
Resource-Sensitive Synchronization Inference by Abduction

Matko Botinčan
University of Cambridge

matko.botincan@cl.cam.ac.uk

Mike Dodds
University of Cambridge

mike.dodds@cl.cam.ac.uk

Suresh Jagannathan
Purdue University

suresh@cs.purdue.edu

Abstract
We present an analysis which takes as its input a sequential pro-
gram, augmented with annotations indicating potential paralleliza-
tion opportunities, and a sequential proof, written in separation
logic, and produces a correctly-synchronized parallelized program
and proof of that program. Unlike previous work, ours is not an in-
dependence analysis; we insert synchronization constructs to pre-
serve relevant dependencies found in the sequential program that
may otherwise be violated by a naı̈ve translation. Separation logic
allows us to parallelize fine-grained patterns of resource-usage,
moving beyond straightforward points-to analysis.

Our analysis works by using the sequential proof to discover
dependencies between different parts of the program. It leverages
these discovered dependencies to guide the insertion of synchro-
nization primitives into the parallelized program, and to ensure that
the resulting parallelized program satisfies the same specification
as the original sequential program, and exhibits the same sequential
behaviour. Our analysis is built using frame inference and abduc-
tion, two techniques supported by an increasing number of separa-
tion logic tools.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Program Verification—Correctness proofs; D.3.3 [Program-
ming Languages]: Language Constructs and Features—Concurrent
programming structures

General Terms Languages, Theory, Verification

Keywords Separation Logic, Abduction, Frame Inference, Deter-
ministic Parallelism

1. Introduction
Automatically verifying the safety properties of shared-memory
concurrent programs remains a challenging problem. To be useful
in practice, proof tools must (a) explore a potentially large number
of interleavings, and (b) construct precise flow- and path-sensitive
abstractions of a shared heap.

Just as significantly, verification complexity is often at odds
with the straightforward intentions of the programmer. Low-level
concurrency control abstractions such as locks obfuscate higher-
level notions such as atomicity and linearizability, likely to be
exploited by the programmer when writing programs. While at-
tempts to incorporate these notions directly into programs have met

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’12, January 25–27, 2012, Philadelphia, PA, USA.
Copyright c© 2012 ACM 978-1-4503-1083-3/12/01. . . $10.00

with some success—for example, in software transactional mem-
ory [21], there remains a substantial burden on the programmer to
ensure programs can be partitioned into easily-understood atomic
and thread-local sections. Automated proof engines used to verify
program correctness must also assimilate this knowledge to ensure
proof-search focusses on relevant behaviour (e.g., serializability),
and eschews irrelevant details (e.g., thread-local state) [18]; the
alternative, expressing such distinctions in programmer-supplied
specifications, is too often onerous to be acceptable in practice. In
any case, the inherent complexity of dealing with concurrency, both
for the programmer and for the verifier, unfortunately remains.

In many cases concurrency is an optimization, rather than in-
trinsic to the behaviour of the program. That is, a concurrent pro-
grams is often intended to achieve the same effect of a simpler se-
quential counterpart. Consequently, an attractive alternative to con-
structing a concurrent programming is to automatically synthesise
one. In this approach, the programmer writes a sequential program;
the program is automatically transformed into a concurrent one ex-
hibiting the same behaviour [3–5, 17]1. In this context, the verifica-
tion problem becomes significantly more tractable. Understanding
and verifying the concurrent program reduces to first verifying the
sequential program, and second, verifying the parallelising trans-
formation.

We propose a program analysis and transformation that yields
a parallelized program, guided by a safety proof of the original
sequential program. To guide the transformation, we assume that
the programmer annotates points in the sequential program where
concurrency can be profitably exploited, without supplying any
additional concurrency control or synchronization. The result of
the transformation is a concurrent program with corresponding
behaviour, and a safety proof for the concurrent program; in this
sense, parallelized programs are verified by construction. While
our analysis is driven by a safety proof, parallelization protects all
behaviours, not just those specified in the proof. Thus we can apply
our approach to complex algorithms without needing to verify total
functional correctness.

Our transformation ensures that behaviour is preserved by
requiring that the concurrent program respects sequential data-
dependencies. In other words, the way threads access and modify
shared resources never results in behaviour that would not be possi-
ble under sequential evaluation. To enforce these dependencies, the
transformation injects barriers, signalling operations that regulate
when threads are allowed to read or write shared state. These bar-
riers can be viewed as resource transfer operations which acquire
and relinquish access to shared resources such as shared-memory
data structures and regions when necessary.

Our analysis is built on separation logic [32]. By tracking how
resources are demanded and consumed within a separation logic

1 This approach is commonly known as deterministic parallelism, although
our approach does not, in fact, require that the input sequential program is
deterministic.

proof, we can synthesize barriers to precisely control access to
these resources. Our approach critically relies on frame inference
and abduction [11], two techniques that generate fine-grained infor-
mation on when resources are necessary and when they are redun-
dant. This information enables optimizations that depend on deep
structural properties of the resource—for example, we can split a
linked list into dynamically-sized segments and transmit portions
between threads piece-by-piece.

Our analysis thus enforces sequential order over visible be-
haviours, while allowing parallelization where it has no effect on
behaviour. Insofar as our technique safely transforms a sequential
program into a concurrent one, it can also be viewed as a kind of
proof-directed compiler optimization. Notably, our transformation
is not based on an independence analysis—our focus is not to iden-
tify when two potentially concurrent code regions do not interfere;
instead, our analysis injects sufficient synchronization to ensure rel-
evant sequential dependencies are preserved, even when regions
share state and thus potentially interfere.

Contributions.

1. We present an automated technique to synthesize a parallel pro-
gram given a partially-specified sequential program augmented
with annotations indicating computations that are candidates for
parallelization. The provided specifications are used to define
relevant loop invariants.

2. We leverage abduction and frame inference to define a path-
and context-sensitive program analysis capable of identifying
per program-point resources that are both redundant—these are
resources that would no longer be used by the thread executing
this computation; and, needed—these are resources that would
be required by any thread that executes this computation, but
which is not known to have been released at this point.

3. We use information from the above analysis to inject grant
and allowed barriers into the original program; their semantics
enable resource transfer from redundant to needed resource
points. The analysis also constructs a safety proof in separation
logic which validates the correctness of the barrier injections.

4. We prove that our transformation is specification-preserving:
the parallelized program is guaranteed to satisfy the same spec-
ification as the sequential program. Moreover, for terminating
programs that do not dispose memory, we also show that the
transformed program preserves the behaviour of the original.
Complete proofs and other supporting material can be found in
an associated technical report [8].

Paper structure. An overview of the approach and motivating
examples are given in §2. Issues that arise in dealing with loops
and recursive datatypes (such as lists) are discussed in §3. The
analysis and transformation are formalized in §4 and §5. Behaviour
preservation results are discussed in §6. Observations about the
interplay between analysis precision and the predicates available in
defining specifications are given in §7. §8 discusses related work.

2. Overview
The objective of our analysis is to take a sequential program (with
annotations indicating where concurrency may be exploited), and
to produce a parallelized program that conforms to the same spec-
ification. To do this, we insert synchronization barriers enforcing
those sequential dependencies that can affect the observable be-
haviour of the program.

Our analysis uses separation logic to capture and manipulate
these dependencies. The programmer must provide a proof of
safety for the sequential program. This proof is used to drive the
parallelization process, allowing our analysis to calculate precisely

global *x, *y;
void main() {
local i, n;
n = nondet();
x = alloc();
y = alloc();
pfor(i=1;i++;i<n){
f(i);

}
}

void f(i){
local v=*x;
if (v>=i) {
g(y, v);

}
else {
g(x, 0);

}
}

void g(*p, v){
*p = v;

}

Figure 1. A simple parallel program that operates over shared
locations x and y. The number of concurrent iterations performed is
chosen nondeterministically to represent the act of receiving values
from some unknown process or user interaction.

which resources can be accessed in parallel, and which must be
accessed sequentially, in order to preserve salient sequential de-
pendencies.

2.1 Parallelization and Parallel-for
We assume that the portions of a program that can be parallelized
will be written as parallel-for loops, pfor. The intended semantics
of a parallel-for loop is that every iteration will run in parallel, but
that the behaviour will be identical to running them in sequence;
this semantics provides a simple but useful form of data parallelism
in which concurrently executing computations may nonetheless
have access to shared state.

For example, consider the program shown in Fig. 1. How can
we parallelize this program without introducing any unwanted new
behaviours, i.e., behaviours not possible under sequential execu-
tion? Naı̈vely, we might simply run every iteration of the pfor in
parallel, without synchronization. That is:

f(1) || f(2) || ...

In some cases, this parallelization is good, and introduces no new
observable behaviours (e.g., if v is greater than n). But, under
others, the second call to f() may write to a memory location
that is subsequently read by the first call to f(), violating intended
sequential ordering. For example, consider the case when v is
initially 1 and n is 2; sequential execution would produce a final
result in which the locations pointed to by x and y resp. are 0 and
1, while executing the second iteration before the first would yield
a result in which the location pointed to by y remains undefined.

To be sure that no new observable behaviour is introduced, we
must ensure that:

• no iteration can read from a location that was already written to
by a later iteration.

• no iteration can write to a location that was already read from
or written to by a later iteration.

In order to enforce this behaviour, we must introduce a mechanism
to force later iterations to wait for earlier ones.

Note, crucially, that later iterations need not always wait for ear-
lier ones—synchronization is only needed when reads and writes to
a particular memory location could result in out-of-order behaviour.
We want to enforce salient dependencies, while allowing beneficial
race-free concurrency.

2.2 Dependency-Enforcing Barriers
Our analysis inserts barriers into the parallelized program requir-
ing logically later iterations to wait for earlier ones. We introduce
grant(), a barrier that signals to subsequent iterations that a re-
source can safely be accessed, and wait(), a barrier that blocks
until the associated resource becomes available from preceding it-
erations [17].

f1(i){
local v=*x;
if (v>=i) {
grant(wx);
ga1(y, v);

}
else {
grant(wy);
gb1(x, 0)

}
}

ga1(*p, v){
*p=v;
grant(wy);
}

gb1(*p, v){
*p=v;
grant(wx);
}

f2(i){
wait(wx);
local v=*x;
if (v>=i) {
ga2(y, v);

}
else {
gb2(x, 0);
wait(wy);

}
}

ga2(*p, v){
wait(wy);
*p=v;
}

gb2(*p, v){
*p=v;
}

Figure 2. Parallelization of f(). Only synchronization barriers
between the first and second iterations are shown.

