can exhibit such behaviors.

x←0 y←0

x←1 r1←y
y←1 r2←x

r1 = 1, r2 = 0 is illegal

x←0 y←0
x←1 r1←x r2←y

y←1 r3←x
r1 = r2 = 1, r3 = 0 is illegal

x←0 y←0

x←1 r1←x y←1 r3←y
r2←y r4←x

r2 = r4 = 0, r1 = r3 = 1 is illegal

Figure 2. BMM executions.

3.2 A Buffered Operational Memory Model
While more intuitive for the programmer, the reordering-based
definition of BMM lacks an operational form. What we seek with
an operational model is a companion proof technique to provide
a formal correspondence proof between the different layers of a
verified compiler. Operational semantics have been long advocated
as a vehicle within which to conduct such proofs by facilitating
the use of simulation diagrams. Thanks to their inductive form,
they can be used to reason about global program behavior in terms
of elementary single steps. Axiomatic models generally do not
enjoy the same kind of proof technique. In [39], to prove validity of
some program transformations, the authors had to reason on whole
prefixes of traces. This uncomfortable situation comes from the
fact that in the JMM, a trace of n+ 1 execution steps is not easily
defined in term of its n first steps. At the hardware level, operational
semantics have been provided in [33, 36]. It is not surprising to
see that no proof connects the JMM with any of these operational
models. Thus, our second memory model, called BMMo, introduces
a store buffer: each hardware thread effectively has a FIFO buffer
of pending memory writes, so that reads performed on different
processors can occur before writes have propagated to main memory.

3.3 Reconciling the Two Models
While the axiomatic form of BMM has an intuitive definition and
supports a subset of the executions permitted by the JMM, its op-
erational variant has been specified to fit cleanly within the store
buffering operations provided by x86-based relaxed memory hard-
ware. The two models are reconciled with an equivalence proof. For
this purpose, the BMM reorderings have been carefully chosen to
align with the behaviors permitted under BMMo. These two seman-
tics have different uses. In Sec. 5.2 we use the reordering view to



SC C++ JMM BMM

DRF theorem � � � �
Reordering memory accesses × � � ⊗
Redundant memory accesses
elimination/introduction � � ⊗ ⊗

Operational semantics � � × �
Semantics for all programs � × � �
Programmer can understand the
semantics of racy programs � × × �

Sound with respect to JMM (does
not break legacy Java) � × � �

Lock optimizations � � ⊗ ⊗

Table 1. Expressivity and properties of memory models. � if a property
holds, × if it does not, and ⊗ if there are restrictions. The models differ
in the reordering they permit, how they are formalized, the programs they
consider, and their support for legacy code. BMM is weaker than the JMM
in terms of the reorderings it allows, but its operational semantics is useful
for verifying compiler optimizations, and its simpler axiomatic version is
easier for programmers to understand. Reordering memory accesses is illegal
under original JMM [11, 24] but legal under the alternative version of [39].

provide a DRF theorem. In Sec. 8 we use the operational semantics
to study the validity of compiler-driven program transformations.
Tab. 1 gives an overview of the properties of the BMM.

4. Background on the Java Memory Model
We introduce key notions from the JMM. A language memory
model formally specifies what values can be read by each thread
depending upon the writes performed by this thread or others. These
interactions are categorized using inter-thread actions.

Inter-thread Actions. The shared memory of a program is split
into a set of disjoint addresses which are instance fields, static fields
or array positions but not local variables. For each address x ∈ X,
we can determine if it is volatile or not with the function volatile :
X→ bool. In the literature, external actions are distinguished from
other memory actions. In this work, we model external actions
using volatile writes 1, that can be identified with the function
external : X → bool.2 We assume a set T of threads, a set L
of locks, and a set V of values. The set of inter-thread actions is
given below, where superscript i denotes the unique identifier of
memory actions.

A ::= witx, v (thread t writes value v to address x)
| ritx (thread t reads from address x)
| litl (thread t acquires a lock on monitor l)
| uitl (thread t releases a lock on monitor l)
| stt

′ (thread t creates a new thread t′)
| bt (thread t starts)
| jitt

′ (thread t detects t′ has terminated)
| et (thread t ends)
| w0x (default write action to address x)

x ∈ X v ∈ V l ∈ L t, t′ ∈ T i ∈ N

Action w0x initializes address x; it has no emitting thread.3 Thread
start (bt) and end (et) can happen only once and thus do not require

1 E.g., a call by a thread t to a function f with arguments args that returns
value v is modeled as a volatile write to the abstract location f(args).
2 We require that, ∀x, external(x)⇒ volatile(x)
3 Unlike [5, 24], we stick to the JMM: every address is virtually given a
default value at the start of the program, even if the corresponding location
is not allocated yet.

identifiers. For any action a that is not a default write action, we
write T (a) the emitting thread of this action. For any write action w,
we write V (w) the value written by that action; initialization actions
write a default value according to the type of the related address. We
introduce some notations for families of actions:

Ar = {ritx | t ∈ T, x ∈ X} (reads)

Aw = {witx, v;w0x | t ∈ T, x ∈ X, v ∈ V} (writes)
Ad = {w0x | x ∈ X} (initializations)
Ab = {bt | t ∈ T} (begins)

As = {witx, v; ritx | t ∈ T, x ∈ X, volatile(x)}
∪ {litl; uitl | t ∈ T, l ∈ L}
∪ {stt′; bt; jitt′; et | t, t′ ∈ T}

(synchronizations)

Ax = {witx, v | t ∈ T, external(x)} (external actions)

The JMM is based on a happens-before model [21]. An execution
is described in terms of partial orders between memory actions.
The same external behavior may be associated with many different
interleavings of thread actions. An interleaving can be seen as a total
order on actions: “this action occurs before that one according to
global time”. Such an interleaving is in fact a consistent extension of
a partial order called “happens before” that precisely relates causal
dependencies between actions. For example, the program Fig. 3a
may exhibit an interleaving of thread-actions

bt1 :: bt2 :: wt1x, 1 :: rt1y :: wt2y, 1 :: rt2x

but there is no causal dependency between the read performed in t1
and the one performed in t2. Fig. 3b presents the causality relation
behind such a linear presentation. Each gray region is dedicated to
the actions owned by a same thread.

x←0 y←0

x←1 y←1
r1←y r2←x

(a) Code of threads t1, t2.
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so

po
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po
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bt1 bt2
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(b) Causality relation
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wt1x, 1 wt2y, 1
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so

w0x w0y

bt1 bt2

wt1x, 1 wt2y, 1

rt1y rt2x

(c) Axiomatic execution

Figure 3. A happens-before executions with and without write-seen
arrows.

The unique identifier is omited here. Any sequence of solid arrows
between actions a and b means a should happen before b. Apart
from address initialization and thread starts, few actions are actually
constrained in this example. We distinguish two kinds of arrows:

po−→
reflects program order between actions of a same thread; so−→ reflects
the synchronization relation between events. In more complex
examples, it may relate an unlock of a monitor with its subsequent
lock or the write of a volatile address with a subsequent read. Dotted
arrows indicate which write was seen by each read action. These
arrows form what we call an axiomatic execution. The write seen
must satisfy some minimal constraints that we will make clear with
the notion of well-formed execution.



