
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
LD
I
*

Ar
tifact *

A
E
C

Declarative Programming over
Eventually Consistent Data Stores

KC Sivaramakrishnan ∗

University of Cambridge, UK
sk826@cl.cam.ac.uk

Gowtham Kaki
Purdue University, USA
gkaki@cs.purdue.edu

Suresh Jagannathan
Purdue University, USA
suresh@cs.purdue.edu

Abstract
User-facing online services utilize geo-distributed data stores to
minimize latency and tolerate partial failures, with the intention of
providing a fast, always-on experience. However, geo-distribution
does not come for free; application developers have to contend
with weak consistency behaviors, and the lack of abstractions to
composably construct high-level replicated data types, necessitating
the need for complex application logic and invariably exposing
inconsistencies to the user. Some commercial distributed data stores
and several academic proposals provide a lattice of consistency
levels, with stronger consistency guarantees incurring increased
latency and throughput costs. However, correctly assigning the right
consistency level for an operation requires subtle reasoning and is
often an error-prone task.

In this paper, we present QUELEA, a declarative programming
model for eventually consistent data stores (ECDS), equipped with
a contract language, capable of specifying fine-grained application-
level consistency properties. A contract enforcement system analyses
contracts, and automatically generates the appropriate consistency
protocol for the method protected by the contract. We describe
an implementation of QUELEA on top of an off-the-shelf ECDS
that provides support for coordination-free transactions. Several
benchmarks including two large web applications, illustrate the
effectiveness of our approach.

Categories and Subject Descriptors D.1.3 [Concurrent Program-
ming]: Distributed Programming; C.2.4 [Distributed Systems]: Dis-
tributed databases; D.3.2 [Language Classifications]: Applicative
(Functional) Languages; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs

General Terms Languages, Performance

Keywords Eventual Consistency, Availability, CRDTs, Axiomatic
Contracts, Contract Classification, Distributed Transactions, SMT
solvers, Decidable Logic, Quelea, Cassandra, Haskell

∗ This work was done at Purdue University, USA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLDI’15, , June 13–17, 2015, Portland, OR, USA.
Copyright © 2015 ACM 978-1-4503-3468-6/15/06. . . $15.00.
http://dx.doi.org/10.1145/2737924.2737981

1. Introduction
Many real-world web services — such as those built and maintained
by Amazon, Facebook, Google, Twitter, etc. — replicate applica-
tion state and logic across multiple replicas within and across data
centers. Replication is intended not only to improve application
throughput and reduce user-perceived latency, but also to tolerate
partial failures without compromising overall service availability.
Traditionally programmers have relied on strong consistency guar-
antees such as linearizability [15] or serializability [22] in order
to build correct applications. While strong consistency is an eas-
ily stated property, it masks the reality underlying large-scale dis-
tributed systems with respect to non-uniform latency, availability,
and network partitions [8, 14]. Indeed, modern web services, which
aim to provide an "always-on" experience, overwhelmingly favor
availability and partition tolerance over strong consistency. To this
end, several weak consistency models such as eventual consistency,
causal consistency, session guarantees, and timeline consistency
have been proposed.

Under weak consistency, the developer needs to be aware of
concurrent conflicting updates, and has to pay careful attention
to avoid unwanted inconsistencies (e.g., negative balances in a
bank account, or having an item appear in a shopping cart after
it has been removed [13]). Oftentimes, these inconsistencies leak
from the application and are witnessed by the user. Ultimately,
the developer must decide the consistency level appropriate for a
particular operation; this is understandably an error-prone process
requiring intricate knowledge of both the application as well as the
semantics and implementation of the underlying data store, which
typically have only informal descriptions. Nonetheless, picking the
correct consistency level is critical not only for correctness but
also for scalability of the application. While choosing a weaker
consistency level than required may introduce program errors and
anomalies, choosing a stronger one than necessary can negatively
impact program scalability and performance.

Weak consistency also hinders compositional reasoning about
programs. Although an application might be naturally expressed
in terms of well-understood and expressive data types such as
maps, trees, queues, or graphs, geo-distributed stores typically only
provide a minimal set of data types with in-built conflict resolution
strategies such as last-writer-wins (LWW) registers, counters, and
sets [17, 26]. Furthermore, while traditional database systems
enable composability through transactions, geo-distributed stores
typically lack unrestricted serializable transactional access to the
data. Working in this environment thus requires application state
to be suitably coerced to function using only the capabilities of the
store.

To address these issues, we describe QUELEA, a declarative
programming model and implementation for ECDS. The key novelty
of QUELEA is an expressive contract language to declare and

Eventually Consistent Data Store

Replica�Replica� Replican

......x → {wx
� , wx

� }
y → {w y

� , w y
� }.

.

.

w y
�

wx
�

y → {w y
� } x → {wx

� }

...

Session� Session�

.

.

.Session
Order

v�← x . f oo(arg�); �wx
� �

v�← x .bar(arg�); �wx
� �

Figure 1: QUELEA system model.

verify fine-grained application-level consistency properties. The
programmer uses the contract language to axiomatically specify
the set of legal executions allowed over the replicated data type.
Contracts are constructed using primitive consistency relations
such as visibility and session order along with standard logical
and relational operators. A contract enforcement system statically
maps operations over the datatype to a particular consistency level
available on the store, and provably validates the correctness of the
mapping. The paper makes the following contributions:

• We introduce QUELEA, a shallow extension of Haskell that
supports the description and validation of replicated data types
found in an ECDS. Contracts are used to specify fine-grained
application-level consistency properties, and are statically ana-
lyzed to assign the most efficient and sound store consistency
level to the corresponding operation.

• QUELEA supports coordination-free transactions over arbitrary
datatypes. We extend our contract language to express fine-
grained transaction isolation guarantees, and utilize the contract
enforcement system to automatically assign the correct isolation
level for a transaction.

• We provide meta-theory that certifies the soundness of our
contract enforcement system, and ensures that an operation is
only executed if the required conditions on consistency are met.

• We describe an implementation of QUELEA as a transparent
shim layer over Cassandra [17], a well-known general-purpose
data store. Experimental evaluation over a set of real-world
applications, including a Twitter-like micro-blogging site and an
eBay-like auction site illustrates the practicality of our approach.

The rest of the paper is organized as follows. The next section
describes the system model. We describe the challenges in program-
ming under eventual consistency, and introduce QUELEA contracts
as a proposed solution to overcome these issues in § 3. § 4 pro-
vides more details on the contract language, and its mapping to
store consistency levels, along with meta-theory for certifying the
correctness of the mapping. § 5 introduces transaction contracts and
their classification. § 6 describes the implementation of QUELEA on
top of Cassandra. § 7 discusses experimental evaluation. § 8 and 9
present related work and conclusions.

2. System Model
In this section, we describe the system model and introduce the
primitive relations that our contract language is seeded with. Figure 1
presents a schematic diagram of our system model. The distributed
store is composed of a collection of replicas, each of which stores a
set of objects (x, y, . . .). We assume that every object is replicated

at every replica in the store. The state of an object at any replica is
the set of all updates (effects) performed on the object. For example,
the state of x at replica 1 is the set composed of effects wx1 and wx2 .

Each object is associated with a set of operations. The clients
interact with the store by invoking operations on objects. The
sequence of operations invoked by a particular client on the store
is called a session. The data store is typically accessed by a large
number of clients (and hence sessions) concurrently. Importantly,
the clients are oblivious to which replica an operation is applied
to; the data store may choose to route the operation to any replica
in order to minimize latency, balance load, etc. For example, the
operations foo and bar invoked by the same session on the same
object, might end up being applied to different replicas because
replica 1 (to which foo was applied) might be unreachable when the
client invokes bar.

When foo is invoked on a object x with arguments arg1 at
replica 1, it simply reduces over the current set of effects at that
replica on that object (wx1 and wx2), produces a result v1 that is
sent back to the client, and emits a single new effect wx4 that is
appended to the state of x at replica 1. Thus, every operation is
evaluated over a snapshot of the state of the object on which it is
invoked. In this case, the effectswx1 andwx2 are visible towx4 , written
logically as vis(wx1 , w

x
4) ∧ vis(wx2 , w

x
4), where vis is the visibility

relation between effects. Visibility is an irreflexive and asymmetric
relation, and only relates effects produced by operations on the same
object. Executing a read-only operation is similar except that no
new effects are produced. The effect added to a particular replica
is asynchronously sent to other replicas, and eventually merged
into all other replicas. Observe that this model does not assume
a particular resolution strategy for concurrent conflicting updates,
and instead preserves every update. Update conflicts are resolved
when an operation reduces over the set of effects on an object at a
particular replica.

Two effects wx4 and wx5 that arise from the same session are said
to be in session order (written logically as so(wx4 , w

x
5)). Session

order is an irreflexive, transitive relation. The effects wx4 and wx5
arising from operations applied to the same object x are said to be
under the same object relation, written sameobj(wx4 , w

x
5). Finally,

we can associate every effect with the operation that generated
the effect with the help of a relation oper. In the current example,
oper(wx4 , foo) and oper(wx5 , bar) hold. For simplicity, we assume
all operation names across all object are distinct.

