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Abstract

Weaving a concurrency control protocol into a program isi-dif
cult and error-prone. One way to alleviate this burdetgetermin-
istic parallelism In this well-studied approach to parallelisation,
a sequential program is annotated with sections that cacutxe
concurrently, with automatically injected control constis used to
ensure observable behaviour consistent with the origiregmam.

This paper examines the formal specification and verificadfo
these constructs. Our high-level specification definesdhéitions
necessary for correct execution; these conditions reflegram
dependencies necessary to ensure deterministic behawewon-
nect the high-level specification used by clients of theglifprwith
the low-level library implementation, to prove that a ctierre-
quirements for determinism are enforced. Significantlycese rea-
son about program and library correctness without breaking
straction boundaries.

To achieve this, we useoncurrent abstract predicatebased
on separation logic, to encapsulate racy behaviour in trarly’s
implementation. To allow generic specifications of libearihat can
be instantiated by client programs, we extend the logic tiigher-
order parameters and quantification. We show that our fegéHl
specification abstracts the details of deterministic pelisin by
verifying two different low-level implementations of thitary.

Categories and Subject Descriptors  D.2.4 [Software Engineer-
ing]: Program Verification—Correctness proofs; D.33dgram-
ming LanguagdsLanguage Constructs and Features—Concurrent
programming structures

General Terms Languages, Theory, Verification

Keywords Separation Logic, Concurrent Abstract Predicates,
Concurrency, Futures

1. Introduction

Writing safe and efficient concurrent programs is challegdie-
cause it requires programmers not only to parcel usefub wfit
work into threads that can be executed in parallel, but abso t
weave suitable concurrency control to coordinate the acoés
these threads to shared data. To enable effective reasahmg
concurrent programs, however, it is essential to deviselular
abstractions whose implementations can be hidden behitid we
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defined interfaces, allowing clients to reason about comess in
terms of abstract, rather than concrete, behaviour.

In this paper, we consider the verification of one such concur
rency construct: barriers. ldeterministicparallelization, code re-
gions in a sequential program are executed concurrentlyleitre
parallelized program is internally nondeterministic, woh con-
structs are used to ensure that it exhibits the same detistimin
observable behaviour as its sequential counterpart. Aatiorpar-
allelization of this kind has been well-studied for loopeinsive nu-
merical computations. However, it is also possible to extparal-
lelism from irregularly structured sequential programbgve pro-
gram dependencies are not readily apparent [4, 22, 25].

One way to achieve deterministic parallelism is through jgiten-
injected barriers [19]. We can think of these barriers asugs
management operations that enforce the original sequentar
(aka program dependencies). A resource could be any program
variable, data structure, memory region, lock, etc. forahtown-
ership guarantees are essential in order to enforce detistinise-
mantics. We assume barrier implementations are providgrhids
of a library.

While the intuition behind using such barriers is quite dienp
there are many possible implementations. Verifying thaingvle-
mentation adheres to this intuition is challenging for salveca-
sons.

First, the patterns of signalling in a barrier implemertatare
highly non-local. To access a resource, a barrier must it ail
logically preceding threads have indicated that it is safdd so;
these logically preceding threads represent sources ipendency
graph. This abstract view of resource-transfer does notitfit tie
structure of a highly concurrent implementation, makindjfficult
to avoid breaking abstraction boundaries.

Furthermore, compiler optimizations might strive to idgnthe
earliest point in a thread’s execution path from where aueso
is no longer required. In some cases, this means threadseean r
lease resources without ever acquiring them, so that subseq
signalling of this resource by its ancestors to its desasisdean
bypass it altogether. An ancestor of a thread is a comput#tiat
logically precedes it under sequential execution, and eafetent
is a computation that logically follows it. Implementatsaf bar-
riers must allow a thread to renounce the acquisition of aues
in this way.

Finally, barriers may have to treat reads and writes diffgye
to ensure preservation of sequential behaviour. Althougimym
reads can be performed concurrently, they must be seqlieadia
with respect to writes. Moreover, reads must be sequezgihli
with respect to other reads, if there is an intervening wiritéhe
sequential order.

In this paper, we show how to reason in a modular way about
implementations of such barriers. To do this, we use coratirr
abstract predicates [6], a technique based on separatgntlwat
enables abstract reasoning about concurrent modules. dQiar |



allows us to reason about both high-level behavioural ptogse
and low-level implementation details. This approach afidime-
grained reasoning about behaviour, meaning that eachdtluaa
be given access to exactly the behaviour it needs to run diocpr
to the abstract specification. This behavioural reasorsrigcal,
meaning even non-local descriptions of the shared statebean
encapsulated and abstracted.

By leveraging concurrent abstract predicates in this wagy, w
take a first step towards the formal specification and vetifina
of a system for deterministic parallelism. While full vec#ition of
compiler analyses, transformations, and library impletaiggons is
our ultimate goal, we focus here on just the verification feob
for libraries. We present a high-level specification fors@ang
about barriers for deterministic parallelism, independeitheir
low-level implementation. We prove that two low-level irapien-
tations of these barriers implement our high-level speatifb.

Consider the following functiof; here* corresponds to non-
deterministic choice, seleep (*) waits for an arbitrary period of
time:

f(x,y,v) {
if (x<10) {
Vi=y+V; Xi=X+V;
} else { sleep(*); }

Suppose now that we run two instance< af sequence:

x:=0; y:=0; f£(x,y,5); f(x,y,11);

When this program terminates, locatio@ndy will both hold 16.
Here, the second call tb may have to wait for the first call to
finish its arbitrarily longsleep, even though the first call will do
nothing more once it wakes. We parallelise this function bg-c
structing two new functiong1 and£2. We run both concurrently,

In the presence of runtime thread creation and dynamic theap but require that 1 passes control af andy to £2 beforesleeping,

allocated) data, our specification must also be both geaadaly-
namic, in the sense that it must be able to construct sighaisia
time that protect arbitrary resources. To support the fearas arbi-
trary resources between threads, we have extended theroamicu
abstract predicates approach to support higher-ordeigatedpa-
rameters, and higher-order quantification. The controésdurces
are represented by propositional arguments to abstradicptes.
We make the following contributions:

1. We develop a high-level abstract specification for remgpn
about libraries that implement barriers used to enforceredet
ministic parallelism. This specification can express caxple-

haviours such as the dynamic construction of new barrieds an

out-of-order signalling between threads.

2. We provide proofs that two implementations of such besrie
satisfy our high-level specification. The first implemeiatat
naively sequentializes signalling, while the second egates
information from logically earlier threads to avoid thistthe-
neck.

3. We extend prior work on concurrent abstract predicatesijo
port higher-order parameters and quantifications, folhgwi
higher-order separation logic [3]. By allowing propositéh
parameters, we can define predicates that take invaria@ts as
guments, to enable abstract reasoning about resourcéetrans

An extended version of this paper containing full proofsigikable
as a technical report [9].

