
Automatically Learning Shape Specifications

He Zhu
Purdue University, USA

zhu103@purdue.edu

Gustavo Petri
Universit Paris Diderot – Paris 7
gpetri@liafa.univ-paris-diderot.fr

Suresh Jagannathan
Purdue Univeristy, USA
suresh@cs.purdue.edu

Abstract
This paper presents a novel automated procedure for discov-
ering expressive shape specifications for sophisticated func-
tional data structures. Our approach extracts potential shape
predicates based on the definition of constructors of arbi-
trary user-defined inductive data types, and combines these
predicates within an expressive first-order specification lan-
guage using a lightweight data-driven learning procedure.
Notably, this technique requires no programmer annotations,
and is equipped with a type-based decision procedure to ver-
ify the correctness of discovered specifications. Experimen-
tal results indicate that our implementation is both efficient
and effective, capable of automatically synthesizing sophis-
ticated shape specifications over a range of complex data
types, going well beyond the scope of existing solutions.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification-Correctness proofs,
Formal methods; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs

1. Introduction
Understanding and discovering useful specifications in pro-
grams that manipulate sophisticated data structures are cen-
tral problems in program analysis and verification. A partic-
ularly challenging exercise for shape analyses, and the focus
of this paper, involves reasoning about ordering specifica-
tions that relate the shape of a data structure (e.g., the data
structure implements a binary tree) with the values contained
therein (e.g., the binary tree traverses its elements in-order).

To illustrate the issue, consider the elements function
shown in Fig. 1. The intended behavior of this function is to

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, contact the Owner/Author.
Request permissions from permissions@acm.org or Publications Dept., ACM, Inc.,
fax +1 (212) 869-0481. Copyright held by Owner/Author. Publication Rights Licensed
to ACM.

Copyright c© ACM [to be supplied]. . . $15.00
DOI: http://dx.doi.org/10.1145/(to come)

type ’a list =
| Nil
| Cons ’a *

’a list

type ’a tree =
| Leaf
| Node ’a *

’a tree *
’a tree

// flat:’a tree -> ’a list
// -> ’a list
l e t rec flat accu t =
match t with
| Leaf -> accu
| Node (x, l, r) ->

flat(x::(flat accu r)) l

// elements:’a tree->’a list
l e t elements t = flat [] t

Figure 1: Tree flattening function.

flatten a binary tree into a list by calling the recursive func-
tion flat which uses an accumulator list for this purpose.
We depict the input-output behavior of elements with an
input tree t and output list ν in Fig. 2b.1 The meta-variable ν
in the figure represents the result of calling elements (i.e.,
in this case ν = elements t for the input tree rooted at node
t).2 While there are a number of specifications that we might
postulate about this function (e.g., the number of nodes in
the output list is the same as the number of nodes in the input
tree, or the values contained in the output list are the same
as the values contained in the input tree), a more accurate
and useful specification, that subsumes the others, is that the
in-order relation between the elements of the input tree cor-
responds exactly to the forward-order (i.e., occurs-before)
relation between the elements of the output list.

We are interested in automatically learning specifications
of this kind that express interesting ordering relations be-
tween the elements of a data structure, taking into account
properties of the structure’s shape, based solely on input-
output observations. While having such specifications has
obvious benefit for improved program documentation and
understanding, they are particularly useful in facilitating
modular verification tasks. For example, ordering specifi-
cations naturally serve as interface contracts between data
structure libraries and client code that can be subsequently
leveraged by expressive refinement type checkers [61].

Even for a function as simple as elements , however,
manually providing a specification that relates the val-
ues contained within the input tree and output list is non-

1 Ignore the non-solid arrows and their labels for the time being.
2 We preserve this convention throughout the paper.

ν 99K u the value u is reachable from the list ν
t 99K u the value u is reachable from the tree node t
ν : u → v the value u appears before the value v in list ν

t : u ↙ v
the value v occurs in the left subtree of
a node containing the value u in tree t

t : u ↘ v
the value v occurs in the right subtree of

a node containing the value u in tree t

t : u xv
there is a node in the tree t for which
u is contained in its left subtree and
v is contained in its right subtree.

(a) Atomic shape predicates for lists and binary trees.

4

1 3 5

2 6

t

t : 2 x5

t : 4 & 6

t : 4 . 1

7

741 2 3 5 6

t 99K 7

⌫

⌫ : 3 ! 6⌫ : 1 ! 3

⌫ 99K 5

t : 3 x7

4

1 3 5

2 6

t

t : 2 x5

t : 4 & 6

t : 4 . 1

7

741 2 3 5 6

t 99K 7

⌫

⌫ : 3 ! 6⌫ : 1 ! 3

⌫ 99K 5

t : 3 x7

(b) Pictorial example of atomic shape predicates.

Figure 2: Atomic shape predicates.

trivial [25, 28]. It is even less apparent how we might define
a data-driven inference procedure to automatically discover
and verify such properties. This is because any such pro-
cedure must consider the symbiotic interplay of three key
components, each of which is complex in its own right: (i)
a specification language that is both expressive enough to
describe properties relating the shape of a data structure and
the values that it contains (for example the in-order relation
mentioned above), yet which is nonetheless amenable as a
target for learning and specification synthesis; (ii) a learn-
ing algorithm that can perform this synthesis task, yielding
input-output specifications from the predicates drawn from
the specification language; and, (iii) an automated verifica-
tion procedure that enables formal verification of the imple-
mentation with respect to synthesized specifications learnt
from observations.
Specification language. Our approach directly leverages the
type definition of a data structure to enable generation of a
set of atomic predicates that state general ordering properties
about the values contained in the data structure with respect
to its shape, given that interesting properties of inductive
data structures are typically related to the way in which
constructors are composed.
Learning algorithm. Our technique algorithmically uses
these atomic predicates to postulate potentially complex
shape specifications, learnt exclusively from the input-output
behavior of functions that manipulate the data structure.

Notably, existing data-driven learning techniques are in-
effective in discovering such specifications. Template-based
mining techniques [12, 42, 53] require us to provide the
Boolean skeleton of these specifications a priori, which
we often do not know. Classification-based learning tech-
niques [15, 16, 51, 54, 70] search for specifications that rule
out so-called bad program states that represent violations of
programmer-supplied assertions, usually annotated as post-
conditions in source programs. The quality of searched spec-
ifications is thus limited by the quality of these annotations.
More importantly, because these approaches fail to discover
any useful information in the absence of annotated asser-

tions, they would be unable to discover any interesting spec-
ification for the assertion-free program given in Fig. 1.

We address these issues by presenting the first (to the best
of our knowledge) data-driven technique to automatically
discover expressive shape specifications, without assuming
any predefined templates, assertions or post-conditions, yet
which is nonetheless able to learn the strongest inductive in-
variant (Sec. 4.3) in the solution space from which specifi-
cations are drawn.
Verification procedure. Our algorithm automatically veri-
fies the correctness of these specifications in an expressive
refinement type system. Cognizant that a presumed speci-
fication ψ may only express an unsound approximation of
the correct hypothesis, our technique is progressive: i.e., pro-
vided that the solution space from which specifications are
drawn is sufficiently expressive, an unsound ψ serves as a
counterexample that can be used to generate additional tests,
eventually leading to the strongest inductive invariant in the
solution space.

Contributions. Thus, our key contributions are in the
development of a principled approach to generate useful
atomic predicates for inductive data types drawn from a rich
specification language, and a convergent learning algorithm
capable of inferring verifiable ordering specifications using
these predicates. Specifically, we:

1. Discover predicates for the expression of shape properties
and generate their inductive definitions from the type
definition of arbitrary user-defined algebraic data types.

2. Devise a data-driven learning technique to perform auto-
matic inference and synthesis of function specifications
using these predicates. Importantly, this learning strategy
assumes no programmer annotations in source programs.

3. Verify the soundness of discovered specifications leverag-
ing an expressive refinement type system equipped with
a decidable notion of subtyping.

4. Evaluate our ideas in a tool, DORDER, which we use to
synthesize and verify specifications on a large set of real-
istic and challenging functional data structure programs.

The remainder of the paper provides an overview of our
specification language (Sec. 2); explains the synthesis mech-
anism through a detailed example (Sec. 3); provides details
about type system, verification procedure, as well as sound-
ness and progress results (Sec. 4); and describes generaliza-
tions of the core technique, presents implementation results,
related work and conclusions (Secs. 5, 6, and 7).

2. Specification Language
The search space of our data-driven learning procedure in-
cludes shape properties defined in terms of atomic predicates
stating either the containment of a certain value in a data
structure, or relations establishing ordering between two ele-
ments found within the structure. These predicates define the
concept class from which specifications are generated [2].
We discuss the basic intuition for how these predicates are
extracted for the data types defined in our running example
in Fig. 1 below.

We first consider possible containment predicates for
trees. We are interested in knowing if a certain value u is
present in a tree t. By observing the type definition of ’a

tree in Fig. 1, we know that only the constructor Node

contains a value of type ’a as its first argument. Therefore
we can deduce that if u is present in t then either t = Node

(u, lt, rt), or t = Node (v , lt, rt) and u is contained within
lt or rt (with u 6= v). A similar argument can be made about
lists. Containment predicates like these are denoted with a
dashed horizontal arrow (ν 99K u and t 99K u) as shown in
the first two rows of Fig. 2a.

A more interesting predicate class is one that establishes
ordering relations between two elements of a data structure,
u and v . Recall that in the tree definition only Node con-
structors contain values. However, since Node contains two
inductively defined subtrees, there are several cases to con-
sider when establishing an ordering relation among values
found within a tree t. If we are interested in cases where the
value u appears “before” (according to a specified order) v ,
we could either have that: (i) the value v occurs in the first
(left) subtree from a tree node containing u, described by the
notation t : u ↙ v in Fig. 2, (ii) the value v occurs in the
second (right) subtree, described by the notation t : u ↘ v ,
(iii) or both values are in the tree, but u is found in a subtree
that is disjoint from the subtree where v occurs. Suppose
there exists a node whose first subtree contains u and whose
second subtree contains v . This is the last case of Fig. 2a, and
it is denoted as t : u xv . The symmetric cases are obvious,
and we do not describe them. Notice that in this description
we have exhausted all possible relations between any two
values in a tree. The same argument can be made for list ,
which renders either the forward-order if the value u comes
before v in a list l as l : u → v , or the backwards-order for
the symmetric case. Thus, our ordering predicates consider
all relevant applications of constructors in which u and v are
supplied as arguments.

list l = Nil l = Cons (u′, l′)

l 99K u false u = u′ ∨ l′ 99K u

l : u → v false (u = u′ ∧ l′ 99K v) ∨ l′ : u → v

tree t = Leaf t = Node (u′, tl, tr)

t 99K u false u = u′ ∨ tl 99K u ∨ tr 99K u

t : u ↙ v false
(u = u′ ∧ tl 99K v) ∨
tl : u ↙ v ∨ tr : u ↙ v

t : u ↘ v false
(u = u′ ∧ tr 99K v) ∨
tl : u ↘ v ∨ tr : u ↘ v

t : u xv false
(tl 99K u ∧ tr 99K v) ∨
tl : u xv ∨ tr : u xv

Table 1: Ordering and containment for list and tree.

The inductive definitions of the predicates obtained for
lists and trees are presented in Tab. 1. For lists, the contain-
ment predicate l 99K u recursively inspects each element of
a list l and holds only if u can be found in the list. The order-
ing predicate l : u → v relates a pair (u, v) to l if u appears
before v in l. Similar definitions are given for trees. For ex-
ample, the predicate t : u xv is satisfied only if the tree
t contains a subtree (including t itself) whose left subtree
contains u and right subtree contains v .