This model admits all the inconsistencies associated with even-
tual consistency. The goal of this work is to identify the precise
consistency level for each operation such that application-level con-
straints are not violated. In the next section, we will concretely
describe the challenges associated with constructing a consistent
bank account on top of an ECDS. Subsequently, we will illustrate
how our contract and specification language, armed with the primi-
tive relations vis, so, sameobj and oper, mitigates these challenges.

3. Motivation
Consider how we might implement a highly available bank account
on top of an ECDS, with the integrity constraint that the balance
must be non-negative. We begin by implementing a bank account
replicated data type (RDT) in QUELEA, and then describe the
mechanisms to obtain the desired correctness guarantees.

3.1 RDT Specification
A key novelty in QUELEA is that it allows the addition of new
RDTs to the store, which obviates the need for coercing application
logic to utilize store-provided data types. In addition, QUELEA
treats the convergence semantics (i.e., how conflicting updates
are resolved) of the data type separately from its consistency
properties (i.e., when updates become visible). This separation of

data Acc = Deposit Int | Withdraw Int | GetBal

getBalance :: [Acc] → () → (Int, Maybe Acc)
getBalance hist _ =
let res = sum [x | Deposit x ← hist] -

sum [x | Withdraw x ← hist]
in (res, Nothing)

deposit :: [Acc] → Int → ((), Maybe Acc)
deposit hist amt = ((), Just $ Deposit amt)

withdraw :: [Acc] → Int → (Bool, Maybe Acc)
withdraw hist v =
if sel1 $ getBalance hist () ≥ v
then (True, Just $ Withdraw v)
else (False, Nothing)

Figure 2: Definition of a bank account expressed in Quelea.

concerns permits operational reasoning for conflict resolution, and
declarative reasoning for consistency. The combination of these
techniques enhances the programmability of the store.

Let us assume that the bank account object provides three opera-
tions: deposit, withdraw and getBalance, with the assumption
that the withdraw fails if the account has insufficient balance. Every
operation in QUELEA is of the following type, written in Haskell
syntax:

type Operation e a r = [e] → a → (r, Maybe e)

An operation takes a list of effects (the history of updates to that
object), and an input argument, and returns a result along with
an optional effect (read-only operations return Nothing). The
new effect (if emitted) is added to the state of the object at the
current replica, and asynchronously sent to other replicas. The
implementation of the bank account operations in QUELEA is given
in Figure 2.

The datatype Acc represents the effect type for the bank account.
The function sum returns the sum of elements in the list, and sel1
returns the first element of a tuple. For each operation, hist is a
snapshot of the state of the object at some replica. In this sense, every
operation on the RDT is atomic, and thus amenable to sequential
reasoning. Here, getBalance is a read-only operation, deposit
always emits an effect, and withdraw only emits an effect if there
is sufficient balance in the account. We have implemented a large
corpus of RDTs for realistic benchmarks including shopping carts,
auction and micro-blogging sites, etc. in a few tens of lines of code,
expressed in this style.

3.1.1 Summarization
Observe that the definition of getBalance reduces over the entire
history of updates to an account. If we are to realize an efficient
implementation of this bank account RDT, we need a summary of the
account history. Intuitively, the current account balance summarizes
the state of an account. A bank account with the history [Deposit
10, Withdraw 5] is observably equivalent to a bank account with
a single deposit operation [Deposit 5]; we can replace the earlier
history with the latter and a client of the store would not able to tell
the difference between the two.

This notion of observable equivalence can be generalized to other
RDTs as well. For example, a last-writer-wins register with multiple
updates is equivalent to a register with only the last write. Similarly,
a set with a collection of add and remove operations is equivalent to
a set with a series of additions of live elements from the original set.
Since the notion of observable equivalence is specific to each RDT,
programmers can provide a summarization function - of type [e]

-> [e] - as a part of the RDT specification. The summarization
function for the bank account is:

summarize hist =
[Deposit $ sel1 $ getBalance hist ()]

Given a bank account history hist, the summarize function returns
a new history with a single deposit of the current account balance.
Our implementation invokes the summarization function associated
with an RDT to reduce the size of the effect sets maintained by
replicas.

3.2 Anomalies under Eventual Consistency
Our goal is to choose the correct consistency level for each of
the bank account operations such that (1) the balance remains non-
negative and (2) the getBalance operation never incorrectly returns
a negative balance.

Session 1

withdraw (70)

Session 2
vis

getBalance → -50

withdraw (80)

deposit (100)
vis so

vis

vis so

(a) Unsafe withdraw

deposit (100)

Session 1

withdraw (50)

Session 2

getBalance → -50

Session 3

vis

vis

(b) Negative balance

deposit (100)

withdraw (50)

getBalance → 100

vis, so

so

vis

Session 1

(c) Missing update

Figure 3: Anomalies possible under eventual consistency for the
get balance operation.

Consider the execution shown in Figure 3(a). Assume that all
operations in the figure are on the same bank account object with
the initial balance being zero. Session 1 performs a deposit of 100,
followed by a withdraw of 80 in the same session. The withdraw
operation witnesses the deposit and succeeds1. Subsequently, session
2 perform a withdraw operation, but importantly, due to eventual
consistency, only witnesses the deposit from session 1, but not the
subsequent withdraw. Hence, this withdraw also incorrectly suc-
ceeds, violating the integrity constraint. A subsequent getBalance
operation, that happens to witness all the previous operations, would
report a negative balance.

It is easy to see that preventing concurrent withdraw opera-
tions eliminates this anomaly. This can be done by insisting that
withdraw be executed as a strongly consistent operation. Despite
this strengthening, the getBalance operation may still incorrectly
report a negative balance to the user. Consider the execution shown
in fig. 3(b), which consists of three concurrent sessions performing a
deposit, a withdraw, and a getBalance operation, respectively,
on the same bank account object. As the vis edge indicates, operation
withdraw(50) in session 2 witnesses the effects of deposit(100)
from session 1, concludes that there is sufficient balance, and com-
pletes successfully. However, the getBalance operation may only
witness this successful withdraw, but not the causally preceding
deposit, and reports the balance of negative 50 to the user.

Under eventual consistency, the users may also be exposed to
other forms of inconsistencies. Figure 3(c) shows an execution
where the getBalance operation in a session does not witness
the effects of an earlier withdraw operation performed in the
same session, possibly because it was served by a replica that has

1 Although visibility and session order relations relate effects, we have abused
the notation in these examples to relate operations, with the idea that the
relations relate the effect emitted by those operations.

not yet merged the withdraw effect. This anomaly leads the user
to incorrectly conclude that the withdraw operation failed to go
through.

Although it is easy to understand the reasons behind the occur-
rence of the aforementioned anomalies, finding the appropriate fixes
is not readily apparent. Making getBalance a strongly consistent
operation is definitely sufficient to avert anomalies, but is it really
necessary? Given the cost of enforcing strong consistency [26, 29],
it is preferable to avoid imposing such stringent conditions unless
there are no viable alternatives. Exploring the space of these alterna-
tives requires understanding the subtle differences in semantics of
various kinds of weak consistency alternatives.

3.3 Contracts
QUELEA helps facilitate the mapping of operations to appropriate
consistency levels by letting the programmer declare application-
level consistency constraints as contracts2 (Figure 4) that axiomati-
cally specify the set of allowed executions involving this operation.
In the case of the bank account, any execution that does not exhibit
the anomalies described in the previous section is a well-formed
execution on the bank account object. By specifying the set of legal
executions for each data type in terms of a trace of operation invo-
cations on that type, QUELEA ensures that all executions over that
type are well-formed.

In our running example, it is clear that in order to preserve
the critical integrity constraint, the withdraw operation must be
strongly consistent. That is, given two withdraw operations a and
b, either a is visible to b or vice-versa. We express this application-
level consistency requirement as a contract (ψw) over withdraw:

∀(a : withdraw).

sameobj(a, η̂)⇒ a = η̂ ∨ vis(a, η̂) ∨ vis(η̂, a)

Here, η̂ stands for the effect emitted by the withdraw operation.
The syntax a : withdraw states that a is an effect emitted by a
withdraw operation i.e., oper(a, withdraw) holds. The contract
specifies that if the current operation emits an effect η̂, then for
any operation a which was emitted by a withdraw operation, it
is the case that a = η̂ or a is visible to η̂, or vice versa. Any
execution on a bank account object that preserves the above contract
for a withdraw operation is said to be derived from a correct
implementation of withdraw.

To prevent getBalance from ever showing a negative balance,
it is necessary to prevent the scenario depicted in Figure 3(b).
Let η̂ stand for the effect emitted by the getBalance operation.
If the effect (b) of a withdraw operation is visible to η̂, and the
effect (a) of a deposit operation is visible to the effect (b) of the
withdraw operation, then it must be the case that a is also visible
to η̂. A contract (ψ1

gb) for getBalance that precisely captures this
application-level consistency requirement can be written thus:

∀(a : deposit), (b : withdraw).