How can we use these barriers to enforce sequential depen-
dencies in the example program? The exact pattern of paralleliza-
tion depends on the granularity of our parallelization analysis. In
the best case, there are no dependencies between iterations (e.g.,
each iteration operates on a different portion of a data structure).
In this case, we need no barriers, and all iterations run indepen-
dently. However, our example program shares the locations x and
y, meaning barriers are required. In the worst case, each iteration
of the pfor begins with a call to wait() and ends with a call to
grant()—this would enforce sequential ordering on the iterations.

A better (although still relatively simple) parallelization is
shown in Fig. 2. To simplify the presentation, we only show the
synchronization barriers between the first and second iterations of
pfor. We write f1 for the first iteration, and f2 for the second. (Our
full analysis generates a single version of f() with sufficient barri-
ers to run an arbitrary number of iterations in parallel. See §2.6 for
a description.)

Two channels, wx and wy, are used to signal between f1 and
f2—wx (resp. wy) is used to signal that the later thread can read and
write to the heap location referred to by x (resp. y). The function
g() has different resource requirements depending on its calling
context. Consequently, we have specialized it to embed appropriate
barriers depending on its context.

Our analysis inserts barriers so that an iteration of the parallel-
for only calls grant() on a signal when the associated resource
will no longer be accessed. Similarly, it ensures that an iteration
calls wait() to acquire the resource before the resource is ac-
cessed.

How does our analysis generate these synchronization barriers?
The example we have given here is simple, but in general our anal-
ysis must cope with complex dynamically-allocated resources such
as linked lists. It must deal with the partial ownership (for example,
read-access), and with manipulating portions of a dynamic struc-
ture (for example, just the head of a linked list). We therefore need
a means to express complex (dynamic) patterns of resource man-
agement and transfer.

To achieve this, our analysis assumes a sequential proof, writ-
ten in separation logic, rather than just an undecorated program.
This proof need not capture full functional correctness—it is suffi-
cient just to prove memory-safety. We exploit the dependencies ex-
pressed within this proof to determine the resources that are needed
at a program point, and when they can be released. Our analysis in-
serts barriers to enforce the sequential dependancies represented in
this proof. As our proof system is sound, these dependencies faith-
fully represent those in the original sequential program.

2.3 Resources, Separation and Dependency
At the heart of our analysis is automated reasoning using concur-
rent separation logic [28, 32]. Separation logic is a Hoare-style pro-
gram logic for reasoning about mutable, allocatable resources. A

separation logic proof of a program C establishes a specification

{P} C {Q}
This can be be read as saying: “the program C, if run in a re-
source satisfying P , will not fault, and will give a resource satisfy-
ing Q if it terminates”. In general, a resource can be anything for
which ownership can be partitioned (‘separated’) between different
threads [10]. In practice, resources are most often heap-allocated
structures such as lists, trees, locks, etc, where separation corre-
sponds to disjointness between underlying heap addresses.

An essential feature of separation logic is that specifications are
tight. This means that all of the resources accessed by a program
C must be described in its precondition P , or acquired through
explicit resource transfer. No other resources will be accessed or
affected by C when executed from a resource satisfying P . The
tight interpretation is essential for our analysis. Suppose we prove
a specification for a program (or portion thereof); resources outside
of the precondition cannot affect the program’s behaviour, and
consequently can be safely transferred to other threads.

One result of this tight interpretation is the frame rule, which
allows a small specification to be embedded into a larger context.

{P} C {Q}
{P ∗ F} C {Q ∗ F} FRAME

Here ∗ is the separating conjunction. An assertion P ∗F is satisfied
if P and F hold, and the portions of the state they denote do not
overlap.

The concurrent counterpart of the frame rule is the parallel rule.
This allows two threads that access non-overlapping resources to
run in parallel, without affecting each other’s behaviour.

{P1} C1 {Q1} {P2} C2 {Q2}
{P1 ∗ P2} C1‖C2 {Q1 ∗Q2}

PARALLEL

The parallel rule enforces the absence of data-races between C1

and C2. The two threads can consequently only affect each other’s
behaviour by communicating through race-free synchronization
mechanisms, such as locks or barriers.

Automatic inference. Automated reasoning in separation logic
revolves around two kinds of inference questions. The first, frame
inference, calculates the portion of a formula S which is ‘left over’,
once another formula P has been satisfied. We call this remainder
F? the frame, and write the inference question as follows:

S ` P ∗ [F?]

(Throughout the paper, we use square brackets to indicate the
portion of the entailment that is to be computed.)

The second kind of inference question, abduction, calculates
the ‘missing’ formula that must be combined with a formula S in
order to satisfy some other formula P . We call this formula A? the
antiframe, and write the inference question as follows:

S ∗ [A?] ` P

Frame inference and abduction form the basis of symbolic execu-
tion in separation logic [2, 11]. Intuitively, frame inference lets us
reason forwards, while abduction lets us reason backwards. Frame
inference can work out which portions of the state will (and will
not) be affected by the command, while abduction can work out
what extra resources are necessary to execute the command safely.

Suppose we have a symbolic state represented by an assertion
S, and a command c with specification {P} c {Q}. If we calculate
the frame in S ` P ∗ [F?], the symbolic state after executing c
must be Q ∗ F?. The tight interpretation of triples is necessary for
this kind of reasoning. Because a specification must describe all the
resources affected by a thread, any resources in the frame must be
unaffected. Conversely, if we calculate the antiframe S ∗ [A?] ` P ,

it must be the case that before executing c, we must first acquire the
additional resource A? (as well as S).

Redundant and needed resources. The tight interpretation means
that a proof in separation logic expresses all resources modified by
each individual command. Because separation logic ensures race-
free behaviour, a proof also expresses all the resources that can
affect the observable behaviour of each individual command in
the program. Our parallelization analysis uses this to calculate re-
sources that are redundant and those that are needed during the
execution of the program.

We use frame inference to determine redundant resources—
resources that will not be accessed in a particular portion of the
program, and which can thus be safely transferred to other threads.
Conversely, we use abduction to determine needed resources—
resources that must be held for a particular portion of the program
to complete, and which must thus be acquired before the program
can proceed safely.

In our analysis, we generally calculate the redundant resource
from the current program point to the start of the subsequent itera-
tion. This resource can be transferred to the subsequent iteration us-
ing a grant() barrier. We generally calculate the needed resource
from the end of the previous iteration to the current program point.
This resource must be acquired from the previous iteration using a
wait() barrier before execution can proceed further.

Note that these two resources need not be disjoint. A resource
may be used early in an iteration, in which case it will be both
needed from the previous iteration to the current point, and redun-
dant from the current point up to the next iteration. Note also that
redundant and needed resources need not cover the entire state—
some resource described in the proof may never be accessed or
modified by the program.

2.4 Algorithm Overview
The user supplies a sequential program which makes use of the
pfor parallel-for construct, as well as a sequential proof written
in separation logic establishing the memory-safety of the program.
The high-level structure of our algorithm is then as follows:

1. The resource usage analysis phase uses abduction and frame
inference to discover redundant and needed resources for dif-
ferent portions of the program.

2. The parallelising transformation phase consists of two parts:

(a) The resource matching phase matches redundant resources
in one iteration of the parallel-for with needed resources in
the subsequent iteration.

(b) The barrier insertion phase converts the sequential program
into a concurrent program and inserts grant() and wait()
barriers consistent with the discovered resource-transfer.

The result is a parallelized program, and its separation logic proof.

2.5 Resource Usage Analysis
The resource usage analysis takes as its input the program, and a
separation logic proof for the program for some specification. Con-
sider once again the functions f() and g(), which we introduced
at the start of this section. Let us assume the programmer proves
the following specification:

{x 7→ x ∗ y 7→ y}
f(i)

{(x ≥ i ∧ x 7→ x ∗ y 7→ x) ∨ (x 7→ 0 ∗ y 7→ y)}
Fig. 3 shows an outline proof of this specification.

For each program point, the resource usage analysis computes a
pair of assertions: the needed resource and the redundant resource

˘
x 7→ x ∗ y 7→ y

¯
void f(i) {˘

x 7→ x ∗ y 7→ y
¯

local v = *x;˘
v = x ∧ x 7→ x ∗ y 7→ y

¯
if (v >= i) {˘

v = x ∧ v ≥ i ∧ x 7→ x ∗ y 7→ y
¯

g(y, v);
}
else {˘

v = x ∧ v < i ∧ x 7→ x ∗ y 7→ y
¯

g(x, 0);
}

}˘
(x ≥ i ∧ x 7→ x ∗ y 7→ x) ∨ (x 7→ 0 ∗ y 7→ y)

¯

˘
p 7→ ∧ v = v

¯
void g(*p, v) {˘

p 7→ ∧ v = v
¯

*p = v;
}˘
p 7→ v

¯

Figure 3. Proofs of functions f() and g().

(see Fig. 4). The needed resource is the portion of the sequential
precondition required to reach the program point without faulting;
the redundant resource is the portion of the resource held in the
sequential proof that is unnecessary for reaching the end of the
function. In other words, needed assertions at program point p
denote resources that are needed from the beginning of the function
up to (but not including) p; redundant assertions denote resources
that are not required from p to the end of the function.

For example, the redundant resource established within the false
branch of the conditional in f asserts that a thread executing this
function will no longer require access to y at this point whenever v
< i. The needed resource here asserts that the thread reaching this
point still requires access to x, provided v < i.

2.6 Generalizing to n Threads
Our analysis can handle an unbounded number of loop iterations
running in parallel. Fig. 5 shows the final parallelization of our
example, generalized to deal with an arbitrary number of iterations.

A pfor is translated to a sequential for loop, in which each
iteration forks a new copy of the parallelized loop body. Resources
are transferred between the threads in order of thread-creation.
That is, the nth iteration of the pfor acquires resources from
the logically-preceding (n− 1)th iteration, and releases resources
to the logically (n + 1)th iteration. This ordering is implemented
through shared channels—a thread shares with its predecessor a set
of channels for receiving resources, and with its successor a set of
channels for sending resources.

The number of threads—and so, the required number of
channels—is potentially decided at run-time. Consequently, chan-
nels are dynamically allocated in the main for-loop using the
newchan() operation [17]. Each iteration creates a set of new
channels, and passes the prior and new set to the forked thread. The
parallelized version of f (Fig. 5) now takes four channel arguments,
a pair of each for x and y. The prior channels are used for resource
transfer with the logically-preceding thread (here wx, wy), and the
new channels are used to communicate resource transfer with the
logically-following thread (here, wx’, wy’).