2. A Specification for Deterministic Parallelism

In this section, we describe the behaviour of a library pimg
barriers for enforcing deterministic parallelism. We defanhigh-
level specifications for these barriers, which allow us tovpr
that programs parallelised using these barriers preseyaestial
behaviour.

allowing £2 to continue executing.

fi(x,y,v,1i) { f2(x,y,v,1i) {

if (x<10) { wait(i);
Vi=y+v; Xi=x+v; if (x<10) {
grant (i) ; VISy+tV; Xi=X+v;
} else { } else {
grant (i) ; sleep (%) ;
sleep(*); )
3

x:=0; y:=0; i:=newchan(); fi(x,y,5,1i)|lf2(x,y,11,1);

The barriers inf1 and£2 ensure that the two threads wait exactly
until the resources they require can be safely modified, ouith
violating sequential program dependencies. The correigriorg

is enforced by barriers that communicate through a chamméig
examplepewchan creates the channgel Assuming the barriers are
correctly implemented, the resulting behaviour is eqeintito that

of the original sequential program.

2.1 \Verifying a Client Program

How can we verify that our parallelised program based prand
£2 has the same specification as the original sequential prégra
Typically, one would incorporate signalling machinery astmf a
parallelization program analysis. Clients would then osaabout
program behaviour using the operational semantics of theeba
implementation. Validating the correctness of paraléien with
respect to the sequential program semantics would theretor
quire a detailed knowledge of the barrier implementationy A
changes to the implementation could entail reproving threect-
ness of the parallelisation analysis.

In contrast, we reason about program behaviour in terms-of ab
stract specifications fogrant, wait andnewchan. Such an ap-
proach has the following advantages: (1) Implementors cad-m

We assume that code sections believed to be amenable for parify their underlying implementation and be sure that refearo-

allelization have been identified, and the program splibediagly
into threads. We assume a total logical ordering on thresush
that executing the threads serially in the logical ordergithe
same result as the original (unparallelised) program.

Barriers are associated with resources (e.g., prograrablas,
data structures, etc.) that are to be shared between centysr
executing program segments. There are two sorts of barrers
grant barrier notifies logically later threads that the curremeéul
will no longer use the resource. Wait barrier blocks until all
logically prior threads have signalled that they will no ¢en use
the resource (i.e., have issued grants). We assume banages
been appropriately injected by a compiler to ensure thatadiknt
data dependencies in the original program are respected.

gram properties are preserved by the implementation, grali€¢ht
proofs (in this case, proofs involving compiler correcsjesan be
completed without knowledge of the underlying implemenotat
We will reason about1 and£2 using separation logic. We write

the following assertion to denote thaipoints to valuev andy to
valuev’, and thatx andy are distinctx — v * y — o', To reason
about the parallel composition of threads, we use the Rile of
concurrent separation logic [20]:

{Pi} Ci{@Q1} {2} C2{Q2}
{P1# P2} C1 ]| C2 {Q1 % Q2}
Now, to reason about1 and£2, we must be able to encode the

fact thatf1 can give up access toandy by calling grant (i),



while £2 can retrieve access to them by callingit (i) . To use the
parallel rule, we must be able to give the two threads staarseed
preconditions.

We encode these two facts by defining two predicdigsand
req, corresponding to th&uture resourcethe resource that can be
acquired from logically earlier threads, and tleguired resource
the resource that must be supplied to logically later trse&de
read these as follows:

fut(é, P) — By callingwait on ¢, the thread will acquire a
resource satisfying the assertiéh

req(i, P) — By callinggrant on: when holding a resource
satisfyingP, the thread will lose the resourée

These predicates aabstract each instantiation of the library will
define them differently; the client program knows nothinguath
how they are actually defined. The client only depends on an ab
stract specification that captures the intuitive meaninipefredi-
cates:

{emp} i:=newchan() {req(i, P) *fut(i, P)}

{fut(i, P)} wait (4) {P}
{req(i, P) x P} grant (i) {emp}
(Note that this is a weaker version of our full specificatiginen in

Fig. 2.)

The specification ohewchan is noteworthy. This specifica-
tion is implicitly universally quantified for all assertis®, mean-
ing that we can construct a predicate for any assettiNew fut
andreq predicates can be constructed at run-time usisgchan,
meaning we can construct an arbitrarily large number of ebkn
for use in the program.

Given these two predicates, we can define the following speci
fications forf1 andf2.

V1 <10AZ +— v xy — v

i req 2_71: — (v1+v) * £1(z,y,v,i) {emp}
y — (v2+v)

v3<10 A N )z (vstw)
. £2(z,y,v,1)
fut(i, z — v3 * Y > v4) *y = (vatv)

The specification forf1 says that the thread must supply tleg
predicate with the resourcesandy such that the value in is less
than 10. The specification fd@2 says that the thread can receive
andy with the value inz less than 10. Fig. 1 gives sketch-proofs
for these two specifications.

Given this specification, the proof for the main program goes
through as follows:

(e o)

x:=0; y:=0; i:=newchan();
{xt—>0*y»—>0*req(i,x»—>5*y|—>5)*fut(i,x»—>5*y|—>5)}
f1(x,y,5,i) |l f2(x,y,11,i) // Parallel rule.
{x — 16 %y — 16}
This proof establishes that the post-condition for the Ipelised

version of the program is identical to the post-condition the
original sequential version.

11n the full specification, we impose an extra requirement fhds stable
meaning invariant under concurrent interference, buttblds trivially for
unshared assertions suchmas— v * y — v’.

v1 <10A T — v %y — v *
{req (i, — (vitv) xy — (v2 +v))}
if (x<10) {
VISytV; X=XV
z = (v1+v) * y — (va+v) *
{req (iy — (vr+v) + 3 (vz+v>>}
grant(i); // Abstract spec.

(o)

} else ..
(o)

{1)3 < 10/\fut(i,x|—>vg*y'—>’04)}

if (x<10) {
wait(i); // Abstract spec.

. // Contradiction as v1 < 10.

{vl < 10/\mb—>v3*y»—>v4}

Vi=y+V; Xi=XHV;

{m — (v3tv) xy — (m—l—v)}
} else ... // Contradiction as vz < 10.
{:c — (v3+v) xy — (v4+v)}

Figure 1. Proofs forf1 and£2.

2.2 Generalising to Many Threads

Suppose we want to run many copies of the functiam sequence,
for example over an array of values. We might have the follow-
ing sequential program:

for(j:=0; j<max; j++){ f(x,y,vs[jl); }

To parallelise this program, we want each callftdo run in a
separate thread. To do this,must be modified to contain calls
to both grant andwait. Intuitively, each call tof receives the
resource from logically earlier threads (those invoked anlier
loop iterations) withvait, then releases it to logically later threads
(those invoked in later loop iterations) usiggant.

To allow many threads to access the same resource in sequence
we can construct ahain of channels. Awvait barrier called on a
channel waits fogrant barriers orell preceding channels. We use
the ordering in chains of channels to model the logical ander
between a sequence of parallelised threads.

A chain initially consists of a singleton channel consteactis-
ing newchan. We introduce an operatiogplit that allows us to
insert a new channel into the chain. The specificatiorgifit
takes areq predicate for an existing channel and creates afinéw
andreq predicate representing the new channel. The new channel
is inserted into the chain immediately before the existingmmel.
We extend theeq predicate with an additional argument identi-
fying the preceding channel in the chain. Téeglit operation’s
specification is given in Fig. 2.

There are two more potential sources of parallelism.ifirst,
in the original transformation involving1 and £2, we did not
distinguish between the resourcegndy. However, we need to
gain access tg only if we take the first branch of the conditional.
Otherwise we can releaseto logically future threads. To realise
this parallelism in the new version &, we use two chains of
channels: one fat, and one fory.

