
Composable Asynchronous Events

Lukasz Ziarek, KC Sivaramakrishnan, Suresh Jagannathan
Purdue University

{lziarek, chandras, suresh}@cs.purdue.edu

Abstract
Although asynchronous communication is an important feature
of many concurrent systems, building composable abstractions
that leverage asynchrony is challenging. This is because an asyn-
chronous operation necessarily involves two distinct threads of
control – the thread that initiates the operation, and the thread
that discharges it. Existing attempts to marry composability with
asynchrony either entail sacrificing performance (by limiting the
degree of asynchrony permitted), or modularity (by forcing natural
abstraction boundaries to be broken).
In this paper, we present the design and rationale for asynchronous
events, an abstraction that enables composable construction of
complex asynchronous protocols without sacrificing the benefits
of abstraction or performance. Asynchronous events are realized in
the context of Concurrent ML’s first-class event abstraction [16].
We discuss the definition of a number of useful asynchronous ab-
stractions that can be built on top of asynchronous events (e.g.,
composable callbacks) and provide a detailed case study of how
asynchronous events can be used to substantially improve the
modularity and performance of an I/O-intensive highly concurrent
server application.
Categories and Subject Descriptors: D.1.1 [Programming Tech-
niques] Applicative (functional) programming; D.3.1 [Program-
ming Languages]: Formal Definitions and Theory; D.3.2 [Pro-
gramming Languages]: Language Classifications - Concurrent, dis-
tributed, and parallel languages, ML; D.3.3 [Programming Lan-
guages]: Language Constructs and Features - Concurrent program-
ming structures
General Terms: Design, Languages, Theory
Keywords: Asynchrony, Concurrent ML, First-Class Events, Com-
posability, Message-Passing

1. Introduction
Software complexity is typically managed using programming ab-
stractions that encapsulate behaviors within modules. A module’s
internal implementation can be changed without requiring changes
to clients that use it, provided that these changes do not entail modi-
fying its signature. For concurrent programs, the specifications that
can be described by an interface are often too weak to enforce this

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’11, June 4–8, 2011, San Jose, California, USA.
Copyright c© 2011 ACM 978-1-4503-0663-8/11/06. . . $5.00

kind of strong encapsulation, especially in the presence of commu-
nication that spans abstraction boundaries. Consequently, changing
the implementation of a concurrency abstraction by adding, modi-
fying, or removing behaviors often requires pervasive change to the
users of the abstraction. Modularity is thus compromised.
This is particularly true for asynchronous behavior generated in-
ternally within a module. An asynchronous operation initiates two
temporally distinct sets of actions, neither of which are exposed in
its enclosing module’s interface. The first set defines post-creation
actions – these are actions that must be executed after an asyn-
chronous operation has been initiated, without taking into account
whether the effects of the operation have been witnessed by its re-
cipients. For example, a post-creation action of an asynchronous
send on a channel might initiate another operation on that same
channel; the second action should take place with the guarantee
that the first has already deposited its data on the channel. The sec-
ond are post-consumption actions – these define actions that must
be executed only after the effect of an asynchronous operation has
been witnessed. For example, a post-consumption action might be
a callback that is triggered when the client retrieves data from a
channel sent asynchronously.
In this paper, we describe how to build and maintain asynchronous
concurrency abstractions that give programmers the ability to
express composable and extensible asynchronous protocols. By
weaving protocols through the use of post-creation and post-
consumption computations, we achieve composability without sac-
rificing modularity, enabling reasoning about loosely coupled com-
munication partners that span logical abstraction boundaries. To
do so, we enable the construction of signatures and interfaces that
specify asynchronous behavior via abstract post-creation and post-
consumption actions. We present our extensions in the context of
the Concurrent ML’s (CML) first-class communication events [16].
Just as CML’s synchronous events provide a solution to compos-
able, synchronous message-passing that could not be easily ac-
commodated using λ-abstraction and application, the asynchronous
events defined here offer a solution for composable asynchronous
message-passing not easily expressible using synchronous commu-
nication and explicit threading abstractions. There are three over-
arching goals of our design:

1. Asynchronous combinators should permit uniform composition
of pre/post-creation and consumption actions. This means that
protocols should be allowed to extend the behavior of an asyn-
chronous action both with respect to the computation performed
before and after it is created and consumed.

2. Asynchronous actions should provide sensible visibility and or-
dering guarantees. A post-creation computation should execute
with the guarantee that the asynchronous action it follows has
been created, even if that action has not been fully discharged.
The effects of consumed asynchronous actions should be con-
sistent with the order in which they were created.



spawn : (unit -> ’a) -> threadID

sendEvt : ’a chan * ’a -> unit Event

recvEvt : ’a chan -> ’a Event

alwaysEvt : ’a -> ’a Event

never : ’a Event

sync : ’a Event -> ’a

wrap : ’a Event * (’a -> ’b) -> ’b Event

guard : (unit -> ’a Event) -> ’a Event

choose : ’a Event list -> ’a Event

Figure 1: CML event operators.