Our analysis generates two versions of function g, specialized to
the two contexts in which it is invoked. Function ga executes when
v >= i. Here, the executing thread needs write access to y, which
it acquires by calling wait(wyp). Function gb needs write access
to x, but it runs in a context where the resource x has already been
acquired. Consequently, it need not call wait. Both versions release
a resource to the following thread using grant before returning.

void f(i) {

n:
˘
emp

¯
r :

˘
x < i ∧ y 7→ y

¯
local v = *x;

n:
˘
x 7→ x

¯
r :

˘
x ≥ i ∧ x 7→ x) ∨ (x < i ∧ y 7→ y)

¯
if (v >= i) {

n:
˘
x ≥ i ∧ x 7→ x

¯
r :

˘
x ≥ i ∧ x 7→ x

¯
g(y, v); −→ void g(*p, v) {

n:
˘
x ≥ i ∧ x 7→ x

¯
r :

˘
x ≥ i ∧ x 7→ x

¯
*p = v;

n:
˘
x ≥ i ∧ x 7→ x ∗ y 7→ y

¯
r :

˘
x 7→ x ∗ y 7→ y

¯
}

}
else {

n:
˘
x < i ∧ x 7→ x

¯
r :

˘
x < i ∧ y 7→ y

¯
g(x, 0); −→ void g(*p, v) {

n:
˘
x < i ∧ x 7→ x

¯
r :

˘
x < i ∧ y 7→ y

¯
*p = v;

n:
˘
x < i ∧ x 7→ x

¯
r :

˘
x 7→ x ∗ y 7→ y

¯
}

}

n:
˘
(x ≥ i ∧ x 7→ x ∗ y 7→ y) ∨ (x < i ∧ x 7→ x)

¯
r :

˘
x 7→ x ∗ y 7→ y

¯
}

Figure 4. Redundant and needed resources in the function f().
Function g() is inlined, as its resource usage depends on the calling
context.

3. Loops and Recursive Data Structures
Up to this point, we have dealt with channels transferring single
heap locations injected into straight-line code. Our analysis can in
fact handle more complicated heap-allocated data-structures such
as linked lists, and control-flow constructs such as loops. To illus-
trate, consider the example program sum_head(n) shown (and ver-
ified) in Fig. 6. sum_head(n) sums the values stored in the first n
elements of the list, then zeros the rest of the list.

An important feature of our approach is that the input safety
proof need not specify all the relevant sequential properties; all
sequential dependencies are enforced. Thus we can see sum_head
as representative of the class of algorithms that traverse the head
of a list, then mutate the tail. With minor modifications, the same
proof pattern would cover insertion of a node into a list, or sorting
the tail of the list.

Consider two calls to this function within a parallel-for:

void main(){ pfor(i=1;i++;i<3){ n=nondet(); sum_head(n) }

As above, for the sake of exposition we specialize the first and
second iterations of the pfor loop, calling them sum_head1 and
sum_head2. Our analysis generalizes to n iterations exactly as de-
scribed in §2.6. The barriers injected into sum_head must enforce
the following properties:

• sum_head2 must not write to a list node until sum_head1 has
finished both writing to and reading from it. Consequently, if n2

void main() {
local i, n = nondet();
x = alloc(); y = alloc();
chan wx’, wy’;
chan wx = newchan(); chan wy = newchan();
grant(wx); grant(wy);
for (i = 0; i++; i < n) {
wx’ = newchan(); wy’ = newchan();
fork(f(i, wx, wy, wx’, wy’));
wx = wx’; wy = wy’;

}
wait(wx); wait(wy);

}

f(i, wxp, wyp, wx, wy){
wait(wxp);
local v = *x;
if (v >= i) {
grant(wx);
ga(y, v, wy);

}
else {
wait(wyp);
grant(wy);
gb(x, 0, wx);

} }

ga(*p, v, wyp, wy){
wait(wyp);
*p = v;
grant(wy);

}

gb(*p, v, wx){
*p = v;
grant(wx);

}

Figure 5. Parallelization of our running example generalized to
deal with n threads. Channels are used to signal availability of
resources from one thread to another.

< n1, sum_head2 must wait for sum_head1 to finish summing
the values stored in the first n1 nodes before writing to them.

• sum_head2 must not read from a list node until sum_head1
has finished writing to them. Consequently, sum_head2 must
wait for sum_head1 to finish zeroing the value stored in a node
before reading from the node.

This example is substantially more subtle than our earlier one,
requiring more than a simple points-to analysis, because the list
is not divided into statically-apparent reachable segments. In the
worst case, a wait() at the start of sum_head2() and a grant()
at the end of sum_head1() enforces sequential order. However,
by reasoning about the structure of the manipulated list using the
safety proof given in Fig. 6, our approach can do considerably
better.

The parallelization synthesized by our analysis is shown in Fig.
7 (the general n-thread version is given in the technical report [8]).
This parallelization divides the list into two segments, consisting of
the portions read and written to by sum head1(). A shared heap-
location xpr stores the starting address of the portion written by
sum_head1(). The thread sum_head2 uses xpr to control when to
access the second segment of the list2. We discuss how the analysis
materializes xpr below.

Handling dynamic structures means dealing with allocation and
disposal. Fortunately, separation logic handles both straightfor-
wardly. Updates to the data-structure and object allocation are by
assumption reflected in the invariants of the original sequential
proof. Thus updates and allocations are also reflected in the in-
variants which our analysis constructs to represent the contents of
channels. However, introducing allocation and disposal affects the
behaviour-preservation result discussed in §6; this result ensures

2 For simplicity, here we write sum head2 with wait controlled by condi-
tionals. The actual transformation performs syntactic loop-splitting to avoid
the need to modify the loop invariant. Details are given in §5.2.

lnode *hd;˘
hd 7→ h ∗ lseg(h, nil)

¯
sum_head(n) {
local i, sum, x;
int i = 1;
int sum = 0;
x = *hd;˘
hd 7→ x ∗ lseg(x, nil)

¯
// entailment on lseg predicate˘
hd 7→ h ∗ lseg(h, x) ∗ lseg(x, nil)

¯
while(x!=nil && i!=n) {˘

hd 7→ h ∗ lseg(h, x) ∗ ∃v, y. x.val 7→ v ∗ x.nxt 7→ y ∗ lseg(y, nil)
¯

sum += x.val;
i++;
x = x.nxt;

}˘
hd 7→ h ∗ lseg(h, x) ∗ lseg(x, nil)

¯
while(x!=nil) {˘

hd 7→ h ∗ lseg(h, x) ∗ ∃v, y. x.val 7→ v ∗ x.nxt 7→ y ∗ lseg(y, nil)
¯

x.val = 0;
x = x.nxt;

}
}˘
hd 7→ h ∗ lseg(h, nil)

¯
Figure 6. Separation logic proof of sum_head, a list-manipulating
program whose automated parallelization requires reasoning over
complex assertions and predicates.

sum_head1(n){
i = 1;
sum = 0;
x = *hd;
while(x!=nil && i!=n){
sum+=x.val;
i++;
x = x.nxt;

}
*xpr = x;
grant(i1);
while(x!=nil){
x.val = 0;
x = x.nxt;

}
grant(i2);

}

sum_head2(n){
i = 1;
sum = 0;
wait(i1);
x = *hd;
while(x!=nil && i!=n){
if(x==*xpr) wait(i2);
sum +=x.val;
i++;
x = x.nxt;

}
while(x!=nil){
if(x==*xpr) wait(i2);
x.val = 0;
x = x.nxt;

}
}

Figure 7. Parallelization of sum_head for two threads.

the program behaviour is unaffected by the translation (i.e. the
translation enforces deterministic parallelism).

Reasoning about list segments. We assume that our separation
logic domain includes the predicate lseg(x, t), which asserts that
a segment of a linked list exists with head x and tail-pointer t.
We define lseg as the least separation logic predicate satisfying the
following recursive equation3:

lseg(x, t) , x = t ∧ emp ∨
∃v, y. x.val 7→ v ∗ x.nxt 7→ y ∗ lseg(y, t)

We assume that the programmer proves the following specifica-
tion for the sequential version of sum_head:

{hd 7→ h∗ lseg(h, nil)} sum_head(n) {hd 7→ h∗ lseg(h, nil)}

3 Our analysis depends strongly on the choice of these basic predicates. See
§7 for a discussion of alternatives to lseg.

This specification is trivial: all it says is that executing sum_head
beginning with a list segment, results in a list segment. Fig. 6 shows
a proof of this specification.

We run our resource-usage analysis over the program to deter-
mine redundant and needed resources. Consider the following loop
from the end of sum_head1:

...
while(x!=nil) {
x.val = 0; x = x.nxt;

}

Our analysis reveals that only the resource defined by lseg(x, nil) is
needed from the start of this loop to the end of the iteration. Com-
paring this resource to the corresponding invariant in the sequential
proof reveals that the resource ∃h. hd 7→ h∗lseg(h, x) is redundant
at this point. This assertion represents the segment of the list that
has already been traversed, from the head of the list to x.

Materialization and barrier injection. Notice that the assertions
generated by our analysis are partly expressed in terms of the local
variable x, which may change during execution. In order to safely
transfer these assertions to subsequent iterations of the pfor, we
need them to be globally accessible and invariant. To satisfy this
goal, we could simply existentially quantify the offending variable,
x, giving a redundant invariant

∃h, y. hd 7→ h ∗ lseg(h, y)

However, such a weakening loses important information, in partic-
ular the relationship between the necessary resource, the list seg-
ment from x and the tail of the list. To retain such dependency re-
lationships, our analysis materializes the current value of x into a
location xpr shared between sum_head1 and sum_head2. An as-
signment is injected into sum_head1 at the start of the second loop:

...
*xpr = x;
while(x!=nil) {
...

After the assignment to xpr, the redundant state can now be de-
scribed as follows:

∃h, y. hd 7→ h ∗ lseg(h, y) ∗ xpr
1/27−−→ y

Here we use fractional permissions in the style of [6] to allow a

location to be shared between threads. The assertion xpr
1/27−−→ y

represents fractional, read-only permission on the shared location
xpr. This helps in binding together the head of the list and the
remainder of the list when they are recombined.

When traversing the list, sum_head2 compares its current posi-
tion with xpr. If it reaches the pointer stored in xpr, it must wait to
receive the second, remainder segment of the list from sum_head1.