(vis(a, b) ∧ vis(b, η̂)⇒ vis(a, η̂))

To prevent the missing update anomaly described in Figure 3(c), it is
necessary for a getBalance operation on a bank account to witness
the effects of all previous deposit and withdraw operations
performed on the same bank account in the same session. We can
express an additional contract (ψ2

gb) for getBalance that captures
this consistency requirement:

∀(c : deposit ∨ withdraw).

((so ∩ sameobj)(c, η̂)⇒ vis(c, η̂))

Our contract language provides operators to compose relations.
The syntax (R1 ∩ R2)(a, b) is equivalent to R1(a, b) ∧ R2(a, b).

2 QUELEA exposes the contract construction language as a Haskell library

x, y, η̂ ∈ EffVar Op ∈ OperName

ψ ∈ Contract ::= ∀(x : τ).ψ | ∀x.ψ | π
τ ∈ EffType ::= Op | τ ∨ τ
π ∈ Prop ::= true | R(x, y) | π ∨ π

| π ∧ π | π ⇒ π

R ∈ Relation ::= vis | so | sameobj | =

| R ∪R | R ∩R | R+

Figure 4: Contract language.

The above contract (ψ2
gb) says that if a deposit or a withdraw

operation precedes a getBalance operation in session order, and
is applied on the same object as the getBalance operation, then
it must be the case that the getBalance operation witnesses the
effects of the preceding operations.

The final contract (ψgb) of the getBalance operation is merely
a conjunction of the previous two versions (ψ1

gb and ψ2
gb):

∀(a : deposit), (b : withdraw), (c : deposit ∨ withdraw).

(vis(a, b) ∧ vis(b, η̂)⇒ vis(a, η̂))

∧ ((so ∩ sameobj)(c, η̂)⇒ vis(c, η̂))

Intuitively, this specification prohibits both the getBalance anoma-
lies described in Figures. 3(b) and 3(c) from occurring.

Finally, since there are no restrictions on when or how a deposit
operation can execute, its contract is simply true.

3.4 From Contracts to Implementation
Notice that the contracts for withdraw and getBalance only
express application-level consistency requirements, and make no
reference to the semantics of the underlying store. To write contracts,
a programmer only needs to reason about the semantics of the
application under the QUELEA system model. The mapping of
application-level consistency requirements to appropriate store-level
guarantees is done automatically behind-the-scene. How might
one go about ensuring that an execution adheres to a contract?
The challenge is that a contract provides a declarative (axiomatic)
specification of an execution, while what is required is an operational
procedure for enforcing its implicit constraints.

One strategy would be to execute operations speculatively. Here,
operations are tentatively applied as they are received from the
client or other replicas. We can maintain a runtime manifestation
of executions, and check well-formedness conditions at runtime,
rolling back executions if they are ill-formed. However, the overhead
of state maintenance and the complexity of user-defined contracts is
likely to make this technique infeasible in practice.

We devise a static approach instead. Contracts are analyzed with
the help of a theorem prover, and statically mapped to a particular
store-level consistency property that the prover guarantees preserves
contract semantics. We call this procedure contract classification.
Given the variety and complexity of store level consistency prop-
erties, the idea is that the system implementer parameterizes the
classification procedure by describing the store semantics in the
same contract language as the one used to express the contract on
the operations. In the next section, we describe the contract language
in detail and describe the classification procedure for a particular
store semantics.

4. Contract Language
4.1 Syntax
The syntax of our core contract language is shown in Figure 4. The
language is based on first-order logic (FOL), and admits prenex
universal quantification over typed and untyped effect variables.
We use a special effect variable (η̂) to denote the effect of current

η ∈ Effect ψ ∈ Contract η ∈ Effect Set

A ∈ EffSoup ::= η

vis, so, sameobj ∈ Relations ::= A× A
E ∈ ExecState ::= (A,vis,so,sameobj)

Figure 5: Axiomatic execution.

operation - the operation for which a contract is being written.
Notice that η̂ occurs free in the contract. We fix its scope when
classifying contracts (§ 4.4). The type of an effect is simply the name
of the operation (eg: withdraw) that induced the effect. We admit
disjunction in types to let an effect variable range over multiple
operation names. The contract ∀(a : τ1 ∨ τ2). ψ is just syntactic
sugar for ∀a.(oper(a, τ1) ∨ oper(a, τ2)) ⇒ ψ. An untyped effect
variable ranges over all operation names.

Quantifier-free propositions in our contract language are con-
junctions, disjunctions and implications of predicates expressing
relations between pairs of effect variables. The syntactic class of
relations is seeded with primitive vis, so, and sameobj relations,
and also admits derived relations that are expressible as union,
intersection, or transitive closure3 of primitive relations. Com-
monly used derived relations are the same object session order
(soo = so ∩ sameobj), happens-before order (hb = (so ∪ vis)+)
and the same object happens-before order (hbo = (soo ∪ vis)+).

4.2 Semantics
QUELEA contracts are constraints over axiomatic definitions of
program executions. Figure 5 summarizes artifacts relevant to define
an axiomatic execution. We formalize an axiomatic execution as a
tuple (A,vis,so,sameobj), where A, called the effect soup, is the
set of all effects generated during the program execution, and
vis, so, sameobj ⊆ A × A are visibility, session order, and same
object relations, respectively, witnessed over generated effects at
run-time.

Note that the axiomatic definition of an execution (E) provides
interpretations for primitive relations (eg: vis) that occur free in
contract formulas, and also fixes the domain of quantification to set
of all effects (A) observed during the program execution. As such,
E is a potential model for any first-order formula (ψ) expressible in
our contract language. If E is indeed a valid model for ψ (written as
E |= ψ), we say that the execution E satisfied the contract ψ:

Definition 1. An axiomatic execution E satisfies a contract ψ if and
only if E |= ψ.

4.3 Capturing Store Semantics
An important aspect of our contract language is its ability to capture
store-level consistency guarantees, along with application-level
consistency requirements. Similar to [10], we can rigorously define
a wide variety of store semantics including those that combine any
subset of session and causality guarantees, and multiple consistency
levels. However, for our purposes, we identify three particular
consistency levels – eventual, causal, and strong, commonly offered
by many distributed stores with tunable consistency, with increasing
overhead in terms of latency and availability.

• Eventual consistency: Eventually consistent operations can be
satisfied as long as the client can reach at least one replica. In
the bank account example, deposit is an eventually consistent
operation. While an ECDS typically offers basic eventual con-
sistency with all possible anomalies, we assume that our store

3 Strictly speaking,R+ is not the transitive closure ofR, as transitive closure
is not expressible in FOL. Instead, R+ in our language denotes a superset of
transitive closure ofR. Formally,R+ is any relationR′ such that forall x, y,
and z, a) R(x, y)⇒ R′(x, y), and b) R′(x, y) ∧ R′(y, z)⇒ R′(x, z).

ψ ≤ ψsc

WellFormed(ψ)

ψ ≤ ψec

EventuallyConsistent(ψ)

ψ 6≤ ψec ψ ≤ ψcc

CausallyConsistent(ψ)

ψ 6≤ ψcc ψ ≤ ψsc

StronglyConsistent(ψ)

Figure 6: Contract classification.

provides stronger semantics that remain highly-available [2, 20];
the store always exposes a causal cut of the updates. This seman-
tics can be formally captured in terms of the following contract
definition:

ψec = ∀a, b. hbo(a, b) ∧ vis(b, η̂)⇒ vis(a, η̂)

The above contract mandates that an effect a must be visible to
the current effect η̂ if some effect b that causally succeeds a is
also visible to η̂. Thus, if every store replica always maintains
and exposes a causal cut of updates to the client, then such a
store will satisfy this contract. In such a system, an eventually
consistent operation, such as deposit, which requires weaker
guarantees than offered by the store, can be satisfied as long as
some replica is reachable.

• Causal consistency: Causally consistent operations are required
to see a causally consistent snapshot of the object state, including
the actions performed on the same session. The latter require-
ment implies that if two operations o1 and o2 from the same
session are applied to two different replicas r1 and r2, the second
operation cannot be discharged until the effect of o1 is included
in r2. The getBalance operation requires causal consistency,
as it requires operations from the same session to be visible,
which cannot be guaranteed under eventual consistency. The
corresponding store semantics is captured by the contract ψcc

defined below:

ψcc = ∀a. hbo(a, η̂)⇒ vis(a, η̂)

• Strong consistency: Strongly consistent operations may block
indefinitely under network partitions. An example is the total-
order contract on withdraw operation. The corresponding store
semantics is captured by the ψsc contract definition:

ψsc = ∀a. sameobj(a, η̂)⇒ vis(a, η̂) ∨ vis(η̂, a) ∨ a = η̂

4.4 Contract Classification
Our goal is to map application-level consistency constraints on
operations to appropriate store-level consistency guarantees capable
of satisfying these constraints. The ability to express both these
kinds of constraints as contracts in our contract language lets us
compare and determine if contract (ψop) of an operation (op) is
weak enough to be satisfied under a store consistency level identified
by the contract ψst. Towards this end, we define a binary weaker
than relation for our contract language as following:

Definition 2. A contract ψop is said to be weaker than ψst (written
ψop ≤ ψst) if and only if ∆ ` ∀η̂.ψst ⇒ ψop.

