
A Data-Driven CHC Solver

He Zhu
Galois, Inc., USA
hezhu@galois.com

Stephen Magill
Galois, Inc., USA

stephen@galois.com

Suresh Jagannathan
Purdue University, USA
suresh@cs.purdue.edu

Abstract

We present a data-driven technique to solve Constrained
Horn Clauses (CHCs) that encode verification conditions of
programs containing unconstrained loops and recursions.
Our CHC solver neither constrains the search space from
which a predicate’s components are inferred (e.g., by con-
straining the number of variables or the values of coefficients
used to specify an invariant), nor fixes the shape of the pred-
icate itself (e.g., by bounding the number and kind of logi-
cal connectives). Instead, our approach is based on a novel
machine learning-inspired tool chain that synthesizes CHC
solutions in terms of arbitrary Boolean combinations of unre-
stricted atomic predicates. A CEGAR-based verification loop
inside the solver progressively samples representative posi-
tive and negative data from recursive CHCs, which is fed to
the machine learning tool chain. Our solver is implemented
as an LLVM pass in the SeaHorn verification framework and
has been used to successfully verify a large number of non-
trivial and challenging C programs from the literature and
well-known benchmark suites (e.g., SV-COMP).

CCS Concepts · Software and its engineering → For-

mal software verification; Automated static analysis;

Keywords Constrained Horn Clauses (CHCs), Invariant
Inference, Program Verification, Data-Driven Analysis

ACM Reference Format:

He Zhu, Stephen Magill, and Suresh Jagannathan. 2018. A Data-

Driven CHC Solver. In Proceedings of 39th ACM SIGPLANConference

on Programming Language Design and Implementation (PLDI’18).

ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3192366.

3192416

1 Introduction

Automated program verification typically encodes program
control- and data-flow using a number of first-order veri-
fication conditions (VCs) with unknown predicates, which

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5698-5/18/06. . . $15.00

https://doi.org/10.1145/3192366.3192416

correspond to unknown inductive loop invariants and in-
ductive pre- and post-conditions of recursive functions. If
adequate inductive invariants are given to interpret each
unknown predicate, the problem of checking whether a pro-
gram satisfies its specification can be efficiently reduced to
determining the logical validity of the VCs, and is decid-
able with modern automated decision procedures for some
fragments of first-order logic. However inductive invariant
inference is still very challenging, and is even more so in the
presence of multiple nested loops and arbitrary recursion;
these challenges pose a major impediment towards the use
of fully automated verification methods.
Constrained Horn clauses (CHC) are a very popular VC

formalism for specifying and verifying safety properties of
programs written in a variety of programming languages
and styles [6, 13, 15, 18]. Given a set of CHC constraints,
with unknown predicate symbols, the goal is to produce an
interpretation to solve each unknown predicate symbol as
a formula such that each constraint is logically valid. Many
powerful CHC solvers have been proposed to automatically
and efficiently solve CHC constraints [1, 13, 16, 17, 19, 23ś25,
32]; these systems typically rely on sophisticated first-order
methods such as interpolation [22] and property-directed
reachability [17].

Consider the program1 shown in Fig. 1. The CHCs for this
program, generated by the SeaHorn C program verifier [15],
can be expressed as:

x = 1 ∧ y = 0→ p (x ,y) (1)

p (x ,y) ∧ x ′ = x + y ∧ y ′ = y + 1→ p (x ′,y ′) (2)

p (x ,y) ∧ x ′ = x + y ∧ y ′ = y + 1→ x ′ >= y ′ (3)

x = 1 ∧ y = 0→ x >= y (4)

Here p (x ,y) encodes the unknown loop invariant over the
program variables x andy. Constraint (1) ensures thatp (x ,y)
is established when the loop head is initially reached; con-
straint (2) guarantees that it is inductive with the loop body.
Constraint (3) uses the loop invariant to show that the ex-
ecution of the loop body does not violate the post condi-
tion. Constraint (4) corresponds to the trivial case when the
loop body is never executed. Notably, a state-of-the-art CHC
solver, Spacer [19], times-out when attempting to infer an
interpretation of p because it diverges and fails to generalize
an inductive invariant from the iteratively generated coun-
terexamples produced by the solver, despite the simplicity
of the formulas.

1In our examples, we use ∗ to denote a nondeterministically chosen value.

707

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3192366.3192416
https://doi.org/10.1145/3192366.3192416
https://doi.org/10.1145/3192366.3192416

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA He Zhu, Stephen Magill, and Suresh Jagannathan

main(){

int x,y;

x=1; y=0;

while(*){

x=x+y;

y++;}

assert(x>=y);}

Figure 1. Data-driven Invariant Inference

In recent years, data-driven techniques have gained pop-
ularity to complement logic-based VC solvers. These ap-
proaches are constrained to find a solution that is consistent
with a finite number of concrete samples agnostic of the un-
derlying logics used to encode VCs [10, 11, 29, 35, 37, 38, 40].
Using these methods, one can reason about p (x ,y) by sam-
pling x and y, as depicted on the right-side of Fig. 1. Intu-
itively, the data labeled with + are positive samples on the
loop head that validate the assertion; data labeled with ◦
are negative loop head samples that cause the program to
trigger an assertion violation. An interpretation of p (x ,y)
can be learned as a classifier of + and ◦ data with off-the-
shelf machine learning algorithms. For example, suppose
we constrain the interpretation of p (x ,y) that we sample
to be drawn from the Box abstract interpretation domain
(bounds on at most one variable x ≥ d where d is a con-
stant). We can consider this domain as playing the role of
features in machine learning parlance. In this case, standard
learning algorithms incorporated within data-driven verifi-
cation frameworks [29, 35, 37] can be used to interpret the
unknown loop invariant as x ≥ 1 ∧ y ≥ 0. Plugging this
invariant as the concrete interpretation of p (x ,y) in CHC
constraints (1)-(4) proves the program safe.
Despite the promising prospect of learning invariants

purely from data as informally captured by this example,
there are several key limitations of existing frameworks that
make realizing this promise challenging; these challenges
are addressed by the techniques described below.

Learning Features. A notable challenge in applying exist-
ing learning techniques to program verification is determin-
ing the set of atomic predicates (as features in machine learn-
ing) that should comprise an invariant. In some cases, sim-
ply choosing a suitably constrained domain (e.g., the Box

domain as used in Fig. 1) is sufficient. However, for many
program verification tasks, richer domains (e.g., Polyhedra)
are required; the feature space of these domains have high
dimensionality, requiring techniques that go beyond exhaus-
tive enumeration of feature candidates [29]. Additionally,
realistic programs will have invariants that are expressed in
terms of arbitrary Boolean combinations of these features.
We propose a new data-driven framework that allows us to

learn invariants as arbitrary Boolean combinations of fea-
tures learned via linear classification, the shape of whose
components are not pre-determined.

Generality vs. Safety. Machine learning algorithms strive
to avoid over-fitting concepts to training data by relaxing the
requirement that a proposed concept must be fully consistent
with given samples. Verification tasks, on the other hand,
are centered on safety - their primary goal is to ensure that
a hypothesis is correct, even if this comes at the expense of
generality. In other words, verification expects any classifier
to be perfect, even if that entails over-fitting, while machine
learning algorithms expect classifiers to generalize, even
if that compromises precision. This tension between the
desire for producing general hypotheses, central to machine
learning, and the need to ensure these hypotheses produce
a perfect classification, central to verification, is a primary
obstacle to seamlessly adapting existing learning frameworks
to solve general verification problems. To illustrate, consider
the example given below:

Here, it might not be possible to draw a linear classifier
that can separate all positive samples ({1, 3, 4, 5}) from all
negative samples ({0, 2}), or even all positives ({1, 3, 4, 5})
from a single negative ({2}).
Rather than strictly requiring a data-driven verification

framework to always produce a perfect classifier as a learned
feature [38], we instead propose a technique that accepts pre-
cision loss. Our approach exploits a linear classification algo-
rithm that may return a classifier which misclassifies either
positive data or negative data or both in order to facilitate
generalization. To recover the loss of precision, we develop a
new data-driven algorithm, which we call LinearArbitrary
that applies a linear classification algorithm iteratively on
unseparated (misclassified) samples, allowing us to learn a
family of linear classifiers that separate all samples correctly
in the aggregate; such classifiers are conceptually logically
connected with appropriate boolean operators ∧ and ∨.

Combating Over- and Under-fitting. Data-driven analy-
sis techniques that suffer from over- and under-fitting are
likely to produce large, often unintuitive, invariants. When
input samples are not easily separable because of outliers
and corner cases, inference may yield invariants with com-
plex structure that arise because of the need to compensate
for the inability to discover a clean and general separator.

Our approach is based on the simple observation that each
learned linear classifier defines a hyperplane that separates a
subset of positive samples from a subset of negative samples.
Thus, each learned feature has a different information gain

in splitting the current collection of samples, given in terms
of Shannon Entropy [34], a well-established information the-
oretic concept, which can measure how homogeneous the

708

A Data-Driven CHC Solver PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

Figure 2. The overall framework of our approach.

samples are after choosing a specific feature as a classifier.
This observation motivates the idea of using standard Deci-

sion Trees to further generalize LinearArbitrary. Decision
trees allow us to select high-quality features while drop-
ping unnecessarily complex ones, based on the same data
from which feature predicates are learned, by heuristically
selecting features that lead to the greatest information gain.
A learned decision tree defines a Boolean function over se-
lected feature predicates and can be converted to a first-order
logic formula for verification.