To enable verification using off-the-shelf SMT solvers,
our specification language disallows quantifier alternations
(specifications are in prenex normal form, with universal
quantification only permitted at the top-level), but nonethe-
less retains expressivity by allowing arbitrary Boolean com-
binations of the predicates. For example, we can specify
elements (Fig. 1) with the following two specifications:(

∀u, ν 99K u ⇐⇒ t 99K u
)

(
∀u v , ν : u → v ⇐⇒

 t : v ↙ u ∨
t : u xv ∨
t : u ↘ v

) (1)

where the free variables u, v of Fig. 2a are universally quan-
tified. In words, the specifications state that: (i) the values
contained in the input tree t and the output list ν are exactly
the same and (ii) for any two values u and v that appear in the
forward-order in the output list ν, they are in the in-order of
the input tree and vice versa. These specifications accurately
capture the intended behavior of the function.

The full power of our specification language is realized
in a practical extension (Sec. 5.2) that combines shape pred-
icates with relational data ordering constraints, which are
binary predicates, resulting in what we refer to as shape-
data properties. For example, the following specification
describes the characteristics of a binary search tree (BST),
such as the instantiation (tree t) given in Fig. 2b:(
∀u v , (t : u ↙ v ⇒ u > v) ∧ (t : u ↘ v ⇒ u < v)

)

We can refine the specification of elements when applied
to a BST to yield an accurate shape-data property that states
the output list must be sorted: (∀u v , ν : u → v ⇒ u < v).

Hypothesis Domain. Equipped with these inductive def-
initions, we can define the hypothesis domain of contain-
ment and ordering properties which we denote as Ω. Given a
function f , our hypothesis domain consists of a set of atomic
predicates which relate the inputs and outputs of f . Assume
that θ(f) is the set of function parameters and return values
for f . Moreover, assume that θD(f) is the subset of θ(f) that
includes all variables with data structure type (e.g., list or
tree) and θB(f) is the subset of θ(f) that includes all vari-
ables with base type (e.g., bool or type variables).

The set of containment and ordering atomic predicates
corresponding to a data structure variable d ∈ θD(f) in-
cluded in the hypothesis domain of f contains the following
predicates:

Ω(d) = {d 99K u, d 99K v} ∪
{d : u → v , d : v → u} typeof (d) = list{
d : u ↙ v , d : u ↘ v , d : u xv ,
d : v ↙ u, d : v ↘ u, d : v xu

}
typeof (d) = tree

The logical variables u and v are free here, and will be
universally quantified in the resulting specifications. For a
variable x ∈ θB(f) of a base type we define:

Ω(x) =


x typeof (x) = bool

{u = x, v = x} ∪
{d 99K x | d ∈ θD(f)}

otherwise

Finally, the hypothesis domain of a function f consists of the
atomic predicates described by the definition of Ω(f) below.

Ω(f) =
⋃

x∈θ(f)

Ω(x)

Specification Space. Assume that we denote with BF (Ω)
the smallest set of Boolean formulas containing all the
atomic predicates of Ω and closed by standard propositional
logic connectives. The specification space of a function f ,
denoted by Spec(Ω, f), is the set of input-output specifica-
tions derivable from BF (Ω(f)):

Spec(Ω, f) = {(∀u v , ξ) | ξ ∈ BF (Ω(f))}
The free variables u and v occurring in the predicates found
in ξ are universally quantified. Our construction guarantees
that the specifications in Spec(Ω, f) can be encoded within
the BSR (Bernays-Schönfinkel-Ramsey) first-order logic.

3. Specification Inference
Fig. 3 illustrates the design and implementation of our spec-
ification inference system. The input to our system is a data
structure program. To bootstrap the inference process, we
can use any advanced testing techniques for data structures.

Verification

Data Structure
Function : f

Atomic Predicate
Synthesis:

ΠI(f),ΠO(f)

ψ
√Specification

Synthesis : ψ

Sampling : Vf

Figure 3: Specification synthesis architecture.

For simplicity, we use a random testing approach based on
QUICKCHECK [8], which runs the program with a random
sequence of calls to the API (interface functions) of the data
structure. During this phase, we collect a set of inputs and
outputs for each data structure function f into a sample set
(which we generally denote with Vf). The bookkeeping of
inputs and outputs simply records the mappings of variables
to values, which in the case of inductive data structures uses
a trivial serialization.3

Our system analyzes the data type definitions in the pro-
gram and automatically generates a set of atomic predicates
(c.f. Sec. 2), defining the hypothesis domain for the learn-
ing phase. For each function f , we partition its hypothesis
domain Ω(f) into ΠI(Ω(f)): the predicates over input vari-
ables of f (e.g., t and accu for the flat function in Fig. 1),
and ΠO(Ω(f)): the predicates over the functions output (the
implicit variable ν). When the context is clear, we use ΠI(f)
or ΠI to abbreviate ΠI(Ω(f)). This convention also applies
to ΠO(f) and ΠO. The extraction of predicates is abstractly
depicted in the top left component of Fig. 3.

We then apply our learning algorithm to the samples in
Vf , learning input-output relations over the atomic predi-
cates of ΠI(f) and ΠO(f) that hold for all the samples.
We obtain a candidate specification ψ for f , which is then
fed into our verification system. In case verification fails,
we show in Sec. 4 that our technique can make progress to-
wards a valid specification for f by adding more tests sys-
tematically, provided that one such specification exists in the
specification space of f . We illustrate the entire process by
considering the verification of the flat function in Fig. 1.

3.1 Sampling
We first instrument the entry and exit points of functions to
collect their inputs and outputs during testing. We use V flat

to denote the set of samples collected during sampling for
flat . Intuitively, V flat represents a coarse underapproxi-
mation of flat ’s input and output behavior. Abstractly, we
regard a sample σ as a function that maps program variables
to concrete values in the case of base types, or a serialized
data structure in the case of inductive data types.

Tab. 2a presents a pictorial view of a sample resulting
from a call to flat . The sample manipulated by flat

contains the input variables t and accu, as well as the result

3 We assume the existence of generic serialization and deserialization func-
tions, with the obvious recursive structure on the definition of the types.

⌫

82

70

68 71

68 70 71 82 83 91

83 91t accu

? unreachable
node

(a) Vflat: input (t and accu), and output (ν) sampled
data structures from flat .

ΠI(flat)



Π0 ≡ t : u ↙ v Π1 ≡ t : u ↘ v Π2 ≡ t : u xv
Π3 ≡ t : v ↙ u Π4 ≡ t : v ↘ u Π5 ≡ t : v xu

Π6 ≡ t 99K u Π7 ≡ t 99K v
Π8 ≡ accu : u → v Π9 ≡ accu : v → u
Π10 ≡ accu 99K u Π11 ≡ accu 99K v

ΠO(flat) Π12 ≡ ν 99K u Π13 ≡ ν : u → v

(b) Hypothesis domain (Ω(flat)): ΠI(Ω(flat)) = {Π0, · · · ,Π11},
and ΠO(Ω(flat)) = {Π12,Π13}.

(u, v) Π0 Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12 Π13

S

(68, 70) 0 0 0 1 0 0 1 1 0 0 0 0 1 1
(83, 91) 0 0 0 0 0 0 0 0 1 0 1 1 1 1
(82, 83) 0 0 0 0 0 0 1 0 0 0 0 1 1 1
(68, 71) 0 0 1 0 0 0 1 1 0 0 0 0 1 1
(70, 71) 0 1 0 0 0 0 1 1 0 0 0 0 1 1

U

(91, 83) 0 0 0 0 0 0 0 0 0 1 1 1 1 0
(91, 70) 0 0 0 0 0 0 0 1 0 0 1 0 1 0
(71, 68) 0 0 0 0 0 1 1 1 0 0 0 0 1 0
(82, 70) 1 0 0 0 0 0 1 1 0 0 0 0 1 0
(71, 70) 0 0 0 0 1 0 1 1 0 0 0 0 1 0
(82, ⊥) 0 0 0 0 0 0 1 0 0 0 0 0 1 0
(⊥, 82) 0 0 0 0 0 0 0 1 0 0 0 0 0 0
(83, ⊥) 0 0 0 0 0 0 0 0 0 0 1 0 1 0
(⊥, 83) 0 0 0 0 0 0 0 0 0 0 0 1 0 0

(c) V b
flat is the evaluation of Vflat expressed in terms of the predicates of Tab. 2b.

Π1 Π2 Π3 Π6 Π8 Π11 Π13

S

0 0 1 1 0 0 1
0 0 0 0 1 1 1
0 0 0 1 0 1 1
0 1 0 1 0 0 1
1 0 0 1 0 0 1

U
0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0

Boolean Formula from Tab. 2c

Π13 ⇐⇒ Π3 ∨Π8 ∨ (Π6 ∧Π11) ∨Π2 ∨Π1

(d) Predicates selected for separation w.r.t. Π13.

Table 2: Learning shape specifications for the flat function in Fig. 1.

ν (i.e. ν = flat t accu). In the figure, t is a root node
with value 82, a link to a left subtree rooted at a node with
value 70, and no right subtree; accu is a two node list. In
the sample, the result of the evaluation of flat is a list in
which the in-order traversal of t is appended to accu.

Unreachables. While recording input/output pairs for runs
of the function allows us to learn how its arguments and re-
sult are manipulated, it is also important to establish that
data structures that are not used by the function cannot af-
fect its behavior. To express such facts, we establish a frame
property that delimits the behavior of the function f . The
property manifests through a synthetic value ⊥, which sym-
bolically represents an arbitrary value known to be unrelated
to the data structures manipulated by f . Our learning algo-
rithm considers the behavior of predicates in the hypothesis
domain with respect to this value. By stating atomic contain-
ment and ordering predicates in terms of ⊥, we ensure that
specifications inferred for f focus on values found in the data
structures directly manipulated by f , preventing those spec-
ifications from unsoundly approximating values unrelated to
the data structures manipulated by f .

Atomic Predicates. Given the atomic predicates in the hy-
pothesis domain Ω(flat) which are divided into ΠI and

ΠO as shown in Tab. 2b,4 we next relate observed samples
with these predicates. Tab. 2c (ignore the first column la-
beled with S and U for the moment) shows the result of eval-
uating the atomic predicates of Ω(flat) – which are es-
sentially recursive functions over the data structure – with
different instantiations for u and v derived from the sampled
input/output pairs.5 The variables u and v , which are always
universally quantified in the final specifications, range over
values observed in the sampled data structures as well as the
synthetic value ⊥. Importantly, since rows containing iden-
tical valuations for the predicates do not aid in learning, we
keep at most one row with a unique valuation, discarding
any repetitions. We denote the samples represented by this
table as V bflat , a Boolean abstraction (or abstract samples)
of V flat according to Ω(flat).

For instance, the first row considers the pair where the
variable u has the value 68, and the variable v has the value
70. The last four rows of Tab. 2c, containing pairs with the
synthetic value ⊥, and marked in blue, generalize observed
data structures, relating them to hypothetical elements⊥ not
accessible by the data structures of flat . Thus, the pair
(82,⊥) evaluates to true in Π6 because 82 is reachable in t;
all ordering predicates related to t where u = ⊥ or v = ⊥
4 ΠO is simplified by removing the symmetric cases for ease of exposition.
5 Entries are labeled 0 for false, and 1 for true.

Π1

Π2

Π3

Π8

Π6
Π11

Π4

ϕ

¬ϕ

Π5

V b
flat V b

flat

Π13

¬Π13

Π12

Figure 4: Learning a classifier ϕ w.r.t. Π13. The two large sets
V b

flat represent identical copies of the whole space of abstract
samples. Each dot represents a valuation of in Tab. 2c. Each set
marked with a predicate Π represents the samples that satisfy Π.
We omit some predicates not used in the final specification.

(i.e., Π0 − Π5) are false since there is no ordering relation
between 82 and a value unreachable from t (see Tab. 2a).