The quantifier in the sequent binds η̂ that occurs free in ψst and
ψop. The context (∆) of the sequent is a conjunction of assumptions
about the nature of primitive relations. A well-formed axiomatic
execution (E) is expected to satisfy these assumptions (i.e., E |= ∆).

Definition 3. An axiomatic execution E = (A,vis,so,sameobj) is
well-formed if the following axioms (∆) hold:

• The happens-before relation is acyclic: ∀a. ¬hbo(a, a).
• Visibility only relates actions on the same object:

∀a, b. vis(a, b)⇒ sameobj(a, b).
• Session order is a transitive relation:

∀a, b, c. so(a, b) ∧ so(b, c)⇒ so(a, c).
• Same object is an equivalence relation:

∀a. sameobj(a, a).
∀a, b. sameobj(a, b)⇒ sameobj(b, a).
∀a, b, c. sameobj(a, b) ∧ sameobj(b, c)⇒ sameobj(a, c).

If the contract (ψop) of an operation (op) is weaker than a store
contract (ψst), then constraints expressed by the former are implied
by guarantees provided by the latter. The completeness of first-order
logic allows us to assert that any well-formed execution (E) that
satisfies ψst (i.e., E |= ψst) also satisfies ψop (i.e., E |= ψop).
Consequently, it is safe to execute operation op under a store
consistency level captured by ψst.

Observe that the contracts ψsc, ψcc and ψec are themselves totally
ordered with respect to the ≤ relation: ψec ≤ ψcc ≤ ψsc. This
concurs with the intuition that any contract satisfiable under ψec

or ψcc is satisfiable under ψsc, and any contract that is satisfiable
under ψec is satisfiable under ψcc. We are interested in the weakest
guarantee (among ψec, ψcc, and ψsc) required to satisfy the contract.
We define the corresponding consistency level as the consistency
class of the contract.

The classification scheme, presented formally in Figure 6, defines
rules to judge the consistency class of a contact. For example, the
scheme classifies the getBalance contract (ψgb) from § 3 as a
CausallyConsistent contract, because the sequent ∆ ` ∀η̂.ψcc ⇒ ψgb
is valid in first-order logic (therefore, ψgb ≤ ψcc), whereas the
sequent ∆ ` ∀η̂.ψec ⇒ ψgb is invalid (therefore, ψgb 6≤ ψec). Since
we confine our contract language to a decidable subset of the logic,
validity of such sequents can be decided mechanically allowing us
to automate the classification scheme in QUELEA.

Along with three straightforward rules that classify contracts into
consistency classes, the classification scheme also presents a rule
that judges well-formedness of a contract. A contract is well-formed
if and only if it is satisfiable under ψsc - the strongest possible
consistency guarantee that the store can provide. Otherwise, it is
considered ill-formed, and rejected statically.

4.5 Generality of Contracts
It is important to note that our contract language provides a generic
way to capture application-level consistency properties and is
not tied to a particular store semantics. In particular, the same
application-level contracts can easily be mapped to a different store
with a varied consistency lattice. To illustrate this, let us consider
the consistency lattice proposed by Terry et al. [28] based on session
guarantees. Terry et al. propose the following four incomparable
session guarantees, whose semantics is captured in the contracts
below:

Read Your Writes (RYW) ::= ∀a. soo(a, η̂)⇒ vis(a, η̂)
Monotonic Reads (MR) ::= ∀a, b. vis(a, b) ∧ soo(b, η̂)

⇒ vis(a, η̂)
Monotonic Writes (MW) ::= ∀a, b. soo(a, b) ∧ vis(b, η̂)

⇒ vis(a, η̂)
Writes Follow Reads (WFR) ::= ∀a, b, c. vis(a, b) ∧ vis(c, η̂)

∧(soo ∪ =)(b, c)⇒ vis(a, η̂)

In this scheme, the consistency level of an operation is any
combination of the above guarantees, which form a partially ordered
consistency lattice show in Figure 7. Each element in this lattice
corresponds to a store-consistency level, and is represented by
its contract. An edge from an upper level element to a lower
level element corresponds to a weaker-than relation between the
corresponding contracts. Classifying a contract under this scheme
is a directed search in the lattice, starting from the bottom, and

true

RYW MW MR WFR

RYW ∧ MW RYW ∧ MR RYW ∧ WFRMW ∧ MR MW ∧ WFR MR ∧ WFR

RYW ∧ MW
 ∧ MR

RYW ∧ MW
 ∧ WFR

RYW ∧ MR
 ∧ WFR

MW ∧ MR
 ∧ WFR

RYW ∧ MW ∧ MR ∧ WFR

Figure 7: Lattice of consistency levels under session guarantees.

determining the weakest consistency level under which the contract
can be satisfied. Under this scheme, deposit operations do not
need any guarantees, getBalance needs RYW and WFR (ψgb ≤
RYW ∧WFR), and withdraw cannot be satisfied (ψw 6≤ RYW ∧
MW ∧MR ∧WFR).

4.6 Soundness of Contract Classification
We now present a meta-theoretic result that certifies the soundness
of classification-based contract enforcement. To help us state the
result, we define an operational semantics of the system described
informally in § 2:

op ∈ Operation

τ ∈ ConsistencyClass ::= ec, cc, sc

σ ∈ Session ::= · | 〈op, τ〉;σ
Σ ∈ Session Soup ::= σ ‖ Σ | ∅

Config ::= E,Σ

We model the system as a tuple E,Σ, where the axiomatic
execution E captures the data store’s current state, and session soup
Σ is the set of concurrent client sessions interacting with the store.
A session σ is a sequence of pairs composed of replicated data type
operations op, tagged with the consistency class τ of their contracts
(as determined by the contract classification scheme). We assume a
reduction relation of form:

E, 〈op, τ〉;σ ‖ Σ
η−→ E′, σ ‖ Σ

on the system state. The relation captures the progress of the
execution (from E to E′) due to the successful completion of a
client operation op from one of the sessions in Σ, generating a new
effect η. If the resultant execution E′ satisfies the store contract ψτ
(i.e., E |= ψτ), then we say that the store has enforced the contract
ψτ in the execution E′. With help of the operational semantics, we
now state the soundness of contract enforcement as follows:

Theorem 4 (Soundness of Contract Enforcement). Let ψ be a well-
formed contract of a replicated data type operation op, and let τ
denote the consistency class of ψ as determined by the contract
classification scheme. For all well-formed execution states E, E′

such that E, 〈op, τ〉;σ ‖ Σ
η−→ E′, σ ‖ Σ, if E′ |= ψτ [η/η̂], then

E′ |= ψ[η/η̂]

The theorem states that if a data store correctly enforces ψsc,
ψcc, and ψec contracts in all well-formed executions, then the same
store, extended with the classification scheme shown in Figure 6,

can enforce all well-formed QUELEA contracts. The proof of the
theorem is given in the accompanying technical report [16] 4.

5. Transaction Contracts
While contracts on individual operations offer the programmer
object-level declarative reasoning, real-world scenarios often in-
volve operations that span multiple objects. In order to address this
problem, several recent systems [2, 9, 27] have proposed eventually
consistent transactions in order to compose operations on multiple
objects. However, given that classical transaction models such as
serializability and snapshot isolation require inter-replica coordi-
nation, these systems espouse coordination-free transactions that
remain available under network partitions, but only provide weaker
isolation guarantees. Coordination-free transactions have intricate
consistency semantics and widely varying runtime overheads. As
with operation-level consistency, the onus is on the programmer to
pick the correct transaction kind. This choice is further complicated
by the consistency semantics of individual operations.

5.1 Syntax and Semantics Extensions
QUELEA automates the choice of assigning the correct and most
efficient transaction isolation level. Similar to contracts on individual
operations, the programmer associates contracts with transactions,
declaratively expressing consistency specifications. We extend the
contract language with a new term under quantifier-free propositions
- txn S1 S2, where S1 and S2 are sets of effects, and introduce a
new primitive equivalence relation sametxn that holds for effects
from the same transaction. txn{a, b}{c, d} is just syntactic sugar for
sametxn(a, b) ∧ sametxn(c, d) ∧ ¬sametxn(a, c), where a and b
considered to belong to the current transaction.

We assume that operations not part of any transaction belong to
their own unique transaction. While transactions may have varying
isolation guarantees, we make the standard assumption that all
transactions provide atomicity. Hence, we include the following
axiom in ∆:

∀a, b, c. txn{a}{b, c} ∧ sameobj(b, c) ∧ vis(b, a)⇒ vis(c, a)

The semantics of this contract is illustrated in Figure 8(a).