Recursive CHC Structure. In the presence of loops and
recursive functions, a CHC constraint (such as constraint (2)
in the example above) may take the form:

ϕ ∧ p1 (T1) ∧ p2 (T2) · · · ∧ pk (Tk) → pk+1 (Tk+1) (∗)

where eachpi (1 ≤ i ≤ k+1) is an unknown predicate symbol

over a vector of first-order terms Ti and ϕ is an unknown-
predicate-free formula with respect to some background
theory. In this paper, we assume ϕ is expressible using linear
arithmetic.
A formula like (∗) is a recursive CHC constraint if, for

some pi (1 ≤ i ≤ k), pk+1 is identical to pi or pi is recursively
implied by pk+1 in some other CHCs.

Dealing with recursive CHCs is challenging because there
are occurrences of mutually dependent unknown predicate
symbols on both sides of a CHC. Using a novel counterexam-
ple driven sampling approach, we iteratively solve a CHC sys-
tem with recursive CHCs like (∗) by exploring the interplay
of either strengthening the solutions of some pi (1 ≤ i ≤ k)
with new negative data or weakening the solution of pk+1
with new positive data. This process continues until either a
valid interpretation of each unknown predicate or a coun-
terexample to validity is derived.

1.1 Main Contributions

We depict our overall framework in Fig. 2. Our machine
learning toolchain efficiently learns CHC interpretations,
which are discharged by an SMT solver, in a fully automated
counterexample-guided manner. This paper makes the fol-
lowing contributions:

• We propose to learn arbitrarily shaped invariants with
feature predicates learned from linear classification

algorithms. We show how to extract such predicates
even when samples are not linearly separable.
• We propose a layered machine learning toolchain to
combat over- and under-fitting of linear classification.
We use decision tree learning on top of linear classifi-
cation to improve the quality of learned hypotheses.
• We propose counter-example guided CHC sampling
to verify CHC-modeled programs with complex loop
and recursive structure.

We have implemented this framework inside the SeaHorn
verification framework [15] as an LLVM pass. Evaluation
results over a large number of challenging and nontrivial C
programs collected from the literature and SV-COMP bench-
marks [39] demonstrate that our solver is both efficient in
proving that a CHC system is satisfiable (a program is safe)
and effective in generating concrete counterexamples when
a CHC system is unsatisfiable (a program is unsafe).

2 Overview

In this section, we present the main technical contributions
of the paper using a number of simple programs that nonethe-
less have intricate invariants that confound existing infer-
ence techniques.

2.1 Learning Arbitrarily-Shaped Invariants

Our predicate search space includes the infinite Polyhedra
domain:wT ·v+b ≥ 0where v is a vector of variables and the
weight values of w and the bias value of b are unrestricted.
The search space defines the concept class from which in-
variants are generated. We discuss the basic intuition of how
Polyhedral predicates are discovered from data using the
program shown in Fig. 3.
We draw positive and negative samples collected in the

loop head of this program, as depicted in Fig. 6(i). Intuitively,
the positive samples (+) are obtained by running the loop
with

{(x ,y) | (0,−2), (0,−1), (0, 0), (0, 1)}

which do not raise a violation of the assertion in Fig. 3; the
negative samples (◦) are derived from running the loop with

{(x ,y) | (3,−3), (−3, 3)}

which do throw an assertion violation.2

As opposed to previous approaches [38] that tune linear
classification techniques to obtain a perfect classifier that
must classify all positive samples correctly, our algorithm
LinearArbitrary simply applies standard linear classifica-
tion techniques (e.g. SVM [30] and Perceptron [9]) to the
samples in Fig. 6(i), to yield the linear classifier:

−x − y − 1 ≥ 0

Notably, this classifier only partially classifies the positive
data, as depicted in Fig. 6(ii). In particular, the three positive

2We describe how to obtain positive (+) and negative (◦) data in Sec. 2.3.

709

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA He Zhu, Stephen Magill, and Suresh Jagannathan

// Program needs
∨∧

-invariant

main(){

int x,y;

x=0; y=*;

while(y!=0){

if (y<0) {x--; y++;}

else {x++; y--;}

assert(x!=0);}}

Figure 3. Program (a)

// Program needs Polyhedral invariant

main(){

int x,y,i,n;

x=y=i=0; n=*;

while(i<n) {

i++; x++;

if(i%2==0) y++;}

assert(i%2!=0||x==2*y);}

Figure 4. Program (b)

// Program with recursive function

fibo(int x) {

if (x < 1) return 0;

else if (x==1) return 1;

else

return fibo(x-1)+fibo(x-2);}

main(int x) {

assert(fibo(x)>=x-1);}

Figure 5. Program (c)

(i) Samples of Program (a) in Fig. 3 (ii) φ : −x − y − 1 ≥ 0 (iii) φ : −x − y − 1 ≥ 0 ∨ x + y − 1 ≥ 0

(iv) φ : −x − y − 1 ≥ 0 ∨ x + y − 1 ≥ 0 ∨

x − y + 1 ≥ 0

(v) φ : −x − y − 1 ≥ 0 ∨ x + y − 1 ≥ 0 ∨

(x − y + 1 ≥ 0 ∧ −x + y + 1 ≥ 0)

Figure 6. Learning arbitrarily shaped invariants with linear classification on Program (a) in Fig. 3.

samples that are above the classification line −x − y − 1 = 0

(in blue) are clearly misclassified.
Because we are solving a verification problem, we cannot

tolerate any misclassification of a positive sample if we wish
to have our presumed invariant pass the verification oracle
(i.e., an SMT solver). We therefore apply the linear classifica-
tion technique again on the misclassified positive samples
and all the negative samples; this results in the classification
shown in Fig. 6(iii), represented by the formula x+y−1 >= 0.
The combined classifier is thus:

−x − y − 1 ≥ 0 ∨ x + y − 1 ≥ 0

that separates all positive samples except {x = 0,y = 0} from
all the negative data.
Our only concern for the moment is how to deal with

the remaining unseparated positive data {x = 0,y = 0}. We
apply our learning algorithm again on this sample and all
the negative data. As shown in Fig. 6(iv), this yields another
linear classifier x − y + 1 ≥ 0, which unfortunately now
misclassifies a number of negative samples below the classi-
fication line x − y + 1 ≥ 0 (in blue). Based on our goal that
every positive sample must be separated from any negative
one, we again apply linear classification on the positive sam-
ple {x = 0,y = 0} and the misclassified negative samples

in Fig. 6(iv) to yield the classifier shown in Fig. 6(v). From
Figs. 6(iv) and Fig. 6(v), we realize the conjunctive classifier

x − y + 1 ≥ 0 ∧ −x + y + 1 ≥ 0

that fully separates {x = 0,y = 0} from all negative samples.
Finally, combining the classifiers learnt from Figs. 6(ii),

6(iii), 6(iv) and 6(v), we obtain the classifier

−x − y − 1 ≥ 0 ∨ x + y − 1 ≥ 0 ∨

(x − y + 1 ≥ 0 ∧ −x + y + 1 ≥ 0)

that separates all positive samples from all negative data.
In summary, our machine learning algorithm LinearAr-

bitrary uses off-the-shelf linear classification algorithms to
separate samples even when they are not linearly separable,
and accepts classification candidates in arbitrary Boolean
combinations. As a result, LinearArbitrary inherits all
the benefits of linear classification, explored over the years
in the machine learning community, with well-understood
trade-offs between precision and generalization. LinearAr-
bitrary can efficiently search from the Polyhedra abstract
domain, which among the many numerical domains intro-
duced over the years, is one of the most expressive (and
expensive). We reduce searching Polyhedral invariants to
well-optimized linear classification tasks to gain efficiency;
but, because we do not bound the Boolean form of invariants

710

A Data-Driven CHC Solver PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

generated, we do not lose expressivity in the process. Ob-
serve that the learned classifier shown above requires both
conjunctions and disjunctions, a capability which is out of
the reach of existing linear classification-based verification
approaches [38].

2.2 A Layered Machine-Learning Toolchain

An important design consideration of data-driven methods
like LinearArbitrary’s is how to best combat over-fitting
and under-fitting of data, allowing learned invariants to be
as general as possible. If the linear classifier imposes a high
penalty for misclassified points it may only produce over-
fitted classifiers; otherwise it may under-fit. In either case, a
classification-based verification algorithm may never reach
a correct program invariant or may depend on a sufficiently
long cycle of sampling, learning, and validation to converge.
The problem is exacerbated as the complexity of the concept
class (here Polyhedra) increases.

Ideally, we would like to learn a classifier within the sweet
spot between under-fitting and over-fitting. Consider the
example program (b) in Fig. 4.3 Using LinearArbitrary, we
obtain the following candidate invariant for the unknown
loop invariant ρ (i,x ,y,n) of this program:

ρ ≡
{

(−10i − x + 5y + 6n + 7 ≥ 0 ∧

−i + x ≥ 0 ∧ i − x ≥ 0 ∧ −i + 2x − 2y ≥ 0) ∨

2i + 3x + 4y + 2n − 34 ≥ 0

}

This candidate does not generalize and is not a loop invariant
of the program. The first and last atomic predicates shown
above are unnecessarily complex and restrictive. We can
certainly ask for more samples from the verification oracle
to refine ρ. However, a more fruitful approach is to explore
ways to produce simpler and more generalizable invariants
from the same amount of data.
Observe that each learned Polyhedral classifier implies a

hyperplane in the form of f (v) = 0 where f (v) = w
T · v+b.