3. Communication protocols should be agnostic with respect to
the kinds of actions they handle. Thus, both synchronous and
asynchronous actions should be permitted to operate over the
same set of abstractions (e.g., communication channels).

Contributions.

1. We present a comprehensive design for asynchronous events,
and describe a family of combinators analogous to their syn-
chronous variants available in CML. To the best of our knowl-
edge, this is the first treatment to consider the meaningful inte-
gration of composable CML-style event abstractions with asyn-
chronous functionality.

2. We provide implementations of useful asynchronous abstrac-
tions such as callbacks and mailboxes (buffered channels),
along with a number of case studies extracted from realistic
concurrent applications (e.g., a concurrent I/O library, concur-
rent file processing, etc.). Our abstractions operate over ordi-
nary CML channels, enabling interoperability between syn-
chronous and asynchronous protocols.

3. We discuss an implementation of asynchronous events that has
been incorporated into Multi-MLton, a parallel extension of
MLton [14], a whole-program optimizing compiler for Stan-
dard ML, and present a detailed case study that shows how
asynchronous events can help improve the expression and per-
formance of highly concurrent server application.

The paper is organized as follows. Sec. 2 provides a brief intro-
duction to Concurrent ML. Additional motivation for asynchronous
events is given in Sec. 3. Sec. 4 describes the asynchronous com-
binators and abstractions we support. Sec. 5 gives a formal opera-
tional semantics for asynchronous events. A detailed case study is
presented in Sec. 6. Related work and conclusions are provided in
Sec. 7 and Sec. 8.

2. Background: Concurrent ML
Context: We explore the design of asynchronous events in the
context of Concurrent ML [16] (CML). CML is a concurrent exten-
sion of Standard ML that utilizes synchronous message passing to
enable the construction of synchronous communication protocols.
Threads perform send and recv operations on typed channels;
these operations block until a matching action on the same channel
is performed by another thread.
CML also provides first-class synchronous events that abstract syn-
chronous message-passing operations. An event value of type ’a
event when synchronized on yields a value of type ’a . An event
value represents a potential computation, with latent effect until a
thread synchronizes upon it by calling sync . The following equiv-
alences thus therefore hold: send(c, v) ≡ sync(sendEvt(c,v))
and recv(c) ≡ sync(recvEvt(c)) .

Notably, thread creation is not encoded as an event – the thread
spawn primitive simply takes a thunk to evaluate as a separate
thread, and returns a thread identifier that allows access to the
newly created thread’s state.
Besides sendEvt and recvEvt , there are other base events pro-
vided by CML. The never event, as its name suggests, is never
available for synchronization; in contrast, alwaysEvt is always
available for synchronization. These events are typically generated
based on the (un)satisfiability of conditions or invariants that can
be subsequently used to influence the behavior of more complex
events built from the event combinators described below.
Much of CML’s expressive power derives from event combina-
tors that construct complex event values from other events. We list
some of these combinators in Fig. 1. The expression wrap (ev,
f) creates an event that, when synchronized, applies the result of
synchronizing on event ev to function f . Conversely, guard(f)
creates an event that, when synchronized, evaluates f() to yield
event ev and then synchronizes on ev . The choose event com-
binator takes a list of events and constructs an event value that rep-
resents the non-deterministic choice of the events in the list; for
example, sync(choose[recvEvt(a),sendEvt(b,v)]) will ei-
ther receive a unit value from channel a , or send value v on chan-
nel b . Selective communication provided by choice motivates the
need for first-class events. We cannot, for example, simply build
complex event combinators using function abstraction and com-
position because function closures do not allow inspection of the
computations they encapsulates, a necessary requirement for com-
binators like choice .

3. Motivation
Given CML synchronous events, we can envision a simple way to
express asynchrony in terms of lightweight threads that encapsulate
synchronous operations:

fun asyncEvt (evt) = wrap(alwaysEvt(),
fn() => spawn(sync(evt)))

Evaluating asyncEvt(evt) yields an event that, when synchro-
nized, spawns a new thread to perform the actions defined by evt .
(The use of alwaysEvt ensures that the event is always available
for synchronization.) Thus,

fun asend(c,v) = sync(asyncEvt(sendEvt(c,v)))

defines a function that asynchronously sends value v on channel
c , when applied. The use of explicit user-defined threads to express
asynchrony in this way, however, fails to provide sensible ordering
guarantees. For example, in the expression:

let val evt1 = asend(c,v)
val evt2 = asend(c,v’)

in recvEvt(c) end

the value returned when this expression is synchronized may be
either v or v’ (depending on the implementation of the underly-
ing thread scheduler), even though evt1 is synchronized before
evt2 .
Besides not preserving desired ordering, there are more fundamen-
tal issues at play here. Suppose we wish to add post-creation and
post-consumption actions to an asynchronous event; post-creation
actions are to be performed once the thread is spawned, and post-
consumptions actions must be performed once the communication
action is complete. We could modify the definition of asyncEvt so
that post-creation and post-consumption actions are supplied when
the event is constructed:



spawn

g()

f()

send(c,v)

recv(c')