4. Technical Background
4.1 Programming Language and Representation
We assume the following heap-manipulating language4:

e ::= x | nil | t(ē) | . . . (expressions)
b ::= true | false | e = e | e 6= e | . . . (booleans)
a ::= . . . (atomic commands)
C ::= C; C | ` : skip | ` : a | ` : x := f(ē) | ` : return e

| ` : if(b) {C } else {C } | ` : while(b) {C }
P ::= global r̄; (f(x̄) {local ȳ; C })+

4 To avoid introducing an extra construct, we define for(C1; C2; b){C3}
as C1; while(b){C2; C3}.

void f(int i){
`1 : int v = *x;
`2 : if (v >= i){
`3 : g(y, v);

}
else{

`4 : g(x, 0);
}

}

void g(int* p,
int v){

`5 : *p = v;
}

fs : x 7→ x ∗ y 7→ y

`1 : x 7→ x ∗ y 7→ y

`2 : v = x ∧ x 7→ x ∗ y 7→ y

`3 : v = x ∧ v ≥ i ∧ x 7→ x ∗ y 7→ y

`4 : v = x ∧ v < i ∧ x 7→ x ∗ y 7→ y

fe : (x ≥ i ∧ x 7→ x ∗ y 7→ x)∨
(x < i ∧ x 7→ 0 ∗ y 7→ y)

gs : p 7→ ∧ v = v

`5 : p 7→ ∧ v = v

ge : p 7→ v

Figure 8. Left: labels for commands in f and g. Right: associated
assertions in the sequential proof.

To simplify the exposition slightly, we assume a fixed input pro-
gram P of the following form:

mainP() { pfor(C1; C2; b) { work(); } }
Our parallelization approach generates a new program Ppar that
allows safe execution of (a transformed version of) work in separate
threads. We denote by Func 3 {main, work} the set of functions
declared in a program P.

Labelling of commands. Every command C ∈ Cmd in the
program is indexed by a unique label ` ∈ Label; function identifiers
are also treated as labels. We identify a particular command by its
label, and when needed denote by cmd(`) the command at the label
`. The set of all labels occurring in C is given by Lbs(C). The left-
hand side of Fig. 8 shows a labelling of the functions f and g.

Commands within a block (function, if-else or while) form
a sequence identified by the sequence of the corresponding labels.
Functions pred, succ : Label ⇀ Label return the label of the previ-
ous (the next, resp.) command in the sequence. For ` corresponding
to a function name, a function call or a while loop, the predeces-
sor of the first command and successor of the last command in the
block are denoted by `s and `e, respectively. For ` corresponding to
if-else, `ts (`te) and `fs (`fe) are labels of the predecessor of the first
(the successor of the last) commands in the if and else branches,
respectively.

Given labels ` and `′ within the same block, we say that ` < `′ if
∃n ≥ 1 such that `′ = succn(`). Let `↑ and `↓ denote the smallest
(resp. largest) label in the block containing `. Let [`, `′〉 denote the
sequence of labels between ` inclusively and `′ exclusively, and let
P[`,`′〉 stand for the corresponding program fragment. Analogously,
we define 〈`, `′〉 and P〈`,`′〉.

Program representation. A program is represented via a control-
flow graph with Label as the set of nodes and as the set of edges all
(`, `′) such that ` corresponds to a label of a function call and `′ ∈
〈`s, `e〉, or ` corresponds to if-else and `′ ∈ 〈`ts, `te〉 ∪ 〈`fs, `fe〉.
A path delimiter is a finite sequence of nodes in the control-
flow graph. Intuitively, a path delimiter represents the sequence of
function calls and conditionals that need to be traversed in order
to reach a particular assertion. Due to the structure of our analysis,
we are only interested in the set of path delimiters in the function
work, denoted by AP.

We often want to manipulate and compare path delimiters. For
γ = `1 . . . `n ∈ AP, we write γ[i] to denote `i, γ[i..j] to denote
`i . . . `j and |γ| to denote the length n. For path delimiters γ and γ′,
γ f γ′ denotes their longest common prefix, i.e., for k = |γ f γ′|
we have ∀j ≤ k, γ f γ′ = γ[j] = γ′[j] and if |γ|, |γ′| > k
then γ[k + 1] 6= γ′[k + 1]. We define a partial order ≺ on AP as
follows. We say that γ ≺ γ′ iff γ f γ′ = γ and |γ| < |γ′|, or for

k = |γ f γ′| we have |γ|, |γ′| > k and γ[k + 1] < γ′[k + 1]. We
say that γ � γ′ iff γ ≺ γ′ or γ = γ′.

Lemma 1. (AP,�) is a lattice with the least element works and
the greatest element worke.

For Γ ⊆fin AP we define max(Γ) as max(Γ) := {γ ∈ Γ | ¬∃γ′ ∈
Γ . γ ≺ γ′}. We define min(Γ) analogously.

4.2 Assertion Language and Theorem Prover
Assertions in our approach are expressed using a class of separation
logic formulae called symbolic heaps. A symbolic heap ∆ is a
formula of the form ∃x̄ . Π ∧ Σ where Π (the pure part) and Σ
(the spatial part) are defined by:

Π ::= true | e = e | e 6= e | p(e) | Π ∧ Π

Σ ::= emp | x 7→ e | lseg(e, e) | s(e) | Σ ∗ Σ

Here x̄ are logical variables, e ranges over expressions, p(e) is
a family of pure (first-order) predicates (such as e.g., arithmetic
inequalities, etc), and s(e) a family of other spatial predicates (such
as e.g., doubly-linked lists, trees, etc) besides points-to and linked-
list predicates previously discussed. We refer to the pure and the
spatial part of ∆ as ∆Π and ∆Σ. We denote set of all quantifier-free
first-order formulae built in the same way as Π but also allowing the
∨ connective by Π∨.

During our analysis, we often need to substitute variables, for
example when recasting an assertion into a different calling con-
text. If % = x̄ 7→ ē is a mapping from variables in x̄ to ē then
by ∆[%] we denote the formula obtained by simultaneously substi-
tuting every occurrence of xi in ∆ with the corresponding ei. We
denote by δ−1 the inverse variable mapping, if δ is injective5.

The set of all symbolic heaps is denoted by SH. We represent
a disjunction of symbolic heaps as a set and interchangeably use
the ∪ and ∨ operators. The set of all disjunctive symbolic heaps
is P(SH). We overload the ∧ and ∗ operators in a natural way: for
∆i = Πi ∧Σi, i = 1, 2, we define ∆1 ∗∆2 = (Π1 ∧Π2)∧ (Σ1 ∗
Σ2), Π ∧ ∆i = (Π ∧ Πi) ∧ Σi and Σ ∗ ∆i = Πi ∧ (Σ ∗ Σi).
Operators ∧ and ∗ distribute over ∨, thus we allow these operations
on disjunctive heaps just as if they were on symbolic heaps and
furthermore use the same notation ∆ to refer to both symbolic and
disjunctive symbolic heaps.

We assume a sufficiently powerful (automated) prover for sepa-
ration logic that can deal with three types of inference queries:

• ∆1 ` ∆2 ∗ [∆F] (frame inference): given ∆1 and ∆2 find the
frame ∆F such that ∆1 ` ∆2 ∗ ∆F holds;

• ∆1 ∗ [∆A] ` ∆2 (abduction): given ∆1 and ∆2 find the
“missing” assumption ∆A such that ∆1 ∗ ∆A ` ∆2 holds;

• ∆1 ∗ [∆A] ` ∆2 ∗ [∆F] (bi-abduction): given ∆1 and ∆2

find ∆A and ∆F such that ∆1 ∗ ∆A ` ∆2 ∗ ∆F holds.

As before, square brackets denote the portion of the entailment
that should be computed. We sometimes write [] for a computed
assertion that is existentially quantified and will not be reused.

None of these queries has a unique answer in general. However,
for our analysis any answer is acceptable (though some will give
rise to a better parallelization than the others). Existing separation
logic tools generally provide only one answer.

5 In our framework, substitutions are always guaranteed to be injective be-
cause the variables being substituted correspond to heap locations and chan-
nel resources whose denotations are guaranteed to be distinct; if the substi-
tution involves values, then they must be implicitly existentially quantified,
and can therefore be assumed to be distinct.

4.3 Sequential Proof
We assume a separation logic proof of the program P, represented
as a map P : Label → P(SH). Intuitively, assertions in the proof
have the property that for any label ` executing the program from a
state satisfying P(`) up to some subsequent label `′ will result in a
state satisfying P(`′), and will not fault.

More formally, we assume functions Pre, Post : Label ⇀
P(SH) associating labels of atomic commands and function calls
with their pre- and post-condition, respectively, and a function
Inv : Label ⇀ P(SH) associating while labels with loop in-
variants. We also assume Ω, a mapping from labels to variable
substitutions such that Ω(l) = x̄ 7→ x̄′ maps formal variables x̄
in the specification assertion to actual variables x̄′ in the proof as-
sertion. Finally, we assume a function F : Label ⇀ P(SH) giving
the framed portion of the state. We write ∆[Ω(l)] to represent the
heap constructed by applying the substitutions defined by Ω(l) to
the assertion ∆.

Then at each label ` we have P(`) ` Pre(`)[Ω(`)] ∗ F(`) and
Post(`)[Ω(`)] ∗ F(`) ` P(succ(`)). If ` is a while label then
Pre(`) and Post(`) are replaced by Inv(`).

This structure means that the proof is modular, i.e., each atomic
command, function and loop is given a specification “in isolation”,
without a reference to the particular context in which the specifi-
cation is being used. The right-hand side of Fig. 8 shows a proof
for the functions f and g which is in this form. Our approach is
agnostic to the method by which the proof P is created: it can be
discovered automatically (e.g., by a tool such as Abductor [11]),
prepared by a proof assistant, or written manually.

Proof assertions inlining. The proof P assumes use of a modular
specification for each function. However, our analysis needs to refer
to the assertions in the local function with respect to the variables
of the caller, all the way up to the top-most work function. We
therefore define a process for lifting local assertions with respect to
their global contexts.

For γ ∈ AP such that |γ| = m and `1, . . . , `n are the labels
corresponding to the function calls (in the order of occurrence as in
γ) we define the lifted (“inlined”) proof assertion P(γ) as

F(`1)∗(F(`2)∗ ... (F(`n)∗P(γ[m])[Ω(`n)])[Ω(`n−1)]...)[Ω(`1)]

Intuitively, the assertion P(γ) represents the “global” proof state at
γ (including the framed portions) in terms of work’s variables.