Notations. When a partial order is total we write it directly as a
sequence of elements that uniquely characterizes it. When a partial
order o−→ is a disjoint union (indexed by T) of orders, we write its
restriction on thread t as [ o−→]t. A list of elements can be thought of
as a total order. We write a tr−→ b when elements a, b are ordered
with regards to a list tr . We call any irreflexive transitive relation
an order. Two such relations R and R′ are said to be consistent
when they satisfy: ∀x, y, ¬(xRy ∧ yR′x). We write tr ↓A for the
sequence tr filtered to the elements of the set A.

DEFINITION 4.1 (Axiomatic execution). An execution E is de-
scribed by a tuple E = 〈P,A, po−→, so−→,W 〉 where:

• P is a program and A ⊆ A \ Ad is a set of actions,
• po−→ ⊆ A × A is the program order, a disjoint union of total

orders on actions of each thread,
• so−→ ⊆ (A ∪ Ad)× (A ∪ Ad) is the synchronization order: the

union of a total order on A ∩ As of all synchronization actions
in A, and the cartesian product Ad × (A ∩ As),

• W ∈ Ar ⇀ Aw is a write-seen function that maps each read
action r from A to a write action w of A ∪ Ad (r and w must
operate on the same address).

We now explain how to extract the happens-before relation from the
program order and the synchronization order of an execution.

DEFINITION 4.2 (Synchronizes-with relation). An action a synchr-
onizes-with an action b (written a sw−−→ b) in an execution
E = 〈P,A, po−→, so−→,W 〉 if a so−→b and a, b satisfy one of the fol-
lowing conditions:

• a∈Ad and b∈ A∩Ab (default writes synchronizes-with starts),
• a is a spawn of a thread t and b is the start of the thread t,
• a is a write to a volatile address x and b is a read from x,
• a is an unlock on monitor l and b is a lock on monitor l,
• a is the end of the thread t and b is a join action on t.

DEFINITION 4.3 (Happens-before order). The happens-before or-
der of an execution is the transitive closure of the union of its
synchronizes-with relation and its program order.

hb−→= (
sw−−→ ∪ po−→)+

Intra-thread Semantics. Our formalization requires an abstract
notion of intra-thread semantic state Stateintra and an intra-thread
labeled transition relation

.
−−−�⊆ Stateintra × Labelintra × Stateintra

given to each thread t ∈ T. Transition labels belong to the set
Labelintra = (A \ Ar) ∪ (Ar × V) ∪ {τ}: a thread can either
take an action step, or a silent step (with label τ ) that is memory
irrelevant. For a read action step, the value read is paired with the
action in the label. The requirements on the intra-thread semantics
are:

•
.
−−−� only relates states of the same thread,

• there is an initial state Ready: no transition leads to it and a
thread t steps from it if and only if it emits the bt action,

• non-silent labels are tagged with the emitting thread,
• there is a final state Done: a step of a thread t leads to it if and

only if its last transition is labeled by et.

DEFINITION 4.4 (Intra-traces). Let tr = a1 :: · · · :: an be a
sequence of actions in set A and let W be a write-seen function
on A. Given a thread t ∈ T in program P , tr is an intra-trace
of t if there exist s0, s1, . . . , sm ∈ Stateintra (m ≥ n) and
l = l1 :: · · · :: lm ∈ list(Labelintra) such that:

• for all a ∈ {a1, . . . , an}, T (a) = t,
• s0 is the initial intra-thread state Ready,

• for all i ∈ {1, . . . ,m}, si−1

li−−−� si,
• the projection b1 :: · · · :: bn of l to non-silent labels is such

that bi = (ai, V (W (ai))) if ai is a read action or bi = ai
otherwise.

We write P [t] for the set of such pairs (tr ,W ) for P .

DEFINITION 4.5 (Well-formed execution). An execution
〈P,A, po−→, so−→,W 〉, is well-formed if

• A is finite,
• so−→ is consistent with

po−→,
• Locking is proper: for all lock actions litl ∈ A and all threads
t′ different from the thread t, the number of lock actions on
l emitted by t′ before litl in so−→ is the same as the number of
unlock actions on l emitted by t′ before litl in so−→, and each
unlock action uitl ∈ A occurs after a matching lock action:

∀litl,∀t′ 6= t, |{ljt′ l | l
j
t′ l

so−→litl}| = |{ujt′ l | u
j
t′ l

so−→litl}|

∀uitl, |{ljt l | l
j
t l
po−→uitl}| > |{ujt l | u

j
t l
po−→uitl}|

• po−→ is intra-thread consistent: for all thread t ∈ T, ([
po−→]t,W ) ∈

P [t],
• so−→ is consistent with W : for every read r of a volatile address
x we have W (r)

so−→r and for any write w to x different from
W (r), either w so−→W (r)

so−→r or W (r)
so−→r so−→w,

• hb−→ is consistent with W : for all reads r of x, r hb−→W (r) does
not hold and there is no intervening write w to x, i.e. such that
W (r)

hb−→ w
hb−→ r.

A distinguished subfamily of well-formed executions is the set of
Sequentially Consistent axiomatic executions.

DEFINITION 4.6 (Sequentially Consistent (SC) execution). A well-
formed execution E = 〈P,A, po−→, so−→,W 〉 is SC if there exists a
total order to−→ on A such that

• to−→ is consistent with
po−→ and so−→,

• for each read action r ∈ A accessing address x, W (r) is the
last write on x before r in to−→.

The set of well-formed executions of a program forms the Happens-
Before memory model. It is relatively easy to manipulate but it
is not a satisfactory memory model because it allows out-of-thin-
air values [24] and does not fulfill the DRF theorem. The JMM
considers a subset of this model; these are known as legal executions.
The exact definition of legal executions is subtle. In a nutshell,
a well-formed execution E is legal if there exists a sequence
E0, E1, . . . , En = E of well-formed executions such that in E0,
each read sees a write that it does not race with. Then progressively,
each execution Ei allows some reads through data races but in a
well-founded order until the execution E itself is reached. Thanks to
this definition, one obtains almost directly that: in a DRF program
all reads see writes that happen-before them and each execution is
sequentially consistent; and no out-of-thin-air value can be read, by
the causality order on races.

Whereas the DRF guarantee of the JMM is easily achieved, the
complex definition of the race-committing sequence makes it hard
to justify whether a given reordering is allowed or not. Our approach
is to define the BMM with explicit reorderings, introduced in the
next section.



5. BMM: An Axiomatic Memory Model
We now formally define the axiomatic view of our memory model.
The semantics is built on top of two simple notions: sequential
consistency and reordering of actions. The transformations of
executions are expressed with the notion of local reordering.