Processor Connection
Manager

Orchestrator

logRequestStart()

logRequestEnd()

logConnStart()

logConnEnd()

choose

Figure 2: The figure shows the events built up by the three modules that
comprise our abstract server. The events created by the processor and con-
nection manager, depicted with thick squares, are opaque to the orchestrator
and cannot be deconstructed. Notably, this means the orchestrator does not
have the ability to modify or extend the behavior of the thread created by
processorEvt (shown in grey) using only synchronous event combina-
tors.

fun asyncEvt(f,g,evt) =

wrap(alwaysEvt(),

fn() => (spawn(fn() => sync(wrap(evt, f))); g()))

Given this definition, an asynchronous send event might be defined
to perform a post-consumption action, here f (e.g., an action that
waits for an acknowledgment indicating the sent data was received
with no errors). Similarly, the event may be equipped with a post-
creation action, here g (e.g., an operation that performs local clean-
up or finalization).

To illustrate the composability and modularity issues that arise in
using asyncEvt defined in this way, consider the definition of a
simple resource manager (like a web-server) that consists of three
modules: (1) a connection manager that listens for and accepts new
connections, (2) a processor that processes and sends data based on
input requests, and (3) an orchestrator that enables different kinds
of interactions and protocols among clients, the processor, and
the connection manager. If each established connection represents
an independent group of actions (e.g., requests), we can leverage
asynchrony to allow multiple requests to be serviced concurrently.
We discuss this design in more detail in Sec. 6.
One simple definition of an orchestrator is a procedure that chooses
between the communication event defined by the processor (call it
processorEvt) and the connection manager (call it managerEvt).
Suppose processorEvt internally leveraged our definition of
asyncEvt to perform a send asynchronously and then executed
some post-creation action g and post-consumption action f. Even
if the details of the communication protocol used by the connection
manager and processor were visible to the orchestrator, the orches-
trator would not be able to change their internal functionality since
they are encapsulated within events, which abstract the computa-
tion actions and effects they perform. Nonetheless, the orchestrator
is still free to augment these protocols to yield additional behavior.
For example, the following definition:

fun orchestrate(processorEvt, managerEvt) =

sync(choose([processorEvt, managerEvt]))

uses choice to non-deterministically select whichever event is avail-
able to be synchronized against. This definition allows the execu-
tion of the managerEvt if a new connection is available, or the
processorEvt if the current input request has been satisfied, or a
non-deterministic choice among the two if both can execute.

v placed on c v consumed from c

processorEvt

g() f()

logRequestEnd()

logRequestStart()

post-creation
post-consumption

pre-creation

Figure 3: The figure shows how asynchronous events can alleviate the
problems illustrated in Fig. 2. By making creation and consumption
actions explicit in processorEvt’s definition, we are able to specify
logRequestEnd as a post consumption action correctly extending the pro-
tocol in the orchestrator.

Unfortunately, composing more expressive asynchronous protocols
in this way is difficult. To see why, consider a further modifica-
tion to the orchestrator that incorporates logging information. We
can wrap our processor event with a function that logs requests
and our connection manager with one that logs connection de-
tails. The guard event combinator can be used to specify pre-
synchronization actions. In this example, these actions would be
logging functions that record the start of a connection or request. 1

fun orchestrate(processorEvt, managerEvt) =

sync(choose([guard(fn () => logRequestStart();
wrap(processorEvt, logRequestEnd)),

guard(fn () => logConnStart();
wrap(managerEvt, logConnEnd))]))

This code does not provide the functionality we desire, however.
Since the processor handles its internal protocols asynchronously,
wrapping logRequestEnd around processorEvt specifies an ac-
tion that will occur in the main thread of control after the exe-
cution of g , the post-creation action defined when the event was
created (see Fig. 2). However, the request should only be com-
pleted after the post-consumption action f , which is executed by
the thread created internally by the event. Since this thread is hid-
den by the event, there is no way to extend it. Moreover, there is
no guarantee that the request has been successfully serviced even
after g completes. We could recover composability by either (a)
not spawning an internal thread in asyncEvt , (b) weaving a pro-
tocol that required g to wait for the completion of f , effectively
yielding synchronous behavior, or (c) modifying procesorEvt
and managerEvt to handle the post-consumption action explic-
itly. The first two approaches force f and g to be executed prior to
logRequestEnd, but a synchronous solution of this kind would not
allow multiple requests to be processed concurrently; approach (c)
retains asynchrony, but at the cost of modularity, requiring server
functionality to be modified anytime clients wish to express addi-
tional behaviors.
The heart of the problem is a dichotomy in language abstractions;
asynchrony is fundamentally expressed using distinct threads of
control, yet composablity is achieved through event abstractions
that are thread-unaware. The result is that CML events cannot be
directly applied to build post-consumption actions for realizing
composable asynchronous communication protocols.
Fig. 3 diagrammatically shows how extensible post-creation and
post-consumption actions can be leveraged to achieve our desired

