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Abstract
Weaving a concurrency control protocol into a program is diffi-
cult and error-prone. One way to alleviate this burden isdetermin-
istic parallelism. In this well-studied approach to parallelisation,
a sequential program is annotated with sections that can execute
concurrently, with automatically injected control constructs used to
ensure observable behaviour consistent with the original program.

This paper examines the formal specification and verification of
these constructs. Our high-level specification defines the conditions
necessary for correct execution; these conditions reflect program
dependencies necessary to ensure deterministic behaviour. We con-
nect the high-level specification used by clients of the library with
the low-level library implementation, to prove that a client’s re-
quirements for determinism are enforced. Significantly, wecan rea-
son about program and library correctness without breakingab-
straction boundaries.

To achieve this, we useconcurrent abstract predicates, based
on separation logic, to encapsulate racy behaviour in the library’s
implementation. To allow generic specifications of libraries that can
be instantiated by client programs, we extend the logic withhigher-
order parameters and quantification. We show that our high-level
specification abstracts the details of deterministic parallelism by
verifying two different low-level implementations of the library.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Program Verification—Correctness proofs; D.3.3 [Program-
ming Languages]: Language Constructs and Features—Concurrent
programming structures

General Terms Languages, Theory, Verification

Keywords Separation Logic, Concurrent Abstract Predicates,
Concurrency, Futures

1. Introduction
Writing safe and efficient concurrent programs is challenging be-
cause it requires programmers not only to parcel useful units of
work into threads that can be executed in parallel, but also to
weave suitable concurrency control to coordinate the access of
these threads to shared data. To enable effective reasoningabout
concurrent programs, however, it is essential to devisemodular
abstractions whose implementations can be hidden behind well-
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defined interfaces, allowing clients to reason about correctness in
terms of abstract, rather than concrete, behaviour.

In this paper, we consider the verification of one such concur-
rency construct: barriers. Indeterministicparallelization, code re-
gions in a sequential program are executed concurrently. While the
parallelized program is internally nondeterministic, control con-
structs are used to ensure that it exhibits the same deterministic
observable behaviour as its sequential counterpart. Automatic par-
allelization of this kind has been well-studied for loop-intensive nu-
merical computations. However, it is also possible to extract paral-
lelism from irregularly structured sequential programs, where pro-
gram dependencies are not readily apparent [4, 22, 25].

One way to achieve deterministic parallelism is through compiler-
injected barriers [19]. We can think of these barriers as resource
management operations that enforce the original sequential order
(aka program dependencies). A resource could be any program
variable, data structure, memory region, lock, etc. for which own-
ership guarantees are essential in order to enforce deterministic se-
mantics. We assume barrier implementations are provided aspart
of a library.

While the intuition behind using such barriers is quite simple,
there are many possible implementations. Verifying that animple-
mentation adheres to this intuition is challenging for several rea-
sons.

First, the patterns of signalling in a barrier implementation are
highly non-local. To access a resource, a barrier must wait until all
logically preceding threads have indicated that it is safe to do so;
these logically preceding threads represent sources in a dependency
graph. This abstract view of resource-transfer does not fit with the
structure of a highly concurrent implementation, making itdifficult
to avoid breaking abstraction boundaries.

Furthermore, compiler optimizations might strive to identify the
earliest point in a thread’s execution path from where a resource
is no longer required. In some cases, this means threads can re-
lease resources without ever acquiring them, so that subsequent
signalling of this resource by its ancestors to its descendants can
bypass it altogether. An ancestor of a thread is a computation that
logically precedes it under sequential execution, and a descendent
is a computation that logically follows it. Implementations of bar-
riers must allow a thread to renounce the acquisition of a resource
in this way.

Finally, barriers may have to treat reads and writes differently
to ensure preservation of sequential behaviour. Although many
reads can be performed concurrently, they must be sequentialized
with respect to writes. Moreover, reads must be sequentialized
with respect to other reads, if there is an intervening writein the
sequential order.

In this paper, we show how to reason in a modular way about
implementations of such barriers. To do this, we use concurrent
abstract predicates [6], a technique based on separation logic that
enables abstract reasoning about concurrent modules. Our logic



allows us to reason about both high-level behavioural properties
and low-level implementation details. This approach allows fine-
grained reasoning about behaviour, meaning that each thread can
be given access to exactly the behaviour it needs to run according
to the abstract specification. This behavioural reasoning is local,
meaning even non-local descriptions of the shared state canbe
encapsulated and abstracted.

By leveraging concurrent abstract predicates in this way, we
take a first step towards the formal specification and verification
of a system for deterministic parallelism. While full verification of
compiler analyses, transformations, and library implementations is
our ultimate goal, we focus here on just the verification problem
for libraries. We present a high-level specification for reasoning
about barriers for deterministic parallelism, independent of their
low-level implementation. We prove that two low-level implemen-
tations of these barriers implement our high-level specification.

In the presence of runtime thread creation and dynamic (heap-
allocated) data, our specification must also be both genericand dy-
namic, in the sense that it must be able to construct signals at run-
time that protect arbitrary resources. To support the transfer of arbi-
trary resources between threads, we have extended the concurrent
abstract predicates approach to support higher-order predicate pa-
rameters, and higher-order quantification. The controlledresources
are represented by propositional arguments to abstract predicates.

We make the following contributions:

1. We develop a high-level abstract specification for reasoning
about libraries that implement barriers used to enforce deter-
ministic parallelism. This specification can express complex be-
haviours such as the dynamic construction of new barriers and
out-of-order signalling between threads.

2. We provide proofs that two implementations of such barriers
satisfy our high-level specification. The first implementation
naı̈vely sequentializes signalling, while the second aggregates
information from logically earlier threads to avoid this bottle-
neck.

3. We extend prior work on concurrent abstract predicates tosup-
port higher-order parameters and quantifications, following
higher-order separation logic [3]. By allowing propositional
parameters, we can define predicates that take invariants asar-
guments, to enable abstract reasoning about resource transfer.

An extended version of this paper containing full proofs is available
as a technical report [9].

2. A Specification for Deterministic Parallelism
In this section, we describe the behaviour of a library providing
barriers for enforcing deterministic parallelism. We define a high-
level specifications for these barriers, which allow us to prove
that programs parallelised using these barriers preserve sequential
behaviour.

We assume that code sections believed to be amenable for par-
allelization have been identified, and the program split accordingly
into threads. We assume a total logical ordering on threads,such
that executing the threads serially in the logical order gives the
same result as the original (unparallelised) program.

Barriers are associated with resources (e.g., program variables,
data structures, etc.) that are to be shared between concurrently-
executing program segments. There are two sorts of barriers. A
grant barrier notifies logically later threads that the current thread
will no longer use the resource. Await barrier blocks until all
logically prior threads have signalled that they will no longer use
the resource (i.e., have issued grants). We assume barriershave
been appropriately injected by a compiler to ensure that allsalient
data dependencies in the original program are respected.

Consider the following functionf; here* corresponds to non-
deterministic choice, sosleep(*) waits for an arbitrary period of
time:

f(x,y,v) {
if(x<10) {
y:=y+v; x:=x+v;

} else { sleep(*); }
}

Suppose now that we run two instances off in sequence:

x:=0; y:=0; f(x,y,5); f(x,y,11);

When this program terminates, locationx andy will both hold 16.
Here, the second call tof may have to wait for the first call to

finish its arbitrarily longsleep, even though the first call will do
nothing more once it wakes. We parallelise this function by con-
structing two new functionsf1 andf2. We run both concurrently,
but require thatf1 passes control ofx andy to f2 beforesleeping,
allowingf2 to continue executing.

f1(x,y,v,i) {
if(x<10) {
y:=y+v; x:=x+v;
grant(i);

} else {
grant(i);
sleep(*);

} }

f2(x,y,v,i) {
wait(i);
if(x<10) {
y:=y+v; x:=x+v;

} else {
sleep(*);

} }

x:=0; y:=0; i:=newchan(); f1(x,y,5,i)||f2(x,y,11,i);

The barriers inf1 andf2 ensure that the two threads wait exactly
until the resources they require can be safely modified, without
violating sequential program dependencies. The correct ordering
is enforced by barriers that communicate through a channel;in the
example,newchan creates the channeli. Assuming the barriers are
correctly implemented, the resulting behaviour is equivalent to that
of the original sequential program.