Finally, let pc : AP ⇀ Π∨ represent the path constraint asso-
ciated with each path delimiter. The path constraint at γ comprises
the pure part of P(γ) corresponding to the assumptions from the
conditionals encountered on the way from works to γ. The path
constraint may be extracted directly from the proof or computed by
some other means.

5. Parallelization Algorithm
We now formally define our parallelization algorithm. The goal
of our approach is to construct a parallelized version of the input
program P. In particular, our approach generates a new function
work′ in Ppar (invoking possibly transformed callees) such that

mainPpar() {
// initial channel creation.
for(C1; C2; b) {

// channel creation.
fork(work′, . . .);

}
// channel finalization.

}
has the same behaviour as the original mainP.

Algorithm 1 Computing locally needed resources using backward
symbolic execution.

function NEEDED-LOC((`′, `′′) : Label× Label, ∆: P(SH))
` := `′′

while ` 6= `′ do
` := pred(`)
if cmd(`) matches if(b) {C } else {C′ } then

∆ := P(`)Π ∧
„

NEEDED-LOC((`ts, `
t
e), ∆) ∪

NEEDED-LOC((`fs, `
f
e), ∆)

«
if cmd(`) matches while(b) {C } then

Inv(`)[Ω(`)] ∗ [∆A] ` ∆ ∗ []
∆ := P(`)Π ∧ (Inv(`)[Ω(`)] ∗ ∆A)

else
Post(`)[Ω(`)] ∗ [∆A] ` ∆ ∗ []
∆ := P(`)Π ∧ (Pre(`)[Ω(`)] ∗ ∆A)

return ∆

5.1 Resource Usage Analysis
Our approach to parallelization traverses the program by referring
to a finite prefix- and <-closed subset of path delimiters P ⊆fin AP.
This subset reflects the portions of the program that are path- and
context-sensitive targets of parallelization. The set P provides pre-
cise control over which functions the analysis should address, but
how this set is chosen is not considered here. Function invocations
whose successors are not in P are treated as a single operation with
effects defined by their specification.

The goal of resource usage analysis is to compute the maps:

redundant : P× P ⇀ P(SH)

needed : P× P ⇀ P(SH)

For p, q ∈ P such that p ≺ q, redundant(p, q) gives the resources
that are guaranteed to not be accessed by the program between
p and q. In parallelization, these are resources that can safely be
transferred to other parallel threads. For p ≺ q, needed(p, q) gives
the resources that might be accessed during execution from p to
q. In parallelization, these are the resources that must be acquired
before execution of the current thread can proceed.

The function NEEDED-LOC (Alg. 1) uses backward symbolic
execution to compute needed resources between pairs of path de-
limiters (`′, `′′) in the same function block. It uses the pure parts of
the sequential proof to guide the abductive inference. Since we al-
ready have function summaries and loop invariants in the sequential
proof, NEEDED-LOC gives a symbolic heap sufficient to execute
the fragment P[`′,`′′〉.

Lemma 2. NEEDED-LOC(`′, `′′) is a sufficient precondition for
P[`′,`′′〉.

Proof. Follows from the disjunctive version of the frame rule:

{P}C {
W

i∈I Qi} ∆ ∗
W

j∈J ∆A
j ` P ∗

W
k∈K ∆F

k

{
W

j∈J (∆ ∗ ∆A
j)}C {

W
i∈I,k∈K(Qi ∗ ∆F

k)}

and Hoare’s rule of composition.

The function NEEDED(γe, γs) (Alg. 2) lifts NEEDED-LOC to the
context-sensitive interprocedural level. Given two assertion points
represented as path delimiters γs and γe, NEEDED(γe, γs) works
by successively pushing backwards an assertion ∆ from γe to
γs. The algorithm operates in two phases. In phase A, it steps
backwards from γe towards the outermost calling context in the
function-invocation hierarchy. This context, represented as the
longest common prefix of γs and γe, is the dominator of the two

Algorithm 2 Computing needed resources.
function NEEDED(γs : P, γe : P)

k := |γe|
∆ := P(γe)
while k > |γs f γe|+ 1 do

% := Ω(γe[1..k])
∆ := NEEDED-LOC((γe[k]↑, γe[k]), ∆[%−1])[%]
k := k − 1
if cmd(γe[k]) is function call then

∆ := ∆[Ω(γe[k])−1]

9>>>>>=>>>>>;
A

% := Ω(γs[1..k])
∆ := NEEDED-LOC((γe[k], γs[k]), ∆[%−1])[%]
while k < |γs| do

if cmd(γs[k]) is function call then
∆ := ∆[Ω(γs[k])]

k := k + 1
% := Ω(γs[1..k])
∆ := NEEDED-LOC((γs[k], γs[k]↓), ∆[%−1])[%]

9>>>>>=>>>>>;
B

return ∆

Algorithm 3 Computing redundant resources
function REDUNDANT(γs : P, γe : P)

P(γs) ` NEEDED(γs, γe) ∗ [∆R]
return ∆R

functions in which γs and γe are found in the function call graph.
Phase B of the algorithm keeps stepping backwards, but proceeds
inwards into the function-invocation hierarchy towards γs. Both
phases of the algorithm use Alg. 1 to compute the needed resources
in-between function call boundaries: in phase A we establish the
needed assertions from the dominating point to γe, and in phase B
from γs to the dominating point.

Since the invariants of the input proof are written in terms of
the outermost calling context, comparing locally-computed specifi-
cations with these invariants requires the local specifications to be
recast in terms of the outer context. In the first line of phase A we
construct a variable substitution % that recasts the assertion in terms
of the calling context at the start of γe. The second line constructs
∆[%−1]—the running state recast in terms of γe’s starting context;
this is typically the context defined by the work() function used
in a pfor command. NEEDED-LOC constructs a new needed state
up to the start of the current block. Finally, % recasts the resulting
state back into the current context. When a function call is reached,
we unwind the variable substitution by one call since we now have
moved from the callee’s context to a caller’s. Operations in phase
B are similar.

The results computed by NEEDED are tabulated as follows.
If P(γs) ` NEEDED(γs, γe) ∗ [], then needed(γs, γe) :=
P(γs)

Π ∧NEEDED(γs, γe); otherwise, needed(γs, γe) := P(γs).

Lemma 3. needed(γs, γe) is a sufficient precondition to execute P
from γs to γe.

In order to be able to use the needed map further in the al-
gorithm we must ensure that it grows monotonically, i.e., that
∀γ, γ′, γ′′ ∈ P such that γ ≺ γ′ ≺ γ′′ we have needed(γ, γ′′) `
needed(γ, γ′)∗ []. If the underlying theorem prover behaves con-
sistently with respect to failing and precision this property always
holds. However, we can also make an additional check and insert
assertions from the sequential proof as needed.

The redundant resource between two path delimiters is the por-
tion of the inlined proof-state in P that is not required by the
needed map. In Alg. 3 we calculate this by frame inference.

fe

`1 x < i ∧ y 7→ y

`2
(v = x ∧ v ≥ i ∧ x 7→ x)
∨ (v = x ∧ v < i ∧ y 7→ y)

`2`3 v = x ∧ v ≥ i ∧ x 7→ x
`2`3ge v = x ∧ v ≥ i ∧ x 7→ x ∗ y 7→ y
`2`4 v = x ∧ v < i ∧ y 7→ y

`2`4ge v = x ∧ v < i ∧ x 7→ x ∗ y 7→ y

Figure 10. redundant map with respect to fe.

Lemma 4. If P(γs) ` redundant(γs, γe) ∗ [∆] then ∆ is a
sufficient precondition to execute P from γs to γe.

Consider the functions f and g from §2. Fig. 8 shows the labels
and sequential proof for these functions. The map obtained by
NEEDED is shown in Fig. 9. Fig. 10 shows the map computed by
REDUNDANT with respect to path delimiter fe.

5.2 Parallelising Transformation
We now describe a parallelising transformation based on our
resource-usage analysis. The construction proceeds in two phases.
First, we compute an idealized resource transfer between threads.
Then we inject grant and wait barriers to realise this resource
transfer. The resource transfer mechanism transfers a resource from
one invocation of the work function to another.

This parallelising transformation can be viewed as just one
application of the resource-usage analysis; more optimized proof-
preserving parallelising transformations are certainly possible. Our
overall goal is to describe a framework for a resource-sensitive
dependency-preserving analysis.

Conditions on released and acquired resources. In the first
phase we determine resources that should be released and acquired
at particular points in the parallelized program. Released resources
cannot be revoked, i.e., each released resource should be included
in the redundant map from the point of the release to the end of the
work function—this way we know the resource will not be needed
further. Acquired resources are held by the executing thread un-
til released. Resources that are acquired along a sequence of path
delimiters should contain what is prescribed by the needed map
between each of the path delimiters.

We represent the result of this phase of the algorithm via the
following maps:

• resource : ResId → P(SH), denoting resource identifiers that
identify released and acquired resources;

• released : P ⇀ ResId × Subst, representing resources that
are going to be released at a path delimiter together with the
variable substitution applied at that point;

• acquired : P ⇀ ResId, representing resources that are going to
be acquired at a path delimiter.

We require the following well-formedness properties:

1. ∀γ ∈ dom(released) . ∀γ′ � γ . released(γ) = (r, ρ) →
(redundant(γ, γ′) ` resource(r)[ρ] ∗ []);

2. ∀γ ∈ P . ~r∈dom(resource) {resource(r) | ∃γ′ ≺ γ ∧
acquired(γ′) = r} ` needed(γ, worke) ∗ [];

3. ∀γ ∈ dom(released) . ~r∈dom(resource) {resource(r) | ∃γ′ ≺
γ ∧ acquired(γ′) = r} ` released(γ) ∗ [].

The first property states we can release only resources that are
not needed between the given path delimiter and any subsequent
one. The second property states that the resources needed at a

`2 `2`3 `2`3ge `2`4 `2`4ge fe

`1 x 7→ x x ≥ i ∧ x 7→ x x ≥ i ∧ x 7→ x ∗ y 7→ y x < i ∧ x 7→ x x < i ∧ x 7→ x
(x ≥ i ∧ x 7→ x ∗ y 7→ y)

∨ (x < i ∧ x 7→ x)

`2 v = x ∧ v ≥ i v = x ∧ v ≥ i ∗ y 7→ y v = x ∧ v < i v = x ∧ v < i ∧ x 7→ x
(v = x ∧ v ≥ i ∗ y 7→ y)
∨ (v = x ∧ v < i ∧ x 7→ x)

`2`3 v = x ∧ v ≥ i ∗ y 7→ y v = x ∧ v ≥ i ∗ y 7→ y

`2`3ge v = x ∧ v ≥ i

`2`4 v = x ∧ v < i ∗ x 7→ x v = x ∧ v < i ∗ x 7→ x

`2`4ge v = x ∧ v < i

Figure 9. needed map (some entries omitted).