1 In CML, we could also use the withNack combinator to avoid firing both
the logRequestStart and logConnStart during the choice [16].



behavior. In Section 4.1, we show a modified implementation of the
orchestrator using the asynchronous event primitives and combina-
tors we define in the following section that captures the behavior
shown in the figure.

Putting it All Together. Although synchronous first-class events
alleviate the complexity of reasoning about arbitrary thread in-
terleavings, and enable composable synchronous communication
protocols, using threads to encode asynchrony unfortunately re-
introduces these complexities. Our design introduces first-class
asynchronous events with the following properties to alleviate this
drawback: (i) they are extensible both with respect to pre- and post-
creation as well as pre- and post-consumption actions; (ii) they can
operate over the same channels that synchronous events operate
over, allowing both kinds of events to seamlessly co-exist; and,
(iii) their visibility, ordering, and semantics is independent of the
underlying runtime and scheduling infrastructure.

4. Asynchronous Events
In order to provide primitives that adhere to the desired proper-
ties outlined above, we extend CML with the following two base
events: aSendEvt and aRecvEvt , to create an asynchronous send
event and an asynchronous receive event, resp. The differences in
their type signature from their synchronous counterparts reflect the
split in the creation and consumption of the communication action
they define:

sendEvt : ’a chan * ’a -> unit Event

aSendEvt : ’a chan * ’a -> (unit, unit) AEvent

recvEvt : ’a chan -> ’a Event

aRecvEvt : ’a chan -> (unit, ’a) AEvent

An AEvent value is parametrized with respect to the type of the
event’s post-creation and post-consumption actions. In the case of
aSendEvt , both actions are of type unit : when synchronized on,
the event immediately returns a unit value and places its ’a argu-
ment value on the supplied channel. The post-consumption action
also yields unit . When synchronized on, an aRecvEvt returns
unit ; the type of its post-consumption action is ’a reflecting the
type of value read from the channel when it is paired with a send.

As an example, consider Fig 3, where the processorEvt event
upon synchronization initiates an asynchronous action to place the
value v on channel c and then executes g . When the send is
paired with a receive, f is first executed, and then logRequestEnd.
In this case, the type of the computation would be:

(return-type-of g, return-type-of logRequestEnd) AEvent

The semantics of both asynchronous send and receive guarantees
that successive communication operations performed by the same
thread get witnessed in the order in which they were issued. In
this respect, an asynchronous send event shares functionality with
a typical non-blocking send of the kind found in languages like Er-
lang [1] or libraries like MPI. However, an asynchronous receive
does not exhibit the same behavior as a typical non-blocking re-
ceive. Indeed, CML already provides polling methods that can be
used to implement polling loops found in most non-blocking re-
ceive implementations. The primary difference between the two
is that an asynchronous receive places itself on the channel at
the point where it is synchronized (regardless of the availability
of a matching send), while a non-blocking receive typically only
queries for the existence of a value to match against, but does not
alter the underlying channel structure. By actually depositing itself
on the channel, an asynchronous receive thus provides a convenient
mechanism to implement ordered asynchronous buffers or streams

cv

post creation
actions

aSync(ev)
ev

Thread 1 Thread 2

c

v recv(c)

Implicit Thread

post consumption
actions

(a) (b)

Figure 4: The figure shows a complex asynchronous event ev , built from
a base aSendEvt , being executed by Thread 1. When the event is syn-
chronized via. aSync , the value v is placed on channel c and post-
creation actions are executed (see (a)). Afterwards, control returns to Thread
1. When Thread 2 consumes the value v from channel c , an implicit thread
of control is created to execute any post-consumption actions (see (b)).

– successive asynchronous receives are guaranteed to receive data
from a matching send in the order in which they were synchronized.