2.1 Verifying a Client Program

How can we verify that our parallelised program based onf1 and
f2 has the same specification as the original sequential program?
Typically, one would incorporate signalling machinery as part of a
parallelization program analysis. Clients would then reason about
program behaviour using the operational semantics of the barrier
implementation. Validating the correctness of parallelisation with
respect to the sequential program semantics would therefore re-
quire a detailed knowledge of the barrier implementation. Any
changes to the implementation could entail reproving the correct-
ness of the parallelisation analysis.

In contrast, we reason about program behaviour in terms of ab-
stract specifications forgrant, wait and newchan. Such an ap-
proach has the following advantages: (1) Implementors can mod-
ify their underlying implementation and be sure that relevant pro-
gram properties are preserved by the implementation, and (2) client
proofs (in this case, proofs involving compiler correctness) can be
completed without knowledge of the underlying implementation.

We will reason aboutf1 andf2 using separation logic. We write
the following assertion to denote thatx points to valuev andy to
valuev′, and thatx andy are distinct:x 7→ v ∗ y 7→ v′. To reason
about the parallel composition of threads, we use the PAR rule of
concurrent separation logic [20]:

{P1} C1 {Q1} {P2} C2 {Q2}

{P1 ∗ P2} C1 ‖C2 {Q1 ∗ Q2}
PAR

Now, to reason aboutf1 andf2, we must be able to encode the
fact thatf1 can give up access tox andy by calling grant(i),



whilef2 can retrieve access to them by callingwait(i). To use the
parallel rule, we must be able to give the two threads star-separated
preconditions.

We encode these two facts by defining two predicates,fut and
req, corresponding to thefuture resource, the resource that can be
acquired from logically earlier threads, and therequired resource,
the resource that must be supplied to logically later threads. We
read these as follows:

fut(i, P ) – By calling wait on i, the thread will acquire a
resource satisfying the assertionP .

req(i, P ) – By callinggrant on i when holding a resource
satisfyingP , the thread will lose the resourceP .

These predicates areabstract; each instantiation of the library will
define them differently; the client program knows nothing about
how they are actually defined. The client only depends on an ab-
stract specification that captures the intuitive meaning ofthe predi-
cates:

{emp} i := newchan() {req(i, P ) ∗ fut(i, P )}

{fut(i, P )} wait(i) {P}

{req(i, P ) ∗ P} grant(i) {emp}

(Note that this is a weaker version of our full specification,given in
Fig. 2.)

The specification ofnewchan is noteworthy. This specifica-
tion is implicitly universally quantified for all assertions P , mean-
ing that we can construct a predicate for any assertion.1 New fut
andreq predicates can be constructed at run-time usingnewchan,
meaning we can construct an arbitrarily large number of channels
for use in the program.

Given these two predicates, we can define the following speci-
fications forf1 andf2.
8

>

<

>

:

v1 <10 ∧ x 7→ v1 ∗ y 7→ v2

∗ req

 

i,
x 7→ (v1+v) ∗

y 7→ (v2+v)

!

9

>

=

>

;

f1(x, y, v, i) {emp}

(

v3 <10 ∧

fut(i, x 7→ v3 ∗ y 7→ v4)

)

f2(x, y, v, i)

(

x 7→ (v3+v)

∗ y 7→ (v4+v)

)

The specification forf1 says that the thread must supply thereq
predicate with the resourcesx andy such that the value inx is less
than 10. The specification forf2 says that the thread can receivex
andy with the value inx less than 10. Fig. 1 gives sketch-proofs
for these two specifications.

Given this specification, the proof for the main program goes
through as follows:
n

x 7→ ∗ y 7→
o

x:=0; y:=0; i:=newchan();
n

x 7→ 0 ∗ y 7→ 0 ∗ req(i, x 7→ 5 ∗ y 7→ 5) ∗ fut(i, x 7→ 5 ∗ y 7→ 5)
o

f1(x,y,5,i) || f2(x,y,11,i) // Parallel rule.
n

x 7→ 16 ∗ y 7→ 16
o

This proof establishes that the post-condition for the parallelised
version of the program is identical to the post-condition for the
original sequential version.

1 In the full specification, we impose an extra requirement that P is stable,
meaning invariant under concurrent interference, but thisholds trivially for
unshared assertions such asx 7→ v ∗ y 7→ v′.

(

v1 < 10 ∧ x 7→ v1 ∗ y 7→ v2 ∗

req (i, x 7→ (v1+v) ∗ y 7→ (v2+v))

)

if(x<10) {
y:=y+v; x:=x+v;
(

x 7→ (v1+v) ∗ y 7→ (v2+v) ∗

req (i, x 7→ (v1+v) ∗ y 7→ (v2+v))

)

grant(i); // Abstract spec.
n

emp
o

} else ... // Contradiction as v1 < 10.
n

emp
o

n

v3 < 10 ∧ fut (i, x 7→ v3 ∗ y 7→ v4)
o

if(x<10) {
wait(i); // Abstract spec.
n

v1 < 10 ∧ x 7→ v3 ∗ y 7→ v4

o

y:=y+v; x:=x+v;
n

x 7→ (v3+v) ∗ y 7→ (v4+v)
o

} else ... // Contradiction as v3 < 10.
n

x 7→ (v3+v) ∗ y 7→ (v4+v)
o

Figure 1. Proofs forf1 andf2.

2.2 Generalising to Many Threads

Suppose we want to run many copies of the functionf in sequence,
for example over an array of valuesvs. We might have the follow-
ing sequential program:

for(j:=0; j<max; j++){ f(x,y,vs[j]); }

To parallelise this program, we want each call tof to run in a
separate thread. To do this,f must be modified to contain calls
to both grant and wait. Intuitively, each call tof receives the
resource from logically earlier threads (those invoked in earlier
loop iterations) withwait, then releases it to logically later threads
(those invoked in later loop iterations) usinggrant.

To allow many threads to access the same resource in sequence,
we can construct achain of channels. Await barrier called on a
channel waits forgrant barriers onall preceding channels. We use
the ordering in chains of channels to model the logical ordering
between a sequence of parallelised threads.

A chain initially consists of a singleton channel constructed us-
ing newchan. We introduce an operationsplit that allows us to
insert a new channel into the chain. The specification ofsplit
takes areq predicate for an existing channel and creates a newfut
andreq predicate representing the new channel. The new channel
is inserted into the chain immediately before the existing channel.
We extend thereq predicate with an additional argument identi-
fying the preceding channel in the chain. Thesplit operation’s
specification is given in Fig. 2.

There are two more potential sources of parallelism inf. First,
in the original transformation involvingf1 and f2, we did not
distinguish between the resourcesx andy. However, we need to
gain access toy only if we take the first branch of the conditional.
Otherwise we can releasey to logically future threads. To realise
this parallelism in the new version off, we use two chains of
channels: one forx, and one fory.

Second, we can exploit the ability torenounceaccess to a
resource without acquiring it first. In the simple specification given



SPECS:

{fut(i, P )} wait(i) {P}
8

>

<

>

:

req(i, i′, P ) ∗

P ∨

 

fut(i′, P ′)

∗ (P ′−∗P )

!

9

>

=

>

;

grant(i) {emp}

(

req(i, i′, P )

∗ stable(Q)

)

j, j′:= split(i)

8

>

<

>

:

req(j, j′, P )

∗ fut(j′, Q)

∗ req(j′, i′, Q)

9

>

=

>

;

{stable(P )} i := newchan()

(

fut(i, P )

∗ req(i, nil, P )

)

AXIOMS:
 

fut(i, P ) ∗ (P −∗ (P1∗P2))

∗ stable(P1) ∗ stable(P2)

!

=⇒ fut(i, P1) ∗ fut(i, P2)

Figure 2. Full abstract specification for deterministic parallelism.

above, we can only callgrant if we hold the required resource.
However, this is often not necessary. For example, if we takethe
second branch of the conditional inf, we do not need the resource
y. It is safe to notify future threads thaty is available, conditional
on all logically prior threads releasing it, even though thethread
itself never acquired access to the resource.

Renunciation can be a powerful technique for parallelisation.
Suppose a thread is logically last in a chain of threads accessing
a resource. Suppose the thread takes an execution path rendering
it unnecessary to ever access the resource. Without renunciation,
a call to grant will block until all earlier threads have finished
with the resource. With renunciation, the thread can pass the barrier
and continue executing, irrespective of the status of logically earlier
threads.