We call f (v) a feature attribute selected for classification.
For example, the first classifier of the invariant ρ above is
based on the feature attribute −10i − x + 5y + 6n + 7. Using
it as a separator leads to binary partitions of data each of
which contains a subset of positive and negative samples,
causing ρ to be a disjunctive conjunctive formula. Clearly,
the learning algorithm has made a trade-off, misclassifying
some sample instances to avoid over-fitting based on its
built-in generalization measure.

Is the choice always reasonable? To generalize the invari-
ant ρ, we first need to quantify the goodness of a feature
attribute. In machine learning theory, information gain is
often used to evaluate the quality of an attribute f (v) for
a particular classification task. Informally, the information
gain of an attribute evaluates how homogeneous the samples
are after choosing the attribute as a classifier. We prefer high

3We do not draw the samples of this program because they are complex to

visualize, involving constraints over four dimensions.

information gain attributes that lead to a split that causes two
partitions, onewithmore positive samples and the other with
more negative. However, there are no guarantees on learning
a high information gain split at every internal classification
task. Leveraging information gain as a measure, we aim to
use Decision Tree learning [31] to generalize the classifica-
tion result produced by LinearArbitrary to heuristically
choose attributes to build classifiers with higher information
gains. When used for classification, such attributes usually
generalize better and can yield simpler classifiers than low
information gain ones. Empirically a simple invariant is more
likely to generalize than a complex one [29].
Decision Trees. A decision tree (DT) is a binary tree that
represents a Boolean function. Each inner node of the tree is
labeled by a decision of the form f (v) ≤ c where f (v) is a
feature attribute over a vector of variables v and c is a thresh-
old. In our context, f (v) is learned from LinearArbitrary.
Each leaf of the tree is labeled either positive + or negative ◦.
To evaluate an input x, we trace a path down from the root
node of the tree, going to a true branch (t) or a false branch
(f) at each inner node depending on whether its feature f (x)
is less or equal to its threshold c . The output of the tree on x

is the label of the leaf reached by this process.
For example, applying a DT learning algorithm [31] with

feature attributes drawn from atomic predicates in ρ, {−10i −
x + 5y + 6n+ 7, −i +x , i −x , i +x − 4y, 2i + 3x + 4y + 2n− 34},
which are all learned from LinearArbitrary, yields the
following decision tree:

At the root node, the DT does not choose the complex at-
tribute −10i−x+5y+6n+7 as in LinearArbitrary. Instead,
DT learning chooses the simpler attribute −i +x and learns a
threshold −1 to bound the attribute because such a decision
can lead to a higher information gain split as the left child
node of the root now contains only negative samples. Eventu-
ally, DT learning is able to pick two concise attributes −i + x
and −i+2x −2y to separate all the positive and negative data
and equip them with properly adjusted thresholds. As there
is a single decision path that leads to positive samples in the
above DT, combining all decisions along that path yields a
new loop invariant for program (b) in Fig. 4:

¬(−i + x ≤ −1) ∧ −i + x ≤ 0 ∧

¬(−i + 2x − 2y ≤ −1) ∧ −i + 2x − 2y ≤ 1

which suffices to verify the program. Importantly, the use of
DT learning generalizes ρ on the same data from which ρ

was learned before by LinearArbitrary, without having to
ask for more samples.

711

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA He Zhu, Stephen Magill, and Suresh Jagannathan

2.3 Counterexample Guided CHC Sampling

The prior sections assume the existence of positive and neg-
ative data sampled from the program to bootstrap learning.
However, sampling from a program is challenging when the
code base is large. To make data-driven methods of the kind
we propose practical for scalable verification, we need to
efficiently sample positive and negative data directly from
CHCs in an automatic manner, that nonetheless can scale to
programs with complex loops and recursive functions.

The program (c) in Fig. 5 shows why recursion might con-
found existing learning based tools, and complicate sampling
data directly from CHCs. We show the CHCs of the program:

x < 1 ∧ y = 0→ p (x ,y) (5)

x ≥ 1 ∧ x = 1 ∧ y = 1→ p (x ,y) (6)

x ≥ 1 ∧ x , 1 ∧ p (x − 1,y1) ∧ p (x − 2,y2)

∧ y = y1 + y2 → p (x ,y) (7)

p (x ,y) → y >= x − 1 (8)

To prove this program correct, it is sufficient to find an in-
terpretation of p (x ,y) which encodes the input and output
behavior of the function fibo. CHC (5) and (6) correspond
to the initial cases of the function while constraint (8) en-
codes the safety property to be satisfied by p (x ,y). CHC (7)
corresponds to the inductive case. Given an interpretation
of the unknown predicate p, it is straightforward to sample
positive data from CHC (5) and (6) and negative data from
constraint (8), but is less clear how to deal with the recur-
sive CHC (7) because there are occurrences of the unknown
predicate symbol p on both sides of the constraint.
For example, suppose that we interpreted p (x ,y) to be:

−23x + 25y + 22 >= 0 ∧ −y + 1 >= 0

and we used an SMT solver to check the validity of constraint
(7) under this interpretation. The following counterexample
might be returned:

p (x − 1,y1) = p (2, 1), p (x − 2,y2) = p (1, 1),

p (x ,y) = p (3, 2)

This is a counterexample because the second conjunct in
the above interpretation of p (x ,y) is false when y = 2. At
this point, however, it is not clear whether we should add
(3, 2) as a new positive sample, given that p (2, 1) and p (1, 1)
are true, thus implying p (3, 2) is true because of CHC (7);
or, whether we should add (2, 1) and/or (1, 1) as negative
samples, given that p (3, 2) is a counterexample.4

Our approach is inspired by modern CHC solvers [1, 25,
32]. They solve a recursive CHC system H by iteratively
constructing a series of recursion-free unwindings of H ,
which can be considered as derivation trees of H that are
essentially logic program executions [25], whose solutions
are then generalized as candidate solutions ofH .

4Notably the ICE framework [10, 11] is not suitable to deal with this coun-

terexample as p occurs more than once on the left-hand side of CHC (7).

Figure 7. Learning the invariant for Program (c) in Fig. 5
with bounded positive samples that form derivation trees.

Instead of explicitly unwinding recursive CHCs inH , we
study the problem from a data perspective. Our approach
only implicitly unwindsH by considering positive data sam-
pled from a finite unwinding. A positive sample s is obtained
from a bounded unwinding ofH if we are able to recursively
construct a derivation tree using other positive samples, ex-
plaining how s is derived. For example, we draw the positive
samples collected for p using this approach in Fig. 7. For the
counterexample generated above, we can add (x = 3,y = 2)

as a positive example of p (x ,y) because both (x = 2,y = 1)

and (x = 1,y = 1) are already labeled as positive, which can
be used to explain how (x = 3,y = 2) is derived. Note that
in Fig. 7 every positive sample can be explained by how it is
derived from other positive samples except data points gener-
ated from initial CHC (5) and (6). Samples that do not satisfy
this condition are labeled negative to allow strengthening
CHC (7) until it becomes inductive. If p gets strengthened too
much, it can be weakened later with more positive samples
from CHC (5) and (6).
Similar to how solutions of recursive CHC systems are

derived from unwound recursion-free CHC systems in mod-
ern CHC solvers, our verification framework uses a machine
learning algorithm to explain why p has a valid interpreta-
tion by separating positive samples of p which are derived
from implicit unwindings of the CHCs (5)-(8), from sampled
negative data, relying on the underlying machine learning al-
gorithm to generalize our choice of the solution to p. For the
positive data and negative data depicted in Fig. 7, applying
LinearArbitrary yields a classifier,

−x + y + 1 ≥ 0 ∧ −x + 2y ≥ 0

that correctly interprets p (x ,y) in CHCs (5)-(8) and hence
proves that the program (c) in Fig. 5 is safe.
Of course, we may have to iteratively increase the im-

plicit unwinding bound based on newly discovered positive
samples until we can prove the satisfiability of the CHCs. Em-
pirically, we find that our counterexample guided sampling
approach is efficient. For example, consider changing the an-
notated assertion in Fig. 5 to assert (x < 9 | | fibo(x) ≥ 34),
a difficult verification task in the SV-COMP benchmarks [39].

712

A Data-Driven CHC Solver PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

To verify the program, our tool needs to sample positive data
of the fibo function using at least inputs from 0 to 10. It
proves the program in less than one minute with a compli-
cated disjunctive and conjunctive invariant learned while
the best two tools in the recursive category of SV-COMP’17
either timeout or run out of memory [39] .

3 Learning Procedure

We now formalize our learning algorithm discussed in Sec. 2.
Given a number of positive samples S+ and negative sam-
ples S− over a vector of variables v, the learning procedure
aims to produce a classifier over v that can separate positive
instances in S+ from negative ones in S−.