Second, we can exploit the ability t@nounceaccess to a
resource without acquiring it first. In the simple specifizatgiven



SPECS

{fut(i, P)} wait (i) {P}
req(i,i’, P) *
Py fut(i', P") grant () {emp}
* (P'—=P)
o req(j, j’, P)
req(s, 7, P) 4,7 1=split (i) * fut(j', Q)
*stable(Q) Y
«req(j’, i, Q)

{stable(P)} i :=newchan() {f“t(i’],j). }
* req (1, nil, P)

AXIOMS:

fut(i, P) % (P — (P1*P2))
« stable(Py) * stable(P2)

) = fut(s, P1) * fut(i, P2)

Figure 2. Full abstract specification for deterministic parallelism

above, we can only cafirant if we hold the required resource.
However, this is often not necessary. For example, if we thke
second branch of the conditionalfnwe do not need the resource
y. It is safe to notify future threads thatis available, conditional

on all logically prior threads releasing it, even though theead
itself never acquired access to the resource. 1

Renunciation can be a powerful technique for parallelsati
Suppose a thread is logically last in a chain of threads aougps 2
a resource. Suppose the thread takes an execution pattringnde 3
it unnecessary to ever access the resource. Without reatiomgi
a call togrant will block until all earlier threads have finished *
with the resource. With renunciation, the thread can pasbdirier
and continue executing, irrespective of the status of kljiearlier
threads. 6

To support renunciation, we modify the specificationgpant
(see Fig. 2). This new specification allows a thread to diggha
req using the precedinfut predicate. In other words, the thread
gives up the ability to ever acquire the resource, and idstea
wards this capability to future threads. When the resoueceines o
available from logically prior threads, theextthread in the logical
order will receive it. The assertiqi®’ — P) is used to convert the
state supplied by the future to the state required by thethesad?

In Fig. 2, we also add aaxiomto our specification. This is a
fact about the library predicates that clients of the liprean make
use of. The axiom allows resource splitting. This axiom @sskat
when a thread can receive a resouftasing identifieri, access to
that resource can be split between two threads, potenbafigre
the resource is available. The assertiéh- (PP )) asserts that
P can be split intaP; and P».

We now definefp, top of Fig. 3, a version of which is
safe to run in parallel with many copies of itself. This fuoot
takes argumentsx andiy representing the next points in the two
channel sequences, aidp andiyp representing the immediately
prior points. We verifyfp against the following specification:

5

14
15

16
17

18

req(ix, ixp,x — _) * fut(ixp,x — _) *
T ; fp(...) {emp}
req(iy, iyp,y — -) * fut(iyp,y — -)

A proof of this specification is given in Fig. 4. Note that welyon
assert basic memory safety in this specification. We coulidyve

2 A resource satisfieB’ — P iff its combination with any disjoint resource
satisfying P’ produces a resource satisfyity

fp(x,y,v,ix,iy,ixp,iyp) {
wait (ixp);
if (x<10) {
wait (iyp);
y:=y+v; grant(iy);
x:=x+v; grant(ix);
} else {
grant (ix); grant(iy);
sleep(*);
3

ixf:=newchan(); iyf:=newchan();
for(j:=0; j<max; j++){
v:=vs[j];
ixl:=ixn; (ixf,ixzn):=split(ixf);
iyl:=iyn; (iyf,iyn):=split(iyf);
future( fp(x,y,v,ixn,iyn,ixl,iyl) );
¥
wait (ixf); wait(iyf);

Figure 3. Example parallelisation of and a client. Thetuture
annotation marks the call ttp as a source of deterministic paral-
lelism.

req(ix, ixp, x — _) * fut(ixp,z — _)
req(iy, iyp, y — -) * fut(iyp,y — )
fp(x,y,v,ix,iy,ixp,iyp) {
wait (ixp);
x +— _*req(ix, ixp, x — _) *
req(iy, iyp, y — ) * fut(iyp,y — )
if (x<10) {
wait (iyp);

T kY %
req(ix, ixp,z +— ) x req(iy, iyp,y — -)
y:=y+v; grant(iy);
{:c — _xreq(ix, ixp,x — _)}
x:=x+v; grant(ix);
} else {
grant (ix) ;
{req(i% iyp,y + -) * fut(iyp,y — -)}
grant (iy) ;
emp

sleep(*);
3}

(om)

Figure 4. Proof for parallelised progrartp.

more complex properties by giving thiat and req predicates
stronger invariants.

Line 14 of the proof is noteworthy. There, the preconditilmes
not assert that the thread has accesg te- _; rather, it asserts it
can acquire access by callingit. Instead of doing this, the thread
renounces access to the resource, giving it up without eaxéng
it.



gx) { gp(x,r,rp,w,wp) {

if (%) { if (%) {
sleep(*); grant (r) ; '
read(x); sleep (%) ;
} wait (rp); 2
else { read(x) ; ®
write(x); grant (w) ;
+} } else { 4
wait (rp); wait(wp);
write(x);

grant (r); grant(w);
3}

Figure 5. Example functiorg and its parallelisation.

The parallelised version of the main programis given attiteb ¢
tom of Fig. 3. We give the following sketch-proof for this exgle.
Here the predicateseq(ixf, ixn,true) and req(iyf, iyn, true)
are dummyreq predicates used to represent the logically latest ele
ement of the sequential order. The predicatay stands for the
array of values.

{array(vs, max)}
array(vs,max) * req(ixf, ixn, true) * fut(ixn,z — _)

11

12

ixf:=newchan(); iyf:=newchan();
{array(vs,max) * req(ixf, nil, true) = fut(ixf,z — _)
* req(iyf, nil, true) = fut(iyf,y — _)
for(j:=0; j<max; j++){
ixl:=ixn; (ixf,ixn):=split(ixf);

xreq(ixn, ixl, z — _) * fut(ixl, z — _)
x req(iyf, iyn, true) * fut(iyn,y — )
iyli=iyn; (iyf,iyn):=split(iyf);
array(vs, max) * req(ixf, ixn, true) * fut(ixn, z — _)
* req(ixn, ixl, x — _) % fut(ixl,z — _)
* req(iyf, iyn, true) * fut(iyn,y — )
x req(iyn, iyl,y — ) * fut(iyl,y — )
future( fp(x,y,vs[jl,ixn,iyn,ix1l,iyl) );
w],;ait(ixf) ; wait(iyf); // GC dummy req predicates.

{array(vs,max) KT kY _}

We have shown that our parallelised version of the program is
memory-safe. With a little more effort, we could verify the-b
haviour of the program. Crucially, even though this progrfaa-
tures many threads running at once, with complex commuinitat
between threads, each individual thread is able to reasmailyp
without dealing with other threads or the implementatiorthaf
barriers.

2.3 Relating Reads and Writes

Further parallelism is available by refining read and writeesses
to a resource. Consider the functigngiven in Fig. 5. It is safe
for parallel threads to read at the same time. However, it is
important that writes tax are sequentialised, and that groups of
reads are sequentialisedth respect to writeslf two groups of
reading threads are separated by a writing thread, thedlibglater
group must wait for the writer to finish before reading.