In addition to these new base events, we also introduce a new
synchronization primitive: aSync , to synchronize asynchronous
events. The aSync operation fires the computation encapsulated
by the asynchronous event of type (’a, ’b) AEvent and returns
a value of type ’a , corresponding to the return type of the event’s
post-creation action (see Fig. 4).

sync : ’a Event -> ’a
aSync : (’a, ’b) AEvent -> ’a

Unlike their synchronous variants, asynchronous events do not
block if no matching communication is present. For example, exe-
cuting an asynchronous send event on an empty channel places the
value being sent on the channel and then returns control to the exe-
cuting thread (see Fig. 4(a)). In order to allow this non-blocking be-
havior, an implicit thread of control is created for the asynchronous
event when the event is paired, or consumed as shown in Fig. 4(b).
If a receiver is present on the channel, the asynchronous send event
behaves similarly to a synchronous event; it passes the value to the
receiver. However, it still creates a new implicit thread of control if
there are any post-consumption actions to be executed.
Similarly, the synchronization of an asynchronous receive event
does not yield the value received (see Fig. 5); instead, it sim-
ply enqueues the receiving action on the channel. Therefore, the
thread which synchronizes on an asynchronous receive always gets
the value unit, even if a matching send exists. The actual value
consumed by the asynchronous receive can be passed back to the
thread which synchronized on the event through the use of com-
binators that process post-consumption actions. This is particu-
larly well suited to encode reactive programming idioms: the post-
consumption actions encapsulate a reactive computation.
To illustrate the differences between synchronous and asynchronous
primitive events, consider the two functions f and af shown be-
low:

1. fun f () =
2. (spawn (fn () => sync (sendEvt(c, v)));
3. sync (sendEvt(c, v’));
4. sync (recvEvt(c)))

5. fun af () =
6. (spawn (fn () => sync (sendEvt(c, v)));
7. aSync (aSendEvt(c, v’));
8. sync (recvEvt(c)))



c

post creation
actions

aSync(ev)
ev

Thread 1 Thread 2

c

v send(c, v)

Implicit Thread

post consumption
actions

(a) (b)

recv

v

v

Figure 5: The figure shows a complex asynchronous event ev , built from
a base aRecvEvt , being executed by Thread 1. When the event is syn-
chronized via aSync , the receive action is placed on channel c and post-
creation actions are executed (see (a)). Afterwards, control returns to Thread
1. When Thread 2 sends the value v to channel c , an implicit thread of
control is created to execute any post-consumption actions passing v as
the argument (see (b)).

The function f , if executed in a system with no other threads will
always block because there is no recipient available for the send of
v’ on channel c . On the other hand, suppose there was another
thread willing to accept communication on channel c . In this case,
the only possible value that f could receive from c is v . This
occurs because the receive will only happen after the value v’
is consumed from the channel. Notice that if the spawned thread
enqueues v on the channel before v’ , the function f will block
even if another thread is willing to receive a value from the channel,
since a function cannot synchronize with itself. The function af
will never block. The receive may see either the value v or v’
since the asynchronous send event only asserts that the value v’
has been placed on the channel and not that it has been consumed.
If we swapped lines 6 and 7, the receive operation on line 8 is
guaranteed to read v’ . While asynchronous events do not block,
they still enforce ordering constraints that reflect the order in which
they were synchronized.

4.1 Combinators

In CML, the wrap combinator allows for the specification of
a post-synchronization action. Once the event is completed the
function wrapping the event is evaluated. For asynchronous events,
this means the wrapped function is executed after the action the
event encodes is placed on the channel and not necessarily after
that action is consumed.

sWrap : (’a, ’b) AEvent * (’a -> ’c) -> (’c, ’b) AEvent
aWrap : (’a, ’b) AEvent * (’b -> ’c) -> (’a, ’c) AEvent

To allow for the specification of both post-creation and post-
consumption actions for asynchronous events, we introduce two
new combinators: sWrap and aWrap . sWrap is used to specify
post-creation actions. The combinator aWrap , on the other hand,
is used to express post-consumption actions. We can apply sWrap
and aWrap to an asynchronous event in any order.

sWrap(aWrap(e, f) g) ≡ aWrap(sWrap(e, g), f)

We can use sWrap and aWrap to encode a composable variant of
asyncEvt (presented in the motivation) which is also parameter-
ized by a channel c and value v . We create a base asynchronous
send event to send v on c and use sWrap and aWrap to specify
g and f as a post-creation action and a post-consumption action,
resp.:

fun asyncEvt(f,g,c,v) = aWrap(sWrap(aSendEvt(c,v),g), f)

Since post-creation actions have been studied in CML extensively
(they act as post-synchronization actions in a synchronous context),
we focus our discussion on aWrap and the specification of post-
consumption actions. Consider the following program fragment:

fun f() =
let val clocal = channel()
in aSync (aWrap(aSendEvt(c, v),fn () => send(clocal, ())));

g();
recv(clocal);
h()

end

The function f first allocates a local channel clocal and then exe-
cutes an asynchronous send aWrap -ed with a function that sends
on the local channel. The function f then proceeds to execute func-
tions g and h with a receive on the local channel between the two
function calls. We use the aWrap primitive to encode a simple bar-
rier based on the consumption of v . We are guaranteed that h ex-
ecutes in a context in which v has been consumed. The function
g , on the other hand, can make no assumptions on the consump-
tion of v . However, g is guaranteed that v is on the channel.
Therefore, if g consumes values from c , it can witness v and,
similarly, if it places values on the channel, it is guaranteed that
v will be consumed prior to the values it produces. Of course, v
could always have been consumed prior to g ’s evaluation. If the
same code was written with a synchronous wrap, we would have
no guarantee about the consumption of v . In fact, the code would
block, as the send encapsulated by the wrap would be executed by
the same thread of control executing f . Thus, the asynchronous
event implicitly creates a new evaluation context and a new thread
of control; the wrapping function is evaluated in this context, not in
the context associated with thread that performed the synchroniza-
tion.