5.2 Transactional Bank Account
In order to illustrate the utility of declarative reasoning for trans-
actions, consider an extension of our running example to use two
accounts (objects) – current (c) and savings (s). Each account pro-
vides operations withdraw, deposit and getBalance, with the
same contracts as defined previously. We consider two transactions
– save(amt), which transfers amt from current to savings, and
totalBalance, which returns the sum of the balances of individ-
ual accounts. Our goal is to ensure that totalBalance returns the
result obtained from a consistent snapshot of the object states. The
QUELEA code for these transactions is given below:

save amt =
x ← $(classify ψsv)
atomically x $ do
b ← withdraw c amt
when b $ deposit s amt

totalBalance =
x ← $(classify ψtb)
atomically x $ do

b1 ← getBalance c
b2 ← getBalance s
return b1 + b2

ψsv and ψtb are the contracts on the corresponding transactions.
The function classify assigns the contracts statically to one of
the transaction isolation levels offered by the store; $() is meta-
programming syntax for splicing the result into the program. The

4 The technical report also provides the concrete reduction rules for enforcing
the consistency classes.

x.b x.c

Txn 2
x.a

vis vis

Txn 1

(a) Atomicity

x.c y.d

Txn 2
x.a

vis vis

Txn 1

y.b
so

(b) Monotonic
Atomic View

x.c y.d

Txn 2
x.a

vis vis

Txn 1

y.b

(c) Repeatable
Read

Figure 8: Semantics of transaction contracts. x and y are distinct
objects. The dotted line represents the visibility requested by the
contracts.

atomically construct invokes the enclosing operations at the given
isolation level x, ensuring that the effects of the operations are made
visible atomically.

While making both transactions serializable would ensure cor-
rectness, distributed stores rarely offer serializable transactions
given their availability requirements and implications for scalabil-
ity [2]. Fortunately, these transactions can be satisfied with much
weaker isolation guarantees. However, despite the atomicity of-
fered by the transaction, anomalies are still possible. For example,
the two getBalance operations in a totalBalance transaction
might be served by different replicas with a distinct set of com-
mitted save transactions. If the first(second) getBalance oper-
ation witnesses a save transaction that is not witnessed by the
second(first) getBalance operation, then the balance returned will
be less(greater) than the actual balance. It is not immediately appar-
ent how to choose the weakest isolation guarantee that would be
sufficient to prevent the anomaly.

Instead, QUELEA requires the programmer to simply state the
consistency requirement as a contract. Since we would like both
the getBalance operations to witness the same set of save trans-
actions, we define the constraint on the totalBalance transaction
ψtb as:

ψtb = ∀a : getBalance, b : getBalance,

(c : withdraw ∨ deposit), (d : withdraw ∨ deposit).

txn{a, b}{c, d} ∧ vis(c, a) ∧ sameobj(d, b)⇒ vis(d, b)

The key idea in the above definition is that the txn primitive allows
us to relate operations on different objects.

The save transaction only needs to ensure that the two writes
it performs are made visible atomically. Since this is ensured
by combining them in a transaction, save does not require any
additional constraints, and ψsv is simply true.

5.3 Coordination-free Transactions
In order to illustrate the utility of transaction contract classification,
we identify three well-understood coordination-free transaction se-
mantics – Read Committed (RC) [7], Monotonic Atomic View
(MAV) [2] and Repeatable Read (RR) [7], and illustrate the classifi-
cation strategy. Our technique can indeed be applied to a different
isolation-level lattice.

A transaction with ANSI RC semantics only witnesses commit-
ted operations. Let us assume that a replica will buffer transactional
updates until all the updates from the same transaction are available
at that replica. Once all the updates from a transaction are available,
the buffered updates are made visible to subsequent client requests.
This ensures atomicity of transactions. Importantly, RC does not
entail any other guarantees. As a result, a store implementing RC
does not require inter-replica coordination. We can express RC as
follows:

ψrc = ∀a, b, c. txn{a}{b, c} ∧ sameobj(b, c)
∧ vis(b, a)⇒ vis(c, a)

Notice that the above definition is the same as the atomicity guar-
antee of transaction described in § 5.1. The save operation is an
example of an RC transaction.

MAV semantics ensures that if some operation in a transaction
T1 witnesses the effects of another transaction T2, then subsequent
operations in T1 will also witness the effects of T2. MAV semantics
is useful for maintaining the integrity of foreign key constraints,
materialized views and secondary updates [2]. In order to implement
MAV, a store only needs to keep track of the set of transactions
St witnessed by the running transaction, and before performing
an operation at some replica, ensure that the replica includes all
the transactions in St. Hence, MAV is coordination-free. MAV
semantics is captured with the following contract:

ψmav = ∀a, b, c, d. txn{a, b}{c, d} ∧ so(a, b) ∧ vis(c, a)

∧ sameobj(d, b)⇒ vis(d, b)

whose semantics is illustrated in the Figure 8(b).
ANSI RR semantics requires that the transaction witness a

snapshot of the data store state. Importantly, this snapshot can be
obtained from any replica, and hence RR is also coordination-free.
An example for such a transaction is the totalBalance transaction.
The semantics of RR is captured by the following contract:

ψrr = ∀a, b, c, d. txn{a, b}{c, d} ∧ vis(c, a)

∧ sameobj(d, b)⇒ vis(d, b)

whose semantics is illustrated in the Figure 8(c).

5.4 Classification
Similar to operation-level contracts, with respect to ≤ relation, the
coordination-free transaction semantics described here form a total
order: ψrc ≤ ψmav ≤ ψrr. The transaction classification is also
similar to the operation-level contract classification presented in
Figure 6; given a contract ψ on a transaction, we start from the
weakest transaction contract ψrc, and progressively compare its
strength to the known transaction contracts until we find a isolation
level under which ψ can be safely discharged. Otherwise, we report
a type error.

6. Implementation
QUELEA is implemented as a shallow extension of GHC Haskell
and runs on top of Cassandra, an off-the-shelf eventually consistent
distributed data (or backing) store responsible for all data man-
agement issues (i.e., replication, fault tolerance, availability, and
convergence). Template Haskell is used to implement static contract
classification, and proof obligations are discharged with the help
of the Z3 [31] SMT solver. Figure 9 illustrates the overall system
architecture.

Replicated data types and various consistency semantics are
implemented and enforced in the shim layer. Our implementation
supports eventual, causal, and strong consistency for data type
operations, and RC, MAV, and RR semantics for transactions. This
functionality is implemented entirely on top of the standard interface
exposed by Cassandra. From an engineering perspective, leveraging
an off-the-shelf data store enables an implementation comprising
roughly only 2500 lines of Haskell code, which is packaged as a
library.

6.1 Operation Consistency
The shim layer maintains a causally consistent in-memory snapshot
of a subset of objects in the backing store, by explicitly tracking

Quelea Replicated Store

Off-the-shelf Distributed Store • Off-the-shelf store
• Failure handling
• Persistence (on-disk)
• Eventual consistency

• Soft-state (in-mem)
• Datatype operations
• Summarization
• Stronger consistency

select insert

Shim Layer (RDTs)

Clients

obj.oper(args)

res Business Logic
(incl. Txns)

REST API

Figure 9: Implementation Model.

dependencies introduced between effects due to visibility, session
and same transaction relations. Dependence tracking is similar to the
techniques presented in [3] and [21]. Because Cassandra provides
durability, convergence, and fault tolerance, each shim layer node
simply acts as a soft-state cache, with no inter-node communication,
and can safely be terminated at any point. Similarly, new shim layer
nodes can be spawned on demand.

Each effect generated as a result of an effectful operation on
an object inserts a new row (o, e, txn, val, deps) into the backing
store, where o and e are object and unique effect identifiers, txn
is an optional transaction identifier, and val is the value associated
with the effect (eg: Withdraw 50). deps is the set of identifiers
of dependencies of this operation and is defined as deps(e) =
{e1 | vis(e1, e) ∧ ¬(∃e2.vis(e1, e2) ∧ vis(e2, e))}. At any shim
layer node, an effect is included only if all of its dependencies are
also included in that node. This ensures that the state maintained by
the shim layer node is causally consistent. Hence, our dependence
tracking strategy ensures that QUELEA does not track every effect
as the number of writes in the system grows.

The shim layer nodes periodically fetch updates from the back-
ing store for eventually consistent operations, and on-demand for
causally consistent and strongly consistent operations. Strongly con-
sistent operations are performed after obtaining exclusive leases
on objects. The lease mechanism is implemented with the help of
Cassandra’s support for conditional updates and expiring columns.

6.2 Transactions
Cassandra does not provide general-purpose transactions. Since
the transaction guarantees provided by QUELEA are coordination-
free [2], we realize efficient implementations by explicitly tracking
dependencies between operations and transactions. Importantly,
the weaker isolation semantics of transactions in QUELEA permit
transactions to be discharged if at least one shim layer node is
reachable.