Algorithm 4 Computing released and acquired resources.
1: N := needed; R := redundant
2: C := max{γ ∈ P | N (works, γ) = emp}
3: while C 6= {worke} do
4: ΣR := N (choose({(γ, γ′) | γ ∈ C, γ′ ∈ P}))Σ
5: % := x̄ 7→ x̄′, where x̄′ fresh
6: Σ′

R := ΣR[%]

7: Cr := min

γ ∈ P

R(γ, worke)
Σ ` Σ′

R ∗ []
∧ ∃γ′ ∈ C. γ′�γ

ff
8: if

W
γ∈Cr

pc(γ) ⇔ true then
9: r := fresh resource id

10: resource(r) := Σ′
R

11: for all γ ∈ Cr do
12: released(γ) := (r, %)
13: for all γ′ s.t. γ � γ′ do
14: R(γ′, worke)

Σ ` ΣR ∗ [∆]
15: R(γ′, worke) := ∆

16: for all γ ∈ C do
17: acquired(γ) := r
18: for all γ′, γ′′ s.t. γ � γ′ � γ′′ do
19: N (γ′, γ′′) ∗ [] ` Σ′

R ∗ [∆]
20: N (γ′, γ′′) := ∆

21: C := max{γ′ | ∃γ ∈ C .N (γ, γ′) = emp}

path delimiter must have already been acquired. The third property
states that only the resources that have been previously acquired
can be released.6

In general, there are many solutions satisfying properties 1–
3. For instance, there is always a trivial solution that acquires
needed(works, worke) before the first command and releases it
after the last, causing each invocation of work to be blocked until
the preceding invocation finishes the last command. Of course,
some solutions are better than others.

Computing released and acquired maps. Algorithm 4 constructs
released, acquired and resource maps satisfying properties 1–3.
Each iteration of the algorithm heuristically picks a needed re-
source, and then iteratively searches for matching redundant re-
source along all paths. The algorithm maintains a set C of all path
delimiters up to which no more resources are needed. It terminates
once no unsatisfied needed resources remain (line 3).

At the start of the main loop (line 4) the algorithm picks a still-
needed resource between a path delimiter in C and some further
path delimiter. The picking of the needed resource is governed by a

6 We could relax the third requirement if we extended our barriers to support
renunciation [17], the ability to release a resource without first acquiring
it. Renunciation allows a resource to ‘skip’ iterations, giving limited out-
of-order signalling. We believe it would be straightforward to fold such
techniques into the analysis, although such extensions are outside the focus
of this paper.

heuristic function choose, for which we make no assumption. The
choose function serves as a proxy for external knowledge about
likely points for parallelization.

The key step of the algorithm is performed on line 7:

Cr := min
˘
γ ∈ P R(γ, worke)

Σ ` Σ′
R ∗ [] ∧ ∃γ′ ∈ C. γ′�γ

¯
Here R(γ, worke) is the redundant resource from γ to the end
of the work function and Σ′

R is the candidate resource that we
want to acquire. The constructed set Cr is a set of path delimiters
along which we can satisfy the candidate needed resource. In line
8, the algorithm checks that Cr covers all paths by checking the
conjunction of path constraints is tautologous.

Resources stored in needed contain path constraints (and other
conditions on local variables) embedded in the pure part of the
symbolic heap. Since we can transfer resources between different
path delimiters, we only take the spatial part of the resource into
consideration when asking entailment questions; this is denoted
by a superscript Σ. Moreover, since the acquired resource is being
sent to a different function invocation, we substitute a fresh set of
variables (line 5).

The remainder of the algorithm is devoted to constructing the
new resource (line 10), and with updating released (lines 11–15),
acquired (lines 16–20), and C (line 21).

Lemma 5. Maps resource, released and acquired computed by
Algorithm 4 satisfy properties 1–3.

Consider our running example. If choose picks (`1, `2) in the first
iteration and (`2`3, `2`3ge) in the second iteration, then the end
result of Alg. 4 is resource = {r1 7→ (x 7→ x), r2 7→ (y 7→
y)}, released = {`2`3 7→ (r1, ∅), `2`4ge 7→ (r1, ∅), `2`3ge 7→
(r2, ∅), `2`4 7→ (r2, ∅)} and acquired = {`1 7→ r1, `2`3`5 7→
r2, `2`4 7→ r2}.

Inserting grant and wait barriers. In this phase we transform
the sequential program P into a parallel program Ppar by inserting
grant and wait barriers. The inserted barriers realise resource
transfer defined by the maps released and acquired.

We generate the parallel function work′(ī
(p)
r , īr, env

(p), env)
in Ppar as follows:

1. To each r ∈ ResId we assign a unique channel name ir . Denote
by i

(p)
r the corresponding channel of the previous thread in the

sequence.

2. Let env be an associative array that for each channel maps
(escaped) local variable names to values. Let env(p) be such
map from the previous thread in the sequence. env and env(p)

are used for materialization.

3. For each γ = `1 . . . `n ∈ dom(released) ∪ dom(acquired) let
`k1 , . . . `km be the labels in γ corresponding to function calls.
Then for each γj := `1 . . . `kj we create in Ppar an identical
copy f′ of the function f called at `kj and replace the call to
f with the call to f′. Let us denote by tr(γ′) the path delimiter

in Ppar corresponding to γ′ after this transformation has been
applied for all γ ∈ dom(released) ∪ dom(acquired).

4. For each γ ∈ dom(acquired) such that acquired(γ) = r

we insert a wait barrier wait(i
(p)
r) between path delimiters

tr(pred(γ)) and tr(γ).

5. For each γ ∈ dom(released) such that released(γ) = (r,),
between path delimiters tr(pred(γ)) and tr(γ) we insert a se-
quence of assignments of the form env(ir)[”y”] := y for every
local variable y, followed by a grant barrier grant(ir).

Each invocation of work creates a fresh set of local variables that
are bound to the scope of the function. However, some resources
must be expressed in terms of function-local variables. Paralleliza-
tion must take account of this. If the structure of a resource depends
on local variables from a previous invocation, this must be encoded
explicitly by materialising the variables of the previous invocation.

The main function mainPpar in Ppar first creates the set of
“dummy” channels; then in the while loop repeatedly creates a
set of new channels for the current iteration, forks a new thread
with work′ taking the channels from the previous iteration as ī(p)

r

and from the current iteration as īr , and at the end of the loop body
assigns the new channels to the previous channels; and, after the
while loop completes waits on the channels in the last set.

We generate the parallel proof Ppar from the sequential proof P
using the following specifications from [17]:

{emp} i := newchan() {req(i, R) ∗ fut(i, R)}
{req(i, R) ∗ R} grant(i) {emp}

{fut(i, R)} wait(i) {R}
Each variable R in Ppar associated with channel ir is instantiated
with the corresponding resource resource(r). The predicates req
and fut track the ownership of the input and output ends of the
channel. To reason about threads, we use the standard separation
logic rules for fork-join disjoint concurrency (e.g., as in [19]).

Theorem 6. Ppar is a proof of the parallel program Ppar, and
defines the same specification for mainPpar as P does for mainP.

Loop-splitting. The approach presented so far treats a loop as a
single command with a specification derived from its invariant. Ac-
quiring or releasing resources within a loop is subtle, as it changes
the sequential loop invariant. It is not clear how to handle this in full
generality, so we take a pragmatic approach that performs heuristic
loop-splitting.

The example in §3 uses two channels to transfer the segment
of the list traversed after the first and the second while loop,
respectively. The resource released via channel i1 in Fig. 7 is hd 7→
h ∗ lseg(h, xpr). In the following iteration, the needed resource
for the whole loop is hd 7→ h ∗ lseg(h, x). If we try to match
released against needed, the entailment R(γ, worke)

Σ ` Σ′
R ∗ []

in Algorithm 4 will fail. This is because the value of x is unknown
at the start of the loop, meaning we cannot establish whether the
released resource will cover the needed resource.

One way to resolve this would be to acquire the entire list before
the first loop, but this would result in a very poor parallelization.
Instead, we modify the structure of the loop to expose the point at
which the second list segment becomes necessary:

1. We split the spatial portion of the resource needed by the whole
loop into a “dead” (already traversed) and a “live” (still to be
traversed) part. In our example, hd 7→ h ∗ lseg(h, x) would be
the “dead” and lseg(x, nil) the live part. This kind of splitting is
specific to some classes of programs, e.g., linked list programs
that do not traverse a node twice.

2. We match the resource against the “dead” part of the loop
invariant and infer the condition under which the two resources

...
xpr:=envp(i1)["x"];
while(x!=nil&&i!=n&&x!=xpr){
sum+=x.val;
i++;
x:=x.nxt;

}
if(x!=nil&&i!=n&&x==xpr){
sum+=x.val;
i++;

x:=x.nxt;
while(x!=nil&&i!=n){
sum+=x.val;
i++;
x:=x.nxt;

}
// remainder skipped.
...

else{
...

Figure 11. Loop splitting for the sum_head example.

are the same. In our example, the entailment between the two
resources holds if x = xpr. This condition can be inferred by
asking a bi-abduction questionR(γ, worke)

Σ ∧ [c] ` Σ′
R ∗ []

with the pure abducted fact c.

Now we can syntactically split the loop against the inferred condi-
tion c = (x = xpr) and obtain a transformed version that ensures
that after entering the true branch of the if statement the condition
c holds. The transformation of our example is shown in Fig 11.

Formally, we define splitting of a command (comprising possi-
bly multiple loops) against a condition c as follows (to simplify, we
assume here that every command ends with skip):

function SPLIT(C : Cmd, c : Π∨)
match C with

| while(b) {C′ }; C′′ →
while(b ∧ ¬c′) {C′ };
if(b ∧ c′) {C′; while(b) {C′ }; C′′ }
else { SPLIT(C′′, c) }

| C′; C′′ → C′; SPLIT(C′′, c)

| skip→ skip

The condition c′ is obtained from c by replacing a reference to
every primed variable y′ by a reference to env(p)(i

(p)
r)[”y”], where

ir is the channel name associated to the resource. It is not difficult
to see that the accompanying proof of C can be split in a proof
preserving way against c. This transformation can either be applied
to P between the resource-usage analysis and parallelization, or
embedded within Alg. 4.