3.2 Learning Specifications
Fig. 4 depicts our specification learning algorithm, in which
the full set of observed abstracted samples V bflat are de-
picted twice. On the left hand side of the picture, we show
the subsets of samples that satisfy each predicate from Π0

to Π12.6 On the right hand side, we depict the separation of
V bflat according to Π13. The objective of our learning is to
obtain a classifier ϕ in terms of the input predicates of ΠI

(from Π0 to Π11) and Π12 which captures the same set of
samples that are included in the output predicate Π13. Once
we find one such classifier ϕ, we know that in all samples the
following predicate holds: Π13 ⇐⇒ ϕ. This predicate can
be considered a specification abstractly relating the function
inputs to its outputs, according to the predicate Π13.7

To synthesize this candidate specification by means of
the output predicate Π13, we split the samples in V bflat
according to whether the predicate Π13 holds in the sample
or not. In Tab. 2c we mark with S the samples Satisfying
Π13, and with U the samples for which Π13 is Unsatisfied.
Then, the goal of our learning algorithm is to produce a
classifier predicate over ΠI (from Π0 to Π11) and Π12 which
can separate the samples in S from the samples in U.

However, the potential search space for a candidate spec-
ification is often large, possibly exponential in the number
atomic predicates in the hypothesis domain. To circumvent
this problem, our technique is inspired by the observation
that a simple specification is more likely to generalize in the
program than a complex one [1, 22].

To synthesize a simple specification, a learning algorithm
should select a minimum subset of the predicates that can
achieve the separation. The details of the learning algorithm
are presented in Sec. 3.3, but we show the final selection in-

6 For perspicuity, the picture does not present an exact representation of the
sets shown in Tab. 2c; in particular some predicates not used in the final
specification are omitted.
7 A similar construction of the input-output relation according to the output
predicate Π12, which is also in ΠO , will be considered later.

l e t rec insert x t =
match t with
| Leaf -> T (x, Leaf, Leaf)
| Node (y, l, r) ->

i f x < y then Node (y, insert x l, r)
e l s e i f y < x then Node (y, l, insert x r)
e l s e t

Figure 5: Binary search tree insertion function.

formally in Tab. 2d: Π1, Π2, Π3, Π6, Π8 and Π11 constitute
a sufficient classifier. To compute a final candidate classi-
fier, we generate its truth table from Tab. 2d. The truth table
should accept all the samples in S from Tab. 2d and conser-
vatively reject every other sample. This step is conservative
because we only generalize the samples in U (the truth table
rejects more valuations than the ones sampled in Tab. 2d).
We omit this step in our example in Tab. 2.

Once this truth table is obtained for the selected predi-
cates, we apply standard logic minimization [39] techniques
to infer the Boolean structure of the classifier. The obtained
solution is shown in Tab. 2d, which in turn represents the fol-
lowing candidate specification by unfolding the definitions
of the predicates ΠI and ΠO:

(
∀u v , ν : u → v ⇐⇒

 t : v ↙ u ∨ accu : u → v
∨ (t 99K u ∧ accu 99K v)
∨ t : u xv ∨ t : u ↘ v

)
(2)

Notice we add quantifiers to bind u and v , which essentially
generalizes the specification to all other unseen samples.

To construct all salient input-output relations between ΠI

and ΠO in Tab. 2b, we enumerate the predicates in ΠO. In a
similar way, we use the other output predicate Π12 ≡ ν 99K
u to partition V bflat , learning the following specification:(

∀u, ν 99K u ⇐⇒ (t 99K u ∨ accu 99K u)
)

(3)

Verification. The conjunction of these two specifications
are subsequently encoded into our verification system as the
candidate specification for flat . We have implemented an
automatic verification algorithm (described in Sec. 4), which
can validate specifications of this kind.

Precision. The structure of Tab. 2c allowed us to find a
classifier separating S from U, and thus provided us with a
“⇐⇒ ” specification precisely relating ΠI with Π12 or Π13.
Unfortunately, but unsurprisingly, this is not always the case.

To see why, consider how we might infer a shape spec-
ification for the insert function of a binary search tree
(see Fig. 5), whose hypothesis domain is shown in Tab. 3.
As before, we proceed by executing the function, generat-
ing an abstract view of the function’s concrete samples of
V binsert shown in Tab. 4.

As we have seen earlier, we would use Π10 to partition
V binsert to establish a relation between the predicates in ΠI

and the predicates in ΠO of Tab. 3. If we consider the first
S sample in Tab. 4, we see that it is exactly the same as the

ΠI


Π0 ≡ t : u ↙ v Π1 ≡ t : u ↘ v Π2 ≡ t : u xv
Π3 ≡ t : v ↙ u Π4 ≡ t : v ↘ u Π5 ≡ t : v xu

Π6 ≡ t 99K u Π7 ≡ t 99K v
Π8 ≡ u = x Π9 ≡ v = x

ΠO Π10 ≡ ν : u ↙ v · · ·

Table 3: Hypothesis domain for the insert function.

Π0 Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10

S
0 0 0 0 0 0 1 0 0 1 1
1 0 0 0 0 0 1 1 0 0 1

U

0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 1 0 1 1 0 0 0
0 0 0 1 0 0 1 1 0 0 0
0 1 0 0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1 0 0 0
0 0 1 0 0 0 1 1 0 0 0

Table 4: Partition V b
insert evaluated from atomic predicates

in Tab. 3 using the predicate Π10.

first sample in U (except for the value of Π10), meaning that
no classifier can be generated from Tab. 4 to separate the
samples precisely according to Π10, since their intersection
is not empty. To see why this could occur, consider the
evaluation of

insert 3 (Node (Node (Leaf , 2, Leaf), 5, Leaf))

Here, the input tree rooted at 5 has a non-empty left subtree
rooted at 2. Based on the recursive definition of insert , 3
is inserted into the right subtree of 2 and is still in the left
subtree of 5. Thus, abstracting the input-output behavior of
insert with a pair of elements (u = 5 and v = 3) in the
sample would correspond to the first row of S in Tab. 4 while
the first row of U corresponds to an abstraction of a pair of
elements (u = 2 and v = 3). Clearly, the latter pair does not
satisfy Π10 while the former does.

To succeed in this case we need to relax the condition
of obtaining exact “ ⇐⇒ ” specifications by removing the
samples that coincide in S and U for Π10 from S in V binsert.
By doing so, upon inferring a classifier ϕ, we can conclude
that ϕ ⇒ Π10 is a likely specification for insert , since
the set S has been generalized. Conversely, if the coinciding
samples are removed from U, we can learn another classifier
ϕ′ and output a specification of the form Π10 ⇒ ϕ′.

Adopting this relaxation, our approach infers the follow-
ing specification for insert:(
∀u v , t : u ↙ v ⇒ ν : u ↙ v

)
∧(

∀u v , ν : u ↙ v ⇒
(

(t 99K u ∧ v = x) ∨
t : u ↙ v

))
which asserts that x is added only in the bottom layer of the
tree and the order of elements of the input tree is preserved
in the output tree.

Algorithm 1: Synthesize (f)

let Vf = test(f) in;
let V b

f = α(Vf ,Ω(f)) in;
let ξ = Learn (V b

f , ΠI(Ω(f)), ΠO(Ω(f))) in (∀ u v , ξ)

3.3 Formalization of Learning System
We now formalize the learning algorithm discussed in Sec. 3.2.
Given a function f and the hypothesis domain Ω (Sec. 2),
the problem of inferring an input-output specification for
f reduces to a search problem in the solution space of
Spec(Ω, f), driven by the samples of f .

For the remainder of the paper, we assume that a pro-
gram sample σ is a mapping that binds program variables to
values. These mappings are obtained from the log-file that
records the execution trace. To relate the hypothesis domain
Ω(f) to a set of samples Vf , we formally define a predicate-
abstraction [19] function α on a sample σ ∈ Vf as follows:

α(σ,Ω(f)) =
{
〈Π0(σ, u, v), · · · ,Πn(σ, u, v)〉

∣∣
u, v ∈ Val(σ) ∪ {⊥} and Π0, · · · ,Πn ∈ Ω(f)

}
where we assume that Val(σ) returns all values appearing in
data structures within σ. This definition is trivially extended
to a set of samples, for which we overload the notation as
α(Vf ,Ω(f)). As can be seen in the definition above, we con-
sider the symbolic value⊥ (unreachable from f c.f. Sec. 3.1)
when sampling the quantified variables u and v . The evalu-
ation of predicates in Ω(f) is extended to the abstract value
⊥ with the following set of equations:

(d 99K ⊥) = (d : uR⊥) = (d : ⊥R v) = 0 (x = ⊥) = ∗

for all R ∈ {↙,↘, x→}, u, v ∈ Val(σ) and x ∈ θB(f).
Notice that by the semantics of⊥, we do not need to consider
the data structure d ∈ θD(f) in the equations above. In
the first and the second cases, since ⊥ is assumed to be
unrelated to d we can safely deduce that the predicate must
evaluate to 0. In the final case, any valuation of the predicate
is possible, since we do not know the value of⊥; in that case,
the evaluation results in ∗ representing either 0 or 1.

Algorithm 1 defines the main synthesis procedure. The
first step is to obtain a set of samples Vf for the function f
as described in the previous section. These samples are then
evaluated according to Ω(f) using the abstraction function
α (deriving V bf). For any valuation with a predicate Πj

resulting in a value ∗ the full vector is duplicated to consider
both possible valuations of Πj .

We then call the Learn algorithm (Algorithm 2 described
below) to synthesize a candidate specification for f , which
efficiently searches over the hypothesis domain of f , based
on the valuation V bf . The resulting specification is returned
after universally quantifying the free variables u and v .

Algorithm 2 takes as input a set of abstract samples
(Boolean vectors) V b, each of which is an assignment to

Algorithm 2: Learn (V b, ΠI , ΠO)∧
Π∈ΠO

(
let (V b

S , V b
U) = partition(Π,V b) in

let ΠC = ΠI ∪ΠO\{Π} in
if V b

S = ∅ then ¬Π else if V b
U = ∅ then Π

else (Π⇒ L(V b
S , (V

b
U\V b

S),ΠC)) ∧
(L((V b

S\V b
U), V b

U ,ΠC)⇒ Π)
)

the predicates in ΠI ∪ ΠO; it aims to learn relations ex-
pressed in propositional logic between the predicates in ΠI

and those in ΠO, using the structure of V b.
For each predicate Π ∈ ΠO, the algorithm partitions

V b into the abstract sat samples V bS which satisfy Π and
the unsat samples V bU which do not. Each abstract sample
σb ∈ V bS ∪ V bU is a Boolean vector over the predicates
ΠC ≡ ΠI ∪ΠO\{Π}.

If V bS is empty, we conclude that ¬Π is a candidate spec-
ification. The case when V bU is empty is symmetric. Other-
wise the learning algorithm L aims to produce a consistent
binary classifier ϕ with respect to V bS and V bU , that is, it must
satisfy the following requirement:(

∀σb ∈ V bS , ϕ(σb)
)

&
(
∀σb ∈ V bU , ¬ϕ(σb)

)
In other words, the result of L(V bS , V

b
U ,ΠC) should be an

interpolant [52] separating the sat samples (V bS) from the
unsat samples (V bU). If this classification algorithm succeeds,
Π ⇐⇒ L(V bS , V

b
U ,ΠC) captures the iff relation between Π

and the rest of the predicates in ΠI ∪ΠO (c.f. ΠC).
However, there is no guarantee that V bS and V bU must be

separable because there could be coinciding samples in V bS
and V bU . To address this possibility, we first remove coincid-
ing samples from V bU and infer Π ⇒ L(V bS , V

b
U\V bS ,ΠC),

and similarly remove them from V bS , resulting in the specifi-
cation L(V bS\V bU , V bU ,ΠC) ⇒ Π. Algorithm 2 does not list
the cases when V bU\V bS or V bS\V bU are empty. In such cases,
it is impossible for L to find a classifier, indicating that the
hypothesis domain is insufficient to find a corresponding re-
lation between Π and ΠC .

The implementation of L(V bS , V
b
U ,ΠC) reduces to the

well-studied problem of inferring a classifier separating
some samples V bS from the other samples V bU using predi-
cates form ΠC [54, 70]. To generalize, we attempt to find
the solution which uses the minimal number of predicates
from the hypothesis domain to classify the samples, as ex-
emplified in Tab. 2d. A number of off-the-shelf solvers can
be used to solve this constraint optimization problem [4, 57].
We employ the simple classifier described in [70] to imple-
ment L. Details are provided in our technical report [71].