QUELEA implements atomic visibility by exploiting shim layer
causality guarantees – an effect is included only if all the effects
if depends on are also included. Consider the example given in
Figure 10. In the figure, the graphs represent the state of the store,
where the circles represent effects and the edges represent the
dependence between effects. The dotted circle represents effects
that are not yet inserted into the store. The graph on the left shows
that state of the store after executing oper2. For every transaction
in QUELEA, we instantiate a special transaction marker effect m
that is importantly not inserted into the backing store. Marker m is
included as a dependence to every effect generated in the transaction.
Since the causally preceding effect m has not yet been written to the
store, no operation will witness e1 and e2 while the transaction in
progress. After the transaction has finished execution, we insert m
into the backing store, marking all the effects from the transactions
as a dependence for m, as shown in the graph on the right. Now,
any replica which includes one of the effects from the transaction

 1: atomically {
 2: o1.oper1(v1); //Emits effect e1
 3: o2.oper2(v2); //Emits effect e2
 4: o3.oper3(v3); //Emits effect e3
 5: }

m

e1 e2

After executing oper2

m

e1 e2 e3

After transaction completion

Figure 10: Implementing atomicity semantics.

summarize [o1,o2,o3] = [n1,n2]

o1 o2

o3

Before summarization

o1 o3o2

During summarization

sn2 n2

After summarization,
before deletion

o1 o3o2

sn2 n2

Figure 11: Summarization in the backing store.

must include m, and transitively must include every effect from the
transaction. This ensures atomicity and satisfies the RC requirement.

The above scheme prevents a transaction from witnessing its
own effects. This might conflict with causality requirements on
the operations. Hence, transactions piggy-back the previous effects
from the same transaction for each request. MAV semantics is
implemented by keeping track of the set of transaction markers M
witnessed by the transaction, and before performing an operation at
some replica, ensuring that M is a subset of the transaction markers
included at that replica. If not, the missing effects are synchronously
fetched. RR semantics is realized by capturing a optimized snapshot
of the state of some replica; each operation from an RR transaction
is applied to this snapshot state. Any generated effects are added to
this snapshot.

6.3 Summarization
We utilize the summarize function (§ 3.1.1) to summarize the object
state both in the shim layer node and the backing store, typically
when the number of effects on an object crosses a tunable threshold.
Shim layer summarization is straight-forward; a summarization
thread takes the local lock on the cached object, and replaces its
state with the summarized state. The shim layer node only remains
unavailable for that particular object during summarization (usually
a few milliseconds).

Performing summarization in the backing store is more compli-
cated since the whole process needs to be atomic from a client’s
perspective, but Cassandra does not provide multi-row transactions.
Summarization in the backing store involves deleting previously
inserted rows and inserting new rows, where each row corresponds
to an effect. It is essential that concurrent client operations are per-
mitted, but are not allowed to witness the intermediate state of the
summarization process.

To this end, we adopt a novel summarization strategy that builds
on the causality property of the store. Figure 11 illustrates the

Table 1: The distribution of classified contracts. #T refers to the
number of tables in the application. The columns 4-6 (7-9) represent
operations (transactions) assigned to this consistency (isolation)
level.

Benchmark LOC #T EC CC SC RC MAV RR
LWW Reg 108 1 2 2 2 0 0 0

DynamoDB 126 1 3 1 2 0 0 0
Bank Account 155 1 1 1 1 1 0 1
Shopping List 140 1 2 1 1 0 0 0

Online store 340 4 9 1 0 2 0 1
RUBiS 640 6 14 2 1 4 2 0

Microblog 659 5 13 6 1 6 3 1

summarization strategy. Suppose the original set of effects on an
object are o1, o2 and o3. When summarized, the new effects yielded
are n1 and n2. We first instantiate a summarization marker s, and
similar to transaction marker, we do not insert it into the store
immediately. We insert the new effects n1 and n2, with strong
consistency, including s as a dependence. Since s is not yet in the
store, the new effects are not made visible to the clients. Then we
insert s with strong consistency, including the original effects o1,
o2 and o3 as dependence. Strongly consistent insertions ensure that
a shim layer node witnessing s on some object must also witness n1
and n2 on the same object. A shim layer node which witnesses all
the effects removes the original effects from its cache since they are
superseded by the new effects. Finally, the old effects are deleted
from the backing store. This process ensures that clients either
witness the old or the new effects, but not both; the summarization
process appears to be atomic from the clients perspective.

7. Evaluation
We present an evaluation study of our implementation, report con-
tract profiles of benchmark programs, and illustrate the performance
benefits of fine-grained consistency classification on operations and
transactions. We also evaluate the impact of the summarization. We
have implemented the following applications, which includes in-
dividual RDTs as well as larger applications composed of several
RDTs:

• LWW register: A last-write-wins register that provides read and
write operations, where the read returns the value of the latest
write.

• DynamoDB register: An integer register that allows eventual
and strong puts and gets, conditional puts, increment and decre-
ment operations.

• Bank account: Our running example.
• Shopping list: A collaborative shopping list that allows concur-

rent addition and deletion of items.
• Online store: An online store with shopping cart functionality

and dynamically changing item prices. The checkout process
verifies that the customer only pays the accepted price.

• RUBiS: An eBay-like auction site [24]. The application allows
users to browse items, bid for items on sale, and pay for items
from a wallet modeled after a bank account.

• Microblog: A twitter-like microblogging site, modeled after
Twissandra [30]. The application allows adding new users,
adding and replying to tweets, following, unfollowing and
blocking users, and fetching a user’s timeline, userline, followers
and following.

The distribution of contracts in these applications is given in
Table 1. We see that majority of the operations and transactions are
classified as eventually consistent and RC, respectively. Operation
contracts are used to enforce integrity and visibility constraints on
individual fields in the tables. Transactions are mainly used to con-
sistently modify and access related fields across tables. In QUELEA,
the contract classification process is completely performed at com-
pile time and incurs no runtime overhead. The proof obligations
associated with contract classification is discharged through the Z3
SMT Solver. Across our benchmarks, classifying a contract took
11.5 milliseconds on average.

For our performance evaluation, we deploy QUELEA applications
in clusters, where each cluster is composed of five fully replicated
Cassandra replicas within the same datacenter. We instantiate one
shim layer node co-located on the same VM as a Cassandra replica.
Clients are instantiated within the same data center as the store,
and run transactions. We deploy each cluster and client node on
a c3.4xlarge Amazon EC2 instance. We call this a 1DC config-
uration. For our geo-distributed experiments (2DC), we instantiate
2 clusters, each with five nodes, and place the clusters on US-east
(Virginia) and US-west (Oregon) locations. The average inter-region
latency was 85ms.

Figure 12(a) shows throughput vs. latency of operations in the
bank account example as we increase the number of clients in a
1DC configuration. Our client workload was generated using the
YCSB benchmark [12]. The benchmark uniformly chooses from
100,000 keys, where the operation spread was 25% withdraw, 25%
deposit and 50% getBalance, which corresponds to the default 50:50
read:write mix in YCSB. We increased the number of clients from
128 to 1024, and each experiment ran for 180 seconds.

The lines marked EC and CC correspond to all operations
(including withdraw) being assigned EC and CC consistency
levels. These levels compromise correctness as withdraw has to
be an SC operation. The SC line corresponds to a configuration
where all operations are strongly consistent; this ensures application
correctness, at the cost of performance. QUELEA corresponds to our
implementation, which classifies operations based on their contract
specifications. With 512 clients, the QUELEA implementation was
within 41% of the latency and 18% of the throughput of EC, whereas
SC operations had 162% higher latency and 52% lower throughput
than EC operations. Observe that there is a point in each case
after which the latency increases while the throughput decreases;
these correspond to points where the store becomes saturated
with client requests. In a 2DC configuration (not shown here), the
average latency of SC operations with 512 clients increased by 9.4×
due to the cost of geo-distributed coordination, whereas QUELEA
operations were only 2.2× slower, mainly due to the increased cost
of withdraw operations. Importantly, the latency of getBalance
and deposit remained almost the same, illustrating the benefit of
fine-grained contract classification.

We compare the performance of different transaction isolation
level choices in Figure 12(b) using the LWW register. The numbers
were obtained under a 1DC configuration. The YCSB workload
was modified to issue 10 operations per transaction, with a default
50:50 read:write mix. Each operation is assumed to be eventually
consistent. NoTxn corresponds to a configuration that does not
use transactions. Compared to this, RC is only 12% shower in
terms of latency with 512 clients, whereas RR is 2.3× slower. The
difference between RC and NoTxn is due to the meta-data overhead
of recording transaction information in the object state. For RR
transactions, the cost of capturing and maintaining a snapshot is the
biggest source of overhead.

We also compared (not shown) the performance of EC LWW
operations directly against Cassandra, which uses last-writer-wins
as the only convergence semantics. While Cassandra provides no

stronger-than-eventual consistency properties, QUELEA was within
30%(20%) of latency(throughput) of Cassandra with 512 clients,
supporting our thesis that programmers only have to incur relatively
low overhead for a more expressive programming model which
provides stronger provable consistency guarantees.

Figure 12(c) compares the QUELEA implementation of RUBiS in
a 1DC configuration against a single replica (NoRep) and a strongly
replicated (StrongRep) 1DC deployment. The benchmark uses the
default RUBiS bidding mix, which has 15% read-write interactions,
which is representative of the auction workload. Without replication,
NoRep trivially provides strong consistency. However, this deploy-
ment does not scale beyond 1750 operations per second. Strong
replication offers better throughput at the cost of greater latency due
to inter-replica coordination. The QUELEA deployment offers the
benefit of replication, while only paying the cost of coordination
when necessary.