3.1 Background: Linear Classification

We briefly survey background in the context of linear binary
classification. A linear model considers training examples
S+ ∪ S− as points in a d-dimensional space where d is the
dimension of v, and treats each dimension as one feature. A
linear binary classifier defines a hyperplane in the space clas-
sifying the examples, which is a generalization of a straight
line in 2-dimensional space, in the form f (v) = 0 where
f (v) = w

T · v + b.
Each coefficient in the weight vector w can be thought of

as a weight on the corresponding feature. Geometrically, w
is also called a normal vector of the separating hyperplane
(which is perpendicular to the hyperplane). The bias b is the
intercept of the hyperplane (which can also be included in
the weight vector by adding a dummy feature to v which is
always set to 1). A separating hyperplane can be used as a
classifier φ (v) ≡ f (v) ≥ 0 to predict the label of a new point
x , by simply computing φ (x). In other words, if φ (x) is valid
(true) then we predict the label to be +1 (positive) and −1
(negative) otherwise.

The goal of the learning process is to come up with a
"good" weight vector w (including b) estimated from train-
ing examples. If the samples in S+ and S− are indeed linearly
separable, then we expectφ (s) to be valid for all positive sam-
ples, and ¬φ (s) to be valid for all negative samples. However,
different notions of "goodness" exist, which yield different
linear classification learning algorithms. If the samples are
not linearly separable, there are also different strategies that
can be adopted to balance the trade-off between precision
and generalization.
We consider two linear classification algorithms in our

implementation: Perceptron [9] and SVM [30]. They consider
the quality of a candidate classifier by measuring the margin

of a classifier, which is determined by the distance from the
classifier decision surface to the closet data points, often
referred to as the support vectors in a vector space. For
example, the SVM algorithm maximizes the margin of its
produced classifier because a decision boundary drawn in
the middle of the void between data items of the two classes

is deemed to be better than one which closely approaches
examples of one or both classes.

In practice, data is complex and may not be separated per-
fectly with a hyperplane. In these cases, we must relax our
goal of maximizing the margin of the hyperplane that sepa-
rates the classes . To generalize, some training data should be
allowed to violate the hyperplane. To constrain the amount
of margin violation permitted, existing SVM algorithms use
a so-called C parameter to control the precision of a classi-
fier. Thus, to balance the trade-off between generalization
and precision, we must adjust C . For large values of C , the
optimization chooses a smaller-margin hyperplane if that
hyperplane can classify all the training points correctly. Con-
versely, a very small value of C will cause the optimizer to
search a larger-margin separating hyperplane, even if that
hyperplane misclassifies more points. We prefer a smaller
value of C to obtain classifiers with larger margins that are
more likely to generalize.

3.2 LinearArbitrary

We now formalize our classification algorithm LinearAr-

bitrary, which can find classifiers that can be expressed
within the Polyhedra domain (i.e., the theory of linear arith-
metic). In cases that the samples are not linearly separable,
our algorithm can find a classifier expressed as an arbitrary
Boolean combination of linear inequalities.
The pseudo-code of LinearArbitrary is given in Algo-

rithm 1. In line 1 of the algorithm, we ask a linear classifica-
tion algorithm to produce a classifier φ that tries to separate
given positive samples S+ and negative samples S−. To this
end, we exploit well-developed heuristics in linear classifi-
cation to balance the trade-off between generalization and
precision. For example, if we use SVM classification, we pre-
define the C parameter to be reasonably small based on the
margin constraint, so that larger margin separating hyper-
planes are produced, introducing the possibility of misclassi-
fied samples. For the remaining misclassified samples, our
key insight is that we can apply the linear classification algo-
rithm iteratively to learn a family of classifiers that together
separate all positive and negative samples. These classifiers
can be thought of as logically connected with appropriate
boolean operators ∧ or ∨.

Line 2, 3, 4 of Algorithm 1 collect positive samples that are
correctly classified S+

✓
by φ, positive samples misclassified

S+
✗
by φ, and negative samples misclassified S−

✗
by φ.

If positive samples in S+
✓
are not fully separated from all

negative samples (line 5), we recursively call Algorithm 1 on
S+

✓
and S−

✗
to learn a new classifierφ ∧ LinearArbitrary(S+

✓
,

S−
✗
) that should together make S+

✓
and S− separable. Dually,

as any positive samples must be included in an invariant to
ensure generalization so as to eventually pass the verifica-
tion oracle but φ still misclassifies S+

✗
, in line 7 and 8, we

recursively call Algorithm 1 on S+
✗
and S− to learn a new

713

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA He Zhu, Stephen Magill, and Suresh Jagannathan

Algorithm 1: LinearArbitrary (S+, S−)

1 φ = LinearClassify (S+, S−);

2 S+
✓
= { s ∈ S+ | φ (s) };

3 S+
✗
= { s ∈ S+ | ¬φ (s) };

4 S−
✗
= { s ∈ S− | φ (s) };

5 if S−
✗
, ∅ then

6 φ = φ ∧ LinearArbitrary(S+
✓
, S−

✗
);

7 if S+
✗
, ∅ then

8 φ = φ ∨ LinearArbitrary(S+
✗
, S−);

9 return φ

invariant φ ∨ LinearArbitrary (S+
✗
, S−) that should sepa-

rate all positive samples from all negative samples. We then
return the final classifier φ in line 9. Observe that the clas-
sifier returned by Algorithm 1 can be an arbitrary Boolean
combination of discovered predicates.

Complexity. The number of LinearClassify calls made by
Algorithm 1 is O (|S+ | |S− |) in the worst case scenario when
the most unbalanced partition of S+ occurs at every step,
dividing the positive samples into S+

✓
= S+, S+

✗
= ∅ (assuming

S−
✗
, ∅). In the most balanced case, the algorithm divides S+

into two nearly equal partitions. This means each recursive
call processes a positive sample set of half the size. The result
is that the algorithm uses onlyO (|S+ |) LinearClassify calls.

3.3 Machine Learning Tool Chain

Despite the reuse of well-developed heuristics that aim to bal-
ance precision and generalizability found in machine learn-
ing tools exploited by LinearArbitrary, we still lack a
formal guarantee that a learned classifier does not over-fit or
under-fit, especially when training samples are not linearly
separable. If over- and under-fitting indeed affects verifica-
tion results, we can ask the verification oracle to provide
more examples to refine a learned invariant. In this section,
however, we consider the problem from a different perspec-
tive: can we generalize the outcome of LinearArbitrary
without additional data? Doing so may not only increase
the quality of the classifier produced by LinearArbitrary,
but would also enable a more efficient verification technique
with improved convergence time.

We observe that each linear classifier φ (v) found by Lin-

earArbitrary defines a feature attribute

f (v) = w
T · v + b

wherew and b are the weights and bias of the classifier resp.,
that may only separate a subset of positive and negative
samples. In machine learning parlance, the capability of a
feature attribute f (v) to serve as a classifier is given in terms
of a threshold c - f (v) ≤ c (resp. f (v) > c). We leverage c to
characterize the information gain of an attribute over a set

Algorithm 2: Learn (S+, S− /*, additional_features */)

1 φ = LinearArbitrary(S+, S−);

2 features = atomics (φ) /*∪ additional_features */;

3 return DT-Learn(S+, S−, features)

of samples S = S+ ∪ S− based on Shannon Entropy ϵ :

ϵ (S) = −
|S+ |

|S |
log2

|S+ |

|S |
−
|S− |

|S |
log2

|S− |

|S |

which yields a value that rates the ratio of positive and nega-
tive samples. A small entropy value indicates that S contains
significantly more of one than the other. The information

gain γ of f on S with respect to a chosen threshold c is
specified as:

γ (S, f : c) = ϵ (S) −
(|Sf :c |ϵ (Sf :c)

|S |
+

|S¬f :c |ϵ (S¬f :c)

|S |

)

where Sf :c and S¬f :c are instances satisfying f (v) ≤ c and
instances that do not. Informally, information gain evaluates
to how homogeneous the samples are after choosing f and
threshold c . An attribute with less information gain that
results in two partitions each with roughly half positive and
half negative instances is less preferred than an attribute
with high information gain that results in partitions which
have a dominant fraction of positive or negative samples.
Choosing attributes with large information gains naturally
leads to a simpler classifier which is more likely to generalize
than a complex one.
To generalize the outcome of LinearArbitrary, we ap-

ply decision tree (DT) learning, another well-developed ma-
chine learning algorithm for this generalization task, as ex-
plained in Section 2.2. The hypothesis set corresponding to
all DTs consists of arbitrary Boolean combinations of lin-
ear inequalities of the form f (v) ≤ c , between features and
thresholds. Appropriate threshold values are expected to be
learned to bound selected attributes. Standard DT learning
algorithms [31] start from an empty tree, and greedily pick
at each node the best feature attribute and threshold that
separates the remaining training samples. This procedure
continues until all leaves of the tree have samples labeled by
a same class.