To support renunciation, we modify the specification forgrant
(see Fig. 2). This new specification allows a thread to discharge a
req using the precedingfut predicate. In other words, the thread
gives up the ability to ever acquire the resource, and instead for-
wards this capability to future threads. When the resource becomes
available from logically prior threads, thenextthread in the logical
order will receive it. The assertion(P ′ −∗ P ) is used to convert the
state supplied by the future to the state required by the nextthread.2

In Fig. 2, we also add anaxiom to our specification. This is a
fact about the library predicates that clients of the library can make
use of. The axiom allows resource splitting. This axiom asserts that
when a thread can receive a resourceP using identifieri, access to
that resource can be split between two threads, potentiallybefore
the resource is available. The assertion(P −∗ (P1∗P2)) asserts that
P can be split intoP1 andP2.

We now definefp, top of Fig. 3, a version off which is
safe to run in parallel with many copies of itself. This function
takes argumentsix andiy representing the next points in the two
channel sequences, andixp andiyp representing the immediately
prior points. We verifyfp against the following specification:
(

req(ix, ixp, x 7→ ) ∗ fut(ixp, x 7→ ) ∗

req(iy, iyp, y 7→ ) ∗ fut(iyp, y 7→ )

)

fp(...)
n

emp
o

A proof of this specification is given in Fig. 4. Note that we only
assert basic memory safety in this specification. We could verify

2 A resource satisfiesP ′
−∗P iff its combination with any disjoint resource

satisfyingP ′ produces a resource satisfyingP .

fp(x,y,v,ix,iy,ixp,iyp) {
wait(ixp);
if (x<10) {
wait(iyp);
y:=y+v; grant(iy);
x:=x+v; grant(ix);

} else {
grant(ix); grant(iy);
sleep(*);

} }

ixf:=newchan(); iyf:=newchan();
for(j:=0; j<max; j++){
v:=vs[j];
ixl:=ixn; (ixf,ixn):=split(ixf);
iyl:=iyn; (iyf,iyn):=split(iyf);
future( fp(x,y,v,ixn,iyn,ixl,iyl) );

}
wait(ixf); wait(iyf);

Figure 3. Example parallelisation off and a client. Thefuture
annotation marks the call tofp as a source of deterministic paral-
lelism.

1

(

req(ix, ixp, x 7→ ) ∗ fut(ixp, x 7→ ) ∗

req(iy, iyp, y 7→ ) ∗ fut(iyp, y 7→ )

)

2 fp(x,y,v,ix,iy,ixp,iyp) {
3 wait(ixp);

4

(

x 7→ ∗ req(ix, ixp, x 7→ ) ∗

req(iy, iyp, y 7→ ) ∗ fut(iyp, y 7→ )

)

5 if (x<10) {
6 wait(iyp);

7

(

x 7→ ∗ y 7→ ∗

req(ix, ixp, x 7→ ) ∗ req(iy, iyp, y 7→ )

)

8 y:=y+v; grant(iy);

9

n

x 7→ ∗ req(ix, ixp, x 7→ )
o

10 x:=x+v; grant(ix);
11 } else {
12 grant(ix);

13

n

req(iy, iyp, y 7→ ) ∗ fut(iyp, y 7→ )
o

14 grant(iy);

15

n

emp
o

16 sleep(*);
17 } }

18

n

emp
o

Figure 4. Proof for parallelised programfp.

more complex properties by giving thefut and req predicates
stronger invariants.

Line 14 of the proof is noteworthy. There, the preconditiondoes
not assert that the thread has access toy 7→ ; rather, it asserts it
can acquire access by callingwait. Instead of doing this, the thread
renounces access to the resource, giving it up without ever having
it.



g(x) {
if(*) {
sleep(*);
read(x);

}
else {
write(x);

} }

gp(x,r,rp,w,wp) {
if(*) {
grant(r);
sleep(*);
wait(rp);
read(x);
grant(w);

} else {
wait(rp); wait(wp);
write(x);
grant(r); grant(w);

} }

Figure 5. Example functiong and its parallelisation.

The parallelised version of the main program is given at the bot-
tom of Fig. 3. We give the following sketch-proof for this example.
Here the predicatesreq(ixf, ixn, true) and req(iyf, iyn, true)
are dummyreq predicates used to represent the logically latest el-
ement of the sequential order. The predicatearray stands for the
array of values.
n

array(vs, max)
o

ixf:=newchan(); iyf:=newchan();
(

array(vs, max) ∗ req(ixf, nil, true) ∗ fut(ixf, x 7→ )

∗ req(iyf, nil, true) ∗ fut(iyf, y 7→ )

)

for(j:=0; j<max; j++){
ixl:=ixn; (ixf,ixn):=split(ixf);
8

>

<

>

:

array(vs, max) ∗ req(ixf, ixn, true) ∗ fut(ixn, x 7→ )

∗ req(ixn, ixl, x 7→ ) ∗ fut(ixl, x 7→ )

∗ req(iyf, iyn, true) ∗ fut(iyn, y 7→ )

9

>

=

>

;

iyl:=iyn; (iyf,iyn):=split(iyf);
8

>

>

>

<

>

>

>

:

array(vs, max) ∗ req(ixf, ixn, true) ∗ fut(ixn, x 7→ )

∗ req(ixn, ixl, x 7→ ) ∗ fut(ixl, x 7→ )

∗ req(iyf, iyn, true) ∗ fut(iyn, y 7→ )

∗ req(iyn, iyl, y 7→ ) ∗ fut(iyl, y 7→ )

9

>

>

>

=

>

>

>

;

future( fp(x,y,vs[j],ixn,iyn,ixl,iyl) );
}
wait(ixf); wait(iyf); // GC dummy req predicates.
n

array(vs, max) ∗ x 7→ ∗ y 7→
o

We have shown that our parallelised version of the program is
memory-safe. With a little more effort, we could verify the be-
haviour of the program. Crucially, even though this programfea-
tures many threads running at once, with complex communication
between threads, each individual thread is able to reason locally,
without dealing with other threads or the implementation ofthe
barriers.

2.3 Relating Reads and Writes

Further parallelism is available by refining read and write accesses
to a resource. Consider the functiong given in Fig. 5. It is safe
for parallel threads to readx at the same time. However, it is
important that writes tox are sequentialised, and that groups of
reads are sequentialisedwith respect to writes. If two groups of
reading threads are separated by a writing thread, the logically later
group must wait for the writer to finish before reading.

To exploit this, we split reading and writing into two channels.
We user andrp for reads, andw andwp for writes.w andr are the
outgoing channels, whilewp andrp are the incoming channel. As
soon as the thread nondeterministically takes the first branch of the

1

8

<

:

fut(rp, x
π
7−→ ) ∗ fut(wp, x

π′

7−→ ) ∧ π+π′ = 1

∗ req(r, rp, x
1

2
π

7−−→ ) ∗ req(w, wp, x
π′+ 1

2
π

7−−−−→ )

9

=

;

2 if(*) {
3 // Apply the future splitting axiom to rp.

4

8

<

:

fut(rp, x
1

2
π

7−−→ ) ∗ fut(rp, x
1

2
π

7−−→ ) ∗ fut(wp, x
π′

7−→ )

∗ req(r, rp, x
1

2
π

7−−→ ) ∗ req(w, wp, x
π′+ 1

2
π

7−−−−→ )

9

=

;

5 grant(r);

6

8

<

:

fut(rp, x
1

2
π

7−−→ ) ∗ fut(wp, x
π′

7−→ )

∗ req(w, wp, x
π′+ 1

2
π

7−−−−→ )

9

=

;

7 sleep(*); wait(rp);

8

n

x
1

2
π

7−−→ ∗ fut(wp, x
π′

7−→ ) ∗ req(w, wp, x
π′+ 1

2
π

7−−−−→ )

o

9 read(x); grant(w);

10

n

emp
o

11 } else { ... }

12

n

emp
o

Figure 6. Proof for parallelised programgp.

conditional, it can use the read channel to signal that laterthreads
can read. In contrast, a thread that wishes to write must waitfor
both the read and write channels. The parallelised program is given
in Fig 5.

In separation logic, read and write access are often controlled by
fractional permissions[5]. Each thread can hold either full permis-
sion, 1, on a locationx, denotedx 7→ v, or fractional permission
π ∈ (0..1), denotedx

π
7−→ v. Full permission gives the thread ex-

clusive permission to write, while fractional permission gives non-
exclusive permission to read. Fractional permissions compose by
addition, as follows:

x
π
7−→ v ∗ x

π′

7−→ v ⇐⇒ x
π+π′

7−−−→ v if π+π′ ≤ 1.

We give the functiongp the following specification:
8

>

>

<

>

>

:

req(r, rp, x
1

2
π

7−−→ ) ∗ fut(rp, x
π
7−→ ) ∗

req(w, wp, x
π′+ 1

2
π

7−−−−→ ) ∗ fut(wp, x
π′

7−→ )

∧ π+π′ =1

9

>

>

=

>

>

;

gp(..) {emp}

This specification says that when a thread receives a fractional
permission from the read channel, only half of it has to be sent
on to future threads using the read channel. The other half can be
supplied on the write channel. This allows a thread to keep the
ability to read, while notifying future threads that they also can
read.