DEFINITION 5.1 (Local reordering). Given an execution E =

〈P,A, po−→, so−→,W 〉, E′ = 〈P ′, A, po
′

−−→, so−→,W 〉 is a local re-
ordering of E from an action list l to a list l′ in thread t if

• [
po−→]t = α · l · β and [

po′−−→]t = α · l′ · β,

• [
po−→]t′ = [

po′−−→]t′ for all threads t′ 6= t,
• for all (tr ,W ) ∈ P ′[t] where tr is of the form α · l′ · β, there

exists (α · l · β,W ) ∈ P [t],
• P [t′] = P ′[t′] for all thread t′ 6= t,
• l and l′ contain the same set of actions,
• no element of l or l′ is a synchronization action.

Such a reordering is written E
t:[l−→l′]−−−−−→ E′.

Intuitively, we reorder the intra-thread trace [
po−→]t by transforming

l into l′. BMM exposes two reorderings to the programmer. The
first one is a Write-Read reordering which reorders a read before
a previous adjacent write to a different address. Here is a simple
example:

x←1; r←y WR−−−−→ r←y; x←1

DEFINITION 5.2 (Write-Read reordering). A Write-Read reorder-
ing, E WR−−→ E′, of an execution E = 〈P,A, po−→, so−→,W 〉 with
respect to actions w and r in t, is a local reordering E′ such that

E
t:[w::r−→r::w]−−−−−−−−−→ E′

where w and r operate on different addresses.

Fig. 4 illustrates the use of the Write-Read reordering on a classical
litmus test program. To understand the BMM semantics, a key ob-
servation must be made: the execution on the left is not sequentially
consistent but after two WR reorderings we obtain a sequentially
consistent execution. It is then tempting to ask if a BMM execution
is any execution that can be transformed into an SC execution after
some WR reorderings. Unfortunately, such a definition would not
allow us to capture executions exhibited by TSO-hardware, so we
need to work a bit harder.

The program on the top-left part of Fig. 5 illustrates this issue. In
this program, the configuration r1=1, r2=0, r3=1; r4=1, r5=0
is reachable under a TSO architecture, but it is not a SC execution
and no WR reordering can be applied to this program. We introduce
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Figure 4. Write-Read reordering example

a second category of reorderings that is allowed in BMM that
permits such executions.
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Figure 5. Write-Read-Read reordering example

DEFINITION 5.3 (Write-Read-Read reordering). A Write-Read-
Read reordering of E = 〈P,A, po−→, so−→,W 〉 w.r.t. a tuple of
action (w,~r, r′) of A, is a local reordering E′ such that

E
t:[w::~r::r′−→r′::w::~r]−−−−−−−−−−−−−→ E′

Reads in ~r = r1, . . . , rn have w as write-seen, and r′ and w target
different addresses. Such a reordering is written E WR?R−−−−→ E′.

In Fig. 5, we apply this transformations to the previous program.
This time, a reordering is possible and leads to an SC execution.
Note that WR?R is a generalization of the previous WR reordering.
We prove in Section 7 that this new reordering exactly captures
a TSO operational semantics. Formally, a BMM execution is any
execution that can be transformed using WR?R reorderings until
reaching an SC execution.

DEFINITION 5.4 (BMM executions). BMM executions are:

BMM=
{
E | ∃E′, E RO−−→ E′ and E′is SC

}
with RO−−→= (

WR?R−−−−→)∗.

We write BMM(P ) for the set of executions of a program P . The
BMM observable behaviors of a program P is then defined as the
set of sequences of external actions:

Obs(P ) =
{
so−→↓Ax | 〈P,A,

po−→, so−→,W 〉 ∈ BMM(P )
}

The definition of BMM is a least post-fixpoint. Every time we
must prove that BMM is included in some set of well-formed
executions, we can rely on the following characterization.

LEMMA 5.1 (BMM least post-fixpoint characterisation). BMM is
the least set S of well-formed executions such that

• all SC executions are in S,
• S is backward-closed by BMM reorderings: for any well-formed

executions E,E′ such that E RO−−→ E′, if E′ ∈ S then E ∈ S.

Proof. First, BMM satisfies the two above properties. Now, let S
be a set of well-formed executions satisfying both properties. We



show that BMM ⊆ S. Let E ∈ BMM. If E is SC, then E ∈ S.
Otherwise, there exists an SC execution E′ such that E RO−−→ E′.
But E′ is in S, so E is in S too. 2

We use this lemma to show that BMM is a subset of the JMM
executions and to show the equivalence between BMM and BMMo.

5.1 BMM is a Subset of JMM
The current Java Memory Model defines the set of legal executions
as a subset of all well-formed executions that are justifiable using
a sequence of intermediate justifications. In order to connect our
model with the JMM, rather than unfolding the details of this formal
definition, we rely on the following JMM properties:

• JMM accepts all sequentially consistent executions,
• JMM allows reordering of non-volatile memory accesses hitting

different locations [39].

THEOREM 5.2. Let JMM be the set of all legal executions permit-
ted by the JMM. Then, BMM ⊆ JMM.

Proof. We use here Lemma 5.1. We first know that JMM contains all
SC executions. Then, suppose that E RO−−→ E′ with E′ ∈ JMM. In
the JMM, reordering non volatile memory accesses hitting different
addresses is allowed [39]. We use this property to un-transform E′

into E. Hence, E is also in JMM, meaning that JMM is backward-
closed by WR?R. 2

5.2 DRF Guarantee
We establish that BMM enjoys the important property that any
reasonable memory model should have, namely a data-race-free
guarantee - data-race free programs have SC executions only. We
first define the standard notions of concurrent conflicting memory
action, data-race, and data-race-free programs:

DEFINITION 5.5 (Conflicting actions). Two non-volatile actions
a, b ∈ Ar ∪ Aw are conflicting if they target the same address
and T (a) 6= T (b) and at least one of them is a write.

DEFINITION 5.6 (Data-races). Let 〈P,A, po−→, so−→,W 〉 be a BMM
SC execution. Two conflicting actions a, b form a data-race if they
are not ordered by hb−→.

DEFINITION 5.7 (DRF). A program P is data-race free, written
DRF (P ), if all of its SC executions are free of data-race.

THEOREM 5.3 (DRF guarantee). For all P , if DRF (P ), then for
all execution E ∈ BMM(P ), E is SC.

Proof. Let P be such that DRF (P ), and E ∈ BMM(P ). By Theo-
rem 5.2,E ∈ JMM(P ). But JMM satisfies the DRF guarantee [38],
so E is sequentially consistent. 2

6. BMMo: An Operational Memory Model
In this section, we provide an operational view of the BMM. The
reorderings allowed in its axiomatic version can be implemented
by a BMMo machine that attaches a write-buffer to each running
thread. The BMMo semantics is also parametrized by an intra-thread
semantics. Hence, we need to consider an extra set of actions: the
silent actions in Asil that are either the unbuffering B(a) of a write
action a ∈ Aw \ Ad by thread T (a) or a silent step τt by thread t.