Algorithm 2 describes our machine learning toolchain. For
the moment, ignore the pseudo-code that is commented. The
algorithm takes positive and negative samples as inputs. It
automatically learns feature attributes as a number of atomic
predicates that compose the classifier learned by LinearAr-

bitrary in line 1 and line 2. In line 3, we run a standard
DT learning algorithm on the samples to obtain a decision
tree using the feature attributes. In the tool, we tune the
parameter of the used DT learning implementation to ensure
that the decision tree must classify all samples correctly.
In the algorithm, the use of DT learning can be thought

as a posterior process of LinearArbitrary, which selects

714

A Data-Driven CHC Solver PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

learned Polyhedral attributes with high information gains at
a separation that is more likely to generalize and simultane-
ously adjusts the thresholds for selected feature attributes in
order to fit the data. Algorithm 2 essentially forms a machine
learning tool chain to combat over- and under-fitting.

To convert the DT into a formula, we note that the set of
states that reach a particular leaf is given by the conjunction
of all predicates on the path from the root to that leaf. Thus,
the set of all states classified as positive by the DT is the dis-
junction of the sets of states that reach all the positive leaves.
A simple conversion is then to take the disjunction over
all paths to good leaves of the conjunction of all predicates
on such paths. We can compute this formula recursively by
traversing the learned DT.

Lemma 3.1. If φ = Learn (S+, S−), then ∀s ∈ S+, φ (s) is

valid and ∀s ∈ S−, φ (s) is invalid.

Beyond Polyhedra. The use of DT learning has additional
benefits. Although the Polyhedra domain is sufficient in cap-
turing numerical relationships among numeric variables, it
does not include predicates over enumeration and mod op-
erations. Incorporating such predicates is straightforward,
and is shown in Algorithm 2 as part of the commented code.
The algorithm additionally takes a number of predefined fea-
ture attributes as inputs. In our experiments, the predefined
features are simply Boolean variables and mod operations
of a numeric variable against a constant, which can be pa-
rameterized a priori. DT learning can then jointly learn a
unified classifier that is a combination of learned Polyhedral
features and these predetermined ones.

4 Verification Procedure

This section formalizes the sampling and verification algo-
rithms of our approach. Several verification frameworks [6,
13, 15, 18] provide customized verification semantics with
different degrees of precision for CHC encoding of a func-
tional or imperative program. Checking if a program satisfies
a safety property amounts to establishing the satisfiability
of a program’s CHCs.

4.1 Constrained Horn Clauses

Given sets of function symbols F (e.g. + or −), predicate
symbols P (unknown predicates), and variablesV , a CHC
constraint, which we denote as C, is a formula

∀V . (ϕ ∧ p1[T1] ∧ p2[T2] ∧ · · · ∧ pk [Tk]→ h[T])

where: k is non-negative; ϕ is a constraint over F and V
with respect to some background theory (e.g., linear arith-

metic in this paper); V are universally quantified;5 pi [Ti]
is an application p (t1, · · · , tn) of an n-ary predicate sym-
bol p ∈ P ranging over n free variables with first-order

5We ignore universal quantifiers in our presentation for simplicity.

terms ti constructed from F andV ; and h[T] is either de-
fined analogously to pi or is a known predicate without P
symbols. Here, h is called the head of the constraint and

ϕ ∧ p1[T1] ∧ p2[T2] ∧ · · · ∧ pk [Tk] is called the body of the
constraint. A CHC systemH consists of a set of CHC con-
straints. We sayH is a recursive CHC system, if in one of
its constraints C, one of the predicate symbols appearing
in the body of C is identical to the head of C, or is recur-
sively implied by the head in some other constraints other
than C withinH . We use P (H) to denote all the unknown
predicate symbols inH .

An interpretationA of a CHC C associates each predicate
symbol pi of arity n appearing in C as a formula over its free
variables; we use C[A] to denote the interpreted constraint.
We say a CHC system H is satisfiable if there exists an
interpretationA of each predicate symbol in P such that for
each constraint C ∈ H , C[A] is valid, i.e., the conjunction
of interpretations of all predicates in the body of C and the
constraint ϕ entail the interpretation of the head of C.

4.2 Data-Driven CHC Solving

We now present our CEGAR (counterexample guided ab-
straction refinement) based verification procedure. The basic
idea is that for each unproved CHC C under a current inter-
pretation A, we leverage the counterexample to improve A
until C becomes valid.
Bounded Positive Samples. As argued in Sec. 2.3, handling
a counterexample obtained from discharging a recursive

CHC constraint in the formp1 (T1)∧p2 (T2) · · ·∧pk (Tk)∧ϕ →

pk+1 (Tk+1) is challenging because the counterexample is of
the form ({s1, s2, · · · , sk }, sk+1) where each si is a sample of
predicate pi such that 1 ≤ i ≤ k + 1. We do not know in
general whether we should add sk+1 as a new positive sample
of pk+1 or add some si as a negative sample of pi for some
i where i ≤ k . Our solution is inspired by modern CHC
solvers for recursive CHC constraints [1, 25, 32]. Given a
recursive CHC systemH , they attempt to solveH by con-
structing a series of recursion-free systems from bounded
unwindings ofH , solving each of the recursion-free systems,
and combining the solutions to construct a solution of H .
In our approach, we do not attempt to unwindH explicitly.
Instead, we implicitly unrollH by considering positive sam-
ples bounded by a finite number ofH unwindings. We add
a positive sample sk+1 of pk+1 iff s1, · · · , sk are all labeled as
positive for p1, · · · ,pk respectively. The new positive sample
sk+1 is bounded by a finite unwinding ofH because we are
able to recursively construct a derivation tree of positive
samples, explaining how sk+1 is obtained (from s1, · · · sk).
Samples that do not satisfy such a condition are considered
negative at first.
Z3 Support. Our algorithm is built on top of the Z3 SMT
solver [7].We assume that a number of Z3 functions are avail-
able to us to build the CHC solver: Z3Check (C[A]) which

715

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA He Zhu, Stephen Magill, and Suresh Jagannathan

Algorithm 3: CHCSolve (H)

1 A = λp : true;

2 ∀ p ∈ P (H). s+ (p) = s− (p) = ∅;

3 while

∃ (C ≡ ϕ ∧ p1[T1] ∧ p2[T2] ∧ · · · ∧ pk [Tk]→ h[T]) ∈ H

s.t. not (Z3Check (C[A])) do

4 do

5 s = Z3Model (C[A]);

6 ∀ i . 1 ≤ i ≤ k . si = {Z3Eval (ti j , s) | ti j ∈

7 Ti ≡ {ti 1, · · · , ti n }};

8 sh = {Z3Eval (tj , s) | tj ∈ T ≡ {t1, · · · , tn }};

9 if (∀ i . 1 ≤ i ≤ k . si ∈ s
+ (pi)) then

10 if h ∈ P then

11 s+ (h) = s+ (h) ∪ {sh };

12 s− (h) = ∅;

13 A (h) = true;

14 else

15 returnH is unsat with counterex sh
16 else

17 for i ← 1 to k do

18 if si < s
+ (pi) then

19 s− (pi) = s− (pi) ∪ {si };

20 A (pi) = Learn (s+ (pi), s
− (pi));

21 end

22 while not (Z3Check (C[A]));

23 end

24 returnH is sat with interpretation A

validates an interpreted formula C[A] by checking whether
the negation of the formula is unsat; Z3Model (C[A]) that
returns a model s explaining why Z3Check finds that C[A]
is invalid where a model in Z3 is a satisfiable assignment to
its input formula; Z3Eval (t , s) which evaluates a first-order
logic term t with a model s .
Algorithm. We present the CHC solver in Algorithm 3. It
takes a (recursive) CHC system H as input and outputs
either an interpretation A ofH if it is satisfiable or a coun-
terexample showing whyH is unsatisfiable.
In line 1, the initial interpretation A maps each of the

unknown predicate symbols to the logic predicate true. Line
2 initializes the sample set of all the unknown predicate
symbols in H to the empty set. From line 3 to line 23, the
algorithm iteratively picks a CHC C which cannot be proven
with the current interpretation A, and then resolves it via
the loop from line 4 to line 22 until C[A] becomes valid.

In line 5, for the invalid constraint C, we ask Z3 to return
a model s as a counterexample witnessing why C is unprov-
able with the current interpretation A, by calling Z3Model.
To refine the solution for each involved unknown predicate
symbol pi , we are, however, more interested in counterex-
amples for each pi (and h). To this end, in line 6 to 8, the
model s is converted to samples of each predicate symbol

occurring in C: p1, · · · ,pk and h if h ∈ P. Note that pi [Ti] is

an application pi (ti 1, · · · , ti n) of an n-ary predicate symbol
pi . The sample si of pi can be obtained by calling Z3Eval

with the model s on each first-order term ti j (1 ≤ j ≤ n). The
sample sh of h is derived from s analogously.

In line 9, if each sample si of pi can be observed in s+ (pi),
we fix that sh should be a positive sample for h as discussed
above. An example of such a case is depicted in Fig. 7 where
the head h needs to be weakened to include the new sample
sh (in this example h corresponds to p (x ,y) in CHC (7) of
the program in Fig. 5). In the algorithm, we do so in line
11 if h ∈ P. In line 12 we clear the negative samples of sh
so that we can set A (h) to the weakest solution true and
break the refinement loop for C from line 4 to line 22. This is
intentional - since h should be updated to accommodate the
new positive sample, we prefer to solve a CHC constraint
that uses h in its body before solving C that consumes h in
the head. Thus, Algorithm 3 can be thought as propagating
premises of a CHC constraint as conclusions for another CHC
constraint on which it topologically depends.