To exploit this, we split reading and writing into two chatme
We user andrp for reads, and andwp for writes.w andr are the
outgoing channels, whilep andrp are the incoming channel. As
soon as the thread nondeterministically takes the firstdbrahthe

fut(rp, x = _) * fut(wp,x == ) Am+n =1
5T ' +in
* req(r7 p, X s —) * req(w7 wp, X — —)

if (%) {
// Apply the future splitting aziom to rp.

P 1. <

fut(rp, x =— _) * fut(rp, x =— _) * fut(wp, x *— )
l7r 7r,+17r

* req(r7 p, X H— —) * req(w7 wp, X — —)

grant(r) ;

1. !
fut(rp, x = ) * fut(wp, x +— _)
‘rrl+%7'r
* req(w, wp, x ———— _)
sleep(*); wait(rp);
1. < ' +lx
{x —— _* fut(wp, x ©— _) * req(w, wp, X ———

)}

read(x); grant(w);

fem)

}else { ... }

fom)

Figure 6. Proof for parallelised prograigp.

conditional, it can use the read channel to signal that thterads
can read. In contrast, a thread that wishes to write must foait
both the read and write channels. The parallelised progsagiven

in Fig 5.

In separation logic, read and write access are often coedrbly
fractional permission§5]. Each thread can hold either full permis-
sion, 1, on a locatiom, denotedr — v, or fractional permission

€ (0..1), denotedz  v. Full permission gives the thread ex-
clusive permission to write, while fractional permissianeg non-
exclusive permission to read. Fractional permissions caapby
addition, as follows:

’ !

™ ™ . /
Tr VT 0 <= T+H——0 if m+7 <1.

We give the functiorgp the following specification:

1. .
req(r, rp, x —— _) * fut(rp, z = _) *
re il i s gp(..) {emp}
9, wp, 2 T2 ) s fut(p, 2 )
Am+n'=1

This specification says that when a thread receives a fratio
permission from the read channel, only half of it has to be sen
on to future threads using the read channel. The other halbea
supplied on the write channel. This allows a thread to keep th
ability to read, while notifying future threads that theyalcan
read.

Fig. 6 shows a sketch-proof for the program. We elide the
writing branch of the conditional as it is straightforwafthe most
notable proof step is line 3, where the specification’s resmu
splitting axiom is used to divide up access to finepredicate. Half
is used to discharge theq predicater, allowing logically later
threads to read, while half is used to allow the current threa
read. In this way, many threads can simultaneously havédre
access to the resource.

3. Verifying a Simple Implementation

So far, we have given an abstract specification for detestiérpar-
allelism. The specification was independent of the implaatém



grant (i) { wait(i) {
if (i.prev!=nil) while(i.bit!=1)
wait (i.prev); skip;
(i.bit:=1); ¥
}
split(i) { newchan() {

n:=alloc(bit);
n.prev:=i.prev;

i:=alloc(bit);
i.prev:=nil;

n.bit:=0; i.bit:=0;
i.prev:=n; return i;
return (i,n); T

Figure 7. Implementation of signalling library.

of the barrier. In this section, we show how such a specifioati
can be justified by giving a simple implementation of the t and
grant barriers, and verifying our abstract specification agéatmst
concrete implementation.

The implementation is given in Fig. 7. This implementatiap-s
ports resource transfer using a sequence of nodes, eaclobf es
abit field and aprev field. Eachfut / req pair is associated with
a single node, and the order of the sequence representgthallo
ordering. The implementation requires that bits are sezguential
order. In§5 we consider a more sophisticated implementation that
allows out-of-order signalling, and show that it also inmpénts our
abstract specification.

Thewait barrier simply waits for the immediately preceding
bit to be set. As bits are set in order, with logically eartiereads
setting their bits before logically later ones, this suffite show
that all the earlier bits in the order have been set.

Recall from the previous section that our specification fisrm
threads to renounce the ability to access a resource, ngetran
grant can be called beforeait within the same thread. To ensure
that bits are set in sequential ordgtant must wait for the previ-
ous hit to be set before setting its own bit. The implemeoitatises
the prev field of the bit to callwait, and then sets its bit when it
exits. Bits are set atomically kgrant, denoted by —).

The constructor functionsewchan andsplit are implemented
by allocating a new bitsplit inserts a bit into the order by
redirecting theprev pointer of the existing bit to point to the newly
allocated hit. This allows computations to dynamicallytamgiate
sub-computations that have internal deterministic peliath.

3.1 Proof Approach

To prove the correctness of our module’s functions, we useus
rent abstract predicates [6]. We extend this work with higireler
quantification, allowing us to prove specifications thats over
the particular resource held by the predicate.

Concurrent abstract predicates extend standard sepulagic
with two new kinds of construct allowing explicit reasoniagout
sharing and interference. The first aremed shared regionsle-
noted by boxed assertions of the form

-
I

This asserts that the regiercontains a resource satisfyidgy and
nothing else. This region is shared between the curreradhaed
an arbitrary number of other threads. The permitted steaegds
over the region are controlled by tirgerference environment.

The second areapabilities resources controlling the updates
that a thread can perform. In order to mutate the contentstudiged

region, a thread requires a capability in its local stateptkd:
[ACTION],

This is a permission for the operatiarxtTION on the regionr.
The exact operation denoted by the nasxag 10N is determined by
the interference environment for regien Suppose that ATION
denoted the ability to rewrite the value in a shared addréssm 0
to 1. Then we would have the following interference enviremnin

I(z) = (AcCTION:

A capability [AcTION]; controls both whether the operation is
permitted to the local thread, and whether it can be perfdrme
by the environment. Following deny-guarantee [8], exauthat

is allowed and denied is determined by the permission level,
We write 1 if the thread can exclusively perform the actigpm, if

the thread and the environment can perform the action danifl
neither the thread nor the environment can perform themaclibe
valuez € (0..1) is used to track the amount of permission, allowing
capabilities to be split and combined.

Updates performed by a thread must be permitted according to
the capabilities held by the thread in local state. So-dallestract
updatesthose that do not modify the underlying heap-state, can be
performed at any time by a thread. We write== (Q to denote
that P can be abstractly updated to gige

As assertions describe shared states that can be updatéteby o

threads, we need to be able to describe assertions thaewiflin
true no matter what the environment does. We describe these a
sertions astable Capabilities specify exactly what behaviours the
environment can perform, giving fine-grained control obgtgy.
For example, the following assertion is stable, becauspecifies
that the only way region can be mutated is by thecTION opera-
tions, and the exclusive capability to perform this operais held
by the thread in local state:

T * [ACTION]]
I(z)

Our logic includes an assertiatable( P) that holds ifP is stable.

An abstract specification for a module consists of abstnaxtp
icates, function specifications and axioms. To show thanarete
implementation of a module corresponds to a particularrabist
specification, we must supply concrete definitions for thelahe's
abstract predicates, and then show that the following threper-
ties hold: (1) the module implementation satisfies the abspec-
ifications, given the concrete predicate definitions; ()ghedicate
definitions are stable; and (3) the axioms hold, given theieia
predicate definitions.

For simplicity, we assume that resources are garbage tadlec
rather than being explicitly deallocated. This means thatcan
safely remove star-conjuncts from assertions, and we oferthis
to clean up the post-conditions for operations.

x—0 ~ z—1)

3.2 \Verifying the Implementation

Next, we prove that the implementation satisfies the altsspseri-
fication. We give definitions to thit andreq predicates in Fig. 8.
(In all our predicate definitions, we assume unbound vagmhble
existentially quantified.)