Fig. 6 shows a sketch-proof for the program. We elide the
writing branch of the conditional as it is straightforward.The most
notable proof step is line 3, where the specification’s resource-
splitting axiom is used to divide up access to thefut predicate. Half
is used to discharge thereq predicater, allowing logically later
threads to read, while half is used to allow the current thread to
read. In this way, many threads can simultaneously have fractional
access to the resource.

3. Verifying a Simple Implementation
So far, we have given an abstract specification for deterministic par-
allelism. The specification was independent of the implementation



grant(i) {
if(i.prev!=nil)
wait(i.prev);

〈i.bit:=1〉;
}

split(i) {
n:=alloc(bit);
n.prev:=i.prev;
n.bit:=0;
i.prev:=n;
return (i,n);

}

wait(i) {
while(i.bit!=1)
skip;

}

newchan() {
i:=alloc(bit);
i.prev:=nil;
i.bit:=0;
return i;

}

Figure 7. Implementation of signalling library.

of the barrier. In this section, we show how such a specification
can be justified by giving a simple implementation of thewait and
grant barriers, and verifying our abstract specification againstthis
concrete implementation.

The implementation is given in Fig. 7. This implementation sup-
ports resource transfer using a sequence of nodes, each of which has
a bit field and aprev field. Eachfut / req pair is associated with
a single node, and the order of the sequence represents the logical
ordering. The implementation requires that bits are set in sequential
order. In§5 we consider a more sophisticated implementation that
allows out-of-order signalling, and show that it also implements our
abstract specification.

The wait barrier simply waits for the immediately preceding
bit to be set. As bits are set in order, with logically earlierthreads
setting their bits before logically later ones, this suffices to show
that all the earlier bits in the order have been set.

Recall from the previous section that our specification permits
threads to renounce the ability to access a resource, meaning that
grant can be called beforewait within the same thread. To ensure
that bits are set in sequential order,grant must wait for the previ-
ous bit to be set before setting its own bit. The implementation uses
theprev field of the bit to callwait, and then sets its bit when it
exits. Bits are set atomically bygrant, denoted by〈−〉.

The constructor functionsnewchan andsplit are implemented
by allocating a new bit;split inserts a bit into the order by
redirecting theprev pointer of the existing bit to point to the newly
allocated bit. This allows computations to dynamically instantiate
sub-computations that have internal deterministic parallelism.

3.1 Proof Approach

To prove the correctness of our module’s functions, we use concur-
rent abstract predicates [6]. We extend this work with higher-order
quantification, allowing us to prove specifications that abstract over
the particular resource held by the predicate.

Concurrent abstract predicates extend standard separation logic
with two new kinds of construct allowing explicit reasoningabout
sharing and interference. The first arenamed shared regions, de-
noted by boxed assertions of the form

P
r

I

This asserts that the regionr contains a resource satisfyingP , and
nothing else. This region is shared between the current thread and
an arbitrary number of other threads. The permitted state changes
over the region are controlled by theinterference environment, I .

The second arecapabilities, resources controlling the updates
that a thread can perform. In order to mutate the contents of ashared

region, a thread requires a capability in its local state, denoted:

[ACTION]rπ

This is a permission for the operationACTION on the regionr.
The exact operation denoted by the nameACTION is determined by
the interference environment for regionr. Suppose that ACTION
denoted the ability to rewrite the value in a shared addressx from 0
to 1. Then we would have the following interference environment:

I(x) , (ACTION: x 7→ 0  x 7→ 1)

A capability [ACTION]rπ controls both whether the operation is
permitted to the local thread, and whether it can be performed
by the environment. Following deny-guarantee [8], exactlywhat
is allowed and denied is determined by the permission level,π.
We write1 if the thread can exclusively perform the action,gz if
the thread and the environment can perform the action, anddz if
neither the thread nor the environment can perform the action. The
valuez ∈ (0..1) is used to track the amount of permission, allowing
capabilities to be split and combined.

Updates performed by a thread must be permitted according to
the capabilities held by the thread in local state. So-called abstract
updates, those that do not modify the underlying heap-state, can be
performed at any time by a thread. We writeP ≡⇛Q to denote
thatP can be abstractly updated to giveQ.

As assertions describe shared states that can be updated by other
threads, we need to be able to describe assertions that will remain
true no matter what the environment does. We describe these as-
sertions asstable. Capabilities specify exactly what behaviours the
environment can perform, giving fine-grained control of stability.
For example, the following assertion is stable, becauseI specifies
that the only way regionr can be mutated is by theACTION opera-
tions, and the exclusive capability to perform this operation is held
by the thread in local state:

x 7→ 0
r

I(x)
∗ [ACTION]r1

Our logic includes an assertionstable(P ) that holds ifP is stable.
An abstract specification for a module consists of abstract pred-

icates, function specifications and axioms. To show that a concrete
implementation of a module corresponds to a particular abstract
specification, we must supply concrete definitions for the module’s
abstract predicates, and then show that the following threeproper-
ties hold: (1) the module implementation satisfies the abstract spec-
ifications, given the concrete predicate definitions; (2) the predicate
definitions are stable; and (3) the axioms hold, given the concrete
predicate definitions.

For simplicity, we assume that resources are garbage collected,
rather than being explicitly deallocated. This means that we can
safely remove star-conjuncts from assertions, and we oftenuse this
to clean up the post-conditions for operations.

3.2 Verifying the Implementation

Next, we prove that the implementation satisfies the abstract speci-
fication. We give definitions to thefut andreq predicates in Fig. 8.
(In all our predicate definitions, we assume unbound variables are
existentially quantified.)

The definition ofreq(i, i′, P ) captures three pieces of informa-
tion: First, that there exists a shared bit at addressi. Second, thati′

is the immediate predecessor ofi, and it can be read by the thread.
Third, that the thread must supply the resourceP before setting the
bit at i.

In this definition, we use two auxiliary predicates:pa andbox.
The predecessor access predicatepa(i) asserts thati is eithernil,
or it is a shared bit that can be read. This ensures that the thread
that holdsreq is able to access the preceding bit. The predicate
box(i, P, π) asserts that the thread can exchange the resourceP for



req(i, i′, P ) ,
i.bit 7→ 0

r

I(i)
∗ box(i, P, 1)

∗ i.prev 7→ i′ ∗ pa(i′)

pa(i) , i = nil ∨ i.bit 7→
r

I(i)

box(i, P, π) ,

[PUT]r
′

1 ∗

i.bit 7→ 0
r

I(i)
∗ [SET]rdπ ∨

box(i, P1, π1) ∗ box(i, P2, π2) ∗

P −∗ (P1 ∗ P2) ∧ π1+π2 = π

r′

J(i,P,π,r)

fut(i, P ) ,

stable(P ) ∗ [GET]r
′

1 ∗

[SET]rdπ ∗ i.bit 7→ 0
r

I(i)

∨ P ∗ i.bit 7→
r

I(i)

r′

J(i,P,π,r)

Figure 8. Collected predicate definitions.

the permissiondπ on SET for the bit i. Hence, in order to acquire
the full permission to set the shared bit, the thread must supply
the resourceP to the predicatebox(i, P, 1). That is, the following
abstract update holds:

i.bit 7→ 0
r

I(i)
∗box(i, P, π)∗P ≡⇛ i.bit 7→ 0

r

I(i)
∗ [SET]rdπ

Below, we prove that the abstract implication holds. For themo-
ment, we just note that boxes are used to control the splitting of re-
sources according to the splitting axiom. Note that, the definition of
box is recursive, as it mentions the box predicate inside theshared
region, and in the interference on the shared region. The fixed point
exists by first finding a solution ignoring the interference environ-
ment, and then restricting the interference environment bythe re-
sulting solution.

Finally, we give a definition tofut(i, P ). This assertion must
capture one essential piece of information: that either theshared bit
at i is zero, or the resourceP is available for collection.

In these definitions, names surrounded with square bracketsare
capabilities. The semantics of such capabilities are defined by the
interference environments. We define two environments. Thefirst,
I(i) defines the interference over the shared biti. This environment
includes only a single operation, the ability to set the shared bit:

I(i) , (SET: i.bit 7→ 0  i.bit 7→ 1)

The interference environmentJ(i, P, π, r) defines the interference
over the resource-holding regions.