Asil ::= B(a) | τt
The idea behind BMMo is to provide a generative, operational
machine that executes an input operational execution, modifying a
memory state, made of thread buffers and a shared memory. The

ts(t)
τ
−−−� s

ts, b,m
τt−→ ts[t 7→ s], b,m

[TAU]

ts(t)
ritx|V (w)
−−−−−−−−−� s w = rdt(b,m, x) ¬volatile(x)

ts, b,m
ritx|w−−−−→ ts[t 7→ s], b,m

[READ]

ts(t)
wi
tx,v−−−−−−� s ¬volatile(x)

ts, b,m
wi
tx,v−−−−→ ts[t 7→ s], b[t 7→ (witx, v) :: b(t)],m

[WRITE]

b(t) = l · [witx, v]

ts, b,m
B(wi

tx,v)
−−−−−−→ ts, b[t 7→ l],m[x 7→ (witx, v)]

[UNBUFF]

ts,m
λ−→synch ts

′,m′ b(t) = []

ts, b,m
λ−→ ts ′, b,m′

[SYNCH]

Figure 6. BMMo machine (labelled transition system).

input of the BMMo machine is an operational execution, made of a
program and a trace of operational actions. An operational action
a ∈ Aop is either an action in A \ (Ad ∪ Ar), or a pair in Ar × Aw

(for each read action we record the write action that it sees, and refer
to it as its write-seen), or a silent action in Asil.

DEFINITION 6.1 (Operational execution). An operational execu-
tion is a pair (P, tr) where P is a program and tr ∈ list(Aop)
is finite and such that no action appear more than once in tr .

The BMMo machine is then defined by a transition system,
parametrized by an intra-thread semantics. We now describe its
states and transitions. A BMMo state ∈ State is a record

ts ∈ T⇀ Stateintra; (intra-thread state of threads)
b ∈ T⇀ list(Aw \ Ad); (one buffer per thread)
m ∈ X→ Aw (one write action per address)

The state first keeps track of each intra-thread state in Stateintra.
Each thread is given a write buffer; all non-volatile write actions
are first written to this buffer. When unbuffered, these writes are
committed to the shared memory m, that maps addresses to write
actions. Given a memory state (buffers b and memory m), the
BMMo machine specifies the write action a thread t can read when
accessing the address x:

rdt(b,m, x) =

{
w if w is the first write to x in b(t)
m(x) if there is no write to x in b(t)

If a pending write to this address appears in the buffer of t, we
take the most recent in the execution (i.e. the first in the buffer).
Otherwise we consult the memory. If no write has been performed
yet at this address we will retrieve the default value for this address.

The BMMo machine is defined as a labeled transition system
where steps are labeled by operational actions. The salient semantic
rules are given Fig. 6. In all rules (except BUFF) the BMMo machine
makes a step that the intra-thread semantics can match. Rule TAU
corresponds to a intra-thread silent step (when e.g. the thread
operates on registers). The BMMo memory state does not change in
this case. On a non-volatile read (READ) the value is obtained from
the memory state using the rd function. For this action, the intra-
thread event is a pair ritx | v composed of a read and a value. The
intra-thread semantics accepts any value here but the purpose of the
rule is to constrain it using thread-local buffers and shared memory.
On a non-volatile write (WRITE), the write action is put onto the
thread’s buffer. A write action can be unbuffered at any time, in
which case the write is committed into shared memory (UNBUFF).
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Figure 7. BMMo machine (synchronization actions).

All synchronizing actions are emitted by threads whose buffers are
empty. They are gathered under the SYNCH rule whose definition
(relying on a relation ·−→synch) is in Fig. 7. Reads from and writes
to volatile locations directly access the memory so that all threads
have a consistent view (READV and WRITEV). When a thread ends
(END), its state is kept in the BMMo state, enabling other threads to
join it (JOIN), and preventing it to from being restarted (SPAWN).

We then define a BMMo execution as a constrained operational
execution that is accepted by the BMMo machine: the input trace
is properly locked and can be executed by the machine, with the
intended meaning that the input execution is intra-thread consistent.

DEFINITION 6.2 (BMMo execution). An operational execution
(P, tr) is in BMMo(P ) if there exists states s0, s1, . . . , sn in State
satisfying the following:

• tr is properly locked (see Definition 4.5, using tr−→ instead of
po−→ and so−→),

• s0 is an initial state: the memory maps every address to the
corresponding default write (∀x,m(x) = w0x), buffers are
empty and s0.ts is defined for exactly one thread, mapping it to
the Ready state,

• tr = a1 :: · · · :: an ∈ list(Aop),
• for all i ∈ {1, . . . , n}, si−1

ai−→ si.

The BMMo behaviors of program P are external action traces
obtained by projecting all executions of P accepted by the BMMo

machine on Ax:

Obso(P ) = {tr ↓Ax | (P, tr) ∈ BMMo(P )}

7. Equivalence of BMM and BMMo

We show that BMM and BMMo are equivalent relaxed memory
models: they allow the exact same set of behaviors for any program.

THEOREM 7.1. For all program P , Obso(P ) = Obs(P ).

The proof relies on an operator ρ that bridges the gap between BMM
and BMMo by building axiomatic executions from operational ones.

DEFINITION 7.1 (ρ operator). Let Eo=(P, tr) be an execution, ρ
is defined as ρ(Eo) = 〈P,A,

po−→, so−→,W 〉 where

• A is the set of non-silent actions in tr ,
• for all a, b ∈ A, a

po−→b iff T (a) = T (b) and a tr−→ b,
• for all a, b ∈ A, a so−→b iff a, b ∈ As and a tr−→ b,
• for all pairs ritx | w in tr , W (ritx) = w.

We show that ρ(BMMo) = BMM. Each inclusion is proved and
Theorem 7.1 follows from the following lemma.

LEMMA 7.2. Let Eo = (P, tr) be an operational execution and
〈P,A, po−→, so−→,W 〉 = ρ(Eo), then tr ↓Ax= (

so−→↓Ax).

Proof. By definition of ρ, we know that for all a, b ∈ A, a so−→b iff
a, b ∈ As and a tr−→ b. 2

We define auxiliary notions needed for the proof. An operational
execution Eo is well-formed if ρ(Eo) is well-formed, and it is
SCρ if ρ(Eo) is SC. Similarly, we define operational reorderings
relying on ρ: an execution E′o is an operational reordering of
Eo if ρ(Eo)

WR?R−−−−→ ρ(E′o). We abuse notations and write it

Eo
WR?R−−−−→ E′o, and lift this notion to trace reorderings RO−−→. To

lighten the notations in this section, we keep implicit the unique
identifier of actions and write wtx for witx, v (the value written
is omitted). When considering operational actions in a trace we
generally omit the write action w attached to a read action.

7.1 ρ(BMMo) ⊆ BMM

We prove that every BMMo execution trace can be reordered into a
SC trace. The proof relies on a reordering scheme explained in the
following lemma.

LEMMA 7.3. LetEo = (P, tr) ∈ BMMo(P ), with tr = α·[wtx]·β
an execution such that B(wtx) 6∈ β. We write

• Wt = {wty ∈ β | y ∈ X}, write actions belonging to thread t,
• Rt = {rty ∈ β | wtx·β = γ1·wty ·γ2·rty ·γ3, y ∈ X, γ1, γ2, γ3 ∈
list(Aop)}, read actions seeing a write performed by t in [wtx]·β,

• β \ (Wt ∪Rt) the remaining actions in β.