This simple example illustrates the essential ingredients of a ba-
sic callback mechanism. The code shown below performs an asyn-
chronous receive and passes the result of the receive to its wrapped
function. The value received asynchronously is passed as an argu-
ment to h by sending on the channel clocal .

let val clocal = channel()
in aSync (aWrap(aRecvEvt(c), fn x => send(clocal, x)));

... h(recv(clocal)) ...
end

Although this implementation suffices as a basic callback, it is
not particularly abstract and cannot be composed with other asyn-
chronous events. We can create an abstract callback mechanism us-
ing both sWrap and aWrap around an input event.

callbackEvt : (’a, ’c) AEvent * (’c -> ’b) ->
(’b Event, ’c) AEvent

fun callbackEvt(ev, f) =
let val clocal = channel()
in sWrap(aWrap(ev,

fn x => (aSync(aSendEvt(clocal, x)); x)),
fn => wrap(recvEvt(clocal), f))

end

If ev contains post-creation actions when the callback event is
synchronized on, they are executed, followed by execution of the
sWrap as shown in Fig. 6(a). The event returned by the sWrap
(call it ev’ ), which when synchronized on will first receive a value
on the local channel (clocal) and then apply the function f to this
value. Synchronizing on this event (which need not happen at the
point where the callback event itself is synchronized) will subse-
quently block until the event ev is discharged. Once ev com-
pletes, its post-consumption actions are executed in a new thread
of control since ev is asynchronous (see Fig. 6(b)). The body of



c

post creation
actions

aSync(callBackEvt(ev, f))

ev

Thread 1

clocal

aSend(clocal, v')

Implicit Thread

post consumption
actions

(a) (b)

v'

v

base   event

ev' 

consumption of ev base event

(c)
ev'

clocal
v'

f(v')

sync(ev')

Figure 6: The figure shows a callback event constructed from a complex
asynchronous event ev and a callback function f . When the callback
event is synchronized via aSync , the action associated with the event
ev is placed on channel c and post-creation actions are executed. A new
event ev’ is created and passed to Thread 1 (see (a)). An implicit thread of
control is created after the base event of ev is consumed. Post-consumption
actions are executed passing v , the result of consuming the base event for
ev , as an argument (see (b)). The result of the post-consumption actions,
v’ is sent on clocal . When ev’ is synchronized upon, f is called with
v’ (see (c)).

the aWrap -ed function simply sends the result of synchronizing
on ev (call it v’ ) on clocal and then passes the value v’ to any
further post-consumption actions. This is done asynchronously be-
cause the complex event returned by callbackEvt can be further
extended with additional post consumption actions. Those actions
should not be blocked if there is no thread willing to synchronize
on ev’ . Thus, synchronizing on a callback event executes the base
event associated with ev and creates a new event as a post-creation
action, which when synchronized on, executes the callback func-
tion synchronously.

We can think of the difference between a callback and an aWrap of
an asynchronous event in terms of the thread of control which ex-
ecutes them. Both specify a post-consumption action for the asyn-
chronous event, but the callback, when synchronized upon, is exe-
cuted potentially by an arbitrary thread whereas the aWrap is al-
ways executed in the implicit thread created when the asynchronous
event is consumed. Another difference is that the callback can be
postponed and only executes when two conditions are satisfied: (i)
the asynchronous event has completed and (ii) the callback is syn-
chronized on. An aWrap returns once it has been synchronized on,
and does not need to wait for other asynchronous events or post-
consumption actions it encapsulates to complete.
A guard of an asynchronous event behaves much the same as a
guard of a synchronous event does; it specifies pre-synchronization
actions (i.e. pre-creation computation):

aGuard : (unit -> (’a, ’b) AEvent) -> (’a, ’b) AEvent

To see how we might use asynchronous guards, notice that our
definition of callbackEvt has the drawback that it allocates a
new local channel regardless of whether or not the event is ever
synchronized upon. The code below uses an aGuard to specify the
allocation of the local channel only when the event is synchronized
on:

fun callbackEvt(ev, f) =
aGuard(fn () =>

let val clocal = channel()
in sWrap(aWrap(ev,

fn x => (aSync(aSendEvt(clocal, x));x)),
fn => wrap(recvEvt(clocal), f))

end)

Thread 1

caSendEvt(c,v)

aSync(ev)
ev

c'

aSendEvt(c',v')

Thread 2

recv(c)

Figure 7: The figure shows Thread 1 synchronizing on a complex asyn-
chronous event ev , built from a choice between two base asynchronous
send events; one sending v on channel c and the other v’ on c’ . Thread
2 is willing to receive from channel c .