J(i, P, π, r) ,
0

B

B

B

B

B

B

B

B

B

B

B

@

PUT:
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>

>

<

>

>

:

[SET]rdπ  P
 

box(i, P1, π1) ∗ box(i, P2, π2) ∗

P −∗ (P1 ∗ P2) ∧ π1 + π2 = π

!

 emp ,

GET:
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>

>

<

>

>

:

P  emp

[SET]rdπ  

 

box(i, P1, π1) ∗ box(i, P2, π2) ∗

P −∗ (P1 ∗ P2) ∧ π1 + π2 = π

!

1

C

C

C

C

C

C

C

C

C

C

C

A

Intuitively the first case forPUT allows the thread to push the re-
sourceP into the shared state, and retrieve a fractional permission
to SET the shared bit. The first case forGET allows the thread to re-

trieve the resourceP . The second cases are used in resource split-
ting; see below for details.

The first obligation for showing that our module implements
the abstract specification is to use our program logic to prove
the module functions’ specifications. Proofs forgrant, wait and
split are given in Fig. 9. The proof ofnewchan is almost identical
to the proof ofsplit, and hence omitted.

The proof ofgrant operates by first appealing to the specifica-
tion of wait to recover the full resource from a possiblefut pred-
icate. We also use the specification{pa(i)}wait(i){emp}, which
can be proved trivially. It then exchanges the resource and thebox
predicate for permission to set the shared bit. Finally it sets the
shared bit and forgets all the remaining resource.

The proof ofwait spins until the bit field is 1, which excludes
the case where the resource is not present. As the resource can
only be removed by thewait thread, this assertion is stable under
interference. The thread uses theGET to recover the resource, and
garbage-collects all the other resources.

The proof ofsplit (and newchan) allocates a new piece of
memory, sets thepred andbit fields to appropriate values, then
creates thefut andreq predicates by wrapping the new memory in
a shared region.

The second obligation we must discharge is to show that the
predicates are stable. To do this, we check each of the predicate
definitions to make sure that each shared region assertion isinvari-
ant under permitted interference.

3.3 Resource Splitting Using Boxes

Our specification requires that we can splitfut predicates according
to the axiom given in Fig. 2.

We use thebox predicate to support this splitting in our concrete
implementation. Intuitively, eachbox initially shares its shared
region with afut predicate. Then, if thatfut predicate is split, the
box instead contains a pair of boxes representing the sharedstate
for the two newfut predicates.

The definition of a predicatebox(i, P, π), Fig. 8, either allows
the thread to access theSETpermission, or contains two boxes with
resourcesP1 andP2 such thatP −∗ P1 ∗ P2. In the proofs of the
module’s operations, we relied on the assumption that a predicate
box(i, P, 1) and resourceP can be exchanged for a permission to
set the shared biti.bit. We now justify this assumption with a proof.

Our definition ofbox is the least fixed point of the recursive
definition. We reason inductively, hence it suffices to provethat the
entailment holds whenbox is defined as false, and under the as-
sumption that the disjunction holds. The base case of the induction
holds trivially asbox(i, P, π) is false. In the first inductive case, we
assume that the left disjunct in the shared region holds. Theproof is
given in Fig 10(a). In the second case, we assume that the property
holds forbox(i, P1, π1) andbox(i, P2, π2). The proof is given in
Fig. 10(b).

The proof given in Fig. 10(c) shows that the future-splitting
axiom holds for the concrete predicate definitions. We only show
the left case for the disjunction; the right case is easy. This proof
uses theGET action while at the same time creating new regions
for the two new futures. This completes the proof that our simple
implementation corresponds to our high-level specification.

4. Logic and Semantics
In this section, we present the syntax and semantics of our logic.
It extends the previous work on concurrent abstract predicates [6]
with higher-order parameters and quantification followingthe work
of Bieringet al.on higher-order separation logic [3].

Our assertion logic is a typed higher-order separation logic
extended with predicates that denote the ability to change the state
and a connective for expressing sharing. The syntax of the assertion



i.bit 7→ 0
r

I(i)
∗ box(i, P, π) ∗ P

≡⇛ (defs & assumption)

i.bit 7→ 0
r

I(i)
∗ P ∗ [PUT]r

′

1 ∗

i.bit 7→ 0
r

I(i)
∗ [SET]rdπ

r′

J(i,P,π,r)

≡⇛ (actionPUT)

i.bit 7→ 0
r

I(i)
∗ [PUT]r

′

1 ∗ [SET]rdπ

∗ i.bit 7→ 0
r

I(i)
∗ P

r′

J(i,P,π,r)

≡⇛ (GC)

i.bit 7→ 0
r

I(i)
∗ [SET]rdπ

i.bit 7→ 0
r

I(i)
∗ box(i, P, π) ∗ P

≡⇛ (defs and case split)

i.bit 7→ 0
r

I(i)
∗ [PUT]r

′

1 ∗ P ∗

box(i, P1, π1) ∗ box(i, P2, π2) ∗

P −∗ (P1 ∗ P2) ∧ π1+π2 = π

r′

J(i,P,π,r)

≡⇛ (actionPUT)

i.bit 7→ 0
r

I(i)
∗ [PUT]r

′

1 ∗ P ∗ emp
r′

J(i,P,π,r)

∗ P −∗ (P1 ∗ P2) ∧ π1+π2 = π

∗ box(i, P1, π1) ∗ box(i, P2, π2)

≡⇛ (assumption and GC)

i.bit 7→ 0
r

I(i)
∗ [SET]rdπ

fut(i, P ) ∗ (P −∗ P1∗P2) ∗

stable(P1) ∗ stable(P2)

≡⇛ (def)

stable(P1) ∗ stable(P2) ∗ [GET]r
′

1 ∗

[SET]rdπ ∗ i.bit 7→ 0
r

I(i)

∨ P ∗ i.bit 7→
r

I(i)

r′

J(i,P,π,r)

≡⇛ (actionGET, creation of two new regions)

box(i, P1, π1) ∗ box(i, P2, π2) ∗

P −∗ (P1 ∗ P2) ∧ π1 ∗ π2 = π

r′

J(i,P,π,r)

∗ [GET]r
′

1 ∗ fut(i, P1) ∗ fut(i, P2)

≡⇛ (GC)

fut(i, P1) ∗ fut(i, P2)

(a) (b) (c)

Figure 10. Proofs of abstract updates

language is as follows:

τ ::= Int | Frac | Region | Asn | τ → τ

P, Q, L, M, ∆ ::= false | P ⇒ Q | ∃x : τ. P | L M | λx:τ. M
| E | emp | P ∗ Q | P −∗ Q

| L 7→ M | stable(P ) | [γ( ~M)]rπ | P
r

I

I ::= γ(~x) : ∃~y : ~τ(P  Q) | I, I

π ::= 1 | dL | gL

wherer ranges over region names,γ over token names, andv over
values. We lift expressionsE from the programming language to
the logic. Note that we useP, Q,∆ when the term is of typeAsn.
Terms are typed in the obvious way, and we will implicitly assume
all definitions are well-typed.

Our propositions have three important aspects they describe: (1)
the contents of the state, (2) the capability to change state, and (3)
a partitioning of these contents and capabilities between local and
shared regions.

For completeness, the full semantics of terms is given in Fig. 11.
Below we will only describe the salient features of the semantics.
A more thorough explanation can be found in [6].

Model We model propositions withWorlds that have three com-
ponents: a local component,LWorld, that specifies the current local
state and local capabilities; a shared component,SWorld, that spec-
ifies the current shared state and shared capabilities; and an interfer-
ence environment,IEnv, that specifies the possible interference (or
protocol) on the shared component of the world. The shared com-
ponent is split into many named regions, each of which is modelled
by anLWorld.

A local world, LWorld, is modelled by a partial heap,Heap,
specifying the locally accessible state, and a capability mapping,
Capab, mapping from actions inAction to permission to perform
that action inDG. Each action is mapped to either a full permis-
sion1, an exclusive permission to perform that action, that hence
prohibits the environment from performing the action; a guarantee
permissiongz, a non-exclusive permission to perform that action; a
deny permissiondz, a non-exclusive prohibition on the action that
also prevents the environment performing it; and an empty permis-
sion0 that does not allow the action but does not prohibit the envi-
ronment from performing it. Following Boyland [5], thez compo-

nents of deny and guarantee are used to track how much permission
is required to re-establish exclusive permission.

Members ofAction comprise aRegion, aToken and a sequence
of Val arguments. An action’s semantic meaning as interference
over a shared region is defined by an interference environment, in
the setIEnv. The definition of an interference environment as a re-
lation overSWorld enforces the restriction that the interpretation
of an action does not allow you to change the interference interpre-
tation of any actions.