Then, there existP ′, β1, β2 such thatE′o = (P ′, tr ′) ∈ BMMo(P
′),

Eo
RO−−→ E′o and tr ′ = α · β1 · [wtx] · β2 where,

• β1 = β ↓β\(Wt∪Rt),
• β2 contains the elements ofWt ∪Rt,
• [wtx] ·β2 matches the pattern (wtx1 ; (r

t
x1)
∗) · . . . · (wtxn ; (r

t
xn)
∗),

• for all δ, (P, tr · δ)∈BMMo(P ) then (P ′, tr ′ · δ)∈BMMo(P
′).

Before going into the detail of the proof, we give an intuition on how
we use it. This lemma is applied to a part of an execution in which a
write action, performed by t, stays in its buffer. This is illustrated in
the following figure, where the grey regions denote subsequences of
actions whose owning thread is not t. The bold stroke action wtx is
the write action that remains in t’s buffer until the end of tr . We will
use this action as a pivot on all the actions performed in the rest of
tr , so that the resulting trace tr ′ is as illustrated: (a) all grey actions
are shifted before the pivot, remaining in the same relative order, by
changing the interleaving; (b) actions of thread t are handled with
the WR?R reordering rule. Because write actions of t cannot be
moved, they are kept to the right of the pivot.
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Handling read actions of t is more involved: either they see a write
that occurred (necessarily in thread t) after the pivot in tr , and they
are accumulated in a pattern (wtx1 ; (r

t
x1)
∗) · . . . · (wtxn ; (r

t
xn)
∗), or

they see a write that occurs before the pivot, and WR?R is applied
repeatedly on this pattern, until they are swapped before wtx.

Proof. Let Eo = (P, tr) ∈ BMMo(P ), with tr = (α · [wtx] · β)
and B(wtx) 6∈ β. The sub-trace [wtx] · β can be decomposed as
[wtx] · β = βp · βt with βp = [wty; (r

t
y)
∗]+ (we take the shortest βt).

We now proceed by induction on the length of βt.

• Base case: βt is empty. We don’t need any reordering transfor-
mation to reach the expected pattern.

• Inductive case. We proceed by case analysis on the first element
of βt = a :: β′t and show that a can be either (i) integrated
inside the pattern βp or (ii) be moved before this pattern:

If a = rtk, when k is one of the addresses of βp. Here, we
integrate in βp by applying an WR?R as many times as
needed to make it part of the right wtk(r

t
k)
∗ pattern such that

βp = βp1 · (wtk(rtk)∗) · βp2 . Note WR?R can be applied
because the pattern only concerns thread t, and the visibility
conditions required by WR?R are fulfilled. The right-most
such pattern before a, i.e. such that there is no wtk in βp2 ,
is the only one that can ensure the write-seen of a to be
preserved, according to BMMo. Thus the resulting trace(
P ′, α · βp1 · (wtk(rtk)∗a) · βp2 · β′t

)
is BMMo.

If a = rtk, when k is not any of the addresses of βp. We
apply the same reasoning as in the previous case, rewriting
the trace with WR?R, but in this case, this simply amounts
to put a before wtx, because WR?R will be applied on the
whole βp (and the write-seen is trivially kept valid).
If a = B(a′), then a′ ∈ α because there is no un-
buffering action in βp. This unbuffering could have been
done just before wtx. This unbuffering does not modify
the visibility constraints of the new trace, as it cannot
overwrite any of the write actions in βp. For any trace
δ, if (P, α · βp · [a] · β′t · δ) ∈ BMMo(P ) then the trace
(P, α · [a] · βp · β′t · δ) is also in BMMo (P): any read in δ
that sees a′ in the first trace can still see it in the second trace
because no write action in βp is unbuffered before δ.
For all other cases (a = rt

′′
k , where t′′ 6= t, a = wt

′′
k , with

t′′ 6= t, and a ∈ As), we can just change the interleaving to
move a before βp and conclude easily.

For each resulting trace, we show that we are under the induction
hypothesis premises. Hence, we conclude by induction.

2

This reordering scheme is extensively used in the proof of Lemma 7.4,
stating that the reordering interpretation of BMM can be simulated
in the operational world.

LEMMA 7.4. Let Eo = (P, tr) ∈ BMMo(P ). Then there exist
P ′, tr ′ such that Eo

RO−−→ (P ′, tr ′), with (P ′, tr ′) ∈ BMMo(P
′)

is SCρ.

In order to prove the lemma by induction, we need to prove a
stronger result, that includes an additional property on the shape of

the two operational traces tr and tr ′. This so-called write-swapping
property is formally defined as follows.

DEFINITION 7.2 (Write-swapping). Let tr and tr ′ two sequences
of actions. The write-swapping property holds on (tr , tr ′) if for any
write actions w1, w2 to the same address,

• ifw1
tr−→ w2 andw2

tr′−−→ w1 (write actions have been swapped)
then the trace tr is of the form tr = α · [w1] · β · [w2] · γ and
B(w1) 6∈ β.

• if w1
tr−→ w2 and w1

tr′−−→ w2 (write actions have not been
swapped) then if B(w1) occurs before w2 in tr , it is also the
case in tr ′.

Proof. We prove Lemma 7.4 by strong induction on the size of
the execution |tr | = n. Assume the property holds for any integer
k < n. Let Eo = (P, tr) ∈ BMMo(P ) an execution of size n.

We assume n > 0 (the case n = 0 holds trivially). So tr is
of the form tr = tr1 · [a]. By induction on tr1, we get P2 and
tr2 such that (P, tr1)

RO−−→ (P2, tr2), with E2
o = (P2, tr2) ∈

BMMo(P2) ∩ SCρ, plus a write-swapping on (tr1, tr2).
We extend E2

o to (P2, tr2 · [a]). If action a is not a read action,
we can conclude directly. Otherwise, a = rt3x , the extended trace is
in BMMo(P2), and the write-swapping property holds. It remains
to show that it is SCρ. If it is not, we proceed by case analysis:

Case 1: There is a thread t 6= t3 whose buffer is not empty at
the end of tr2. Formally, there is a write action wty in tr2

such that B(wty) 6∈ tr2. tr2.[a] is of the form α · [wty] · β ·
[rt3x ]. Applying Lemma 7.3 on wty , we get P3 and tr3 such
that (P2, tr2.[a])

RO−−→ (P3, tr3) with E3
o = (P3, tr3) ∈

BMMo(P3) and tr3 = α · β1 · [rt3x ] · [wty] · β2 with [wty] · β2

matching the pattern [wt· ; (r
t
· )
∗]+. By induction on α · β1 · [rt3x ],

we get P4 and tr4 such that
(
P3, α · β1 · [rt3x ]

) RO−−→ (P4, tr4),
with E4

o = (P4, tr4) ∈ BMMo(P4) ∩ SCρ, plus a write-
swapping property on the traces. We concatenate the suffix
[wty]·β2 to extend tr4 to an execution in BMMo(P4)∩SCρ. The
sequential consistency holds thanks to the pattern of [wty] · β2.
The write-swapping is preserved by the concatenation.