5.3 Implementation
We have validated our parallelization algorithm by crafting a pro-
totype implementation on top of the existing separation logic tool,
coreStar [7]. While our implementation is not intended to provide
full end-to-end automated translation, it is capable of validating the
algorithms on the examples given in the paper, and automatically
answering the underlying theorem proving queries.

Our parallelization algorithm does not assume a shape invariant
generator, except possibly to help construct the sequential proof.
Soundness is independent of the “cleanliness” of the invariants (the
analysis will always give a correct result, in the worst case default-
ing to sequential behaviour). Our examples in coreStar [7] have
been validated using automatically-generated invariants. Other ef-
forts [11] indicate that bi-abduction works well with automatically-
generated invariants produced by shape analysis, even over very
large code bases.

6. Behaviour Preservation
A distinctive property of our parallelization analysis is that it en-
forces sequential data-dependencies in the parallelized program
even if the safety proof does not explicitly reason about such de-
pendencies. The result is that our analysis preserves the sequential

behaviour of the program: any behaviour exhibited by the paral-
lelized program is also a behaviour that could have occurred in the
original sequential program. However, there are important caveats
relating to termination and allocation.

Termination. If the original sequential program does not termi-
nate, our analysis may introduce new behaviours simply by virtue
of running segments of the program that would be unreachable un-
der a sequential schedule. To see this, suppose we have a pfor
such that the first iteration of the loop will never terminate. Sequen-
tially, the second iteration of the loop will never execute. However,
our parallelization analysis will execute all iterations of the loop in
parallel. This permits witnessing behaviours from the second (and
subsequent) iterations. These behaviours were latent in the original
program, and become visible only as a result of parallelization.

Allocation and disposal. If the program both allocates and dis-
poses memory, the parallelized program may exhibit aliasing that
could not occur in the original program. To see this, consider the
following sequential program:

x=alloc(); y=alloc(); dispose(x).

For simplicity, we have avoided re-structuring the program to use
data parallelism via pfor—this example could easily be encoded as
such, however. Parallelization might give us the following program:

(x=alloc(); grant(wx); y=alloc())
|| (wait(wx); dispose(x))

This parallelized version of the program is race-free and obeys the
required sequential ordering on data. Depending upon the imple-
mentation of the underlying memory allocator, however, x and y
may be aliased if the dispose operation was interleaved between
the two allocations. Such aliasing could not happen in the original
non-parallelized version.

Either kind of new behaviour might result in further new
behaviours—for example, we might have an if-statement condi-
tional on x==y in the second example above. These caveats are
common to our analysis and others based on separation logic—for
example, see the similar discussion in [13].

Proving behaviour preservation. We now sketch a behaviour
preservation result (a detailed proof is given in [8]). The theorem
defines preservation in terms of an interleaved operational seman-
tics for a core language, similar to the one described in §4.1, ad-
ditionally equipped with threads, and operations on channels (such
as grant and wait). Data-races are interpreted as faults in this se-
mantics. We prove our result for a sequential thread t possibly exe-
cuting concurrently with other sequential threads—this degenerates
into the purely sequential case when there are no other runnable
threads. Because t is sequential, it does not call fork; we also as-
sume that it is guaranteed to terminate, and that it never disposes
memory based on the caveats discussed above.

Theorem 7. Let t be a sequential thread, and let tpar a correspond-
ing parallelized version, equipped with thread creation operations,
and synchronization actions that enforce sequential dependencies
among the child threads it creates. Let Kpar be a terminating non-
faulting (i.e., data-race free) trace of an execution of tpar. There
exists a corresponding traceK derived by substituting correspond-
ing operations in t for tpar such that: (1) K and Kpar begin in
the same state; (2) for every thread t′ 6= t in K, K and Kpar ex-
hibit identical thread-local behaviour; and (3) the terminal state of
thread t in Kpar is a substate of the corresponding state in K.

Proof sketch. We show that, under the assumption that forked child
threads never wait for channels granted by their parent or later-
forked child threads, any terminating non-faulting trace Kpar can
be reordered into a sequentialized trace Kseq with the same thread-

local behaviour. By sequentialized, we mean that forked children
must execute to completion before their parents can be scheduled.

We establish a simulation invariant between executions of tpar

decorated with arbitrary calls to newch, wait, grant and fork,
and executions of t↓par identical to tpar except with all such con-
structs erased. The invariant establishes that every non-faulting se-
quentialized trace Kseq of tpar simulates some trace K of t↓par.

We tie this result to our analysis by observing that paralleliza-
tion only inserts the four constructs newch, wait, grant and fork
(leaving aside issues of loop-splitting and materialization). As a re-
sult, t↓par = t. We also show that the way we insert signals ensures
that they are ordered with respect to thread creation, as assumed in
the previous step.

This establishes a behaviour-preservation result for non-faulting
traces, but parallelization might introduce faults. However, paral-
lelized programs are verified using separation logic, meaning we
can assume that they do not fault when executed in a state satisfy-
ing the precondition. This completes the proof.

One attractive property is that this proof does not place any explicit
requirements on the positioning of barriers—it is sufficient that we
can provide a separation-logic proof for tpar. The caveat on mem-
ory disposition manifests in the way we establish our simulation in-
variant, which necessarily assumes newly allocated data is always
“fresh” and thus does not alias with any accessible heap-allocated
structure. The caveat on termination is necessary to ensure we can
suitably reorder forked threads to yield a sequentialized trace.

In addition to inserting barriers, our analysis mutates the pro-
gram by materialising thread-local variables and splitting loops.
Both of these can be performed as mutations on the initial sequen-
tial program, and neither affect visible behaviour. Loop-splitting
is straightforwardly semantics-preserving, while materialized vari-
ables are only used to control barrier calls.

Theorem 7 guarantees that parallelisation does not introduce
deadlocks; otherwise the simulation relation would not exist. The
ordering on barriers ensures that termination in the sequential pro-
gram is preserved in the resulting parallel program.

7. Refining the Predicate Domain
The structure of the sequential proof affects the success of paral-
lelization in two ways. First, the loop invariants may allow the anal-
ysis to verify a parallelized program when it would otherwise have
failed. Second, the choice of predicate domain controls how much
information about resource-usage is available to the analysis. Intu-
itively, enriching the domain may permit a finer-grained splitting of
resources, allowing redundant resources to be identified earlier or
missing resources later.

To see how the choice of abstract domain influences precision
and effectiveness of the analysis, consider the example discussed
in §3; there, we parallelized sum_head using the list segment pred-
icate lseg. An alternative predicate is lsegni(h, t, n, i), which ex-
tends lseg with a parameter n ∈ Z recording the length of the list
segment, and with a parameter i ∈ (0, 1] recording the permission
on the list segment. If i = 1 the thread has read-write access; other-
wise it has read access only. We define lsegni as the least predicate
satisfying the following equation:

lsegni(x, t, n, i) , (x = t ∧ n = 0 ∧ emp) ∨
∃v, y. x.val

i7−→ v ∗ x.nxt
i7−→ y

∗ lsegni(y, t, n−1, i)

!
The equivalence lseg(h, t) ⇐⇒ ∃n. lsegni(h, t, n, 1) would
allow the analysis to exploit this finer-grained predicate even if the
sequential proof is written using the coarse-grained lseg predicate.

sum_head1(n){
*npr = n;
grant(i1);
i = 1;
sum = 0;
x = *hd;
while(x!=nil && i!=n){
sum += x.val;
i++;
x = x.nxt;

}
*xpr = x;
grant(i2);
while(x!=nil){
x.val = 0;
x = x.nxt;

}
grant(i3);

}

sum_head2(n){
i = 1;
sum = 0;
wait(i1);
x = *hd;
while(x!=nil && i!=n){
if(n==*npr) wait(i2);
sum += x.val;
i++;
x = x.nxt;

}
wait(i2);
while(x!=nil){
if(x==*xpr) wait(i3);
x.val = 0;
x = x.nxt;

}
}

Figure 12. Improved parallelization of sum_head.

Function sum_head only writes to the list after traversing n
nodes. Consequently, it needs only non-exclusive, read-only access
to the first n nodes. (Or the entire list, if the list is shorter than
n nodes long.) We can extend our resource usage analysis to deal
with this richer predicate such that it identifies the following as a
sufficient precondition for the entire sum_head function:

hd
j7−→ h ∗

„
(∃t. lsegni(h, t, n, i) ∗ lseg(t, nil)) ∨

(∃n′. lsegni(h, nil, n′, i) ∧ n′ < n)

«
Without the lsegni predicate, this precondition could not be ex-
pressed. The availability of lsegni would also allow the analysis
to discover that this resource is redundant at the start of sum_head:

∃h, i, j. hd
j7−→ h ∗

lsegni(h, t, n, i) ∨ (∃n′. lsegni(h, nil, n′, i) ∧ n′<n)

When sum_head(n) is called in a parallel-for, the subsequent
call to sum_head can immediately read from the first n nodes of
the list. Applying our analysis using the lsegni predicate yields the
the two-thread parallelization shown in Fig. 12. i1 signals that the
first n nodes can be read by the subsequent iteration of sum_head.
Similar to the transformation discussed in §3, grant calls can be
inserted on i2 to signal that the subsequent iteration can write to
the first n nodes; and on i3 to signal that the entire list can be
written to. Because this parallelization calls grant earlier than the
parallelization discussed earlier, it can consequently extract more
parallelism from the original sequential program.

As this discussion reveals, our analysis is generic in the choice
of abstract domain; any separation logic predicate could be used
in place of lseg, for example. However, the success of automated
parallelization is highly dependent on the power of the entailment
prover in the chosen domain. The lseg domain is one of the best-
developed in separation logic, and consequently automated paral-
lelization is feasible using tools such as coreStar [7]. Other do-
mains (such as trees) are far less developed.

8. Related Work
Resource-usage inference by abduction. We have defined an in-
terprocedural, control-flow-sensitive analysis capable of determin-
ing the resource that will (and will not) be accessed between partic-
ular points in the program. At its core, our analysis uses abductive
reasoning [11] to discover redundancies—that is, state used earlier
in the program that will not be accessed subsequent to the current
program point. Using abduction in this way was first proposed in

[15], where it is used to discover memory leaks, albeit without con-
ditionals, procedures, loops, or code specialization.

In [12], abduction is used to infer resource invariants for syn-
chronization, using a process of counterexample-driven refinement.
Our approach similarly infers resource invariants, but using a very
different technique: invariants are derived from a sequential proof,
and we also infer synchronization points and specialise the program
to reveal synchronization opportunities.