The definition ofreq(4, i, P) captures three pieces of informa-
tion: First, that there exists a shared bit at addieSecond, that’
is the immediate predecessoripfnd it can be read by the thread.
Third, that the thread must supply the resouRckefore setting the
bit ati.

In this definition, we use two auxiliary predicates andbox.
The predecessor access predigat&) asserts that is eithernil,
or it is a shared bit that can be read. This ensures that teadhr
that holdsreq is able to access the preceding bit. The predicate
box(i, P, w) asserts that the thread can exchange the reséufoe



;(i)* box(i, P, 1)
xi.prev — i’ * pa(i)
_ . — -
[PUT]T
1.bit — 0 ;(i)* [SETa, V
box (i, P1,m1) * box(i, P2, m2) *
P (PixP)ANmitm=m

[I>

req(i7 i/7 P)

pa(i)

box(i, P, )

J(i,P,m,r)

stable(P) x [GET]] *
T s
[SET]qx *|i.bit — 0 16

Figure 8. Collected predicate definitions.

[I>

fut(i, P)

J(i,P,m,r)

the permissiord on sSeT for the biti. Hence, in order to acquire
the full permission to set the shared bit, the thread musplgup
the resourceP to the predicatéox(i, P, 1). That is, the following
abstract update holds:

™ ™ r
0], pbosti P e P =[], slset

Below, we prove that the abstract implication holds. For rie
ment, we just note that boxes are used to control the sglittime-
sources according to the splitting axiom. Note that, thenétedn of
box is recursive, as it mentions the box predicate insidestiaeed
region, and in the interference on the shared region. The figet
exists by first finding a solution ignoring the interferencwison-
ment, and then restricting the interference environmentlyre-
sulting solution.

Finally, we give a definition tdut(z, P). This assertion must
capture one essential piece of information: that eithesktz@ed bit
att is zero, or the resourck is available for collection.

In these definitions, names surrounded with square braakets
capabilities. The semantics of such capabilities are defiryethe
interference environments. We define two environments.fifsig
1(7) defines the interference over the shared.bithis environment
includes only a single operation, the ability to set the stidnit:

1(i)

The interference environmed((i, P, 7, ) defines the interference
over the resource-holding regions.

A

= (SeT: i.bit—0

~  i.bit 1)

J(i, Py, r)

[SETlax P
PUT: box(i, P, 1) * box(i, Py, ma)
Px(PrxP)Ami+me=m

~

)
)

Intuitively the first case fopuT allows the thread to push the re-
sourceP into the shared state, and retrieve a fractional permission
to seTthe shared bit. The first case feeT allows the thread to re-

P

~>  emp

box(i, P1,m1) * box(i, P2, m2) *
Px(PixP)Am+m=m

[SETar

trieve the resourc®. The second cases are used in resource split-
ting; see below for details.

The first obligation for showing that our module implements
the abstract specification is to use our program logic to grov
the module functions’ specifications. Proofs fafant, wait and
split are given in Fig. 9. The proof efewchan is almost identical
to the proof ofsplit, and hence omitted.

The proof ofgrant operates by first appealing to the specifica-
tion of wait to recover the full resource from a possilfile pred-
icate. We also use the specificatifpa(i) jwait(i){emp}, which
can be proved trivially. It then exchanges the resource h@btdx
predicate for permission to set the shared bit. Finally it ske
shared bit and forgets all the remaining resource.

The proof ofwait spins until the bit field is 1, which excludes
the case where the resource is not present. As the resounce ca
only be removed by theait thread, this assertion is stable under
interference. The thread uses theT to recover the resource, and
garbage-collects all the other resources.

The proof ofsplit (andnewchan) allocates a new piece of
memory, sets thered andbit fields to appropriate values, then
creates théut andreq predicates by wrapping the new memory in
a shared region.

The second obligation we must discharge is to show that the
predicates are stable. To do this, we check each of the pttedic
definitions to make sure that each shared region assertioveis-
ant under permitted interference.

3.3 Resource Splitting Using Boxes

Our specification requires that we can sfilit predicates according
to the axiom given in Fig. 2.

We use thébox predicate to support this splitting in our concrete
implementation. Intuitively, eaclbox initially shares its shared
region with afut predicate. Then, if thafut predicate is split, the
box instead contains a pair of boxes representing the slsiagel
for the two newfut predicates.

The definition of a predicatbox(:, P, 7), Fig. 8, either allows
the thread to access tBeTpermission, or contains two boxes with
resources”; and P, such thatP — P; * P,. In the proofs of the
module’s operations, we relied on the assumption that aiqated
box (i, P, 1) and resourcé® can be exchanged for a permission to
set the shared hitbit. We now justify this assumption with a proof.

Our definition ofbox is the least fixed point of the recursive
definition. We reason inductively, hence it suffices to prinat the
entailment holds whebox is defined as false, and under the as-
sumption that the disjunction holds. The base case of thectiwh
holds trivially asbox(7, P, 7) is false. In the first inductive case, we
assume that the left disjunct in the shared region holds prtef is
given in Fig 10(a). In the second case, we assume that the property
holds forbox(i, Pi, 1) andbox(i, P2, 2). The proof is given in
Fig. 10(b).

The proof given in Fig. 1Qc) shows that the future-splitting
axiom holds for the concrete predicate definitions. We ohigns
the left case for the disjunction; the right case is easys phoof
uses theGET action while at the same time creating new regions
for the two new futures. This completes the proof that ourpdém
implementation corresponds to our high-level specificatio

4. Logic and Semantics

In this section, we present the syntax and semantics of gic.lo
It extends the previous work on concurrent abstract préekci#®]
with higher-order parameters and quantification followtimg work
of Biering et al. on higher-order separation logic [3].

Our assertion logic is a typed higher-order separationclogi
extended with predicates that denote the ability to chahgestate
and a connective for expressing sharing. The syntax of $ertisn



[F 0], b )« P

= (defs & assumption)

[t ] P o s

= (defs and case split)

[(h o], ¢ oy P

[F 0], bt )« P

fut(i, P) « (P —x Py Pa) %
stable(Py) * stable(Ps)
= (def)

ibit — 0]
I

*[SETan

i)

J(i,P,m,r)

box (i, P1,m1) * box(i, P2, m2) * '
P (PyxP)) Ami+me =1

/ stable(Py) * stable(Ps) * [GETH/ *

T
[SETqr *|4.bit 0 10

J(i,P,m,r)

= (actionpuT)

A
ibit— 0] %P

I(1)
= (GC)

(it 0], st

= (actionpuT)

[t 0], o « P

*

J(i,P,m,T)

= (assumption and GC)
.bit — 0] * SET G
[ibit 0], fsety

@) (b)

x P (PLxP)ANmi+tm=m

* box(i, P1, 1) * box(i, P2, m2)

\/P*I(i) J(i,Pym,r)

= (actionGET, creation of two new regions)
box (i, P1,m1) * box(i, P2, m2) * "
P (PixP)Am*me=m P

« [GET]T  fut(i, P1) * fut(i, Py)

r/
em
P J(i,P,m,T)

= (GC)
fut(i, P1) * fut(s, P2)
(©

Figure 10. Proofs of abstract updates

language is as follows:

7 == Int| Frac| Region | Asn |7 — T
P,Q,L,M,A := false | P=Q |3z:7.P| LM | \x:T. M
| Elemp|PxQ|P—=Q

| L M |stable(P) | [(3)]; | [P
I 2=~ :3y:7(P~Q)| 1,1
m == 1|dL|gL

wherer ranges over region namegpver token names, andover
values. We lift expression& from the programming language to
the logic. Note that we usB, Q, A when the term is of typdsn.
Terms are typed in the obvious way, and we will implicitly ase
all definitions are well-typed.