4. Verification
This section presents the full verification procedure of our
technique, in the context of an idealized functional language.

x, y, d, f, ν ∈ Var c ∈ Constant ’a ∈ TyVar

v ∈ Val ::= c | x | λ x e | fix (fun f → λ x e)

e ∈ Exp ::= v | e0 ⊕ e1 | e v | C〈~x, ~d〉 | ∀’a · e | τ e
| if v then e0 else e1 | let x = e0 in e1

| match v with
∣∣
i
Ci〈~xi, ~di〉 → ei

ψ ∈ Specification Space(Ω)

P ∈ RType ::= {ν : B | ψ}
| {ν : D | ψ}
| x : P → P

B ∈ Base ::= ’a | int | bool
D ∈ DType ::= µt Σi Ci〈 ~’a, ~Di〉

τ ::=B |D | x : τ → τ

Figure 6: Syntax and Types.

4.1 Programming Language
Our language is a core-ML call-by-value variant of the λ-
calculus with support for polymorphism and refinement
types. Fig. 6 provides the syntax of our language in A-
normal form. Primitive operators are encoded with the meta-
operator ⊕ (where unary operators ignore the second ar-
gument). By convention, metavariables x and y represent
program variables, d represents a variable with an inductive
data type, and f represents a function. We denote by ~x a se-
quence of program variables, and similarly for the syntactic
categories of values, type variables (TyVar) and data types
(DType). We additionally provide the syntactic sugar form
let rec defined in terms of fix in the usual way.

At the type level, the language supports base types B and
user-defined inductive data types D. We use C to represent
data type constructors. To simplify the presentation, we only
consider polymorphic inductive data type definitions, and
require all type variables (’a) to appear before all the data
types in constructor expressions.

To formally verify program specifications, we encode
them into refinement types (RType) and employ a refine-
ment type system. A data type such as list is specified into
a refinement data type written {ν : list | ψ} where ψ (a
type refinement predicate) is a Boolean-valued expression.
This expression constraints the value of the term (defined as
the special variable ν) associated with the type. In this paper,
ψ is drawn from the specification space parameterized by a
hypothesis domain Ω. For expository purposes, we assume
Ω is instantiated to the domain defined in Sec. 2.

A refinement function type, written {x : Px → P},
constrains the argument x by the refinement type Px, and
produces a result whose type is specified by P . For example,
the specification (3) is encoded as the following type:

flat : accu : ’a list → t : ’a tree →{
ν : ’a list |

(
∀u, ν 99K u ⇐⇒ (t 99K u ∨ accu 99K u)

)}
The encoding of a candidate specification ψ obtained from
the learning algorithm (as in Sec. 3.3) into a refinement type
is given via the specType(Γf , f, ψ) definition below where
Γf is the type environment for the definition of f .

spec(B, ψ) = {ν : B | ψ}
spec(D, ψ) = {ν : D | ψ}

spec({x : τ1 → τ2}, ψ) = {x : τ1 → spec(τ2, ψ)}
specType(Γf , f, ψ) = spec(HM(Γf , f), ψ)

Here we assume the existence a Hindley-Milner type check-
ing oracle HM(Γf , f) which returns the unrefined type of a
function f . The auxiliary function spec pushes a specifica-
tion ψ of f into the result type of f because ψ is assumed to
capture the input-output relations of f .

4.2 Refinement Type System
An excerpt of our refinement type system is given in Fig. 7.
The type system is an extension of LIQUID TYPES [30, 50].
The basic typing judgment is of the form Γ ` e : P ,
where the typing environment Γ comprises type bindings
mapping program variables to refinement types (eg. x : P),
and refinement predicates constraining the variables bound
in Γ. The judgment means that under the environment Γ,
where the values in the bound variables are assumed to
satisfy the constraints contained in Γ, the expression e has
the refinement type P . To ease the exposition, we show
only the most salient rules, and in particular, we only show
instances of the general rules for the list data structure.8

The LIST MATCH rule stipulates that the entire expres-
sion has type P if the body of each of the match cases
has type P under the type environment extended with the
variables bound by the matched pattern, where the variables
bound assume types as defined by the constructor definition.
Moreover, we unfold the inductive definitions of the atomic
predicates from our hypothesis domain Ω in the environ-
ment, exploiting the fact that we know the structure of the
matched pattern (c.f. the case considered), thus allowing us
to use the variables bound in the matched pattern to instanti-
ate the variables of the recursive unfolding of the predicate.
For instance, in the Cons (x, xs) case, we use x and xs to
stand for the existential variables u′ and l′ in the definition
of Tab. 1. In summary, the guard predicates unfold the in-
ductive definitions introduced in Tab. 1.

The FUNCTION rule for recursive functions has a subtyp-
ing constraint associated with function abstractions:

Γ;x : Px ` Pe <: P

which establishes a constraint on the post-condition P of the
abstraction (in our case encoding the synthesized candidate
specifications) and it is required to be consistent with Pe
inferred for the function body using the type checking rules.

Finally, the rule SUBTYPE DTYPE checks whether a re-
finement type subtypes another by issuing an implication
verification condition over the refinement predicates of the
types involved. We use the notation 〈ψ〉 to denote the encod-
ing of refinement predicates ψ into terms of (decidable) BSR
logic. Our encoding translates the containment and ordering
predicates in ψ into uninterpreted relations.

8 The full type system provides general rules for arbitrary inductive data
types and is presented in our technical report [71].

The validity check in the premise of the rule SUBTYPE
DTYPE requires that the conjunction of the environment
formula 〈Γ〉 and 〈ψ1〉 implies 〈ψ2〉. Our encoding of 〈Γ〉 is
adapted from [30, 50]:

〈Γ〉 =
∧{

〈[x/ν]ψ〉
∣∣ (x : {τ |ψ}) ∈ Γ ∧ τ ∈ B ∪D

}
Recall that for a function f , the set of specifications allowed
in the specification space of containment and ordering for-
mulae are restricted to the form:

ψ ∈ {(∀u v , ξ) | ξ ∈ BF (Ω(f))}
The prenex normal form of the encoding of the premise in
the rule SUBTYPE DTYPE, Valid(〈Γ〉 ∧ 〈ψ1〉 ⇒ 〈ψ2〉,
therefore results in a ∃∗∀∗ quantifier prefix, with no func-
tions. As a result, subtype checking in our system is decid-
able and can be handled by a BSR solver [45].

The soundness of the refinement type system is defined
with respect to a reduction relation (↪→) that encodes the
language’s operational semantics, which is standard:

Theorem 1. If ∅ ` e : P , then either e is a value, or there
exists an e′ such that e ↪→ e′ and ∅ ` e′ : P .

The completeness of subtype checking reduces to the com-
pleteness of the underlying solver for inductive data types.
For lists or trees, we use additional axioms (as local theory
extensions [23]) based on first-order axiomatizations of tran-
sitive closures found in [31, 47] to bound the shape of list or
tree data structures in BSR models to ensure completeness.

4.3 Progress
For a candidate specification ψ inferred for the recursive
function f , our verification algorithm encodes ψ into the
refinement type of f and checks the following judgment

Γf ` fix (fun f → λx. e) : specType(Γf , f, ψ)

where Γf is the type environment under which f is de-
fined. We call a specification ψ which can be type-checked
as shown above an inductive invariant of f . We call ψ
the strongest inductive invariant of f in Spec(Ω, f), if for
any other inductive invariant ψf of f in Spec(Ω, f), Γf `
specType(Γf , f, ψ) <: specType(Γf , f, ψf) holds.

Importantly, our technique is progressive. This means that
it is always possible to add new tests to refine ψ whenever
ψ fails to be inductive, provided that one inductive invariant
exists in the specification space. We formalize the progres-
sive property in Theorem 2 under the assumption that the
underlying solver is complete (c.f. Sec. 4.2).

Theorem 2. Given a function f with a hypothesis do-
main Ω, and assuming that an inductive invariant of f
exists in Spec(Ω, f), if Γf 6` fix (fun f → λx. e) :
specType(Γf , f, ψ) where ψ = Synthesize(f), then there
exists a test input for f which leads to an unseen sample
σ of f , for which ψ(σ) does not hold; otherwise ψ is the
strongest inductive invariant of f in Spec(Ω, f).

LIST MATCH
Γ ` v : ’a list

[
Γ; (∀u v , v : u → v ⇐⇒ false ∧ ∀u, v 99K u ⇐⇒ false)

]
` e1 : P[

Γ; x : ’a; xs : ’a list ; (∀u, v 99K u ⇐⇒ (u = x ∨ xs 99K u)
∧ ∀u v , v : u → v ⇐⇒ ((u = x ∧ xs 99K v) ∨ xs : u → v))

]
` e2 : P

Γ `
(

match v with | Nil → e1 | Cons (x, xs)→ e2

)
: P

FUNCTION
Γ; f : {x : Px → P};x : Px ` e : Pe Γ;x : Px ` Pe <: P

Γ ` fix (fun f → λx. e) : {x : Px → P}

SUBTYPE DTYPE
Valid(〈Γ〉 ∧ 〈ψ1〉 ⇒ 〈ψ2〉)
Γ ` {D | ψ1} <: {D | ψ2}

Figure 7: Representative Typing Rules (list instantiation excerpt).

The theorem states that if an inductive invariant of f ex-
ists in the specification space parameterized by Ω (i.e., in
Spec(Ω, f)), then for any candidate specification ψ inferred
for f , either ψ is such an invariant (i.e., refinement type
checking succeeds) and is the strongest one in the specifica-
tion space, or there exists a test input which yields a concrete
program sample that invalidates ψ. We remark that finding
such a test input reduces to the well-studied problem of gen-
erating inputs for a program (function f) causing it to vi-
olate its specifications (safety property ψ). In our setting,
we can harness techniques such as [41], which provides a
relatively complete method for counterexample generation
in functional (data structure) programs, to derive test inputs
that violate ψ. In fact, because ψ is an input-output speci-
fication, we can directly reconstruct a new test input from
SMT models of subtype checking failures. In turn, running
the learning algorithm using the new program samples from
the new input, necessarily produces a more refined invariant.
This strategy, which can be implemented via a CEGIS (coun-
terexample guided inductive synthesis) loop [2, 55], ensures
that we can construct a finite number of test cases to guar-
antee convergence in the presumed specification space.

Details about the proof of Theorem 2 are provided in
our technical report [71]. The key idea is that our learning
algorithm ensures that ψ will never produce an invariant
that is true for all possible function input/output pairs, but
which is not inductive. This is a fundamental property, since
an invariant that is true which fails to be inductive (i.e., fails
type checking) cannot be invalidated by adding tests, since
the true invariant is guaranteed to be satisfied in every test
run. Without such a property, we might never find a typable
specification.

Consider the flat function in Fig. 1. If our only goal
was to use the smallest number of atomic predicates from
the hypothesis domain to construct a specification (satisfied
by all the samples of flat), we obtain the following result:(
∀u v , ν : u → v ⇒(

(t 99K u ∧ accu 99K v) ∨
(t 99K u ∧ t 99K v) ∨ (accu 99K u ∧ accu 99K v)

)
Compared to the specification (2), the above specification is
simpler (comprising fewer atomic predicates) and is always

true for the program above. But it is not an inductive invari-
ant, and cannot be verified using our type checking rules, es-
pecially the FUNCTION rule in Fig. 7. In particular, the fail-
ure stems from the predicate (t 99K u ∧ t 99K v) in the last
line of the specification, which is too over-approximative.
It does not specify an order between u and v if they both
come from t, which is necessary to discharge the subtype
constraint in the FUNCTION rule. Adding more tests would
not refine the resulting specification, since it is a true invari-
ant, albeit not an inductive one.