However, if h < P and is a known predicate (e.g. assertion
predicate), h cannot be weakened to accommodate sh . In fact,
this indicates H is not satisfiable. In line 15, Algorithm 3
terminates with the counterexample sh . Because positive
samples are derived from an unwinding ofH , we can con-
struct a derivation tree of positive samples from sh , showing
whyH is unsatisfiable.

If sh cannot be included as a new positive sample for h, in
line 17-21, we in turn add si to s

− (pi) as a tentative negative
sample if si does not show up in s+ (pi). In line 20, the solution
for such a pi is strengthened in A by observing its positive
and new negative samples, using the learning algorithm
presented in Algorithm 2, i.e., the body of C is strengthened.
Algorithm 3 iteratively strengthens the body of C until C[A]

is valid. It terminates when all CHCs are solved in line 24.
Note that in Algorithm 3, negative samples of a CHC sys-

tem H are not bounded by an unwinding of H . Instead,
they are key to the interplay of interpretation strengthen-
ing and weakening in the algorithm. The solutions of un-
known predicates in the body of an unproved CHC C are
strengthened until C is inductive in the inner loop. However,
across the outer loop iterations, the algorithm may include
a larger set of positive samples for these predicates, weak-
ening candidate invariants. Alternatively one could sample
negative instances bounded to an unwinding ofH . However,
in this case, as both positive and negative samples need to be
bounded, one must explicitly construct a series of unwind-
ings ofH as in existing CHC solvers [25]. We use the former
approach because we want to avoid explicit unwindings and
we have found that the interplay between strengthening and
weakening is effective in our experience.

Lemma 4.1. Algorithm 3 is sound.

The loop invariant that Algorithm 3 maintains is that, at
any time, for any unknown predicate symbol p: (i)A (p) is a

716

A Data-Driven CHC Solver PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

classifier that separates positive and negative samples of p
collected so far; (ii) positive examples of p form a forest of
derivation trees. Thus the algorithm is sound as any coun-
terexample to unsatisfiability is guaranteed to be valid. Due
to Lemma 3.1, Algorithm 3 can make progress in the sense
that it does not repeat a positive sample of p.
Although Algorithm 3 is sound, it may not terminate as

derivation trees of positive samples can grow unboundedly
and there is also no restriction on the size of potential nega-
tive samples. Nonetheless, our experimental results indicate
that the algorithm performs well in practice.

5 Implementation

We have implemented our CHC solver, LinearArbitrary,
in C++ as an LLVM pass in the SeaHorn verification frame-
work [15]. Our tool is available in [26]. Our implementation
supports C programs with multiple nested loops and re-
cursive functions. Notably, as discussed above, it does not
require seeded tests as input, automatically generating sam-
ples purely from counterexamples. Our tool is customized
to use any linear classification algorithms specified by the
user. The built-in linear classification algorithms include
Perceptron [9] and SVM [30]. We use the decision tree im-
plementation described in [11].

In certain cases the SVM implementation [4] we use only
outputs a "dummy classifier" 1 ≥ 0, i.e., all weight values
from w are reduced to zero. For example, consider a case in
which positive samples only include (x : 0,y : 0) and all its
neighbors are negative. The SVM implementation produces
a dummy classifier because, from all possible directions, it
cannot find a decision surface that stands out. To prevent
considering such classifiers, we intercept the result of the
call to LinearClassify in line 1 of Algorithm 1. If the result
is a dummy classifier, we call the SVM implementation again
taking either S+ and a random negative sample or a random
positive sample and S− as inputs depending on which case
such a simpler call can yield a non-dummy classifier.

6 Experiments

We conduct a thorough evaluation of our CHC solver and
compare it with several state-of-the-art CHC solvers [16,
17, 19, 25] and learning-based verifiers [11, 27, 29] using a
large set of benchmarks including test suites used by such
previous approaches [11, 29] and several categories of non-
trivial programs in the SV-COMP benchmarks [39]. In this
paper, we report results that only use the SVM library given
in [4] as the implementation of LinearClassify called by
Algorithm 1.

Learning Feature Predicates. Our CHC solver uses ma-
chine learning algorithms to infer feature predicates as op-
posed to PIE [29] that enumerates a hypothesis space in a
syntax-guided manner. Fig. 8(a) compares the performance
of the two approaches on a test suite of 82 programs used to

evaluate [29],6 in terms of total inference (learning) and ver-
ification time. The points under the diagonal line y = x are
benchmarks for which our tool discovers a verified solution
more quickly than PIE. The points on the line y = TO or x =
TO indicate a timeout.7 Note that solution time is roughly
an order of magnitude faster using LinearArbitrary.

We characterize two of the programs on which PIE times-
out below. #C, #P, #V and #S denote the number of CHCs,
unknown predicates, variables, and samples, resp. As each
interpretation is in DNF format (recall that a learned invari-
ant is a disjunction of all paths to positive leaves in a decision
tree), A shows the number of conjunctions of each disjunc-
tion in the most complex invariant, separated by commas.

#C #P #V #S #A T

31.c 11 5 49 281 8, 7 14s

33.c 18 6 101 662 5 13s

These programs containmultiple nested loops with nondeter-
ministic behavior leading to non-trivial CHCs. For example,
the CHCs in 31.c contain 11 constraints over 5 unknown
predicates, and the solution requires a disjunctive structure,
necessitating a non-trivial search space navigation to dis-
cover such invariants using a syntax-guided approach.

Low-Dimensional Learning. When samples are not lin-
early separable, LinearArbitrary learns a Boolean com-
bination of several linear classifiers to separate them. On
the other end of the spectrum, DIG [27] projects samples
into a high-dimensional space and learns conjunctive nonlin-
ear classifiers driven by predefined template equations, but
with limited support for disjunctive invariants. We compare
the two approaches in Fig. 8(b) using benchmarks adapted
from [29] for which linear invariants suffice. We characterize
two of the programs on which DIG times-out:

#C #P #V #S #A T

04.c 8 4 19 27 1, 1 0.4s

10.c 9 4 42 22 7, 8 0.4s

Although these programs require a relatively small num-
ber of constraints and predicates, they require disjunctive
invariants to satisfy the verification oracle, which cannot
be found by DIG from polynomial equation templates. We
note, however, that our tool currently cannot find nonlinear
polynomial invariants discoverable by DIG, an extension we
leave for our future work.

Comparison with Existing CHC Solvers. In Fig. 8(c), we
present a comparison of our CHC solver with Spacer [19],
a state-of-the-art CHC solver that extends GPDR [17] with
under-approximate summaries of unknown predicates. Our
test suite includes 381 C programs obtained and adapted
from the loop-∗ and recursive-∗ categories of SV-COMP [39],
additional complicated loop programs from our related work,
e.g. [8, 14, 29]. All the benchmarks are available in [26].

6Note that all graphs in the section are in log-scale.
7The timeout parameter was set to 180 seconds.

717

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA He Zhu, Stephen Magill, and Suresh Jagannathan

(a) Learning vs Enumeration (b) Learning vs Template (c) Learning vs PDR (d) Learning vs Interpolation

Figure 8. Verification time - evaluation and comparison.

In general, Spacer is able to generate a solution faster
than our technique, when it terminates. However, on this
benchmark suite, it was only able to verify 303 of the 381
programs, as opposed to the 368 programs we were able to
generate a solution for.

We also compare our tool with another two CHC solvers,
GPDR [17] and Duality [24, 25], using the same timeout
parameter. Similar to Spacer, these two solvers also ran faster
on the benchmarks that they terminated on but verified less
CHC systems than LinearArbitrary. The result, in terms
of the number of verified benchmarks, is summarized in the
table below:

#Total #GPDR #Spacer #Duality #LinearArbitrary

381 300 303 309 368

Finally, to quantify the significance of DT learning in the
verification pipeline, we ran all of the above experiments
again, but disabled the use of DT learning in the learning
procedure. The convergence rate of this version decreased
significantly because it is possible that Algorithm 1 produces
a low-quality classifier as the example in Sec. 2.2 shows. In
this setting, most of the benchmarks could not be verified
within the timeout range.

SV-COMP Programs. Since a large subset of our bench-
marks come from SV-COMP [39], we compare our CHC
solver with UAutomizer [16], an interpolation-based pro-
gram verifier that won the SV-COMP’17 competition. Fig. 8(d)
depicts the comparison using 135 benchmarks in the loop-lit,
loop-invgen and recursive-∗ categories of SV-COMP [39]. Our
solver was able to verify 126 of the total 135 benchmarks,
compared to UAutomizer’s 111. In the table below we char-
acterize some of the programs that UAutomizer times-out
on that were solvable using LinearArbitrary.