One of the most powerful combinators provided by CML is a non-
deterministic choice over events. The combinator choose picks
an active event from a list of events. If no events are active, it
waits until one becomes active. An active event is an event which
is available for synchronization. We define an asynchronous ver-
sion of the choice combinator, aChoose , that operates over asyn-
chronous events. Since asynchronous events are non-blocking, all
events in the list are considered active. Therefore, the asynchronous
choice always non-deterministically chooses from the list of avail-
able asynchronous events. We also provide a synchronous version
of the asynchronous choice, sChoose , which blocks until one of
the asynchronous base events has been consumed. Post-creation ac-
tions are not executed until the choice has been made. 2

choose : ’a Event list -> ’a Event
aChoose : (’a, ’b) AEvent list -> (’a, ’b) AEvent
sChoose : (’a, ’b) AEvent list -> (’a, ’b) AEvent

To illustrate the difference between aChoose and sChoose , con-
sider a complex event ev defined as follows:

val ev = aChoose[aSendEvt(c, v), aSendEvt(c’,v’)]

If there exists a thread only willing to receive from channel c ,
aChoose will, with equal probability, execute the asynchronous
send on c and c’ (see Fig. 7). However, if we redefined ev to
utilize sChoose instead, the behavior of the choice changes:

val ev = sChoose[aSendEvt(c, v), aSendEvt(c’,v’)]

Since sChoose blocks until one of the base asynchronous events is
satisfiable, if there is only a thread willing to accept communication
on c (see Fig. 7), the choice will only select the event encoding the
asynchronous send on c .
We have thus far provided a mechanism to choose between sets
of synchronous events and sets of asynchronous events. However,
we would like to allow programmers to choose between both syn-
chronous and asynchronous events. Currently, their different type
structure would prevent such a formulation. Notice, however, that
an asynchronous event with type (’a, ’b) AEvent and a syn-
chronous event with type ’a Event both yield ’a in the thread
which synchronizes on them. Therefore, it is sensible to allow
choice to operate over both asynchronous and synchronous events
provided the type of the asynchronous event’s post-creation action
is the same as the type encapsulated by the synchronous event. To
facilitate this interoperability, we provide combinators to transform
asynchronous event types to synchronous event types and vice-
versa:

aTrans : (’a, ’b) AEvent -> ’a Event
sTrans : ’a Event -> (unit, ’a) AEvent

2 This behavior is equivalent to a scheduler not executing the thread which
created the asynchronous action until it has been consumed.



The aTrans combinator takes an asynchronous event and creates
a synchronous version by dropping the asynchronous portion of the
event from the type (i.e. encapsulating it). As a result, we can no
longer specify post-consumption actions for the event. However,
we can still apply wrap to specify post-creation actions to the
resulting synchronous portion exposed by the ’a Event . Asyn-
chronous events that have been transformed and are part of a larger
choose event are only selected if their base event is satisfiable.
Therefore, the following equivalence holds for two asynchronous
events, aEvt1 and aEvt2 :

choose[aTrans(aEvt1), aTrans(aEvt2)] ≡
aChoose[aEvt1, aEvt2]

The sTrans combinator takes a synchronous event and changes
it into an asynchronous event with no post-creation actions. The
wrapped computation of the original event occurs now as a post-
consumption action. We can encode an asynchronous version of
alwaysEvt from its synchronous counterpart. Similarly, we can
encode an asynchronous variant of never .

aAlwaysEvt : ’a -> (unit, ’a) AEvent

aNever : (unit, ’a) AEvent

aAlwaysEvt(v) = sTrans alwaysEvt(v)

aNever = sTrans never

Orchestrator revisited: Armed with asynchronous events and the
combinators discussed above, we can now implement a compos-
able orchestrator module from our simple abstract server exam-
ple given in Sec. 3. We use aGuard to specify pre-creation ac-
tions and aWrap for asynchronous post-consumption actions. If
managerEvt defines a synchronous protocol (since it merely lis-
tens for and accepts new connects), and processorEvt defines an
asynchronous one (since it can process and communicate data con-
currently with other ongoing requests), we can use aTrans to hide
its post-consumption actions from the orchestrator. This allows us
to freely choose between the asynchronous processorEvt and
the synchronous managerEvt .

fun orchestrate(processorEvt, managerEvt) =

sync(choose([aTrans

aGuard(fn () => logRequestStart();
aWrap(processorEvt, logRequestEnd)),

guard(fn () => logConnStart();
wrap(managerEvt, logConnEnd))]))