Our propositions have three important aspects they descfip
the contents of the state, (2) the capability to change,stat(3)
a partitioning of these contents and capabilities betweeal land
shared regions.

For completeness, the full semantics of terms is given inFig
Below we will only describe the salient features of the setican
A more thorough explanation can be found in [6].

Model  We model propositions witkVorlds that have three com-
ponents: a local componehi/Vorld, that specifies the current local
state and local capabilities; a shared comporf&iorld, that spec-
ifies the current shared state and shared capabilities;reinteafer-
ence environmentEnv, that specifies the possible interference (or
protocol) on the shared component of the world. The shared co
ponent is split into many named regions, each of which is nhedle
by anLWorld.

A local world, LWorld, is modelled by a partial heapieap,
specifying the locally accessible state, and a capabiliappmg,
Capab, mapping from actions if\ction to permission to perform
that action inDG. Each action is mapped to either a full permis-
sion 1, an exclusive permission to perform that action, that hence
prohibits the environment from performing the action; argnéee
permissiorgz, a non-exclusive permission to perform that action; a
deny permissionlz, a non-exclusive prohibition on the action that
also prevents the environment performing it; and an emptyise
sion0 that does not allow the action but does not prohibit the envi-
ronment from performing it. Following Boyland [5], thecompo-

nents of deny and guarantee are used to track how much p@amiss
is required to re-establish exclusive permission.

Members ofAction comprise &Region, aToken and a sequence
of Val arguments. An action’s semantic meaning as interference
over a shared region is defined by an interference envirofyrimen
the setiEnv. The definition of an interference environment as a re-
lation overSWorld enforces the restriction that the interpretation
of an action does not allow you to change the interferenezpne-
tation of any actions.

Model operations As we are building a separation logic we re-
quire a composition operator on worlds that will be used terin
pret the separating conjunction and separating implinaiide use
the standard operation from separation logic for combiiegps,

h @ b, by disjoint partial function combination.

We use the deny-guarantee composition model [8] Dds.
This has0 as the unit of®. It combines two guarantee (or deny)
permissions by combining their fractional components tudpce
a guarantee (or deny) permission with the sum of the frastitin
the fractions sum to 1 then it lifts th If the fractions sum to more
than 1, then combination is undefined. This is then liftedh® t
function space in the obvious way.

We define the composition diWorld as the combination on
both components; and divorld as the combination on tH&Vorld
component, where th&World andIEnv components are equal.

We define other useful operations on the model that aid in the
definition of the semantics:s| collapses all the shared regions
into a single onely gives the heap component bfip gives the
permission component éfand|| w|| collapses a world into a single
heap.

Finally, we define the set of well-formed worldgyFW. A
world is well-formed iff all the regions and the local comeon
can be combined, each capability is defined in the interferen
environment, and the capabilities only mention valid regio

Types The types are semantically interpreted as in Figure 11.
We use: for interpretations of the free variables in a term: it is
a dependent product from a variable to the denotation of/e of
that variable. We interpret propositions on the powersetarids.

Terms The interpretation ofalse, =, 3, *, —, variables, function
application, and function abstractionare standard.

The predicateemp specifies that the local component of the
heap is empty and makes no restriction on the shared part, the



{req(i,i’, P)x (PV (fut(i’, P") * P — P))}

grant (i) {
if(i.prev!=nil) {

{rea(a, ", P) = (P (fur(i', P') « P' = P)) |
wait(i.prev); // wait() spec, or by pa.
{req(i,iﬂP) * P}

} // Unfold definition.

{;(_)* i.prev — i’ x pa(i’) * box(i, P, 1) * P}

// Push resource into the bozx.

{;(.)* i.prev — 4’ x pa(i’) * [SET]{'}

(i.bit:=1); // Action SET.

(B, e ) s}

} // Garbage collect.
{emp}

{fut(i, P)}
wait (i){
stable(P) [GET]”{/ *

T g r
[SET|g, *| i.bit — 0 o V P x| i.bit — _ o

J(i,P,m,7)

while(i.bit!=1){ skip; }

’ T v’
table(P) * [GET|] *| P x|i.bit — 1
{5 able(P) * [GET]] * \i‘l(i) J(LP’W’T)}

// Abstract action GET.

{P*stable(P) * [GET]} * \M‘;m }

J(i,P,m,r)
} // Garbage collect.
{r}

{req(iﬂ"7 P) x stable(Q)}
split (i) {
n:=alloc(bit);
n.prev:=i.prev; n.bit:=0; i.prev:=n;

{;(.)* box(i, P,1) % i.prev — n pa(i’)}

* stable(Q) * n.prev — ¢’ x n.bit — 0
// Construct region for new predicates.

;(_)* box(i, P,1) * i.prev — nx* pa(i’) *
stable(Q) * n.prev — ' + [SET} *[n.bit s 0]
@ wnpee e <[],

// construct a new boz for the future.

:(.)* box(i, P,1) * i.prev — n* pa(i)
xn.prev — 4 x| n.bit — 0 " 4 stable « [GET]T
T e T

s

" !’ ’I‘,
s sett « o],

return (i,n);
} // Fold definitions.

di1,19.Tet = (’L'17i2) A req(i1,i27P)
* fut(iz, Q) * req(iz, i, Q)

J(n,Q,1,7")

Figure 9. Proofs forgrant, wait andsplit.

interference environment, or the capability. The poiatpredicate
L — M specifies that the locatioh contains the valué/ in the
local world, and that the heap contains nothing else.
The capability[y(M)]; that says the local world contains the

m permission on region for actiony with parameterS\Z. The as-
sertionstable(P) says thatP will remain true given the permitted
interference on the shared world. That is, if we start in aldvsat-
isfying P and take a step iR, then we must still satisfy?. The

shared assertio: says that the shared regiensatisfies the
assertionP and that region’s interference is specifiedlby

Interference  We define several relations giving the possible up-
dates to the shared world as a result of the thread and theenvi
ment. Following Jones [16], we call the interference peedito
the environment theely and the interference permitted to the local
thread theguarantee

We define the semantics of the interference specfication as a
relation of SWorlds. For a particular updat® ~» Q, we specify
that a part of the pre-state must satigfy and replacing that part
with a part satisfyingQ gives the post-state. We also allow the
action to increase the number of regions in an unspecified way
This will allow actions both to repartition and to create revared
regions simultaneously.

We allow the dynamic creation of regions. The relati®snd
G. model this creation. The firsR., specifies the world-change if
the environment creates a region. The environment can oejte
aregion if it does not already exist. It adds a new share@negind
the relevant definition to the interference environmene $écond,

Gc, specifies the world-change if the current thread creatediam.
This differs from the rely as all of the permissions on adgitor the
new region are given to the current thread.