#C #P #V #S #A T

Prime 21 10 99 261 11,13,15,12,14,15 18s

EvenOdd 8 4 31 541 4,6,6,6,6 105s

recHanoi3 12 6 22 9 4 0.4s

Fib2calls 12 6 53 630 2,8,8,12,9,10,7,4 168s

For example, program Prime verifies that ∀f1, f2,n. (f1 >
1 ∧ f2 > 1 ∧mult (f1, f2) = n) ⇒ ¬isPrime (n), i.e., n is not
prime in the case. The generated CHCs contain 21 constraints

over 10 unknown predicate symbols, and 99 variables, re-
quiring 261 samples (from SMT calls) that could nonetheless
be verified in 18 seconds using our toolchain. The complex
structure of the program, however, makes the interpolation
queries generated by UAutomizer costly, resulting in a time-
out. EvenOdd and Fib2calls are complex because they have
nested recursions, with EvenOdd requiring reasoning over
mod operations not expressible in the Polyhedra domain.
We study the scalability of our CHC solver using sev-

eral large SV-COMP benchmarks taken from the NTDriver,
Product-lines, Psyco and Systemc categories.8 Results in terms
of the number of verified benchmarks are given below for the
644 programs we were able to verify within the time bound,
out of the 679 total programs considered. As a comparison,
UAutomizer was able to solve 403 of these programs.

NTDriver Product Psyco Systemc

Total (#10) (#597) (#10) (#62)

UAutomizer 7 357 8 31

LinearArbitrary 9 589 6 40

We characterize some of these sample programs below (#L
denotes the number of lines of a program). Many of these
programs, although large, have disjunctive invariants that
are easy to learn; for example łparportž although sizable
at 10KLOC, required only 65 samples, and was able to be
verified in 13 seconds.

#L #C #P #V #S #A T

sfifo 309 32 10 292 926 12,12,13 350s

acclrm 842 8 4 8266 26 2, 7, 7 15s

elevator 3405 57 16 880 817 18 18s

parport 10012 275 59 4201 65 1,2 13s

7 Related Work

Machine Learning Based Invariant Generation. Some
machine learning-based approaches learn over a fixed space
of invariants chosen in advance either by bounding the struc-
ture of discovered formulae, or restricting the search space
to some finite sub-lattice of an abstract domain. For example,

8 We used these benchmarks because they can be verified without encoding

heap properties, functionality our tool currently does not support. The

timeout parameter was relaxed to 1000s for these large programs.

718

A Data-Driven CHC Solver PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

given invariant templates, randomized searches such as ran-
dom walks are used in [35] to find a valid configuration of
template parameters to fit samples; constraint and equation
solving are applied in [10, 27, 36, 40] to iterate over Boolean
structures and/or coefficient ranges used within templates;
and max-plus algebra is used in [28] to find a restricted form
of disjunctive invariants. As the search space is constrained,
such approaches can find expressive invariants beyond the
Polyhedra domain such as polynomial invariants.

Other approaches can learn invariants in the form of arbi-
trary Boolean combinations of linear inequalities but have
to restrict themselves to a limited abstract domain such as
the Octagon domain. For example, a greedy set cover al-
gorithm is used in [37] and a decision tree learner is ap-
plied in [3, 11, 20, 33]. The ICE learning framework [3, 11],
although strongly convergent, needs a set of implication
counterexamples [11], which require a nontrivial effort to
redevelop existing machine learning algorithms. Other than
one recent extension [3], the ICE framework cannot deal
with non-linear Horn clauses such as CHC (7) in Sec. 2.3,
which are important to model recursive programs. Such a
CHC has more than one unknown predicate that are related
in its body and its counterexample does not follow the form
of implication samples required by [11].

To search from a more generous abstract domain, syntax-
guided invariant synthesis is applied in [12, 29] and has the
potential to cover invariants over various domains, such as
the domain of the Z3 string theory, which are currently not
implemented in LinearArbitrary. However, the search pro-
cedure in [29] is based on enumeration and is less effective
than our machine-learning-driven approach in the infinite
Polyhedra domain. SVM classification is used in [21, 38]
but the techniques are not suitable to find invariants that
have arbitrary Boolean structure even if they exist in the
theory of linear arithmetic. Consequently, we found that
these algorithms produced overfitted feature predicates on
our benchmarks and thus often failed verification.
In contrast to these efforts, our approach uses machine

learning to discover arbitrarily shaped invariants from the
Polyhedra domain, as well as in related and somewhat richer
domains (e.g., mod operations).
CHC Solvers. Many advanced CHC solvers for different
classes of Constrained Horn Clauses (e.g. for loop programs
only or for recursive programs in general) have been de-
veloped in recent years. These techniques are invariably
designed to satisfy a bounded safety criterion - given a safety
property φ and a bound, determine whether all unwindings
of a CHC system under the bound satisfyφ. The bound is iter-
atively increased until the proof of bounded safety becomes
inductive independent of the bound.

Some CHC solvers [1, 13, 16, 23ś25, 32] explicitly unwind
a CHC systemH . These techniques are based on a combi-
nation of Bounded Model Checking [5] and Craig Interpola-
tion [22], attempting to solveH by generating and solving a

series of bounded unwindings ofH . Such acyclic unwindings
can be solved by applying an interpolating SMT solver to
counterexamples to over-approximate unknown predicates.
Other solvers implicitly unwind a CHC system. For exam-
ple, GPDR [17] follows the approach of IC3 [2] by solving
Bounded Model Checking incrementally without unrolling
a CHC system. It is a bidirectional search that composes the
forward image calculation of the solution of an unknown
predicate with guidance from suspected counterexamples.
Spacer [19] simultaneouslymaintains the overapproximation
and underapproximation of an unknown predicate symbol
for a bounded safety proof. The overapproximation can block
spurious counterexample while the use of underapproxima-
tion effectively avoids inlining the analysis.

Our solver is in line with the aforementioned approaches
by generating positive samples from implicit unwindings of
a CHC system. It relies on lightweight machine learning al-
gorithms to generalize bounded safety as opposed to the use
of interpolating SMT solvers, thereby shifting the burden of
invariant discovery to a generic machine learning toolchain.

8 Future Work and Conclusions

Our tool LinearArbitrary currently takes CHCs encoded
using linear arithmetic but our approach is sufficiently gen-
eral so that it can be extended to support richer domains as
long as Z3 can provide sound counterexamples (supplying
samples for Algorithm 3). For example, to search nonlinear
invariants, like DIG [27], we could add monomials over pro-
gram variables up to a fixed degree as additional features to
Algorithm 1. We could also include uninterpreted functions
(e.g., tree height) as features, provided that such functions
are encoded in CHCs. By additionally supplying reachabil-
ity predicates quantified over data structure nodes [40], we
should be able to verify universally quantified data structure
properties. Such extensions are topics for future work.

In this paper, we present a new learning-based algorithm
that can verify recursive programs within an unbounded
search space of invariants. The key idea is to apply a ma-
chine learning tool chain that can discover invariants with
arbitrary Boolean combinations drawn from the Polyhedra
domain. Efficiency and accuracy are achieved by incorpo-
rating techniques to combat over- and under-fitting, and
leveraging a CEGAR approach to automatically sample CHC
systems. Experimental results demonstrate that our solver
complements existing CHC solvers and outperforms state-
of-the-art learning based invariant inference techniques.

Acknowledgments

We thank our shepherd Rahul Sharma and the anonymous
reviewers for their comments and suggestions. The third
author was funded in part by the National Science Founda-
tion under Grant No. CCF-SHF 1717741 and the Air Force
Research Lab under Grant No. FA8750-17-1-0006.

719

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA He Zhu, Stephen Magill, and Suresh Jagannathan

References
[1] Aws Albarghouthi, Arie Gurfinkel, and Marsha Chechik. 2012. Whale:

An Interpolation-based Algorithm for Inter-procedural Verification. In

Proceedings of the 13th International Conference on Verification, Model

Checking, and Abstract Interpretation (VMCAI’12). Springer-Verlag,

Berlin, Heidelberg, 39ś55.

[2] Aaron R. Bradley. 2011. SAT-based Model CheckingWithout Unrolling.

In Proceedings of the 12th International Conference on Verification, Model

Checking, and Abstract Interpretation (VMCAI’11). Springer-Verlag,

Berlin, Heidelberg, 70ś87.

[3] Adrien Champion, Tomoya Chiba, Naoki Kobayashi, and Ryosuke

Sato. 2018. ICE-based Refinement Type Discovery for Higher-Order

Functional Programs. In Proceedings of the Theory and Practice of Soft-

ware, 24th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS’18). Springer-Verlag New

York, Inc., New York, NY, USA.

[4] Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: A Library for

Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2, 3, Article

27 (May 2011), 27 pages.

[5] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. 2001.

Bounded Model Checking Using Satisfiability Solving. Form. Methods

Syst. Des. 19, 1 (July 2001), 7ś34.

[6] Benjamin Cosman and Ranjit Jhala. 2017. Local Refinement Typing.

Proc. ACM Program. Lang. 1, ICFP, Article 26 (Aug. 2017), 27 pages.

[7] Leonardo De Moura and Nikolaj Bjùrner. 2008. Z3: An Efficient SMT

Solver. In Proceedings of the Theory and Practice of Software, 14th Inter-

national Conference on Tools and Algorithms for the Construction and

Analysis of Systems (TACAS’08). Springer-Verlag, Berlin, Heidelberg,

337ś340.

[8] Isil Dillig, Thomas Dillig, Boyang Li, and Ken McMillan. 2013. Induc-

tive Invariant Generation via Abductive Inference. In Proceedings of

the 2013 ACM SIGPLAN International Conference on Object Oriented Pro-

gramming Systems Languages & Applications (OOPSLA ’13). ACM,

New York, NY, USA, 443ś456.