Finally, we study the impact of summarization in Figure 12(d).
We use 128 clients and a single QUELEA replica, with all clients
operating on the same LWW register to stress test the summarization
mechanism. The shim layer cache (memory) is summarized every
64 updates, while the updates in the backing store (disk) are sum-
marized every 4096 updates. Each point in the graph represents the
average latency of the previous 1000 operations. Each experiment is
run for one minute. Without summarization, the average latency of
operations increases exponentially to almost one second, and only
13K operations were performed in a minute. Since every operation
has to reduce over the set of all previous operations, operations take
increasingly more time to complete since they must contend with
an ever growing set. With summarization only in memory, perfor-
mance still degrades due to the cost of fetching all previous updates
from the backing store into the shim layer. Fetching the latest up-
dates from the backing store is essential for SC operations. With
summarization enabled on both disk and memory, latency does not
increase over time, and the implementation realizes throughput of
67K operations/minute.

8. Related Work
Operation-based RDTs have been widely studied in terms of their al-
gorithmic properties [10, 25], and several systems utilize this model
to construct distributed data structures [5, 17, 23]. These systems
typically propose to implement the datatypes directly over a clus-
ter of nodes, and only focus on basic eventual consistency. Hence,
these systems implement custom solutions for durability and fault-
tolerance. QUELEA realizes stronger consistency models for RDTs
on top of off-the-shelf eventually consistent distributed stores. In
this respect, QUELEA is similar to [3] where causal consistency is
achieved through a shim layer layered on top of Cassandra, which
explicitly tracks and enforces dependencies between updates. How-
ever, [3] does not support user-defined RDTs, automatic contract
classification and transactions.

Since eventual consistency alone is insufficient to build cor-
rect applications, several systems [18, 23, 29] propose a lattice of
stronger consistency levels. Similarly, traditional database process-
ing systems [7] and their replicated variants [2] propose weaker
isolation levels for performance. In these systems, the onus is on the
developer to choose the correct consistency(isolation) level for oper-
ations(transactions). QUELEA relieves the developer of this burden,
and instead only requires contracts to express declarative visibility
requirements.

Our contract language and system model is inspired by the
axiomatic description of RDT semantics proposed in [10]. While
[10] uses axioms for formal verification of an RDT implementation,
we utilize them as a means for the user to express desired consistency
guarantees in the application. The operational semantics of QUELEA
(described in the accompanying technical report [16]) describes an

0 1 2 3 4 5 6 7 8 9
Throughput (X 1000 ops/s)

0

20

40

60

80

100

120

140

160

180

La
te

n
cy

 (
m

s)

EC

CC

SC

Q

(a) Bank account

0 1 2 3 4 5 6 7 8 9
Throughput (X 1000 ops/s)

0

20

40

60

80

100

120

140

160

180

La
te

n
cy

 (
m

s)

NoTxn

RC

MAV

RR

(b) LWW transactions

0 1 2 3 4 5 6 7
Throughput (X 1000 ops/s)

0

20

40

60

80

100

120

140

160

180

La
te

n
cy

 (
m

s)

Quelea

NoRep

StrongRep

(c) RUBiS bidding mix

0 1 2 3 4 5 6 7
Operations (X 10,000)

0

2

4

6

8

10

La
te

n
cy

 (
X

 1
0

0
 m

s)

No Sum

Mem Only

Mem & Disk

(d) Impact of summarization

Figure 12: Quelea Performance.

operational manifestation of our system model. [11] also presents
an operational model of a replicated data store that is based on the
abstract system model presented in [10]. Their claims about the
expressivity and practicality of the system model vindicate ours.
However, both approaches differ in the way they aim to empower
the application programmer. [11] exposes the operational model to
the programmer, along with primitives, such as push, pull and
fetch, that make it easy to implement required consistency and
isolation guarantees. In contrast, QUELEA completely abstracts its
operational model, and instead relies on contract classification to
automatically choose appropriate consistency and isolation levels.
Similar to [10] and [11], our system model does not incorporate real
(i.e., wall-clock) time. Hence, our contract language cannot describe
store semantics such as recency or bounded-staleness guarantees
offered by certain stores [29].

Several conditions have been proposed to judge whether an op-
eration on a replicated data object needs coordination or not. [1]
defines logical monotonicity as a sufficient condition for coordi-
nation freedom, and proposes a consistency analysis that marks
code regions performing non-monotonic reasoning (eg: aggrega-
tions, such as COUNT) as potential coordination points. [4] and [19]
define invariant confluence and invariant safety, respectively, as con-
ditions for safely executing an operation without coordination. [19]
also proposes a program analysis that conservatively marks certain
operations as blue (coordination not required), while marking the
remaining as red (coordination required). [6] requires programmers
to declare application semantics, and the desired application-specific
invariants as formulas in first-order logic. It performs static analysis
on these formulas to determine I-offender sets - sets of operations,
which, when performed concurrently, result in violation of one or
more of the stated invariants. For each offending set of operations,
if the programmer chooses invariant-violation avoidance over viola-
tion repair, the system employs various techniques, such as escrow
reservation, to ensure that the offending set is effectively serialized.
Unlike QUELEA, these approaches focus on a coarse-grained clas-
sification of consistency as eventual or strong, and do not consider
finer-grained transaction isolation levels. However, these analyses
do relieve programmers of the burden of tagging operations with
consistency levels. We consider automatic inference of consistency
contracts from application-specific integrity constraints as an obvi-
ous next step for QUELEA.

9. Conclusions
This paper presents QUELEA, a shallow Haskell extension for
declarative programming over ECDS. The key idea underlying
QUELEA’s design is the automatic classification of fine-grained
consistency contracts on operations and distributed transactions
with respect various consistency and isolation levels offered by the
store. Our contract language is carefully crafted from a decidable
subset of first-order logic, enabling the use of automated verification
tools to discharge the proof obligations associated with contract

classification. We realize an instantiation of QUELEA on top of an
off-the-shelf distributed store, Cassandra, and illustrate the benefit of
fine-grained contract classification by implementing and evaluating
several scalable applications.

Acknowledgements
We thank the anonymous reviewers for their detailed comments.
This work is supported in part by the National Science Foundation
under grants CCF-1216613 and CCF-1318227.

References
[1] P. Alvaro, N. Conway, J. Hellerstein, and W. R. Marczak. Consistency

Analysis in Bloom: a CALM and Collected Approach. In CIDR
2011, Fifth Biennial Conference on Innovative Data Systems Research,
Asilomar, CA, USA, January 9-12, 2011, Online Proceedings, pages
249–260, 2011. URL http://www.cidrdb.org/cidr2011/
Papers/CIDR11_Paper35.pdf.

[2] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and
I. Stoica. Highly Available Transactions: Virtues and Limitations.
PVLDB, 7(3):181–192, 2013.

[3] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Bolt-on Causal
Consistency. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’13, pages 761–772,
New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2037-5. doi: 10.
1145/2463676.2465279.

[4] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Hellerstein,
and I. Stoica. Coordination-Avoiding Database Systems. CoRR,
abs/1402.2237, 2014. URL http://arxiv.org/abs/1402.
2237.

[5] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prabhakaran,
M. Wei, J. D. Davis, S. Rao, T. Zou, and A. Zuck. Tango: Distributed
Data Structures over a Shared Log. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, SOSP ’13, pages
325–340, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2388-8.
doi: 10.1145/2517349.2522732.

[6] V. Balegas, N. Preguiça, R. Rodrigues, S. Duarte, C. Ferreira,
M. Najafzadeh, and M. Shapiro. Putting the Consistency back
into Eventual Consistency. In Proceedings of the Tenth European
Conference on Computer System, EuroSys ’15, Bordeaux, France,
2015. URL http://lip6.fr/Marc.Shapiro/papers/
putting-consistency-back-EuroSys-2015.pdf.

[7] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil.
A Critique of ANSI SQL Isolation Levels. In Proceedings of the 1995
ACM SIGMOD International Conference on Management of Data,
SIGMOD ’95, pages 1–10, New York, NY, USA, 1995. ACM. ISBN
0-89791-731-6. doi: 10.1145/223784.223785.