The global rely relationR, allows any action in the inference
environment that is not explicitly prohibited with a denyrpéssion
or a full permission, as well as the creation of regions. Végriet
R to well-formed worlds.

The global guaranteds, allows any action for which there is
either a full permission or a guarantee permission. Theagyiee
requires that the permissions and heap domain must be the sam
before and after the action, upto repartioning betweeroregyiThis
ensures that permissions and heap cannot be created oirt afrth
We also allow region creation, and resti&cto well-formed worlds.

Program logic We give the proof rules for our program logic in
Figure 12. The judgements are of the formI" - {P} C {Q}
where A is an assumption about the logical context, dhts an
assumption about the procedures in the context of the form

{Pfi{@u}, - A PR} fa{@n

We useA to encode the assumptions about the abstract predicates
and their axioms

We assume a standard semantics of programs [6] wid&re)
(C',h") denotes a successful reduction in the procedure con-
text n (a mapping from procedure names to commands); and
(C,h) 2 fault denotes a memory access problem. We then define
the semantics of judgments as follows:

DEerINITION 1 (Configuration safety)C, w,n, ¢, Q safe, always
holds; and
C,w,n,1i,Q safg, , iff the following four conditions hold:

1. Vo', if (w,w’) € R* thenC,w’, 0,1, Q safe,;

2. -((C, |w]) > fault);

3.VC, B if (C, |w]) 2 (C',h), thenFw’ such that(w, w’) €
G*, b = |[v']JandC’,w’, n, i, Q safe,; and

4. if C=skip, thenJw’ such that|w|=| v’ || &, (w,w") € G*,
andw’ € [Q];.



Model

7eDG £ {1,0}u{tz|2€(0,1)At € {d,g}} a € Action £ Region x Token x Val*  pc Capab £ Action — DG
h € Heap £ Address — Valw {1} 1 € LWorld £ Heap x Capab 5 € SWorld £ Region — LWorld
T € lIEnv £ Action — P(SWorld x SWorld) w € World £ LWorld x SWorld x IEnv

Model operations
Llovivel2v (L)oot )21ifz4+2 =1 hi @ ha & M. hi(v) @ ha(v) if Yo. hi(v) = LV ha(v) = L
TO020BTET  (L2)® (L) E (tz+2) ifz4+2 <1 p1r@p2 2 M. pi(v) ® p2(v) if Yo. p1(v) @ p2(v) defined
1= @redom)s( r)
Ls, )| £ (1®|s])u
7) € dom(Z))}

(h17p1) (h27 p2) S (hl @ ho, p1 D p2) if h1 ® ho andp1 @ p2 are defined (h7 P)H = h \_
(l17517:z1)€9(l27327z-2)é (ll @l2781711) if 11 @1y definedA s;1 = so AZy = 1o (h7p)p ép I_I_(
WEW 2 {(1,5,7) | (1@ |s]) definedA dom((l @ [s])r) C dom(Z) A (Vr.r € dom(s) < 3y, & (r, 7,

Types [Int] £ Z [Region] £ Region [ — =] & [n1] — [2] [Asn] £ P(World)

Terms [false]; = [z]: = i(x)
[P=QL2{wlwg[Phvwel@l})  [LML2ZLIML)  [P+Q)2 {wew |we [PLaw € [Q):)
[Ba: 7. Pli £ Uperg- [Pliteeo) s . M) 2 Ao [M]igpany [P~ Qli 2 {w | Vo' € [Pliw®w' € [Qi}
empl: 2 {(0,p), 5,7} [L— M]: 2 {([L]: = [M]p)s. T} [WODIE] 2 {(0.0).5,D) | pr 7, [M]:) = 7}
[stable(P)], 2 {w|Vun € [Pl (wi,we)eR = wee[PL}  [[P]] 24(0.0).5.D) | (s(r),5.T) € [PL AT(r) = [T}

Interference

Ay =v"Nsi(r) =11 %o A sa(r) =12 x o

' € [7,Z, 00, las o (I, 51, D) € [Plgg gy A U2y 52,T) € [QL s s iy
AYT' € dom(s1).7" £ 1 = s1(r') = s2(1)

51,52
[[’Y(f) (3 7?(13 ~ Q)]]i»T(T7 7l717) =

2, ' £ i U [ Tir
R = {(I,s,7),(1,s, TUT') | r ¢ dom(s) A s" = s[r '] Ardom(Z’) = {r}}
Ge =2 {(l,s,2),(I',s, TUT) | r g dom(s) A s’ = s[r = L] ALl Dall(Z') =11 @1 Ardom(Z') = {r}}
where all(Z') £ @, ., s caomz (@, [r,7,7—1]) and rdonfZ) = {r | (r,-,-) € dom(Z)}

R2 ({(z, s,7),(1,s', 70T |3a.(s,5') € Z(a) A (|s] ® D) p(a) ¢ {1,dz} A dom(s’) \ dom(s) = rdom(z')} U RC) N P(WFW?)

a (1,5,7), Ja. (s,s") € Z(a) A (Ip)(a) € {1, (g,-)} Adom(s") \ dom(s) = rdom(Z") )
¢ ({(z',s’,zum A(s] ® 0)p @ all(T) = (15| & 1)p A domi([s] @ 1) = domi(|s] & 1'>H>} Y GC) N PIWENS)

Ancillary definitions

P=HI g 2 vy [P],.3h € [pli.Vha € [q]i. I wa. h® W = [[w]| Ahe @K = [[wa]| A (w,ws) € GAws € [Q]
[A] £ {i|[A], = [Asn]} AEA 2 [A]C[A]
A= pE{p}{q}Q N = [[A]].PE?H‘I}Q AEP=Q & yie IIA]]‘PEl{emP}{Emp}Q

Figure 11. Semantics of assertions

Fsc {p} C {q} AT H{P} Ci{Q1} AT E{P} C2 {Q2} agl,P,.Q ATH{P}C{Q}
ATE (p} C (g} oM ATE (PP | Ca{@e@a) ) BN Bt
{P}y f{Q} el Fo {p} C {q¢} Ak P=rHdQ A;TH{P}C{Q} A = stable(R)
AT (P (Y AT (P} (C){Q} (ATomie) ATr{Px Ry C{QrRy  (RAME)
AT HA{P} C{Qi} ... ATH{P.} Co{Qun} ATF{PYC{Q} AEA
AP fi{Qui), . {Pa} fu {Qn}, T = {P} C{Q} AEP=P AEQ=Q
AT HA{P}letfi =Ch... fa=CrinC {Q} (LET) AT {PIC 0] (CoNSEQ

Figure 12. Selected proof rules from [6]. All rules assume that the pret post-conditions of their judgements are stable.