Model operations As we are building a separation logic we re-
quire a composition operator on worlds that will be used to inter-
pret the separating conjunction and separating implication. We use
the standard operation from separation logic for combiningheaps,
h ⊕ h′, by disjoint partial function combination.

We use the deny-guarantee composition model [8] forDG.
This has0 as the unit of⊕. It combines two guarantee (or deny)
permissions by combining their fractional components to produce
a guarantee (or deny) permission with the sum of the fractions. If
the fractions sum to 1 then it lifts to1. If the fractions sum to more
than 1, then combination is undefined. This is then lifted to the
function space in the obvious way.

We define the composition ofLWorld as the combination on
both components; and onWorld as the combination on theLWorld
component, where theSWorld andIEnv components are equal.

We define other useful operations on the model that aid in the
definition of the semantics:⌊s⌋ collapses all the shared regions
into a single one;lH gives the heap component ofl; lP gives the
permission component ofl; andTwU collapses a world into a single
heap.

Finally, we define the set of well-formed worlds,WFW. A
world is well-formed iff all the regions and the local component
can be combined, each capability is defined in the interference
environment, and the capabilities only mention valid regions.

Types The types are semantically interpreted as in Figure 11.
We usei for interpretations of the free variables in a term: it is
a dependent product from a variable to the denotation of the type of
that variable. We interpret propositions on the powerset ofworlds.

Terms The interpretation offalse, ⇒, ∃, ∗, −∗, variables, function
application, and function abstractionλ are standard.

The predicateemp specifies that the local component of the
heap is empty and makes no restriction on the shared part, the



n

req(i, i′, P ) ∗ (P ∨ (fut(i′, P ′) ∗ P ′ −∗ P ))
o

grant(i) {
if(i.prev!=nil) {
n

req(i, i′, P ) ∗ (P ∨ (fut(i′, P ′) ∗ P ′ −∗ P ))
o

wait(i.prev); // wait() spec, or by pa.
n

req(i, i′, P ) ∗ P
o

} // Unfold definition.
n

i.bit 7→ 0
r

I(i)
∗ i.prev 7→ i′ ∗ pa(i′) ∗ box(i, P, 1) ∗ P

o

// Push resource into the box.
n

i.bit 7→ 0
r

I(i)
∗ i.prev 7→ i′ ∗ pa(i′) ∗ [SET]r1

o

〈i.bit:=1〉; // Action SET.
n

i.bit 7→ 1
r

I(i)
∗ i.prev 7→ i′ ∗ pa(i′) ∗ [SET]r1

o

} // Garbage collect.
n

emp
o

n

fut(i, P )
o

wait(i){
8

>

<

>

:

stable(P ) ∗ [GET]r
′

1 ∗

[SET]rdπ ∗ i.bit 7→ 0
r

I(i)
∨ P ∗ i.bit 7→

r

I(i)

r′

J(i,P,π,r)

9

>

=

>

;

while(i.bit!=1){ skip; }


stable(P ) ∗ [GET]r
′

1 ∗ P ∗ i.bit 7→ 1
r

I(i)

r′

J(i,P,π,r)

ff

// Abstract action GET.


P ∗ stable(P ) ∗ [GET]r
′

1 ∗ i.bit 7→ 1
r

I(i)

r′

J(i,P,π,r)

ff

} // Garbage collect.
n

P
o

n

req(i, i′, P ) ∗ stable(Q)
o

split(i) {
n:=alloc(bit);
n.prev:=i.prev; n.bit:=0; i.prev:=n;
(

i.bit 7→ 0
r

I(i)
∗ box(i, P, 1) ∗ i.prev 7→ n ∗ pa(i′)

∗ stable(Q) ∗ n.prev 7→ i′ ∗ n.bit 7→ 0

)

// Construct region for new predicates.
8

>

<

>

:

i.bit 7→ 0
r

I(i)
∗ box(i, P, 1) ∗ i.prev 7→ n ∗ pa(i′) ∗

stable(Q) ∗ n.prev 7→ i′ ∗ [SET]r
′

1 ∗ n.bit 7→ 0
r′

I(n)

9

>

=

>

;

// construct a new box for the future.
8

>

>

>

>

>

<

>

>

>

>

>

:

i.bit 7→ 0
r

I(i)
∗ box(i, P, 1) ∗ i.prev 7→ n ∗ pa(i′)

∗ n.prev 7→ i′ ∗ n.bit 7→ 0
r′

I(n)
∗ stable(Q) ∗ [GET]r

′′

1

∗ [PUT]r
′′

1 ∗ [SET]r
′

1 ∗ n.bit 7→ 0
r′

I(r′)

r′′

J(n,Q,1,r′)

9

>

>

>

>

>

=

>

>

>

>

>

;

return (i,n);
} // Fold definitions.
(

∃i1, i2. ret = (i1, i2) ∧ req(i1, i2, P )

∗ fut(i2, Q) ∗ req(i2, i
′, Q)

)

Figure 9. Proofs forgrant, wait andsplit.

interference environment, or the capability. The points-to predicate
L 7→ M specifies that the locationL contains the valueM in the
local world, and that the heap contains nothing else.

The capability[γ( ~M)]rπ that says the local world contains the
π permission on regionr for actionγ with parameters~M . The as-
sertionstable(P ) says thatP will remain true given the permitted
interference on the shared world. That is, if we start in a world sat-
isfying P and take a step inR, then we must still satisfyP . The
shared assertionP

r

I
says that the shared regionr satisfies the

assertionP and that region’s interference is specified byI .

Interference We define several relations giving the possible up-
dates to the shared world as a result of the thread and the environ-
ment. Following Jones [16], we call the interference permitted to
the environment therely and the interference permitted to the local
thread theguarantee.

We define the semantics of the interference specfication as a
relation ofSWorlds. For a particular updateP  Q, we specify
that a part of the pre-state must satisfyP , and replacing that part
with a part satisfyingQ gives the post-state. We also allow the
action to increase the number of regions in an unspecified way.
This will allow actions both to repartition and to create newshared
regions simultaneously.

We allow the dynamic creation of regions. The relationsRc and
Gc model this creation. The first,Rc, specifies the world-change if
the environment creates a region. The environment can only create
a region if it does not already exist. It adds a new shared region, and
the relevant definition to the interference environment. The second,
Gc, specifies the world-change if the current thread created a region.
This differs from the rely as all of the permissions on actions for the
new region are given to the current thread.

The global rely relation,R, allows any action in the inference
environment that is not explicitly prohibited with a deny permission
or a full permission, as well as the creation of regions. We restrict
R to well-formed worlds.

The global guarantee,G, allows any action for which there is
either a full permission or a guarantee permission. The guarantee
requires that the permissions and heap domain must be the same
before and after the action, upto repartioning between regions. This
ensures that permissions and heap cannot be created out of thin air.
We also allow region creation, and restrictG to well-formed worlds.

Program logic We give the proof rules for our program logic in
Figure 12. The judgements are of the form∆;Γ ⊢ {P} C {Q}
where∆ is an assumption about the logical context, andΓ is an
assumption about the procedures in the context of the form

{P1}f1{Q1}, . . . , {Pn}fn{Qn}.

We use∆ to encode the assumptions about the abstract predicates
and their axioms

We assume a standard semantics of programs [6] where(C, h)
η
→

(C′, h′) denotes a successful reduction in the procedure con-
text η (a mapping from procedure names to commands); and
(C, h)

η
→ fault denotes a memory access problem. We then define

the semantics of judgments as follows:

DEFINITION 1 (Configuration safety).C, w, η, i, Q safe0 always
holds; and
C, w, η, i, Q safen+1 iff the following four conditions hold:

1. ∀w′. if (w, w′) ∈ R∗ thenC, w′, η, i, Q safen;

2. ¬((C, TwU)
η
→ fault);

3. ∀C′, h′. if (C, TwU)
η
→ (C′, h′), then∃w′ such that(w, w′) ∈

G∗, h′ = Tw′U andC′, w′, η, i, Q safen; and
4. if C=skip, then∃w′ such thatTwU=Tw′UH , (w, w′) ∈ G∗,

andw′ ∈ JQKi.