Our learning algorithm rules out this problem by guar-
anteeing that any candidate specification rejects a Boolean
assignment to the selected atomic predicates that are not ob-
served or inconsistent with the samples. This means that for
any two elements u, v from t, if u occurs before v in the out-
put list (ν), any learnt specification must ensure that u and
v respect the in-order property of t, since such a property
would be observed in every sample. More generally, for any
two elements u, v from t that do not respect the in-order of
t, they are classified into the U(nsat) samples of ν : u → v .

5. Extensions
Previous sections focused on list and tree data structures
to illustrate our technique. But, as we elaborate below,
DORDER supports complex functional data structures be-
yond lists and trees, including nested and composite struc-
tures.

We also discuss the extension of our algorithm to syn-
thesize specifications relating data constraints to values con-
tained within inductive data structures. Surprisingly, the ex-
pressive power of our learning procedure is not constrained
by the underlying hypothesis domain on which it is parame-
terized. In this sense, we claim that DORDER defines a gen-
eral framework to perform specification synthesis.

5.1 Extensions for Arbitrary User-defined Inductive
Data Structures

Our technique discovers “templates” of atomic-predicates
on a per-data-structure basis. We are able to discover cus-
tomized ordering predicates for nested datatypes (e.g., multiway-
trees), and composite datatypes that have significantly dif-

ferent structure than the predicates discovered for simple
trees and lists.

We first present the general definitions for ordering and
containment predicates. Given a data structure Ch〈~x, ~d〉,
the definition of the containment predicate (Ch〈~x, ~d〉 99K u)
simply states that value u can be found in the data structure,
and can be defined generically as follows:

Ch〈~x, ~d〉 99K u ≡
|~x|∨
i=1

xi = u ∨
|~d|∨
j=1

dj 99K u

where |~d| (resp. |~x|) denotes number of inductive data type
(resp. base type or type variable) valued arguments of the
constructor Ch. This definition, when applied to a list or tree
data type, renders the definitions shown in Sec. 2.

The definition of predicates that expose ordering relations
must take into account: (i) the constructor of the data struc-
ture, and (ii) which arguments of the constructor need to be
considered. All these arguments are provided in the generic
version of the order predicate; we express it using the no-
tation Ch〈~x, ~d〉 : u@n

C−→ v@m. This predicate asserts that,
in the data structure Ch〈~x, ~d〉, there exists an ordering rela-
tion between the values u and v in a substructure of the data
structure (including itself), constructed from the C construc-
tor, and u and v relate to the nth and mth arguments of C.
Formally, the predicate is satisfied in two cases: (a) if Ch is
C and the nth argument on the application of C is of a base
type, then it must equal u, otherwise, if it is of an induc-
tive data type, it must contain the value u, and similarly for
the mth argument, using value v ; (b) or is recursively estab-
lished in the substructures of d. The full recursive definition
is given below.

Ch〈~x, ~d〉 : u@n
C−→ v@m ≡

(|~d|∨
j=1

dj : u@n
C−→ v@m

)
∨

xn = u ∧ xm = v if Ch = C and n,m ≤ |~x|
xn = u ∧ dm−|~x| 99K v if Ch = C and n ≤ |~x|

dn−|~x| 99K u ∧ dm−|~x| 99K v if Ch = C
false otherwise

Recall that we assume that all variables in ~x are of base type,
and all the ones in ~d are of inductive data types in construc-
tors. Then, the first disjunct represents the recursive defini-
tion to the substructures of d, and the other cases correspond
to the description given above. Our approach considers all
constructors and their arguments of a data type definition
to export all such order predicates. With this generic defini-
tion we can de-sugar the definitions we provided in Sec. 2 as
shown in Tab. 5.

5.2 Specifications over Shapes and Data
We now enrich our inference algorithm to infer specifica-
tions relating data constraints (binary predicates) to values
contained within inductive data structures. We extend our
hypothesis domain to include binary data predicates, which

l : u → v l : u@1
Cons−−−→ v@2

t : u ↘ v t : u@1
Node−−−→ v@3

t : u ↙ v t : u@1
Node−−−→ v@2

t : u xv t : u@2
Node−−−→ v@3

Table 5: Definitions of shape predicates for list and tree.

Πdata

{
Π0 ≡ u ≤ v Π1 ≡ v ≤ u
Π2 ≡ u ≤ x Π3 ≡ x ≤ u

Πshape


Π4 ≡ t : u ↙ v Π5 ≡ t : u ↘ v Π6 ≡ t : u xv
Π7 ≡ ν : u ↙ v Π8 ≡ ν : u ↘ v Π9 ≡ ν : u xv

Π10 ≡ t 99K u Π11 ≡ ν 99K u

Table 6: Hypothesis domain for synthesizing shape and data
specifications of the insert function (Fig. 5).

are restricted to range over relational data ordering proper-
ties. Given a function f , the data domain (denoted by Πdata),
is constructed from the atomic predicates:

Πdata(f) = {u ≤ v , v ≤ u} ∪ {u ≤ x, x ≤ u | x ∈ θB(f)}

While the domain Πdata is small in the number of permis-
sible predicates, our experiments show that it is sufficient to
synthesize sophisticated properties such as BST, heap- and
list-sortedness, etc. Recall that we also admit the following
set of of predicates over the shapes of the data structures:

Πshape(f) ={d 99K u, d 99K v , d : u → v ,

d : u ↙ v , d : u ↘ v , d : u xv | d ∈ θD(f)}

where only well-typed predicates are considered (depend-
ing on the type of d). To learn shape-data properties, for a
given set of samples Vf of f we use Algorithm 2 to compute:

∀u v , Learn (V bf , Πdata(f), Πshape(f))

where V bf is evaluated from Vf using the α abstraction
function defined in Sec. 3.3 based on the predicates from
Πdata(f) ∪Πshape(f).

To discharge the candidate specifications produced by
this domain, following [24, 25], we encode binary predicates
in Πdata as ordering relations, and feed the resulting formula
to an SMT solver, which permits multiple relation symbols.

Consider the binary search tree insert function in Fig. 5.
Tab. 6 shows the atomic predicates in the hypothesis domain
that allows the inference of shape and data invariants.

With this extended hypothesis domain, we derive the fol-
lowing specification for the insert function:

(∀u v , t : u ↙ v ⇒ (¬u ≤ v)) ∧ (∀u v , t : u ↘ v ⇒ (¬v ≤ u))

essentially specifying that t is a BST, abbreviated as BST(t).
This specification over the input t, in conjunction with the
specification learnt over the output variable ν, makes it pos-
sible to infer the following refinement type for insert :

x : ’a→ t : {ν : ’a tree | BST(ν)} → {ν : ’a tree | BST(ν)}

5.3 Specifications over Numeric Properties
Another important class of data structure invariants uses
common measures of data types, which maps a data structure
to a numeric value, such as the length of a list or height of
a tree. Such measures are needed, for instance, to prove that
a binary tree respects a tree balance specification. DORDER
integrates measure definitions used in the source code into a
hypothesis domain that can be leveraged by the learning al-
gorithm to enrich data structure specifications. For instance,
consider the following code snippet adapted from a recursive
tree balance function bal l v r = ν from the OCaml set
library implementation.

l e t rec bal l v r =
l e t hl = ht l in
l e t hr = ht r in
i f hl > hr + 2 then ... /*call bal on l*/
e l s e i f hr > hl + 2 then ... /*call bal on r*/
e l s e Node (v, l, r)

Here, two input trees l and r with arbitrary heights and a
single value v are merged into one output balanced tree ν.
Observe the function uses a ht measure, which returns the
height of a tree. The definition of ht is standard and elided,
but would presumably be provided as a useful measure that
should appear in specifications.

To simplify the presentation, assume that a certain func-
tion f manipulates only one data structure, and furthermore
that a single measurem is associated with that data structure.
We consider the hypothesis domain for numeric properties
over the hypothesis domain which we denote by Ωnum:

Ωnum(f) =
{
±m(x)±m(y) ≤ l

∣∣ x, y ∈ θD(f) ∧
0 ≤ l ≤ C where C is the maximum constant in f

}
Predicates drawn from this domain allow us, for example, to
compare the height of different input subtrees or sublists or
compare the height of an input tree with an output tree, or
the length of an input list with the length of an output list. It
suffices to use Algorithm 2 to compute:

Learn(V bf ,ΠI(Ωnum(f)),ΠO(Ωnum(f)))

for synthesizing numeric input-output specifications for f
(without generating quantifiers) where V bf is evaluated from
a number of input-output samples of f using predicates from
Ωnum(f).

Because we allow integer constants in Ωnum(f), it is pos-
sible to synthesize specifications that are vacuous. For ex-
ample, if m(x) − m(y) ≤ l1 is chosen as an output predi-
cate in the learning algorithm, we may synthesize a formula
m(x)−m(y) ≤ l1 ⇒ m(x)−m(y) ≤ l2 where l1 ≤ l2; this
formula, while logically true, is semantically useless. We de-
tect such invariants using an SMT solver, and restart synthe-
sis, filteringm(x)−m(y) ≤ l2 out of the hypothesis domain.

Consider now how we might synthesize a specification
for the recursive-balance function. We show a subset of input

predicates ΠI from Ωnum(bal) for expository purposes:

ht l ≤ ht r, ht l ≤ ht r + 2, ht r ≤ ht l + 2, · · ·

Similarly the output predicates ΠO contains:

ht l ≤ ht ν, ht ν ≤ 1 + ht l, ht ν ≤ 1 + ht r, · · ·

By applying Learn(V bbal ,ΠI ,ΠO) where V bbal is evaluated
from a number of input-output samples of bal using predi-
cates from Ωnum(bal), our technique automatically synthe-
sizes the following specification:

ht l ≤ ht ν ∧ ht r ≤ ht ν ∧
ht r ≤ ht l ⇒ ht ν ≤ 1 + ht l ∧

¬(ht r ≤ ht l) ⇒ ht ν ≤ 1 + ht r ∧
¬(ht r ≤ ht l + 2) ⇒ 1 + ht r ≤ ht ν ∧

(ht l ≤ ht r + 2) ⇒ 1 + ht l ≤ ht ν

which precisely specifies that the height of the returned
tree is either max(ht l, ht r) or max(ht l, ht r) + 1 and
is always the latter when | ht l − ht r| ≤ 2. Handcrafting
this specification by the programmer is challenging. Yet,
the specification turns out to be key to proving that bal is
guaranteed to return a balanced tree.

6. Experiments
DORDER is an implementation of our learning procedure
and type-based verification technique.9 We use the Z3
SMT solver [10] to discharge our verification conditions.
DORDER takes as input an inductive data structure program,
written in OCaml, and produces as output the list of speci-
fications (as refinement types) for the functions in the pro-
gram.

Random Testing. While the progressive property of Theo-
rem 2 guarantees that the learning algorithm can be equipped
with a directed and automated test synthesis procedure, our
implementation simply uses a lightweight random testing
strategy based on QUICKCHECK [8]. Concretely, DORDER
synthesizes the specifications for a data structure program
using the test data obtained from executing the program by a
random sequence of method calls to the data structure’s in-
terface functions. In our experience, the length of such call
sequences can be relatively small; setting it to 100 suffices to
yield desired specifications for the benchmarks we consider.