Case 2: All threads distinct from t3 have their buffer empty at the
end of tr2. Formally, for every write action wty ∈ tr2 such that
t 6= t3, B(wty) ∈ tr2. Let wt1x be the write seen by rt3x .
• If B(wt1x ) 6∈ tr2, then it means that t1 = t3. The trace tr2.[a]

is of the form: α · [wt1x ] · β · [rt3x ]. We apply Lemma 7.3 on
wt1x . The trace α · β1 · [wt1x ] · β2 we obtain is in BMMo and
looking at the shape of β1 and β2 it is even in SCρ. We must
show that wt1x is now the most recent write to x in β2. But
any other write there would be from thread t1 and rt3x could
thus not see wt1x .

• If B(wt1x ) ∈ tr2, then the trace tr2.[a] is of the form
α · [wt1x ] · β · [B(wt1x )] · γ · [rt3x ]. No wt2x more recent than
wt1x can appear in γ: either it is unbuffered in γ and it would
overwrite wt1x or it is not unbuffered but then t2 = t3 and
wt1x could not be seen by rt3x . No unbuffering B(wt2x ) can
either appear in γ since it would overwrite wt1x .
By Lemma 7.3 on wt1x and β, we get a trace tr3 such that
tr3 ·[B(wt1x )]·γ ·[rt3x ] = α·β1 ·[wt1x ]·β2 ·[B(wt1x )]·γ ·[rt3x ]. In
this trace, the most recent write to x is now wt1x . The subtrace
α·β1 ·[wt1x ]·β2 ·[B(wt1x )] is SC because α·[wt1x ]·β ·[B(wt1x )]
was. It remains to show that all reads in γ still see the most
recent writes. By induction on tr3 · [B(wt1x )] · γ, an SC
execution is rebuilt, that keeps the same write-seen.

2



Finally, we obtain the first inclusion as a corollary of Lemma 7.4.

COROLLARY 7.5. ρ(BMMo) ⊆ BMM.

Proof. Let Eo = (P, tr) ∈ BMMo(P ). By Lemma 7.4, we have
Eo

RO−−→ E′o, with E′o = (P ′, tr ′) ∈ BMMo(P
′) is SCρ. By

definition, ρ(Eo)
RO−−→ ρ(E′o) and ρ(E′o) is SC. Hence, ρ(Eo) ∈

BMM(P ). 2

7.2 BMM ⊆ ρ(BMMo)

We use here the post-fixpoint characterization of BMM (Lemma 5.1).
We first show that ρ(BMMo) contains all SC axiomatic executions.
Let E = 〈P,A, po−→, so−→,W 〉 ∈ BMM be an SC execution. Then
there exists a total order to−→ on A, compatible with

po−→ and so−→
such that all read actions in A see the last write to their address
w.r.t. to−→. We claim thatEo = (P, tr) can be build, with tr ↓A=

to−→,
and that Eo ∈ BMMo(P ). Silent actions are inserted in to−→ so
that each write action is immediately unbuffered, and that tr is
intra-thread consistent – an equivalent condition was required for
E ∈ BMM(P ). Finally ρ(Eo) = E. We also show that ρ(BMMo)
is backward-closed by WR?R. Let E and E′ two well-formed
axiomatic executions such that E′ ∈ ρ(BMMo) and E WR?R−−−−→ E′.
E′ ∈ ρ(BMMo) so there existsE′o ∈ BMMo such thatE′ = ρ(E′o).
WR?R is a valid transformation under BMMo (see Section 8.1),
meaning that there exists Eo ∈ BMMo such that ρ(Eo) = E.
Hence, E ∈ ρ(BMMo).

8. Validity of Transformations
One of the objectives of any memory model is to take into account
the reorderings performed by the hardware and to allow compilers
to perform some program transformations that deal directly with
memory accesses or locks. Tab. 2 gives standard transformations
and their validity under various memory models [38, 39].

For a proof of validity we rely on the operational model: we
consider a BMMo trace of a transformed program and show there
exists a valid BMMo trace of the original program with the same
behavior. For a proof of invalidity, we provide a counter-example
and use the intuitive reordering memory model of BMM: given a
program P and a transformed program P ′, we show that there exists
an execution that is valid for P ′ but invalid for P (both under BMM).
This table demonstrate that, despite its restricted set of reorderings,
BMM allows useful transformations.

8.1 Validity of WR and WR?R

Among the set of transformations, the validity of the local reordering
WR?R is crucial for the memory model inclusion.

DEFINITION 8.1 (Valid reordering). A local reordering Φ−→ be-
tween axiomatic executions is said to be valid with respect to
BMMo if for all axiomatic execution E and all operational execu-
tion Eo, E Φ−→ ρ(Eo) and Eo ∈ BMMo implies that there exists
E′o ∈ BMMo such that E = ρ(E′o).

We can show that both WR and WR?R are valid.

LEMMA 8.1. WR−−→ is valid.

Proof. Let E = 〈P,A, po−→, so−→,W 〉 be an axiomatic execution
and Eo = (P ′, tr ′) an operational execution with E WR−−→ ρ(Eo)
and Eo ∈ BMMo. By hypothesis, we know that tr ′ = β · [rjtx] ·
γ · [wity, v] · δ and γ does not contain any action owned by t except
some unbuffering actions. The write action wity, v can be performed
just after rjtx since the unbuffering in γ are independent of it and
no read action in γ can see wity, v (it is still in its buffer). Hence

Transformation SC JMM BMM

Trace preserving transformation � � �
Reordering normal memory accesses × � ⊗
Redundant read after read elimination � × �
Redundant read after write elimination � � �
Irrelevant read elimination � � �
Irrelevant read introduction � × �
Redundant write before write elimination � � �
Redundant write after read elimination � × ×
Roach motel reordering � × ⊗

We write � for a valid transformation and × when it is generally wrong, ⊗
for limited applicability: only WR?R applies to normal memory accesses;
a read can be delayed past a lock and a write can take over an unlock.

Table 2. Validity of transformations in memory models.

the trace β · [rjtx] · [wity, v] · γ · δ is still in BMMo for the same
value-seen and write-seen information. After a swap we obtain a
trace tr ′′ = β · [wity, v] · [rjtx] · γ · δ that belongs to BMMo(P ) (by
definition of WR−−→) and ρ(P, tr′′) = E. 2

LEMMA 8.2. WR?R−−−−→ is valid.

Proof. Let E = 〈P,A, po−→, so−→,W 〉 be an axiomatic execution
and let Eo = (P ′, tr ′) be an operational execution such that

E
WR?R−−−−→ ρ(Eo) andEo ∈ BMMo. By hypothesis, the traces tr ′ is

of the form tr ′ = β·[rjtx]·γ·[wity, v]·γ1·[ri1t y] · · · γn·[r
in
t y]·δ. Each

γ, γ1, . . . , γn does not contain any action owned by t except some
unbuffering actions. As in the previous proof, the action wity, v can
be performed just after rjtx. All read actions ri1t y, . . . , r

in
t y see the

write wity, v in tr ′ and can thus also be performed earlier. The trace
β·[rjtx]·[wity, v]·[r

i1
t y] · · · [r

in
t y]·γ·γ1 · · · γn·δ is still in BMMo(P

′)
for the same value-seen and write-seen (the moved reads see wity, v
directly from t’s buffer). We then conclude with a swap: the trace
tr ′′ = β · [wity, v] · [ri1t y] · · · [r

in
t y] · [r

j
tx] · γ · γ1 · · · γn · δ belongs

to BMMo(P ) and ρ(P, tr′′) = E. 2

8.2 Other Valid Transformations
GivenE′ = (P ′, tr ′), for each transformation we observe the shape
of tr ′ and provide a corresponding BMMo trace of an untransformed
program. We assume that the intra-thread semantics accepts the
transformation. All read and write actions are non-volatile.