Behaviour-preserving parallelization. We expect our resource-
usage analysis can be used in other synchronization-related opti-
mizations, but in this paper, we have used it as the basis for a par-
allelising transformation. This transformation is in the style of de-
terministic parallelism [3–5, 9]—although our approach does not,
in fact, require determinacy of the source program. In this vein, our
transformation ensures that every behaviour of the parallelized pro-
gram is a behaviour of the source sequential program (modulo the
caveats about allocation and termination discussed in §6).

Previous approaches to deterministic parallelism operate with-
out the benefit of a high-level specification. This places a substan-
tial burden on the analysis and runtime to safely extract informa-
tion on resource usage and transfer—information that is readily
available in a proof. As a result, these analyses tend to be much
more conservative in their treatment of mutable data. Our proof-
based technique gives us a general approach to splitting mutable
resources; for example, by allowing the analysis to perform ad-hoc
list splitting, as we do with sum_head.

Our approach transforms a sequential for-loop by running all
the iterations in parallel and signalling between them. This idea
has been proposed previously, for example in numerical computa-
tion [33]. The novelty in our approach lies in inferring synchro-
nization over (portions of) complex mutable data-structures. Alter-
natively, we could have used a more irregular concurrency annota-
tion, for example safe futures [27], or an unordered parallel-for,
as in the Galois system [30]. In the former case, our resource-usage
analysis would be mostly unchanged, but our parallelized program
would construct a set of syntactically-distinct threads, rather than
a pipeline of identical threads. Removing ordering between itera-
tions, as in the latter case, would mean replacing ordered grant-
wait pairs with conventional locks, and would introduce an obli-
gation to show that locks were always acquired together, as a set.

Proof-driven parallelization. A insight central to our approach is
that a separation logic proof expresses data dependencies for parts
of a program, as well as for the whole program. These internal de-
pendencies can be used to inject safe parallelism. This insight is due
to [13, 31] and [24], both of which propose parallelization analy-
ses based on separation logic. The analyses proposed in these pa-
pers are much more conservative than ours, in that they discover
independence which already exists between commands of the pro-
gram. They do not insert synchronization constructs, and conse-
quently cannot enforce sequential dependencies among concurrent
computations that share and modify state. Indeed, [31] does not
consider any program transformations, since the goal of that work
is to identify memory separation of different commands, while [24]
expresses optimizations as reordering rewrites on proof trees.

Bell et. al [1] construct a proof of an already-transformed mul-
tithreaded program parallelized by the DSWP transformation [29].
This approach assumes a specific pattern of (linear) dependencies
in the while-loop consistent with DSWP, a specific pattern of se-
quential proof, and a fixed number of threads. In our sum_head
example, the outermost (parallelising) loop contains two succes-
sive inner loops, while the example in Fig. 2 illustrates how the
technique can deal with interprocedural and control-flow sensitive
dependencies. In both cases, the resulting parallelization is special-
ized to inject synchronization primitives to enforce sequential de-

pendencies. We believe examples like these do not fall within the
scope of either DSWP or the proof techniques supported by [1].

Outside separation logic, Deshmukh et. al [14] propose an anal-
ysis which augments a sequential library with synchronization.
This approach takes as input a sequential proof expressing the cor-
rectness criteria for the library, and generates synchronization en-
suring this proof is preserved if methods run concurrently. A basic
assumption is that the sequential proof represents all the properties
that must be preserved. In contrast, we also preserve sequential or-
der on access to resources. Consequently, Deshmukh et al. permit
parallelizations that we would prohibit, and can introduce new be-
haviours into the parallelized program. Another difference is that
[14] derives a linearizable implementation given a sequential spec-
ification in the form of input-output assertions; because they do
not consider specialization of multiple instances of the library run-
ning concurrently, it is unclear how their approach would deal with
transformations of the kind we use for sum_head.

Separation logic and concurrency. Separation logic is essential
to our approach. It allows us to localise the behaviour of a program
fragment to precisely the resources it accesses. Our proofs are writ-
ten using concurrent separation logic [28]. CSL has been extended
to deal with dynamically-allocated locks [19, 23, 25], re-entrant
locks [20], and primitive channels [1, 22, 26, 34]. Sequential tools
for separation logic have achieved impressive scalability—for ex-
ample [11] has verified a large proportion of the Linux kernel. Our
work can be seen as an attempt to leverage the success of such
sequential tools. Our experiments are built on coreStar [7, 16], a
language-independent proof tool for separation logic.

The parallelization phase of our analysis makes use of the spec-
ifications for parallelization barriers proposed in [17]. That pa-
per defined high-level specifications representing the abstract be-
haviour of barriers, and verified those specifications against the
barriers’ low-level implementations. However, it assumed that bar-
riers were already placed in the program, and made no attempt to
infer barrier positions. In contrast, we assume the high-level speci-
fication, and define an analysis to insert barriers. The semantics of
barriers used in that paper and here was initially proposed in [27].

Acknowledgments
This work was supported by the Gates trust, by EPSRC grant
EP/H010815/1, and by NSF grant CCF-0811631. Thanks to Dino
Distefano, Matthew Parkinson, Mohammad Raza, John Wickerson
and the anonymous reviewers for comments and suggestions.

References
[1] C. J. Bell, A. Appel, and D. Walker. Concurrent Separation Logic for

Pipelined Parallelization. In SAS, pages 151–166, 2009.
[2] J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular

automatic assertion checking with separation logic. In FMCO, pages
115–137, 2005.

[3] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman. Core-
Det: A Compiler and Runtime System for Deterministic Multithreaded
Execution. SIGPLAN Not., 45(3):53–64, 2010.

[4] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe multi-
threaded programming for C/C++. In OOPSLA, pages 81–96, 2010.

[5] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve, S. Heumann,
R. Komuravelli, J. Overbey, P. Simmons, H. Sung, and M. Vakilian. A
Type and Effect System for Deterministic Parallel Java. In OOPSLA,
pages 91–116, 2009.

[6] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission
Accounting in Separation Logic. In POPL, pages 259–270, 2005.

[7] M. Botinčan, D. Distefano, M. Dodds, R. Griore, Naudžiūnienė, and
M. Parkinson. coreStar: The Core of jStar. In Boogie, pages 65–77,
2011.

[8] M. Botinčan, M. Dodds, and S. Jagannathan. Resource-Sensitive Syn-
chronisation Inference by Abduction. Technical Report 808, Univer-
sity of Cambridge Computer Laboratory, 2011.

[9] J. Burnim and K. Sen. Asserting and Checking Determinism for
Multithreaded Programs. Commun. ACM, 53:97–105, June 2010.

[10] C. Calcagno, P. W. O’Hearn, and H. Yang. Local Action and Abstract
Separation Logic. In LICS, pages 366–378, 2007.

[11] C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional
Shape Analysis by Means of Bi-Abduction. In POPL, pages 289–300,
2009.

[12] C. Calcagno, D. Distefano, and V. Vafeiadis. Bi-abductive Resource
Invariant Synthesis. In APLAS, pages 259–274, 2009.

[13] B. Cook, S. Magill, M. Raza, J. Simsa, and S. Singh. Making Fast
Hardware with Separation Logic, 2010.

[14] J. V. Deshmukh, G. Ramalingam, V. P. Ranganath, and K. Vaswani.
Logical Concurrency Control from Sequential Proofs. In ESOP, pages
226–245, 2010.

[15] D. Distefano and I. Filipović. Memory Leaks Detection in Java by
Bi-abductive Inference. In FASE, pages 278–292, 2010.

[16] D. Distefano and M. J. Parkinson J. jStar: Towards Practical Verifica-
tion for Java. In OOPSLA, pages 213–226, 2008.

[17] M. Dodds, S. Jagannathan, and M. J. Parkinson. Modular Reasoning
for Deterministic Parallelism. In POPL, pages 259–270, 2011.

[18] T. Elmas, S. Qadeer, and S. Tasiran. A Calculus of Atomic Actions.
In POPL, pages 2–15, 2009.

[19] A. Gotsman, J. Berdine, B. Cook, N. Rinetzky, and M. Sagiv. Local
Reasoning for Storable Locks and Threads. In APLAS, pages 19–37,
2007.

[20] C. Haack, M. Huisman, and C. Hurlin. Reasoning about Java’s Reen-
trant Locks. In APLAS, pages 171–187, 2008.

[21] T. Harris, J. Larus, and R. Rajwar. Transactional Memory, 2nd edition.
Morgan-Claypool, 2010.

[22] C. A. R. Hoare and P. W. O’Hearn. Separation Logic Semantics for
Communicating Processes. ENTCS, 212:3–25, 2008.

[23] A. Hobor, A. W. Appel, and F. Zappa Nardelli. Oracle semantics for
concurrent separation logic. In ESOP, 2008.

[24] C. Hurlin. Automatic Parallelization and Optimization of Programs
by Proof Rewriting. In SAS, pages 52–68, 2009.

[25] B. Jacobs and F. Piessens. Modular full functional specification and
verification of lock-free data structures. Technical Report CW 551,
Katholieke Universiteit Leuven, Dept. of Computer Science, 2009.

[26] K. R. M. Leino, P. Müller, and J. Smans. Deadlock-free Channels and
Locks. In ESOP, pages 407–426, 2010.

[27] A. Navabi, X. Zhang, and S. Jagannathan. Quasi-static Scheduling for
Safe Futures. In PPoPP, pages 23–32. ACM, 2008.

[28] P. W. O’Hearn. Resources, Concurrency and Local Reasoning. TCS,
375:271–307, 2007.

[29] G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Automatic Thread
Extraction with Decoupled Software Pipelining. In MICRO, pages
105–118, 2005.

[30] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan,
R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich, M. Méndez-Lojo,
D. Prountzos, and X. Sui. The Tao of Parallelism in Algorithms. In
PLDI, pages 12–25, 2011.

[31] M. Raza, C. Calcagno, and P. Gardner. Automatic Parallelization with
Separation Logic. In ESOP, pages 348–362, 2009.

[32] J. C. Reynolds. Separation Logic: A Logic for Shared Mutable Data
Structures. In LICS, pages 55–74, 2002.

[33] P. Tang, P. Tang, J. N. Zigman, and J. N. Zigman. Reducing Data Com-
munication Overhead for DOACROSS Loop Nests. In International
Conference on Supercomputing, pages 44–53, 1993.

[34] J. Villard, É. Lozes, and C. Calcagno. Tracking Heaps That Hop with
Heap-Hop. In TACAS, pages 275–279, 2010.