[9] Yoav Freund and Robert E. Schapire. 1999. Large Margin Classification

Using the Perceptron Algorithm. Mach. Learn. 37, 3 (Dec. 1999), 277ś

296.

[10] Pranav Garg, Christof Löding, P. Madhusudan, and Daniel Neider.

2014. ICE: A Robust Learning Framework for learning Invariants. In

Proceedings of the 26th International Conference on Computer Aided

Verification - Volume 8559. Springer-Verlag New York, Inc., New York,

NY, USA, 69ś87.

[11] Pranav Garg, Daniel Neider, P. Madhusudan, and Dan Roth. 2016.

Learning Invariants Using Decision Trees and Implication Counterex-

amples. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL ’16). ACM,

New York, NY, USA, 499ś512.

[12] Timon Gehr, Dimitar Dimitrov, and Martin T. Vechev. 2015. Learning

Commutativity Specifications. In Computer Aided Verification - 27th

International Conference, CAV 2015, San Francisco, CA, USA, Proceedings,

Part I. Springer-Verlag New York, Inc., New York, NY, USA, 307ś323.

[13] Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, and Andrey

Rybalchenko. 2012. Synthesizing Software Verifiers from Proof Rules.

In Proceedings of the 33rd ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI ’12). ACM, New York, NY,

USA, 405ś416.

[14] Ashutosh Gupta and Andrey Rybalchenko. 2009. InvGen: An Efficient

Invariant Generator. In Proceedings of the 21st International Confer-

ence on Computer Aided Verification (CAV ’09). Springer-Verlag, Berlin,

Heidelberg, 634ś640.

[15] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A.

Navas. 2015. The SeaHorn Verification Framework. In Computer Aided

Verification - 27th International Conference, CAV 2015, San Francisco,

CA, USA, Proceedings, Part I. Springer-Verlag New York, Inc., New York,

NY, USA, 343ś361.

[16] Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. 2010.

Nested Interpolants. In Proceedings of the 37th Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL

’10). ACM, New York, NY, USA, 471ś482.

[17] Kryštof Hoder and Nikolaj Bjùrner. 2012. Generalized Property Di-

rected Reachability. In Proceedings of the 15th International Conference

on Theory and Applications of Satisfiability Testing (SAT’12). Springer-

Verlag, Berlin, Heidelberg, 157ś171.

[18] Temesghen Kahsai, Philipp Rümmer, Huascar Sanchez, and Martin

Schäf. 2016. JayHorn: A Framework for Verifying Java programs. In

Computer Aided Verification - 28th International Conference, CAV 2016,

Toronto, ON, Canada, Proceedings, Part I. Springer-Verlag New York,

Inc., New York, NY, USA, 352ś358.

[19] Anvesh Komuravelli, Arie Gurfinkel, and Sagar Chaki. 2014. SMT-

Based Model Checking for Recursive Programs. In Proceedings of the

26th International Conference on Computer Aided Verification - Volume

8559. Springer-Verlag New York, Inc., New York, NY, USA, 17ś34.

[20] Siddharth Krishna, Christian Puhrsch, and Thomas Wies. 2015. Learn-

ing Invariants using Decision Trees. http://cs.nyu.edu/~siddharth/

invariants_dt.pdf.

[21] Jiaying Li, Jun Sun, Li Li, Quang Loc Le, and Shang-Wei Lin. 2017.

Automatic Loop-invariant Generation and Refinement Through Se-

lective Sampling. In Proceedings of the 32Nd IEEE/ACM International

Conference on Automated Software Engineering (ASE 2017). IEEE Press,

Piscataway, NJ, USA, 782ś792.

[22] Kenneth L. McMillan. 2003. Interpolation and SAT-BasedModel Check-

ing. In Computer Aided Verification, 15th International Conference, CAV

2003, Boulder, CO, USA, Proceedings. Springer-Verlag, Berlin, Heidel-

berg, 1ś13.

[23] Kenneth L. McMillan. 2006. Lazy Abstraction with Interpolants. In

Proceedings of the 18th International Conference on Computer Aided

Verification (CAV’06). Springer-Verlag, Berlin, Heidelberg, 123ś136.

[24] Kenneth L. Mcmillan. 2014. Lazy Annotation Revisited. In Proceedings

of the 26th International Conference on Computer Aided Verification

- Volume 8559. Springer-Verlag New York, Inc., New York, NY, USA,

243ś259.

[25] K. L. McMillan and A. Rybalchenko. 2013. Computing Relational

Fixed Points Using Interpolation. https://www.microsoft.com/en-us/

research/wp-content/uploads/2016/02/MSR-TR-2013-6.pdf.

[26] LinearArbitrary. 2018. https://github.com/GaloisInc/

LinearArbitrary-SeaHorn/.

[27] ThanhVu Nguyen, Timos Antonopoulos, Andrew Ruef, and Michael

Hicks. 2017. Counterexample-guided Approach to Finding Numerical

Invariants. In Proceedings of the 2017 11th Joint Meeting on Foundations

of Software Engineering (ESEC/FSE 2017). ACM, New York, NY, USA,

605ś615.

[28] ThanhVu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie

Forrest. 2014. Using Dynamic Analysis to Generate Disjunctive Invari-

ants. In Proceedings of the 36th International Conference on Software

Engineering (ICSE 2014). ACM, New York, NY, USA, 608ś619.

[29] Saswat Padhi, Rahul Sharma, and Todd Millstein. 2016. Data-driven

Precondition Inference with Learned Features. In Proceedings of the

37th ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI ’16). ACM, New York, NY, USA, 42ś56.

[30] John C. Platt. 1999. Advances in Kernel Methods. MIT Press, Cam-

bridge, MA, USA, Chapter Fast Training of Support Vector Machines

Using Sequential Minimal Optimization, 185ś208.

[31] J. Ross Quinlan. 1993. C4.5: Programs for Machine Learning. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA.

[32] Philipp Rümmer, Hossein Hojjat, and Viktor Kuncak. 2013. Disjunc-

tive Interpolants for Horn-clause Verification. In Proceedings of the

25th International Conference on Computer Aided Verification (CAV’13).

Springer-Verlag, Berlin, Heidelberg, 347ś363.

720

http://cs.nyu.edu/~siddharth/invariants_dt.pdf
http://cs.nyu.edu/~siddharth/invariants_dt.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/MSR-TR-2013-6.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/MSR-TR-2013-6.pdf
https://github.com/GaloisInc/LinearArbitrary-SeaHorn/
https://github.com/GaloisInc/LinearArbitrary-SeaHorn/

A Data-Driven CHC Solver PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

[33] Sriram Sankaranarayanan, Swarat Chaudhuri, Franjo Ivančić, and

Aarti Gupta. 2008. Dynamic Inference of Likely Data Preconditions

over Predicates by Tree Learning. In Proceedings of the 2008 Interna-

tional Symposium on Software Testing and Analysis (ISSTA ’08). ACM,

New York, NY, USA, 295ś306.

[34] C. E. Shannon. 2001. A Mathematical Theory of Communication.

SIGMOBILE Mob. Comput. Commun. Rev. 5, 1 (Jan. 2001), 3ś55.

[35] Rahul Sharma and Alex Aiken. 2014. From Invariant Checking to

Invariant Inference Using Randomized Search. In Proceedings of the

26th International Conference on Computer Aided Verification - Volume

8559. Springer-Verlag New York, Inc., New York, NY, USA, 88ś105.

[36] Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, Percy

Liang, and Aditya V. Nori. 2013. A Data Driven Approach for Alge-

braic Loop Invariants. In Proceedings of the 22Nd European Conference

on Programming Languages and Systems (ESOP’13). Springer-Verlag,

Berlin, Heidelberg, 574ś592.

[37] Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, and

Aditya V. Nori. 2013. Verification as Learning Geometric Concepts. In

Static Analysis - 20th International Symposium, SAS 2013, Seattle, WA,

USA, Proceedings. Springer-Verlag, Berlin, Heidelberg, 388ś411.

[38] Rahul Sharma, Aditya V. Nori, and Alex Aiken. 2012. Interpolants As

Classifiers. In Proceedings of the 24th International Conference on Com-

puter Aided Verification (CAV’12). Springer-Verlag, Berlin, Heidelberg,

71ś87.

[39] SV-COMP. 2017. http://sv-comp.sosy-lab.org/2017/.

[40] He Zhu, Gustavo Petri, and Suresh Jagannathan. 2016. Automati-

cally Learning Shape Specifications. In Proceedings of the 37th ACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation (PLDI ’16). ACM, New York, NY, USA, 491ś507.

721

http://sv-comp.sosy-lab.org/2017/

	Abstract
	1 Introduction
	1.1 Main Contributions

	2 Overview
	2.1 Learning Arbitrarily-Shaped Invariants
	2.2 A Layered Machine-Learning Toolchain
	2.3 Counterexample Guided CHC Sampling

	3 Learning Procedure
	3.1 Background: Linear Classification
	3.2 LinearArbitrary
	3.3 Machine Learning Tool Chain

	4 Verification Procedure
	4.1 Constrained Horn Clauses
	4.2 Data-Driven CHC Solving

	5 Implementation
	6 Experiments
	7 Related Work
	8 Future Work and Conclusions
	Acknowledgments
	References