Redundant Read after Read Elimination.

tr ′ = β · [ritx] · γ

Trace β · [ritx] · [rjtx] ·γ is in BMMo. rjtx and ritx see the same write.

Redundant Read after Write Elimination.

tr ′ = β · [witx, v] · γ

Trace β · [witx, v] · [rjtx] ·γ is in BMMo. rjtx sees witx, v in its buffer.

Irrelevant Read Elimination.

tr ′ = β · δ
Trace β · [ritx] · γ is in BMMo. ritx sees the first write to x in the
buffer or pick the current write attached to x in memory.

Irrelevant Read Introduction.

tr ′ = β · [ritx] · δ
Trace β · γ is in BMMo. The visibility of the other actions is
preserved.



Redundant Write before Write Elimination.

tr ′ = β · [wjty, v] · γ

We distinguish two cases. If γ = γ1 · B(wjty, v) · γ2. The trace
β · [wity, v′] · [wjty, v] · γ1 · B(wity, v′) · B(wjty, v) · γ2 is in
BMMo. Adding the unbuffering preserves the visibility of wjty, v
since wity, v

′ is never seen. Otherwise, B(wjty, v) 6∈ γ. The trace
tr ′ = β · [wity, v′] · [wjty, v] · γ is in BMMo. wity, v′ is never seen.

Roach-motel: Read-lock Reordering. A read before a lock can
be reordered (no action emitted by the thread t in γ).

tr ′ = β · [litl] · γ · [rjtx] · δ

We assume tr′ is properly locked so no synchronization action
on l is in γ. Hence the following interleaving is a valid trace of
the transformed program: β · γ · [litl] · [rjtx] · δ. Then the trace
β · γ · [rjtx] · [litl] · δ is in BMMo.

Roach-motel: Unlock-write Reordering. A write after an unlock
can be reordered. Since the buffer must be empty, the transformed
trace has the following shape, where witx, v is the last non silent
action of thread t.

tr ′ = β · [witx, v] · γ · [B(witx, v)] · δ · [ujt l] · η

There is no action emitted by thread t in γ except some unbufferings.
No action in γ emitted by the other threads can see the write witx, v.
Then, changing the scheduling, we can obtain the following BMMo

traces: β · γ · [witx, v] · [B(witx, v)] · δ · [ujt l] · η. By hypothesis,
there is no action emitted by the thread t in δ; besides there is no
lock/unlock action on l in δ. Therefore changing the scheduling
again can lead to the following BMMo (properly locked) trace:
β ·γ · [witx, v] · [B(witx, v)] · [ujt l] · δ · η. Finally, the following trace
is a BMMo execution of the untransformed program: β · γ · [ujt l] ·
[witx, v] · [B(witx, v)] · δ · η.

8.3 Invalid Transformations
The BMM helps understand why some transformations are invalid.

Redundant Write after Read Elimination. Here v is volatile.

x←0 y←0
r1←x x←1
y←1 v←0
x←r1 r2←y
r3←x

r1=r2=0, r3=1 invalid

redund. write−−−−−−−→
after read elim.

x←0 y←0
r1←x x←1
y←1 v←0

r2←y
r3←x

r1=r2=0, r3=1 valid

On the left, we see why the execution is not valid: it isn’t SC and
no reordering is possible. After the redundant write elimination, the
execution becomes valid because the read r3←x can be reordered
with the write y←1 to give a SC execution. This transformation thus
introduced new behaviors.

Roach-motel: Unlock-read Reordering.
Reordering reads and unlocks is not al-
lowed. Here, the reads cannot both see
the default writes, whereas they could if
one of them was hoisted into the critical
section and reordered with the preceed-
ing write.

x← 0 y ← 0
lock l lock l′

x← 1 y ← 1
unlock l unlock l′

r1←y r2←x

Roach-motel: Write-lock Reordering.
Reordering writes and locks is not al-
lowed. The reads cannot both see the de-
fault writes, whereas they could if one
of the writes was hoisted into the critical
section and reordered with the next read.

x← 0 y ← 0
x← 1 y ← 1
lock l lock l′

r1←y r2←x
unlock l unlock l′

9. Empirical Evaluation of the BMM
We have shown that the BMM is more restrictive than the JMM.
It is, therefore, natural to ask how severe these restrictions are in
practice, i.e. what is the performance impact imposed by BMM
when incorporated within a production virtual machine running
on a TSO architecture. In this section, we present results from a
preliminary study that provides a coarse upper-bound approximation
of the overheads incurred by BMM conformance. Our experiment
is as follows. Starting with a production virtual machine, we switch
the backend from a non-verifying optimizing compiler to one
that preserves TSO semantics. Then, we modify any Java-level
optimizations performed by the VM to be BMM compliant. We
expect that the performance results are going to be an upper bound
on the costs of BMM, since we limited the optimizations performed
by the VM and ensured that they precisely enforce the reorderings
allowed by BMM. This enforcement is realized through the injection
of memory fences, operations that effectively flush the contents
of store buffers; we make no attempt to optimize or verify the
placement of such fences [40].

Specifically, we start with the Fiji open-source real-time
JVM [28]. We selected Fiji because it has competitive performance,
we understand the optimizations it performs well, and it is represen-
tative of a real-world system. The Fiji compiler takes bytecode as
input and, in the configuration we use here, transforms it into ANSI
C code, which is fed to gcc. The Fiji compiler includes a variety of
classic optimizations as well as Java-specific techniques. To achieve
BMM compliance in the back-end, we replace gcc with LLVMTSO,
an LLVM branch with optimizations either modified or disabled to
preserve compliance with the TSO memory model [25]. This is a
close approximation of what we would write to support the BMM
in the backend. Within Fiji, we carefully examined all optimization
passes to ensure compliance with BMM; redundant code elimina-
tion (RCE) is the only optimization for which compliance could
not be guaranteed; RCE is performed over local operations as well
as heap loads; as a result, the optimization permits write-read or
read-read operations to be reordered, violating BMM semantics. We
modified the optimization to disallow processing any heap loads.