Benchmarks. Our benchmarks (shown in Tab. 7) are clas-
sified into four groups: (a) Stack and Queue: implementa-
tions of Okasaki’s functional stack and queue. (b) List: a list
library, including list manipulating functions such as: delete,
filter, merge, reverse, etc.; a ListSet implementation of set
interface represented as lists; and, various classic list sort-
ing algorithms. (c) Heap: various classic heap implementa-
tions and two implementations, Heap1 and Heap2, searched

9 Our implementation and benchmarks are provided via the URL https:
//github.com/rowangithub/DOrder.

https://github.com/rowangithub/DOrder
https://github.com/rowangithub/DOrder

Program Loc H I LT T Inferred Spec
List Stack 29 64 8 1s 1s Ord

Lazy Queue 28 91 14 4s 4s Ord
List Lib 133 306 54 7s 10s Ord
List Set 51 96 50 11s 17s Ord, Set

Quicksort 19 49 25 1s 5s Ord, Sorted
Mergesort 30 32 11 1s 5s Ord, Sorted

Insertionsort 12 22 8 1s 1s Ord, Sorted
Selectionsort 22 32 11 1s 2s Ord, Sorted

Heap1 85 139 48 37s 133s Ord, Min, Heap
Heap2 77 70 23 5s 28s Ord, Min, Heap

Heapsort 37 81 28 9s 29s Ord, Sorted, Heap
Leftist Heap 43 106 32 12s 18s Ord, Min, Heap
Skew Heap 32 71 25 16s 22s Ord, Min, Heap
Splay Heap 58 98 44 9s 38s Ord, Min, BST

Pairing Heap 42 49 20 1s 7s Ord, Min, Heap
Binomial Heap 70 107 34 5s 26s Ord, Min, Heap

Treap 107 95 17 20s 39s Ord, BST
AVL Tree 176 127 39 27s 56s Ord, BST
Splay Tree 127 110 56 45s 170s Ord, BST
Braun Tree 75 111 42 19s 53s Ord, BST

Redblack Tree 228 377 104 101s 391s Ord, BST
OCaml Set 313 457 73 56s 134s Ord, BST, Min, Set
Proposition 58 94 8 2s 5s Ord

Randaccesslist 73 142 19 4s 7s Ord

Table 7: Experimental results on inferring shape specifications:
Loc describes program size, H is the number of atomic predicates in
the hypothesis domain of all the functions in a data structure. I is the
number of verified ordering specifications in terms of either input-
output or shape-data relations. T is the total time taken (learning
and verification), while LT is the time spent solely on learning
(including the time spent in sampling). Inferred Spec summarizes
the learnt and verified specifications by DORDER.

from GitHub. (d) Tree: various implementations of realistic
balanced tree data structures including Redblack trees with
support for both insertion and deletion, a library to convert
arbitrary Boolean formulae to NNF or CNF form (Proposi-
tion), a random access lists library based on trees (Randac-
cesslist), and the full implementation of OCaml’s Set library.

Results. On these programs, DORDER inferred the fol-
lowing specifications10: (a) Ord: specifications expressed us-
ing ordering and containment predicates. For instance, the
specification for a balanced tree insertion function ensures
that the output tree preserves the in-order of the input tree.
For a sorted heap merge function, DORDER discovers that
the parent-child relations of the input heap are preserved
in the output-heap. Similarly the Ord property inferred for
the Proposition benchmark ensures functional correctness:
“any logical relation (∧,∨) between two Boolean variables
in a given input Boolean formula is preserved in the out-
put formula after a CNF conversion”, (b) Set: verifies that
the structure implements a set interface, that is, the set op-

10 Our technical report [71] provides detailed case studies for several of
these benchmarks with more complex specifications discovered.

l e t rec merge h1 h2 =
match h1, h2 with
| (Leaf, h2) -> h2
| (h1, Leaf) -> h1
| (Node(k1, l1, r1), Node(k2,l2,r2)) ->

i f (k1<=k2) then Node(k1,(merge r1 h),l1)
e l s e Node(k2,(merge h1 r2),l2)

5

1

2

7

18

20 32

15

16

30 31

41

43 50

1

15

16

30 31

18

20 32

2

5 7

41

43 50

⌫

h1 h2

5

1

2

7

18

20 32

15

16

30 31

41

43 50

1

15

16

30 31

18

20 32

2

5 7

41

43 50

⌫

h1 h2
5

1

2

7

18

20 32

15

16

30 31

41

43 50

1

15

16

30 31

18

20 32

2

5 7

41

43 50

h1 h2

⌫

Figure 8: Skew Heap with input-output samples of merge .

erations: union , diff and intersect are semantically
correct using the containment and ordering hypothesis do-
main. For example, the specification for the diff (t1, t2)
function stipulates that diff returns a set whose elements
must come from t1 but must not be members of t2. The fol-
lowing properties are obtained using the shape-data domain:
(c) Sorted: the output list is sorted, (d) Min, the findmin

function returns the smallest element of a data structure,
(e) Heap, the output tree is heap-sorted, (f) BST, the output
tree is a binary search tree.

Redblack tree is the most challenging benchmark in Tab. 7
given the complexity of the delete operation. The benchmark
contains several complex balance functions that cooperate
together to reestablish the balance property of the tree after
a delete. The OCaml Set implementations also has a large
code base, but the invariants it maintains are simpler. Note
that most of the running time is spent in verification, and that
the learning algorithm is efficient in comparison.

Case study: Skew Heap. A skew heap structure is a self-
adjusting heap implemented as a binary tree. Many varieties
of balanced trees are specifically designed to achieve effi-
ciency by imposing tight balance constraints that must be
maintained during updates. By relaxing such tight balance
constraints, a skew heap provides better amortized running
times. In particular, the left subtree of a skew heap is usually
deeper than the right subtree, illustrated in Fig. 8.

Two conditions must be satisfied in a skew heap: (a) the
general heap sorted order must be enforced (b) every opera-
tion (add, remove min) on a skew heap must be done using a
special skew heap merge. An implementation of the merge

operation of skew heap is given in Fig. 8. This operation
merges two input skew heaps h1 and h2 into one output
skew heap ν.

DORDER inferred the following functional specifications
for the merge function from the samples in Fig. 8, reflecting
the functional behavior of merge :

(i) the output heap ν preserves the parent-child relations
of h1 and h2 ; e.g., as shown in Fig. 8, 16 is a child of
15 in h2 , and remains a child of 15 in ν, and

(ii) for any two nodes, one from h1 and the other from h2

(or vice-versa): they are either related by a left branch
of the final tree ν (ν : u ↙ v), e.g. 18 and 41 belong to
h1 and h2 respectively and they are related according
to left branches in the output heap ν; or they are in
different sub-branches (ν : u xv), e.g. 15 (in h2) and
2 (in h1) are located in different sub-branches of ν.
Importantly, they are not related over the right branch
(ν : u ↘ v).

The inferred and verified (partial) specification formalizes
(i) and (ii):

merge : h1 : ’a tree → h2 : ’a tree →
{
ν : ’a tree

∣∣(
∀u, ν 99K u ⇐⇒ (h1 99K u ∨ h2 99K u)

)
∧

(
∀u v , ν : u ↙ v ⇒


h1 : u ↙ v ∨ h1 : u ↘ v ∨
h2 : u ↙ v ∨ h2 : u ↘ v ∨
(h1 99K u ∧ h2 99K v) ∨
(h2 99K u ∧ h1 99K v)

) ∧
(
∀u v , ν : u ↘ v ⇒

(
h1 : u ↙ v ∨ h1 : u ↘ v ∨
h2 : u ↙ v ∨ h2 : u ↘ v

))
∧

(
∀u v , ν : u xv ⇒


h1 : u xv ∨ h1 : v xu ∨
h2 : u xv ∨ h2 : v xu ∨
(h1 99K u ∧ h2 99K v) ∨
(h2 99K u ∧ h1 99K v)

) }

The specification reflectes the fact that elements from h1

and those from h2 are only merged into the left subtree,
demonstrating the intuition that the left subtree is more com-
plex than the right subtree.

Numeric Data Structure Properties. As described earlier,
DORDER can also infer measure-based specifications. To as-
sess its effectiveness in this space, we considered bench-
marks evaluated in LIQUIDTYPES [30] and compare the
specifications discovered by DORDER with those inferred
by [30]. Our benchmark suites additionally include Bdd, a
binary decision diagram library, and Vec, a dynamic func-
tional array library.

To evaluate the quality of synthesized specifications, we
use them to verify known data structure properties such as:
Sz or Ht, functions used to alter the number of elements in
a list or tree, or the height of trees; Bal, a property on trees
that asserts they are recursively balanced (the definitions of
balance in different tree implementations varies); VOrder, a
binary decision diagram (BDD) maintains a variable order
property; Len, the access indices of vector operations are
bounded by vector length.

DORDER inferred and verified a number of measure
based specifications in these programs, reflected in column

Program Loc I LT T Properties LIQTYAN

AVL Tree 99 32 4s 14s Bal,Sz,Ht 9
Braun Tree 49 13 2s 4s Bal,Sz 3
Redblack 201 27 3s 10s Bal,Ht 9

OCaml Set 110 24 5s 10s Bal,Ht 10
Randaccesslist 102 15 1s 2s Sz, Bal 6

Bdd lib 144 22 2s 8s VOrder 14
Vec lib 211 56 46s 59s Bal,Len,Ht 39

Table 8: Experimental results on inferring numeric speci-
fications: the column interpretation is identical to Tab. 7.
Properties summarizes the properties that are verified by
DORDER. LIQTYAN is the number of annotations required
by LIQUIDTYPES in order to prove the properties, which are
now inferred by DORDER.

I in Tab. 8, obviating the need for user-supplied invariants.
The LIQUIDTYPES checker in contrast relies on the user to
manually annotate function specifications in order to help
verify these numeric properties.

Limitations. The expressivity of our approach is limited by
the need to ensure decidability. We cannot express and rea-
son about ordering specifications that require interdependent
shape and arithmetic constraints over data structure indices.
For example, given a function f (xs, low, high) that
returns only the set of elements from index low to high

of a list xs , our technique will not be able to find a valid
specification that discovers that the returned elements of f

precisely correspond to those indexed from low to high

in the input list; this is because of limitations in the theories
supported by the underlying BSR solver.

7. Related Work and Conclusions
Compared to earlier sampling-based approaches [49, 60, 65,
66] which learn invariants using existing abstract interpre-
tation transformers, our primary focus is a new specifica-
tion inference technique inspired by recent advances in data-
driven program analysis. These data-driven approaches can
be classified into two broad categories: (1) Tools such as
Daikon [12] and [18, 21, 42, 53, 69] infer invariants by sum-
marizing properties from test data, but the structure of the
constructed invariants is limited to a bounded number of
disjunctions, making them unlikely to discover patterns be-
tween relations like in-order or forward-order, because it is
not clear how syntax-derived templates could capture the se-
mantics of ordering relations implicit in the construction of
data structures; (2) Other tools learn unrestricted invariants
but either require user-annotated post-conditions [15, 16, 36,
51, 54, 70] (in order to rule out program states not seen in
normal executions) or non-commutativity conditions [17] to
drive the collection of “bad samples”. The quality of syn-
thesized invariants in these systems is limited by the pre-
cision and availability of such conditions. Morevoer, these
approaches learn invariants to prove given assertions, which

must separate all “good” from all “bad” samples. They are
not suitable for learning input-output specifications, because
(1) learning fails if a sample cannot be separated by any
classifier, even though a good specification might exist (e.g.
Tab. 4); and (2) they only find approximate classifiers, not
necessarily the strongest one needed to prove assertions. We
use classification-techniques in a novel way to discover the
strongest specification in a hypothesis-domain (Theorem 2).
Thus, DORDER is the first annotation-free learning tech-
nique that infers high-quality (c.f. strongest) inductive shape
specifications comprising unrestricted disjunctions, that can
be effectively applied on realistic and complex functional
data structures.

Our technique is closely related to [24, 25], which also
use BSR logic to prove functional specifications for linked
list structures, by relating the order of list elements and
defining ordering properties on the whole memory. In con-
trast, our technique infers fine-grained and inductive shape
predicates over concrete data structure instances. Shape
specifications in terms of user-defined ordering relations
are also considered in [28]. Because these systems are not
equipped with an inference mechanism, they require pro-
grammers to manually write down potentially complicated
and subtle program specifications. The idea of using rela-
tions to capture inductive properties of data structure pro-
grams has also been explored in [6, 27, 34, 35, 38, 67]. These
non-learning based techniques differ substantially from ours,
owing to the nature of pointer manipulations in their imper-
ative program model.

There exists a number of deductive verification tools for
data structure programs, which support reasoning of recur-
sive definitions over the set of elements in the heaplets of a
data structure. These systems require modular contracts to be
supplied with the developed code, using pre/post-conditions,
loop invariants and even proof lemmas [7, 9, 30, 31, 33, 37,
40, 43, 44, 46–48, 58, 59, 63, 68]. Our approach comple-
ments these tools with an inference procedure that can learn
specifications for fully automatic data structure verification.