[8] E. Brewer. Towards Robust Distributed Systems (Invited Talk), 2000.
[9] S. Burckhardt, D. Leijen, M. Fähndrich, and M. Sagiv. Eventually

Consistent Transactions. In Proceedings of the 21st European Confer-
ence on Programming Languages and Systems, ESOP’12, pages 67–86,
Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 978-3-642-28868-5.
doi: 10.1007/978-3-642-28869-2_4.

http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper35.pdf
http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper35.pdf
http://dx.doi.org/10.1145/2463676.2465279
http://dx.doi.org/10.1145/2463676.2465279
http://arxiv.org/abs/1402.2237
http://arxiv.org/abs/1402.2237
http://dx.doi.org/10.1145/2517349.2522732
http://lip6.fr/Marc.Shapiro/papers/putting-consistency-back-EuroSys-2015.pdf
http://lip6.fr/Marc.Shapiro/papers/putting-consistency-back-EuroSys-2015.pdf
http://dx.doi.org/10.1145/223784.223785
http://dx.doi.org/10.1007/978-3-642-28869-2_4

[10] S. Burckhardt, A. Gotsman, H. Yang, and M. Zawirski. Replicated
Data Types: Specification, Verification, Optimality. In Proceedings
of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’14, pages 271–284, New York,
NY, USA, 2014. ACM. ISBN 978-1-4503-2544-8. doi: 10.1145/
2535838.2535848.

[11] S. Burckhardt, D. Leijen, J. Protzenko, and M. Fähndrich. Global
Sequence Protocol: A Robust Abstraction for Replicated Shared
State. In Proceedings of the 29th European Conference on
Object-Oriented Programming, ECOOP ’15, Prague, Czech Repub-
lic, 2015. URL http://research.microsoft.com/pubs/
240462/gsp-tr-2015-2.pdf.

[12] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking Cloud Serving Systems with YCSB. In Proceedings
of the 1st ACM Symposium on Cloud Computing, SoCC ’10, pages
143–154, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0036-0.
doi: 10.1145/1807128.1807152.

[13] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon’s Highly Available Key-value Store. In Proceedings of Twenty-
first ACM SIGOPS Symposium on Operating Systems Principles, SOSP
’07, pages 205–220, New York, NY, USA, 2007. ACM. ISBN 978-1-
59593-591-5. doi: 10.1145/1294261.1294281.

[14] S. Gilbert and N. Lynch. Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-tolerant Web Services. SIGACT News,
33(2):51–59, June 2002. ISSN 0163-5700. doi: 10.1145/564585.
564601.

[15] M. P. Herlihy and J. M. Wing. Linearizability: A Correctness Con-
dition for Concurrent Objects. ACM Transactions on Programming
Languages and Systems, 12(3):463–492, July 1990. ISSN 0164-0925.
doi: 10.1145/78969.78972.

[16] KC Sivaramakrishnan, G. Kaki, and S. Jagannathan. Declarative
Programming over Eventually Consistent Data Store. Technical Report
TR-15-002, Purdue University, 2015. URL http://docs.lib.
purdue.edu/cstech/1776/.

[17] A. Lakshman and P. Malik. Cassandra: A Decentralized Structured
Storage System. SIGOPS Operating Systems Review, 44(2):35–40, Apr.
2010. ISSN 0163-5980. doi: 10.1145/1773912.1773922.

[18] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and R. Rodrigues.
Making Geo-replicated Systems Fast As Possible, Consistent when
Necessary. In Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation, OSDI’12, pages 265–
278, Berkeley, CA, USA, 2012. USENIX Association. ISBN 978-
1-931971-96-6. URL http://dl.acm.org/citation.cfm?
id=2387880.2387906.

[19] C. Li, J. a. Leitão, A. Clement, N. Preguiça, R. Rodrigues, and
V. Vafeiadis. Automating the Choice of Consistency Levels in Repli-
cated Systems. In Proceedings of the 2014 USENIX Conference on
USENIX Annual Technical Conference, USENIX ATC’14, pages 281–
292, Berkeley, CA, USA, 2014. USENIX Association. ISBN 978-
1-931971-10-2. URL http://dl.acm.org/citation.cfm?
id=2643634.2643664.

[20] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Don’t
Settle for Eventual: Scalable Causal Consistency for Wide-area Storage

with COPS. In Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, SOSP ’11, pages 401–416, New York,
NY, USA, 2011. ACM. ISBN 978-1-4503-0977-6. doi: 10.1145/
2043556.2043593.

[21] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Stronger
Semantics for Low-latency Geo-replicated Storage. In Proceedings
of the 10th USENIX Conference on Networked Systems Design and
Implementation, nsdi’13, pages 313–328, Berkeley, CA, USA, 2013.
USENIX Association. URL http://dl.acm.org/citation.
cfm?id=2482626.2482657.

[22] C. H. Papadimitriou. The Serializability of Concurrent Database
Updates. Journal of the ACM, 26(4):631–653, Oct. 1979. ISSN 0004-
5411. doi: 10.1145/322154.322158.

[23] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J. De-
mers. Flexible Update Propagation for Weakly Consistent Replication.
In Proceedings of the Sixteenth ACM Symposium on Operating Systems
Principles, SOSP ’97, pages 288–301, New York, NY, USA, 1997.
ACM. ISBN 0-89791-916-5. doi: 10.1145/268998.266711.

[24] RUBiS. Rice University Bidding System, 2014. URL http://
rubis.ow2.org/. Accessed: 2014-11-4 13:21:00.

[25] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. Conflict-
Free Replicated Data Types. In X. Défago, F. Petit, and V. Villain,
editors, Stabilization, Safety, and Security of Distributed Systems,
volume 6976 of Lecture Notes in Computer Science, pages 386–
400. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-24549-7.
doi: 10.1007/978-3-642-24550-3_29.

[26] S. Sivasubramanian. Amazon dynamoDB: A Seamlessly Scalable Non-
relational Database Service. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’12, pages
729–730, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1247-9.
doi: 10.1145/2213836.2213945.

[27] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional Storage
for Geo-replicated Systems. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, SOSP ’11, pages 385–
400, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0977-6.
doi: 10.1145/2043556.2043592.

[28] D. B. Terry, A. J. Demers, K. Petersen, M. Spreitzer, M. Theimer, and
B. W. Welch. Session Guarantees for Weakly Consistent Replicated
Data. In Proceedings of the Third International Conference on
Parallel and Distributed Information Systems, PDIS ’94, pages 140–
149, Washington, DC, USA, 1994. IEEE Computer Society. ISBN
0-8186-6400-2. URL http://dl.acm.org/citation.cfm?
id=645792.668302.

[29] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, M. K. Aguilera,
and H. Abu-Libdeh. Consistency-based Service Level Agreements for
Cloud Storage. In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, SOSP ’13, pages 309–324, New York,
NY, USA, 2013. ACM. ISBN 978-1-4503-2388-8. doi: 10.1145/
2517349.2522731.

[30] Twissandra. Twitter clone on Cassandra, 2014. URL http://
twissandra.com/. Accessed: 2014-11-4 13:21:00.

[31] Z3. High-performance Theorem Prover, 2014. URL http://z3.
codeplex.com/. Accessed: 2014-11-4 13:21:00.

http://dx.doi.org/10.1145/2535838.2535848
http://dx.doi.org/10.1145/2535838.2535848
http://research.microsoft.com/pubs/240462/gsp-tr-2015-2.pdf
http://research.microsoft.com/pubs/240462/gsp-tr-2015-2.pdf
http://dx.doi.org/10.1145/1807128.1807152
http://dx.doi.org/10.1145/1294261.1294281
http://dx.doi.org/10.1145/564585.564601
http://dx.doi.org/10.1145/564585.564601
http://dx.doi.org/10.1145/78969.78972
http://docs.lib.purdue.edu/cstech/1776/
http://docs.lib.purdue.edu/cstech/1776/
http://dx.doi.org/10.1145/1773912.1773922
http://dl.acm.org/citation.cfm?id=2387880.2387906
http://dl.acm.org/citation.cfm?id=2387880.2387906
http://dl.acm.org/citation.cfm?id=2643634.2643664
http://dl.acm.org/citation.cfm?id=2643634.2643664
http://dx.doi.org/10.1145/2043556.2043593
http://dx.doi.org/10.1145/2043556.2043593
http://dl.acm.org/citation.cfm?id=2482626.2482657
http://dl.acm.org/citation.cfm?id=2482626.2482657
http://dx.doi.org/10.1145/322154.322158
http://dx.doi.org/10.1145/268998.266711
http://rubis.ow2.org/
http://rubis.ow2.org/
http://dx.doi.org/10.1007/978-3-642-24550-3_29
http://dx.doi.org/10.1145/2213836.2213945
http://dx.doi.org/10.1145/2043556.2043592
http://dl.acm.org/citation.cfm?id=645792.668302
http://dl.acm.org/citation.cfm?id=645792.668302
http://dx.doi.org/10.1145/2517349.2522731
http://dx.doi.org/10.1145/2517349.2522731
http://twissandra.com/
http://twissandra.com/
http://z3.codeplex.com/
http://z3.codeplex.com/

	Introduction
	System Model
	Motivation
	RDT Specification
	Summarization

	Anomalies under Eventual Consistency
	Contracts
	From Contracts to Implementation

	Contract Language
	Syntax
	Semantics
	Capturing Store Semantics
	Contract Classification
	Generality of Contracts
	Soundness of Contract Classification

	Transaction Contracts
	Syntax and Semantics Extensions
	Transactional Bank Account
	Coordination-free Transactions
	Classification

	Implementation
	Operation Consistency
	Transactions
	Summarization

	Evaluation
	Related Work
	Conclusions