DEFINITION 2 (Judgement Semantics); I' = {P} C {Q} holds

iff [GETHI *
vn.Vi € [A] .vn e [I], .. in P}C , - , "

n.vi A[[ I.vnelll, ., Enint {PYC{Q} < | *V*i'.[SET(i')];Tr) v
where[I'],.: = {n | V{P}f{Q} € I'. Enin {PIn(/){Q}} @) a
andf=y.i.n {PYC{Q} £ Yw € ([P],AWFW). C,w,n,i, Q safe,. fut(i, P) £ | (| i.bit — 0V
Differences from the CAP paper [6]. The original paper treated i.bit + 1% i.prev — i’ * pa(i’) )
the meaning of interference syntactically in the modelt thathe ;. - 0
equivalent o Env was a map from action to syntactic definition of * PV 3P (fut(d, P7) + (P'~P))

the actions. This was done to avoid a cyclic definitioMiorld. In J(4,Pym,r)
this paper, we have factored out the semantics of interferembe s T . .
a separate component. We thus impose the restriction thatter- req(i,i’, P) £ I(i) *uprevim
ference environment cannot update the interference emmieat. pa(i') * box(i, P, 1)
Note, this kind of update was not allowed before, but was ret e »
plicitly forbidden in the model, just in the interpretatiorhis small N iy i.bit +— 0V
refactoring of the semantics allows higher-order quaratiian. pa(i) = ¢=ni i.bit — 1% i.prev — i’ * pa(i’)

We extend the model from the original CAP paper to addition- ()
ally contain deny permissions [8]. This is a straightfordvaxten- — 7 = — r
sion to the original paper. i.bit — 0 o V*i. [SET(0)]ax V

Finally, we take an intuitionistic model for the permisssoifihis box(i, P, m) £ box (i, Py, 1) * box (i, Pa, 2) * « [PuT]y
enables permissions to leak. The library we are considenitigis
paper requires garbage collection to collect signals whep &re Px(PrxP)Nmitm=m TGP

no longer accessible.

o ) Figure 13. Predicate definitions for out-of-order bit setting.
5. Verifying a More Complex Implementation

The module implementation given §3 imposes a strong sequen-

tial order on calls togrant. A wait only checks its immediate ]

predecessor, so a call grant must ensure its predecessor is set* {f“t(lv P)}

before setting its own bit. In this section, we consider aerahtive . wait(i) {

implementation that allows out-of-order bit setting. Wevs that while (i!=nil) {

this implementation also implements our abstract spetidica . . . , — /
Thepnew implementatior? uses the same data-gtructure as the {1 # nil A (pa(i) x PV 3P’ fut(i, P) * (P’ P))}

simple implementation. Bits can be set by callgiant in arbi- s while(i.bit=0) skip;
trary order, but as a consequence, each calbfcc must examine {‘ i.bit - _* i.prev — ¢’ * pa(i’) . }
all prior bits before exiting. As this implementation uses tame ¢ y — -
data-structure as the first one, thglit andnewchan operations (P v 3P fut(i', P') * (P" = P))
are identical. Thegrant andwait operations are defined as fol- 7 i := i.prev;
lows: 8 }
grant (i) { vait (i) { 0 {i = nil A((pa(1) * P) v (IP". fut(i, P') » (P’ P)))}
(i.bit = 1); while (i!=nil) { w } // fut(i,.) is false if i =nil, so...
} while(i.bit=0){ skip; }
i := i.prev; " {P}
3

As with the first implementation, each address hasafield and Figure 14. Proof forwait.

aprev field. Callinggrant sets the bit field for the current address
from 0 to 1, then exits immediately. Whenit is called, it blocks
until every bit field earlier in the order is set. To do thisclitases
prev fields, waiting for eachvit field to go to 1 before accessing
the preceding location. In this wayait ensures that all previous
threads have callegrant.

The predicate definitions (given in Fig. 13) are similar tosé

Thereq predicate is defined similarly to the first proof, with a
recursivebox predicate controlling access to bit-setting.
The interference environment for the shared Kit), is:

SET(#'): 4.bit+—0 ~» dbit— 1*iprevi— i *pa(i)

for the simple implementation. The main difference is in dei- The environment/ (i, P, 7, r) for resource-holding regions is:
nition of thefut predicate. When the shared bit is set, the resource
that is available to the thread may include a precedingpredi- [SET(i)]ar ~ PV (fut(d,P') x P' = P)
cate. So, if the current thread expects resourcét may instead PUT: ) )
get a resource satisfying?’ — P) « fut(i’, P'), wherei’ is the box (i, Pr, 1) * box(i, P2, m2) emp
immediately preceding location in the logical order. * P (PLxP))Ami+me =
The thread can then recovBf by checking the bit foi’, which
may include afut predicate for the preceding locatiafi. Only P~ emp
when the thread has checked all the bits earlier in the oraeitc
be confident it holds the full resource. In this way, our pcaté GET: o . box (i, P1,m1) * box(i, Pz, m2) *
definitions reflect the fact that the thread does not know tixac (V77" [SET()]an) ~ < P — (Py % P) Ami+my = W)

which threads have supplied a resource, and which have ysimpl
renounced access to it. (Here the symbo¥™* is the iterated version 6f.)



A proof for wait is given in Fig. 14. The most interesting step References

is line 5, where the resource is recovered from the sharadrreg
We justify this step by the following proof. The other caséene
apa rather tharfut is present, is trivial.

{fut(i, P« (P — P)}
// Unfold definitions.
(P — P) % [GET]} *

i.bit 0 ;(_) « Vi [SET()|5. V

‘ i.bit — _x* i.prev — i’ x pa(i’) ‘;(_)

x (P'v 3P" fut(i', P") * (P" - P"))

J(i,P’,m,r)
while(i.bit = 0) { skip; }
(P' = P) * [GET]} =
‘ i.bit — _x* i.prev — i’ x pa(i’) ‘:(.)
# (P'V 3P fut(i', )« (P P) | o

// Pull into local state and GC GET.
‘ i.bit — _* i.prev — i’ x pa(i’) ‘;(_) *
(P'v3P" . fut(i', P") x (P" - P")) x (P = P)
// Transitivity of —x.
‘ i.bit — _* i.prev — i’ x pa(i) ‘:(.) *
(P v 3P" fut(i', P") x (P" - P))

The proof forgrant, newchan andsplit are similar to the proofs
for the single-bit case. Once again, the proogeént depends on
the fact thafut can be split according to the resource held by it.

6. Related Work and Conclusions

Most work on combining separation logic with concurrency-co
structs has considered them as primitive in the logic. Thigins
with O’Hearn’s work on concurrent separation logic [20], iefh
takes statically allocated locks as a primitive. CSL hasnbee
tended to deal with dynamically-allocated locks [11, 14] 45d
re-entrant locks [12]. Others have extended separatioo twgim-
ilar logics with primitive channels [13, 1, 24, 18], and evdriven
programs [17].

Concurrent abstract predicates [6] combine the explieittr
ment of concurrent interference from rely-guarantee [1§, 23]
and abstraction through abstract predicates [21], withnewoent
fiction of disjointness [7] supported by capabilities [81this paper
we have combined concurrent abstract predicates with higuker
separation logic [3]. We used our higher-order logic to defind
verify a specification for barriers that enforce complexadahd
control dependencies in concurrent programs.

Although we have focussed in this paper on barrier construct

used for deterministic parallelism [25, 2, 4, 19], our loggcin-
tended as a general approach to specifying concurrencyraotss

Our syntactic approach has the advantage that concurremey ¢

structs of different kinds combine transparently. For egkamnlock
predicates defined in [6] can be transferred through our relan
predicates without changing the semantics or proofs okctmess
for either module. In addition, we can verify that concreteie-
mentations of constructs satisfy their specification.
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