Following the Houdini approach [13], the LIQUID TYPES
system [30, 61, 62] blends type inference for data structures
with predicate abstraction, and infers refinement types from
conjunctions of programmer-annotated predicates. To infer
more expressive invariants, [56] infers quantified invariants
for arrays and lists, limited to programmer-provided tem-
plates. To get rid of templates, automatic procedures, which
can infer the Boolean structure of candidate invariants, have
been proposed for linked list programs [14, 15, 26, 29]. They
either lack a notion of progress (c.f. Sec. 4.3) [14] or require
the programmer to provide nontrivial post-conditions [15,
26, 29]. Unlike other static synthesis techniques that per-
form shape analyses on the source code [3, 5, 11, 20, 32, 64],
DORDER discovers shape specifications entirely from tests.
Conclusion. This paper presents a new specification infer-
ence framework that integrates testing with a sound type-

based verification system to automatically synthesize and
verify shape specifications for arbitrary inductive data struc-
ture programs. Given an arbitrary user defined inductive data
structure program, our tool DORDER applies a systematic
analysis on the program’s data type definitions, and extracts
atomic predicates stating general ordering properties about
data structure values with respect to data structure shapes.
These predicates are then fed to an expressive learning al-
gorithm, which postulates potentially complex shape speci-
fications satisfying input-output behaviors of data structure
functions. The learning algorithm interacts with the verifi-
cation system to ensure discovery of the strongest inductive
invariant in the solution space.

Our experiments demonstrate that the approach is effec-
tive and efficient over a large class of real-world data struc-
ture programs. Using just a few number of randomly gener-
ated tests, DORDER can synthesize sophisticated and high
quality shape specifications for versatile data structure ma-
nipulating functions with reasonable cost.

Acknowledgement
We thank our shepherd Martin Vechev, Gowtham Kaki,
Tiark Rompf, Aditya Nori, and the anonymous reviewers
for their useful comments and suggestions. This work was
supported in part by the Center for Science of Information
(CSoI), an NSF Science and Technology Center, under grant
agreement CCF-0939370.

References
[1] A. Albarghouthi and K. L. McMillan. Beautiful Interpolants.

In CAV, 2013. doi: 10.1007/978-3-642-39799-8_
22.

[2] R. Alur, R. Bodı́k, E. Dallal, D. Fisman, P. Garg, G. Ju-
niwal, H. Kress-Gazit, P. Madhusudan, M. M. K. Martin,
M. Raghothaman, S. Saha, S. A. Seshia, R. Singh, A. Solar-
Lezama, E. Torlak, and A. Udupa. Syntax-Guided Synthe-
sis. In Dependable Software Systems Engineering, pages 1–
25, 2015. doi: 10.3233/978-1-61499-495-4-1.

[3] J. Berdine, B. Cook, and S. Ishtiaq. SLAYER: Memory Safety
for Systems-level Code. In CAV, 2011. doi: 10.1007/
978-3-642-22110-1_15.

[4] M. Bofill, M. Palahı́, J. Suy, and M. Villaret. Solv-
ing constraint satisfaction problems with SAT modulo the-
ories. Constraints, 17(3):273–303, 2012. doi: 10.1007/
s10601-012-9123-1.

[5] C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compo-
sitional Shape Analysis by Means of Bi-abduction. In POPL,
2009. doi: 10.1145/1480881.1480917.

[6] B.-Y. E. Chang and X. Rival. Relational Inductive Shape
Analysis. In POPL, 2008. doi: 10.1145/1328438.
1328469.

[7] A. Chlipala. Mostly-automated Verification of Low-level Pro-
grams in Computational Separation Logic. In PLDI, 2011.
doi: 10.1145/1993498.1993526.

http://dx.doi.org/10.1007/978-3-642-39799-8_22
http://dx.doi.org/10.1007/978-3-642-39799-8_22
http://dx.doi.org/10.3233/978-1-61499-495-4-1
http://dx.doi.org/10.1007/978-3-642-22110-1_15
http://dx.doi.org/10.1007/978-3-642-22110-1_15
http://dx.doi.org/10.1007/s10601-012-9123-1
http://dx.doi.org/10.1007/s10601-012-9123-1
http://dx.doi.org/10.1145/1480881.1480917
http://dx.doi.org/10.1145/1328438.1328469
http://dx.doi.org/10.1145/1328438.1328469
http://dx.doi.org/10.1145/1993498.1993526

[8] K. Claessen and J. Hughes. QuickCheck: A Lightweight Tool
for Random Testing of Haskell Programs. In ICFP, 2000.
doi: 10.1145/351240.351266.

[9] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach,
M. Moskal, T. Santen, W. Schulte, and S. Tobies. VCC: A
Practical System for Verifying Concurrent C. In TPHOLs,
2009. doi: 10.1007/978-3-642-03359-9_2.

[10] L. De Moura and N. Bjørner. Z3: An Efficient SMT Solver.
In TACAS, 2008. doi: 10.1007/978-3-540-78800-3_
24.

[11] I. Dillig, T. Dillig, A. Aiken, and M. Sagiv. Precise and
Compact Modular Procedure Summaries for Heap Manipu-
lating Programs. In PLDI, 2011. doi: 10.1145/1993498.
1993565.

[12] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao. The Daikon Sys-
tem for Dynamic Detection of Likely Invariants. Sci. Comput.
Program., 69(1-3):35–45, 2007. doi: 10.1016/j.scico.
2007.01.015.

[13] C. Flanagan and K. R. M. Leino. Houdini, an Annotation
Assistant for ESC/Java. In FME, 2001. doi: 10.1007/
3-540-45251-6_29.

[14] P. Garg, C. Löding, P. Madhusudan, and D. Neider. Learning
Universally Quantified Invariants of Linear Data Structures.
In CAV, 2013. doi: 10.1007/978-3-642-39799-8_
57.

[15] P. Garg, C. Löding, P. Madhusudan, and D. Neider. ICE: A
Robust Learning Framework for learning Invariants. In CAV,
2014. doi: 10.1007/978-3-319-08867-9_5.

[16] P. Garg, P. Madhusudan, D. Neider, and D. Roth. Learning In-
variants Using Decision Trees and Implication Counterexam-
ples. In POPL, 2016. doi: 10.1145/2837614.2837664.

[17] T. Gehr, D. Dimitrov, and M. Vechev. Learning Commu-
tativity Specifications. In CAV, 2015. doi: 10.1007/
978-3-319-21690-4_18.

[18] P. Godefroid and A. Taly. Automated Synthesis of Symbolic
Instruction Encodings from I/O Samples. In PLDI, 2012.
doi: 10.1145/2254064.2254116.

[19] S. Graf and H. Saı̈di. Construction of Abstract State
Graphs with PVS. In CAV, 1997. doi: 10.1007/
3-540-63166-6_10.

[20] B. Guo, N. Vachharajani, and D. I. August. Shape Analysis
with Inductive Recursion Synthesis. In PLDI, 2007. doi: 10.
1145/1250734.1250764.

[21] A. Gupta, R. Majumdar, and A. Rybalchenko. From
Tests to Proofs. In TACAS, 2009. doi: 10.1007/
978-3-642-00768-2_24.

[22] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan.
Abstractions from Proofs. In POPL, 2004. doi: 10.1145/
964001.964021.

[23] C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans. On
Local Reasoning in Verification. In TACAS, 2008. doi: 10.
1007/978-3-540-78800-3_19.

[24] S. Itzhaky, A. Banerjee, N. Immerman, A. Nanevski, and
M. Sagiv. Effectively-Propositional Reasoning About Reach-

ability in Linked Data Structures. In CAV, 2013. doi: 10.
1007/978-3-642-39799-8_53.

[25] S. Itzhaky, A. Banerjee, N. Immerman, O. Lahav,
A. Nanevski, and M. Sagiv. Modular Reasoning About
Heap Paths via Effectively Propositional Formulas. In POPL,
2014. doi: 10.1145/2535838.2535854.

[26] S. Itzhaky, N. Bjørner, T. W. Reps, M. Sagiv, and A. V. Thakur.
Property-Directed Shape Analysis. In CAV, 2014. doi: 10.
1007/978-3-319-08867-9_3.

[27] B. Jeannet, A. Loginov, T. Reps, and M. Sagiv. A Relational
Approach to Interprocedural Shape Analysis. ACM Trans.
Program. Lang. Syst., 32:5:1–5:52, 2010. doi: 10.1145/
1667048.1667050.

[28] G. Kaki and S. Jagannathan. A Relational Framework for
Higher-order Shape Analysis. In ICFP, 2014. doi: 10.
1145/2628136.2628159.

[29] A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky, and
S. Shoham. Property-Directed Inference of Universal Invari-
ants or Proving Their Absence. In CAV, 2015. doi: 10.
1007/978-3-319-21690-4_40.

[30] M. Kawaguchi, P. Rondon, and R. Jhala. Type-based Data
Structure Verification. In PLDI, 2009. doi: 10.1145/
1542476.1542510.

[31] S. Lahiri and S. Qadeer. Back to the Future: Revisiting Precise
Program Verification Using SMT Solvers. In POPL, 2008.
doi: 10.1145/1328438.1328461.

[32] Q. L. Le, C. Gherghina, S. Qin, and W.-N. Chin. Shape
Analysis via Second-Order Bi-Abduction. In CAV, 2014.
doi: 10.1007/978-3-319-08867-9_4.

[33] K. R. M. Leino. Dafny: An Automatic Program Verifier for
Functional Correctness. In LPAR, 2010. doi: 10.1007/
978-3-642-17511-4_20.

[34] T. Lev-Ami and S. Sagiv. TVLA: A System for Imple-
menting Static Analyses. In SAS, 2000. doi: 10.1007/
978-3-540-45099-3_15.

[35] T. Lev-Ami, N. Immerman, T. Reps, M. Sagiv, S. Srivas-
tava, and G. Yorsh. Simulating Reachability Using First-order
Logic with Applications to Verification of Linked Data Struc-
tures. In CADE, 2005. doi: 10.1007/11532231_8.

[36] A. Loginov, T. Reps, and M. Sagiv. Abstraction Refinement
via Inductive Learning. In CAV, 2005. doi: 10.1007/
11513988_50.

[37] P. Madhusudan, X. Qiu, and A. Stefanescu. Recursive Proofs
for Inductive Tree Data-structures. In POPL, 2012. doi: 10.
1145/2103656.2103673.

[38] R. Manevich, E. Yahav, G. Ramalingam, and M. Sa-
giv. Predicate Abstraction and Canonical Abstraction for
Singly-linked Lists. In VMCAI, 2005. doi: 10.1007/
978-3-540-30579-8_13.

[39] E. J. McCluskey. Minimization of Boolean Functions. Bell
system technical Journal, 35(6):1417–1444, 1956.