We evaluated the modified system on a variety of benchmarks,
including SPECjvm98, SPECjbb2000, and a subset of DaCapo2006
(2006-10-MR2 Release) and DaCapo2009 (9.12 Bach Release).
The whole benchmark suite is a mix of concurrent and sequential
programs, which we think are well suited to exhibit the through-
put overheads of missed optimization opportunities and superflu-
ous fences. (The concurrent programs we consider are avora9,
jbb2000, lusearch6, and lusearch9). The experiments were run
on an 8-Core Xeon 3.16 GHz processors and 8 GB memory machine
installed with Fedora 13 Linux (kernel 2.6.34). SPECjvm98 was
executed for 15 iterations with the first 5 iterations being warm-up.
We report the mean of the last 10 iterations. The standard deviation
was negligible. The SPECjbb2000 and DaCapo benchmarks were all
executed with their default configurations, except that the workload
was set to the maximum wherever possible and that the number of
warehouses (for SPECjbb2000) and the number of threads (for Da-
Capo2009) were all set to 8 to exercise the maximum concurrency.

We evaluate how BMM impacts performance by examining
performance relative to a system that uses an unmodified version
of Fiji and LLVM; in this baseline configuration, there are no
optimizations that are either modified or disabled within either Fiji
or LLVM; specifically, the baseline implementation allows Fiji to
perform RCE transformations, and LLVM to perform non-TSO
compliant reorderings. The results are shown in Fig. 8 with column
BMM. The numbers are normalized with respect to this baseline.
First, observe that adding TSO support to LLVM and crippling
RCE has almost no impact on performance on most of benchmarks
with the exception of jack and avrora9; for the former, BMM is
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Figure 8. Fiji VM. Execution time normalized to JMM configuration. See Tab. 3 for configurations.

Name LLVM RCE Biased-locking

JMM (baseline) regular regular off
BMM tso modified off
JMM+BL regular regular on with no fence
BMM+BL tso modified on with 2 fences

Table 3. Evaluation configurations

22% faster while 16% slower for the latter. The average slowdown
is 1%. In general, these results provide strong anecdotal evidence
that BMM is essentially performance neutral. On more relaxed
architectures the story is, of course, likely to be different.

Biased Locking. While inspecting the code of the Fiji VM, we
stumbled upon an interesting optimization. Fiji has several imple-
mentations of the Java concurrency control primitives. One optimiza-
tion that is supported is called biased locking [19]. Biased locking
is an implementation of locking operations that is efficient when
one thread repeatedly acquires and releases the same monitor [31],
a pattern that is frequent in Java. Roughly, a monitor can be biased
to one thread that can then acquire and release it without any syn-
chronization. However, when a thread needs a lock that is biased to
another thread, that bias needs to be revoked using synchronizing
instructions. As shown in Fig. 8 under column JMM+BL, turning
on biased locking in Fiji results in a maximum speed up of roughly
45% (and an average of 8%). This optimization thus appears to be
important to performance.

Fiji biased locking is implemented without any CAS or fences.
Although we believe this is what most of modern Java VM do, its
correctness is unclear given the current formal definition of JMM.
Biased locking implies a roach motel reordering and this kind of
reordering has been shown to be invalid by Sevčik [39]. Indeed,
according to the “JSR–133 cookbook” and other folklore,4 biased
locking is permitted under JMM, but to the best of our knowledge,
there is no formal proof on the number of fences required to ensure
correctness.

The BMM requires two fences, as we will prove next, one at the
lock and one at the unlock. With two fences, the benefits of biased
locking is 30% at best (and on average 6%).

4 https://blogs.oracle.com/dave/entry/biased_locking_in_
hotspot

Validity of Biased Locking. We explain how to reason about biased
locking under the BMM. Since the implementation of the locking
mechanism cannot be described with Java constructs only, we
introduce two actions available only at a lower-level language in the
compilation chain: a memory fence ft and a fake unlock ũitl. The
memory fence can be emitted by a thread if and only if its buffer is
empty. The effect of the action is to ensure the buffer is empty prior
to any subsequent action being performed.

ts(t)
ft−−−−� s

ts,m
ft−→synch ts[t 7→ s],m

[FENCE]

The fake unlock models the bias revocation; this action is taken into
account as a regular unlock in what makes a trace properly locked.
However, it imposes no restrictions on the state of buffers.

ts(t)
ũitl−−−−� s

ts, b,m
ũitl−−→ ts[t 7→ s], b,m

[FAKEUNLOCK]

At this level of abstraction we do not describe how the biased locking
is to be implemented, but the intuition is that the conjunction of a
fence and a fake unlock corresponds to an unlock. The general case
of a thread silently reacquiring the same lock can be seen as a trace
transformation (there is no ltl in β and no ltl nor utl in γ):

α · [litl] · β · [ujt l] · γ · [l
k
t l] · δ

BL−→ α · [litl] · β · [ft] · γ · [ft] · δ

This transformation is indeed valid: consider a BMMo execution
(P ′, tr ′) with tr ′ = α · [litl] · β · [ft] · γ · [ft] · δ. If the intra-
thread semantics allows to replace the first fence by an action ujt l
and the second one by an action lkt l, then the untransformed trace
tr = α · [litl] · β · [ujt l] · γ · [lkt l] · δ is also BMMo: the FENCE
rule ensures that when the ft action is emitted the buffer of thread t
is empty so the UNLOCK/LOCK rules can be applied. Moreover
the trace tr is properly locked. The revocation of a biased lock
corresponds to the following trace transformation.

α · [litl] · β · [ujt l] · γ · δ
BL′
−−→ α · [litl] · β · [ft] · γ · [ũj

′

t l] · δ

Since there is no lock on monitor l in γ, if the transformed trace is
properly locked, then so is the initial one. The action ft ensures t’s
buffer is empty after β. The UNLOCK rule can thus be applied.



10. Conclusions
This work presents BMM, a memory model that has been designed
as part of a broader undertaking to build a verifying compiler for
multithreaded safety-critical Java. The key characteristics required
for such a memory model are ease-of-understanding both for pro-
grammers and compiler writers, and a practical realization within
a compiler framework that does not impose onerous restrictions
on important program optimizations. We believe the BMM is a
promising step in this direction. Its axiomatic definition is expressed
using intuitive and simple memory reordering notions, making it
suitable for reasoning about program transformations, while its oper-
ational instantiation can conveniently serve as a basis for a verifying
compiler infrastructure. Its backward compatibility with the JMM
entails that we can use BMM on legacy code. It thus provides a
key missing piece for a verified infrastructure for Java on the x86
processor family.

The question of how to obtain a more relaxed model, one that
would allow efficient implementations on architectures such as
Power and ARM, while at the same time remaining amenable to
incorporation within verified compilers, remains a subject for future
research. Although these more relaxed platforms still guarantee
coherence (i.e., there is a single linear order of writes that all
threads must respect), they allow other non-intuitive behaviors
such as out-of-order writes, speculative execution, etc., as well
as having a substantially more complex notion of dependence;
these complexities make formalization and axiomatic reasoning
challenging [33]. We believe that more experience with BMM, with
respect to both applications and optimizations, is necessary before
we can transplant the intuitions underlying our development here to
these other environments.

Acknowledgements. We would like to thank Hans Boehm, Cliff
Click, Doug Lea, Gustavo Petri, Filip Pizlo, Jaroslav Ševčı́k and
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[34] J. Ševčı́k. Safe Optimisations for Shared-Memory Concurrent Pro-
grams. In Proc. of PLDI, 2011.
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