Model

π ∈ DG , {1, 0} ⊎ {tz | z ∈ (0, 1) ∧ t ∈ {d, g}} a ∈ Action , Region × Token × Val∗ ρ ∈ Capab , Action → DG

h ∈ Heap , Address → Val ⊎ {⊥} l ∈ LWorld , Heap × Capab s ∈ SWorld , Region ⇀ LWorld

I ∈ IEnv , Action ⇀ P(SWorld × SWorld) w ∈ World , LWorld × SWorld × IEnv

Model operations

⊥⊕ v , v ⊕⊥ , v

π ⊕ 0 , 0 ⊕ π , π

(t, z) ⊕ (t, z′) , 1 if z + z′ = 1

(t, z) ⊕ (t, z′) , (t, z + z′) if z + z′ < 1

h1 ⊕ h2 , λv. h1(v) ⊕ h2(v) if ∀v. h1(v) = ⊥∨ h2(v) = ⊥

ρ1 ⊕ ρ2 , λv. ρ1(v) ⊕ ρ2(v) if ∀v. ρ1(v) ⊕ ρ2(v) defined

(h1, ρ1) ⊕ (h2, ρ2) , (h1 ⊕ h2, ρ1 ⊕ ρ2) if h1 ⊕ h2 andρ1 ⊕ ρ2 are defined (h, ρ)H , h ⌊s⌋ , ⊕r∈dom(s)s(r)

(l1, s1, I1) ⊕ (l2, s2, I2) , (l1 ⊕ l2, s1, I1) if l1 ⊕ l1 defined∧ s1 = s2 ∧ I1 = I2 (h, ρ)P , ρ T(l, s, I)U , (l ⊕ ⌊s⌋)H

WFW , {(l, s, I) | (l ⊕ ⌊s⌋) defined∧ dom((l ⊕ ⌊s⌋)P ) ⊆ dom(I) ∧ (∀r. r ∈ dom(s) ⇔ ∃γ,~v. (r, γ,~v) ∈ dom(I))}

Types JIntK , Z JRegionK , Region Jτ1 → τ2K , Jτ1K → Jτ2K JAsnK , P(World)

Terms JfalseKi , ∅ JxKi , i(x)

JP ⇒ QKi , {w | w /∈ JP Ki ∨ w ∈ JQKi} JL MKi , JLKi(JMKi) JP ∗ QKi , {w ⊕ w′ | w ∈ JP Ki ∧ w′ ∈ JQKi}

J∃x : τ. P Ki ,
S

v∈JτK. JP Ki[x 7→v] Jλx : τ. MKi , λv. JMKi[x 7→v] JP −∗ QKi , {w | ∀w′ ∈ JP Ki. w ⊕ w′ ∈ JQKi}

JempKi , {((∅, ρ), s,I)} JL 7→ MKi , {(([JLKi 7→ JMKi], ρ), s, I)}
r
[γ( ~M)]rπ

z
i
, {((∅, ρ), s,I) | ρ(r, γ, J ~MKi) ≥ π}

Jstable(P )Ki , {w |∀w1 ∈ JP Ki. (w1, w2)∈R ⇒ w2∈JP Ki}
r

P
r

I

z
i
, {((∅, ρ), s, I) | (s(r), s,I) ∈ JP Ki ∧ I(r) = JIKi,r}

Interference

Jγ(~x) : ∃~y : ~τ (P  Q)Ki,r(r, γ
′, ~v) ,

8

>

<

>

:

s1, s2 ∃~v′ ∈ J~τK, I, l0, l1, l2. (l1, s1, I) ∈ JP K
i[~x 7→~v,~y 7→~v′]

∧ (l2, s2, I) ∈ JQK
i[~x7→~v,~y 7→~v′]

∧ γ = γ′ ∧ s1(r) = l1 ∗ l0 ∧ s2(r) = l2 ∗ l0

∧ ∀r′ ∈ dom(s1). r
′ 6= r ⇒ s1(r

′) = s2(r
′)

9

>

=

>

;

JI, I ′Ki,r , JIKi,r ∪ JI ′Ki,r

Rc , {(l, s, I), (l, s′, I ∪ I′) | r /∈ dom(s) ∧ s′ = s[r 7→ l′] ∧ rdom(I′) = {r}}

Gc , {(l, s, I), (l′, s′, I ∪ I′) | r /∈ dom(s) ∧ s′ = s[r 7→ l1] ∧ l ⊕ all(I′) = l1 ⊕ l′ ∧ rdom(I′) = {r}}

where all(I′) ,
L

(r,γ,~v)∈dom(I′)(∅, [r, γ,~v 7→ 1]) and rdom(I) = {r | (r, , ) ∈ dom(I)}

R ,
“n

(l, s, I), (l, s′, I ∪ I′) ∃a. (s, s′) ∈ I(a) ∧ (⌊s⌋ ⊕ l)P (a) /∈ {1, dz} ∧ dom(s′) \ dom(s) = rdom(I′)
o

∪ Rc

”

∩ P(WFW2)

G ,

 (

(l, s, I), ∃a. (s, s′) ∈ I(a) ∧ (l′P )(a) ∈ {1, (g, )} ∧ dom(s′) \ dom(s) = rdom(I′)

(l′, s′, I ∪ I′) ∧ (⌊s⌋ ⊕ l)P ⊕ all(I′) = (⌊s′⌋ ⊕ l′)P ∧ dom((⌊s⌋ ⊕ l)H) = dom((⌊s′⌋ ⊕ l′)H)

)

∪ Gc

!

∩ P(WFW2)

Ancillary definitions

P ≡⇛{p}{q}
i Q , ∀w ∈ JP Ki. ∃h ∈ JpKi.∀h2 ∈ JqKi.∃h′ w2. h ⊕ h′ = TwU ∧ h2 ⊕ h′ = Tw2U ∧ (w, w2) ∈ G ∧ w2 ∈ JQK

J∆K , {i | J∆Ki = JAsnK} ∆ |= ∆′ , J∆K ⊆ J∆′K
∆ |= P ≡⇛{p}{q} Q , ∀i ∈ J∆K . P ≡⇛{p}{q}

i Q ∆ |= P ≡⇛Q , ∀i ∈ J∆K . P ≡⇛{emp}{emp}
i Q

Figure 11. Semantics of assertions

⊢SL {p} C {q}

∆;Γ ⊢ {p} C {q}
(PRIM)

∆;Γ ⊢ {P1} C1 {Q1} ∆;Γ ⊢ {P2} C2 {Q2}

∆;Γ ⊢ {P1 ∗ P2} C1 ‖ C2 {Q1 ∗ Q2}
(PAR)

α /∈ Γ, P, Q ∆;Γ ⊢ {P}C{Q}

(∃α.∆); Γ ⊢ {P}C{Q}
(EXISTS)

{P} f {Q} ∈ Γ

∆;Γ ⊢ {P} f {Q}
(CALL )

⊢SL {p} C {q} ∆ |= P ≡⇛{p}{q} Q

∆;Γ ⊢ {P} 〈C 〉 {Q}
(ATOMIC)

∆;Γ ⊢ {P} C {Q} ∆ |= stable(R)

∆; Γ ⊢ {P ∗ R} C {Q ∗ R}
(FRAME)

∆;Γ ⊢ {P1} C1 {Q1} . . . ∆;Γ ⊢ {Pn} Cn {Qn}

∆; {P1} f1 {Q1}, . . . , {Pn} fn {Qn}, Γ ⊢ {P} C {Q}

∆;Γ ⊢ {P} let f1 = C1 . . . fn = Cn in C {Q}
(LET)

∆′; Γ ⊢ {P ′} C {Q′} ∆ |= ∆′

∆ |= P ≡⇛P ′ ∆ |= Q′ ≡⇛Q

∆;Γ ⊢ {P} C {Q}
(CONSEQ)

Figure 12. Selected proof rules from [6]. All rules assume that the pre-and post-conditions of their judgements are stable.



DEFINITION 2 (Judgement Semantics).∆;Γ |= {P}C {Q} holds
iff

∀n.∀i ∈ J∆K .∀η ∈ JΓKn,i . |=η,i,n+1 {P}C{Q} ,

whereJΓKn,i , {η | ∀{P}f{Q} ∈ Γ. |=η,i,n {P}η(f){Q}}
and|=η,i,n {P}C{Q} , ∀w ∈ (JP Ki∩WFW). C, w, η, i, Q safen.

Differences from the CAP paper [6]. The original paper treated
the meaning of interference syntactically in the model, that is, the
equivalent ofIEnv was a map from action to syntactic definition of
the actions. This was done to avoid a cyclic definition inWorld. In
this paper, we have factored out the semantics of interference to be
a separate component. We thus impose the restriction that the inter-
ference environment cannot update the interference environment.
Note, this kind of update was not allowed before, but was not ex-
plicitly forbidden in the model, just in the interpretation. This small
refactoring of the semantics allows higher-order quantification.