[40] H. H. Nguyen, C. David, S. Qin, and W.-N. Chin. Au-
tomated Verification of Shape and Size Properties via Sep-
aration Logic. In VMCAI, 2007. doi: 10.1007/
978-3-540-69738-1_18.

http://dx.doi.org/10.1145/351240.351266
http://dx.doi.org/10.1007/978-3-642-03359-9_2
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1145/1993498.1993565
http://dx.doi.org/10.1145/1993498.1993565
http://dx.doi.org/10.1016/j.scico.2007.01.015
http://dx.doi.org/10.1016/j.scico.2007.01.015
http://dx.doi.org/10.1007/3-540-45251-6_29
http://dx.doi.org/10.1007/3-540-45251-6_29
http://dx.doi.org/10.1007/978-3-642-39799-8_57
http://dx.doi.org/10.1007/978-3-642-39799-8_57
http://dx.doi.org/10.1007/978-3-319-08867-9_5
http://dx.doi.org/10.1145/2837614.2837664
http://dx.doi.org/10.1007/978-3-319-21690-4_18
http://dx.doi.org/10.1007/978-3-319-21690-4_18
http://dx.doi.org/10.1145/2254064.2254116
http://dx.doi.org/10.1007/3-540-63166-6_10
http://dx.doi.org/10.1007/3-540-63166-6_10
http://dx.doi.org/10.1145/1250734.1250764
http://dx.doi.org/10.1145/1250734.1250764
http://dx.doi.org/10.1007/978-3-642-00768-2_24
http://dx.doi.org/10.1007/978-3-642-00768-2_24
http://dx.doi.org/10.1145/964001.964021
http://dx.doi.org/10.1145/964001.964021
http://dx.doi.org/10.1007/978-3-540-78800-3_19
http://dx.doi.org/10.1007/978-3-540-78800-3_19
http://dx.doi.org/10.1007/978-3-642-39799-8_53
http://dx.doi.org/10.1007/978-3-642-39799-8_53
http://dx.doi.org/10.1145/2535838.2535854
http://dx.doi.org/10.1007/978-3-319-08867-9_3
http://dx.doi.org/10.1007/978-3-319-08867-9_3
http://dx.doi.org/10.1145/1667048.1667050
http://dx.doi.org/10.1145/1667048.1667050
http://dx.doi.org/10.1145/2628136.2628159
http://dx.doi.org/10.1145/2628136.2628159
http://dx.doi.org/10.1007/978-3-319-21690-4_40
http://dx.doi.org/10.1007/978-3-319-21690-4_40
http://dx.doi.org/10.1145/1542476.1542510
http://dx.doi.org/10.1145/1542476.1542510
http://dx.doi.org/10.1145/1328438.1328461
http://dx.doi.org/10.1007/978-3-319-08867-9_4
http://dx.doi.org/10.1007/978-3-642-17511-4_20
http://dx.doi.org/10.1007/978-3-642-17511-4_20
http://dx.doi.org/10.1007/978-3-540-45099-3_15
http://dx.doi.org/10.1007/978-3-540-45099-3_15
http://dx.doi.org/10.1007/11532231_8
http://dx.doi.org/10.1007/11513988_50
http://dx.doi.org/10.1007/11513988_50
http://dx.doi.org/10.1145/2103656.2103673
http://dx.doi.org/10.1145/2103656.2103673
http://dx.doi.org/10.1007/978-3-540-30579-8_13
http://dx.doi.org/10.1007/978-3-540-30579-8_13
http://dx.doi.org/10.1007/978-3-540-69738-1_18
http://dx.doi.org/10.1007/978-3-540-69738-1_18

[41] P. C. Nguyen and D. V. Horn. Relatively Complete Coun-
terexamples for Higher-Order Programs. In PLDI, 2015.
doi: 10.1145/2737924.2737971.

[42] T. Nguyen, D. Kapur, W. Weimer, and S. Forrest. Using
Dynamic Analysis to Generate Disjunctive Invariants. In
ICSE, 2014. doi: 10.1145/2568225.2568275.

[43] E. Pek, X. Qiu, and P. Madhusudan. Natural Proofs for
Data Structure Manipulation in C Using Separation Logic. In
PLDI, 2014. doi: 10.1145/2594291.2594325.

[44] P. Philippaerts, J. T. Mühlberg, W. Penninckx, J. Smans, B. Ja-
cobs, and F. Piessens. Software Verification with VeriFast:
Industrial Case Studies. Sci. Comput. Program., 82:77–97,
2014. doi: 10.1016/j.scico.2013.01.006.

[45] R. Piskac, L. Moura, and N. Bjørner. Deciding Effec-
tively Propositional Logic Using DPLL and Substitution Sets.
J. Autom. Reason., 44:401–424, 2010. doi: 10.1007/
s10817-009-9161-6.

[46] R. Piskac, T. Wies, and D. Zufferey. GRASShopper - Com-
plete Heap Verification with Mixed Specifications. In TACAS,
2014. doi: 10.1007/978-3-642-54862-8_9.

[47] R. Piskac, T. Wies, and D. Zufferey. Automating Separation
Logic with Trees and Data. In CAV, 2014. doi: 10.1007/
978-3-319-08867-9_47.

[48] X. Qiu, P. Garg, A. Ştefănescu, and P. Madhusudan. Natural
Proofs for Structure, Data, and Separation. In PLDI, 2013.
doi: 10.1145/2462156.2462169.

[49] T. Reps, M. Sagiv, and G. Yorsh. Symbolic Implementation
of the Best Transformer. In VMCAI, 2004. doi: 10.1007/
978-3-540-24622-0_21.

[50] P. M. Rondon, M. Kawaguci, and R. Jhala. Liquid Types. In
PLDI, 2008. doi: 10.1145/1375581.1375602.

[51] R. Sharma and A. Aiken. From Invariant Checking to In-
variant Inference Using Randomized Search. In CAV, 2014.
doi: 10.1007/978-3-319-08867-9_6.

[52] R. Sharma, A. V. Nori, and A. Aiken. Interpolants
As Classifiers. In CAV, 2012. doi: 10.1007/
978-3-642-31424-7_11.

[53] R. Sharma, S. Gupta, B. Hariharan, A. Aiken, P. Liang,
and A. V. Nori. A Data Driven Approach for Alge-
braic Loop Invariants. In ESOP, 2013. doi: 10.1007/
978-3-642-37036-6_31.

[54] R. Sharma, S. Gupta, B. Hariharan, A. Aiken, and A. Nori.
Verification as Learning Geometric Concepts. In SAS, 2013.
doi: 10.1007/978-3-642-38856-9_21.

[55] A. Solar-Lezama. Program Synthesis by Sketching. PhD
thesis, University of California at Berkeley, 2008.

[56] S. Srivastava and S. Gulwani. Program Verification Us-
ing Templates over Predicate Abstraction. In PLDI, 2009.
doi: 10.1145/1542476.1542501.

[57] M. Stojadinović and F. Marić. meSAT: multiple encodings of
CSP to SAT. Constraints, 19(4):380–403, 2014. doi: 10.
1007/s10601-014-9165-7.

[58] P. Suter, M. Dotta, and V. Kuncak. Decision Procedures for
Algebraic Data Types with Abstractions. In POPL, 2010.
doi: 10.1145/1706299.1706325.

[59] P. Suter, A. S. Köksal, and V. Kuncak. Satisfiability Mod-
ulo Recursive Programs. In SAS, 2011. doi: 10.1007/
978-3-642-23702-7_23.

[60] A. Thakur, A. Lal, J. Lim, and T. Reps. PostHat and All That:
Automating Abstract Interpretation. Electron. Notes Theor.
Comput. Sci., 311:15–32, 2015. doi: 10.1016/j.entcs.
2015.02.003.

[61] N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. Peyton-
Jones. Refinement Types for Haskell. In ICFP, 2014.
doi: 10.1145/2628136.2628161.

[62] N. Vazou, A. Bakst, and R. Jhala. Bounded Refinement Types.
In ICFP, 2015. doi: 10.1145/2784731.2784745.

[63] H. Xi and F. Pfenning. Dependent Types in Practical Program-
ming. In POPL, 1999. doi: 10.1145/292540.292560.

[64] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook,
D. Distefano, and P. O’Hearn. Scalable Shape Analy-
sis for Systems Code. In CAV, 2008. doi: 10.1007/
978-3-540-70545-1_36.

[65] G. Yorsh, T. Reps, and M. Sagiv. Symbolically Computing
Most-precise Abstract Operations for Shape Analysis. In
TACAS, 2004. doi: 10.1007/978-3-540-24730-2_
39.

[66] G. Yorsh, T. Ball, and M. Sagiv. Testing, Abstraction, The-
orem Proving: Better Together! In ISSTA, 2006. doi: 10.
1145/1146238.1146255.

[67] G. Yorsh, A. Rabinovich, M. Sagiv, A. Meyer, and A. Bouaj-
jani. A Logic of Reachable Patterns in Linked Data-structures.
In FOSSACS, 2006. doi: 10.1007/11690634_7.

[68] K. Zee, V. Kuncak, and M. Rinard. Full Functional Verifi-
cation of Linked Data Structures. In PLDI, 2008. doi: 10.
1145/1375581.1375624.

[69] H. Zhu, A. Nori, and S. Jagannathan. Dependent Array Type
Inference from Tests. In VMCAI, 2014. doi: 10.1007/
978-3-662-46081-8_23.

[70] H. Zhu, A. Nori, and S. Jagannathan. Learning Refine-
ment Types. In ICFP, 2015. doi: 10.1145/2784731.
2784766.

[71] H. Zhu, G. Petri, and S. Jagannathan. Learning re-
finement types. Technical report, Purdue Univser-
sity, 2015. https://www.cs.purdue.edu/homes/
zhu103/pubs/draft.pdf.

http://dx.doi.org/10.1145/2737924.2737971
http://dx.doi.org/10.1145/2568225.2568275
http://dx.doi.org/10.1145/2594291.2594325
http://dx.doi.org/10.1016/j.scico.2013.01.006
http://dx.doi.org/10.1007/s10817-009-9161-6
http://dx.doi.org/10.1007/s10817-009-9161-6
http://dx.doi.org/10.1007/978-3-642-54862-8_9
http://dx.doi.org/10.1007/978-3-319-08867-9_47
http://dx.doi.org/10.1007/978-3-319-08867-9_47
http://dx.doi.org/10.1145/2462156.2462169
http://dx.doi.org/10.1007/978-3-540-24622-0_21
http://dx.doi.org/10.1007/978-3-540-24622-0_21
http://dx.doi.org/10.1145/1375581.1375602
http://dx.doi.org/10.1007/978-3-319-08867-9_6
http://dx.doi.org/10.1007/978-3-642-31424-7_11
http://dx.doi.org/10.1007/978-3-642-31424-7_11
http://dx.doi.org/10.1007/978-3-642-37036-6_31
http://dx.doi.org/10.1007/978-3-642-37036-6_31
http://dx.doi.org/10.1007/978-3-642-38856-9_21
http://dx.doi.org/10.1145/1542476.1542501
http://dx.doi.org/10.1007/s10601-014-9165-7
http://dx.doi.org/10.1007/s10601-014-9165-7
http://dx.doi.org/10.1145/1706299.1706325
http://dx.doi.org/10.1007/978-3-642-23702-7_23
http://dx.doi.org/10.1007/978-3-642-23702-7_23
http://dx.doi.org/10.1016/j.entcs.2015.02.003
http://dx.doi.org/10.1016/j.entcs.2015.02.003
http://dx.doi.org/10.1145/2628136.2628161
http://dx.doi.org/10.1145/2784731.2784745
http://dx.doi.org/10.1145/292540.292560
http://dx.doi.org/10.1007/978-3-540-70545-1_36
http://dx.doi.org/10.1007/978-3-540-70545-1_36
http://dx.doi.org/10.1007/978-3-540-24730-2_39
http://dx.doi.org/10.1007/978-3-540-24730-2_39
http://dx.doi.org/10.1145/1146238.1146255
http://dx.doi.org/10.1145/1146238.1146255
http://dx.doi.org/10.1007/11690634_7
http://dx.doi.org/10.1145/1375581.1375624
http://dx.doi.org/10.1145/1375581.1375624
http://dx.doi.org/10.1007/978-3-662-46081-8_23
http://dx.doi.org/10.1007/978-3-662-46081-8_23
http://dx.doi.org/10.1145/2784731.2784766
http://dx.doi.org/10.1145/2784731.2784766
https://www.cs.purdue.edu/homes/zhu103/pubs/draft.pdf
https://www.cs.purdue.edu/homes/zhu103/pubs/draft.pdf

	Introduction
	Specification Language
	Specification Inference
	Sampling
	Learning Specifications
	Formalization of Learning System

	Verification
	Programming Language
	Refinement Type System
	Progress

	Extensions
	Extensions for Arbitrary User-defined Inductive Data Structures
	Specifications over Shapes and Data
	Specifications over Numeric Properties

	Experiments
	Related Work and Conclusions