We extend the model from the original CAP paper to addition-
ally contain deny permissions [8]. This is a straightforward exten-
sion to the original paper.

Finally, we take an intuitionistic model for the permissions. This
enables permissions to leak. The library we are consideringin this
paper requires garbage collection to collect signals when they are
no longer accessible.

5. Verifying a More Complex Implementation
The module implementation given in§3 imposes a strong sequen-
tial order on calls togrant. A wait only checks its immediate
predecessor, so a call togrant must ensure its predecessor is set
before setting its own bit. In this section, we consider an alternative
implementation that allows out-of-order bit setting. We prove that
this implementation also implements our abstract specification.

The new implementation uses the same data-structure as the
simple implementation. Bits can be set by calls togrant in arbi-
trary order, but as a consequence, each call towait must examine
all prior bits before exiting. As this implementation uses the same
data-structure as the first one, thesplit andnewchan operations
are identical. Thegrant andwait operations are defined as fol-
lows:

grant(i) {
〈i.bit := 1〉;

}

wait(i) {
while (i!=nil) {
while(i.bit=0){ skip; }
i := i.prev;

} }

As with the first implementation, each address has abit field and
aprev field. Callinggrant sets the bit field for the current address
from 0 to 1, then exits immediately. Whenwait is called, it blocks
until every bit field earlier in the order is set. To do this, itchases
prev fields, waiting for eachbit field to go to 1 before accessing
the preceding location. In this way,wait ensures that all previous
threads have calledgrant.

The predicate definitions (given in Fig. 13) are similar to those
for the simple implementation. The main difference is in thedefi-
nition of thefut predicate. When the shared bit is set, the resource
that is available to the thread may include a precedingfut predi-
cate. So, if the current thread expects resourceP , it may instead
get a resource satisfying(P ′ −∗ P ) ∗ fut(i′, P ′), wherei′ is the
immediately preceding location in the logical order.

The thread can then recoverP ′ by checking the bit fori′, which
may include afut predicate for the preceding locationi′′. Only
when the thread has checked all the bits earlier in the order can it
be confident it holds the full resource. In this way, our predicate
definitions reflect the fact that the thread does not know exactly
which threads have supplied a resource, and which have simply
renounced access to it.

fut(i, P ) ,

[GET]r
′

1 ∗
„

i.bit 7→ 0
r

I(i)
∗ ∀∗i′. [SET(i′)]rdπ

«

∨
0

B

B

@

i.bit 7→ 0 ∨

i.bit 7→ 1 ∗ i.prev 7→ i′ ∗ pa(i′)

r

I(r)

∗ P ∨ ∃P ′, i′. (fut(i′, P ′) ∗ (P ′−∗P ))

1

C

C

A

r′

J(i,P,π,r)

req(i, i′, P ) ,
i.bit 7→ 0

r

I(i)
∗ i.prev 7→ i′ ∗

pa(i′) ∗ box(i, P, 1)

pa(i) , i = nil ∨
i.bit 7→ 0 ∨

i.bit 7→ 1 ∗ i.prev 7→ i′ ∗ pa(i′)

r

I(i)

box(i, P, π) ,

i.bit 7→ 0
r

I(i)
∗ ∀∗i. [SET(i)]rdπ ∨

box(i, P1, π1) ∗ box(i, P2, π2) ∗

P −∗ (P1 ∗ P2) ∧ π1+π2 = π

r′

J(i,P,π,r)

∗ [PUT]r
′

1

Figure 13. Predicate definitions for out-of-order bit setting.

1

n

fut(i, P )
o

2 wait(i) {
3 while (i!=nil) {

4

n

i 6= nil ∧ (pa(i) ∗ P ∨ ∃P ′. fut(i, P ′) ∗ (P ′ −∗ P ))
o

5 while(i.bit=0) skip;

6

(

i.bit 7→ ∗ i.prev 7→ i′ ∗ pa(i′)
r

∗

(P ∨ ∃P ′. fut(i′, P ′) ∗ (P ′ −∗ P ))

)

7 i := i.prev;
8 }

9

n

i = nil ∧ ((pa(i) ∗ P ) ∨ (∃P ′. fut(i, P ′) ∗ (P ′ −∗ P )))
o

10 } // fut(i, ) is false if i = nil, so...

11

n

P
o

Figure 14. Proof forwait.

The req predicate is defined similarly to the first proof, with a
recursivebox predicate controlling access to bit-setting.

The interference environment for the shared bit,I(i), is:

SET(i′) : i.bit 7→ 0  i.bit 7→ 1 ∗ i.prev 7→ i′ ∗ pa(i′)

The environmentJ(i, P, π, r) for resource-holding regions is:

PUT:

8

>

>

<

>

>

:

[SET(i′)]rdπ  P ∨ (fut(i′, P ′) ∗ P ′ −∗ P )
 

box(i, P1, π1) ∗ box(i, P2, π2)

∗ P −∗ (P1 ∗ P2) ∧ π1+π2 = π

!

 emp

GET:

8

>

>

<

>

>

:

P  emp

(∀∗i′. [SET(i′)]rdπ)  

 

box(i, P1, π1) ∗ box(i, P2, π2) ∗

P −∗ (P1 ∗ P2) ∧ π1+π2 = π

!

(Here the symbol∀∗ is the iterated version of∗.)



A proof for wait is given in Fig. 14. The most interesting step
is line 5, where the resource is recovered from the shared region.
We justify this step by the following proof. The other case, where
apa rather thanfut is present, is trivial.
n

fut(i, P ′) ∗ (P ′ −∗ P )
o

// Unfold definitions.
8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(P ′ −∗ P ) ∗ [GET]r
′

1 ∗

i.bit 7→ 0
r

I(i)
∗ ∀∗i′. [SET(i′)]rdπ ∨

i.bit 7→ ∗ i.prev 7→ i′ ∗ pa(i′)
r

I(i)

∗ (P ′ ∨ ∃P ′′. fut(i′, P ′′) ∗ (P ′′ −∗ P ′))

r′

J(i,P ′,π,r)

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

while(i.bit = 0) { skip; }
8

>

>

>

<

>

>

>

:

(P ′ −∗ P ) ∗ [GET]r
′

1 ∗

i.bit 7→ ∗ i.prev 7→ i′ ∗ pa(i′)
r

I(i)

∗ (P ′ ∨ ∃P ′′. fut(i′, P ′′) ∗ (P ′′ −∗ P ′))

r′

J(i,P ′,π,r)

9

>

>

>

=

>

>

>

;

// Pull into local state and GC GET.
(

i.bit 7→ ∗ i.prev 7→ i′ ∗ pa(i′)
r

I(i)
∗

(P ′ ∨ ∃P ′′. fut(i′, P ′′) ∗ (P ′′ −∗ P ′)) ∗ (P ′ −∗ P )

)

// Transitivity of −∗.
(

i.bit 7→ ∗ i.prev 7→ i′ ∗ pa(i′)
r

I(i)
∗

(P ∨ ∃P ′′. fut(i′, P ′′) ∗ (P ′′ −∗ P ))

)

The proof forgrant, newchan andsplit are similar to the proofs
for the single-bit case. Once again, the proof ofgrant depends on
the fact thatfut can be split according to the resource held by it.

6. Related Work and Conclusions
Most work on combining separation logic with concurrency con-
structs has considered them as primitive in the logic. This begins
with O’Hearn’s work on concurrent separation logic [20], which
takes statically allocated locks as a primitive. CSL has been ex-
tended to deal with dynamically-allocated locks [11, 14, 15] and
re-entrant locks [12]. Others have extended separation logic or sim-
ilar logics with primitive channels [13, 1, 24, 18], and event driven
programs [17].

Concurrent abstract predicates [6] combine the explicit treat-
ment of concurrent interference from rely-guarantee [16, 10, 23]
and abstraction through abstract predicates [21], with a concurrent
fiction of disjointness [7] supported by capabilities [8]. In this paper
we have combined concurrent abstract predicates with higher-order
separation logic [3]. We used our higher-order logic to define and
verify a specification for barriers that enforce complex data and
control dependencies in concurrent programs.

Although we have focussed in this paper on barrier constructs
used for deterministic parallelism [25, 2, 4, 19], our logicis in-
tended as a general approach to specifying concurrency constructs.
Our syntactic approach has the advantage that concurrency con-
structs of different kinds combine transparently. For example, lock
predicates defined in [6] can be transferred through our channel
predicates without changing the semantics or proofs of correctness
for either module. In addition, we can verify that concrete imple-
mentations of constructs satisfy their specification.
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