Mailboxes and Multicast: Using asynchronous events we can en-
code other CML structures such as mailboxes (i.e., buffered chan-
nels with asynchronous send and synchronous receive semantics)
and multicasts channels, reducing code size and complexity. Asyn-
chronous events provide the components from which a mailbox
structure can be defined, allowing the construction of mailboxes
from regular CML channels (a facility not available in CML), and
providing a mechanism to define asynchronous send events on the
mailbox trivially using the base asynchronous send event. Having
an asynchronous send event operation defined for mailboxes al-
lows for their use in selective communication. Additionally, asyn-
chronous events now provide the ability for programmers to specify
post-creation and post-consumption actions. Using asynchronous
events, we reduced the original CML mailbox implementation from
240 LOC to 70 LOC, with a corresponding 52% improvement in
performance on synthetic stress tests exercising various producer/-
consumer configurations. Similarly, we were able to express mul-
ticast channels in 60 LOC, compared to 87 LOC in CML, with a
roughly 19% improvement in performance.

5. Semantics
Our semantics (see Fig. 8) is defined in terms of a core call-by-value
functional language with threading and communication primitives.
Communication between threads is achieved using synchronous
channels and events. Our language extends a synchronous-event
core language with asynchronous constructs. For perspicuity, the
language omits many useful event combinators such as choose
(and its variants); a semantics formalizing the full set of combina-
tors discussed in this paper is available in an accompanying techni-
cal report [19].
In our syntax, v ranges over values, p over primitive event con-
structors, and e over expressions. Besides abstractions, a value can
be a message identifier, used to track communication actions, a
channel identifier, or an event context. An event context (ε[]) de-
marcates event expressions that are built from asynchronous events
and their combinators 3 that are eventually supplied as an argu-
ment to a synchronization action. The rules use function composi-
tion f ◦g≡ λx. f (g(x)) to sequence event actions and computations.
The semantics also includes a new expression form, {e1, e2}
to denote asynchronous communication actions; the expression
e1 corresponds to the creation (and post-creation) of an asyn-
chronous event, while e2 corresponds to the consumption (and
post-consumption) of an asynchronous event. For convenience,
both synchronous and asynchronous events are expressed in this
form. For a synchronous event, e2 simply corresponds to an unin-
teresting action. We refer to e1 as the synchronous portion of the
event, the expression which is executed by the current thread, and
e2 as the asynchronous portion of the event, the expression which
is executed by a newly created thread (see rule SYNCEVENT).

A program state consists of a set of threads (T ), a communication
map (∆), and a channel map (C ). The communication map is used
to track the state of an asynchronous action, while the channel map
records the state of channels with respect to waiting (blocked) ac-
tions. Evaluation is specified via a relation (→) that maps one pro-
gram state to another. Evaluation rules are applied up to commuta-
tivity of parallel composition (‖).

Encoding Communication: A communication action is split into
two message parts: one corresponding to a sender and the other
to a receiver. A send message part is, in turn, composed of two
conceptual primitive actions: a send act (sendAct(c,v)) and a send
wait (sendWait):

sendAct: (ChannelId × Val) → MessageId → MessageId
sendWait: MessageId → Val

The send act primitive, when applied to a message identifier, places
the value (v) on the channel (c), while the send wait, when applied
to a message identifier, blocks until the value has been consumed
off of the channel, returning unit when the message has been
consumed.
The message identifier m, generated for each base event (see
rule SyncEvent ) is used to correctly pair the ”act” and ”wait”.
Similarly, a receive message part is composed of receive act
(recvAct(c)) and a receive wait (recvWait) primitives:

recvAct: ChannelId → MessageId → MessageId
recvWait: MessageId → Val

A receive wait behaves as its send counterpart. A receive act re-
moves a value from the channel if a matching send action exists;

3 We describe the necessity of a guarded event context when we introduce
the combinators later in this section.



e ∈ Exp := v | x | p e | e e
| {e, e′} | spawn e | sync e | ch()
| sendEvt(e,e) | recvEvt(e)
| aSendEvt(e,e) | aRecvEvt(e)
| aWrap(e,e) | sWrap(e,e) | aGuard(e)

v ∈ Val := unit | c | m | λx.e | ε[e]
p ∈ Prim := sendAct(c,v) | sendWait | recvAct(c) | recvWait

E := • | E e | v E | p E | sync E
| sendEvt(E,e) | sendEvt(c,E)
| aSendEvt(E,e) | aSendEvt(c,E)
| recvEvt(E) | aRecvEvt(E)
| aWrap(E,e) | sWrap(E,e) | aWrap(v,E) | sWrap(v,E)
| aGuard(E)

m ∈ MessageId
c ∈ ChannelId

ε[e],ε[e]g ∈ Event
A ∈ Action := Ar | As

Ar ∈ ReceiveAct := R m
c

As ∈ SendAct := S m
c,v

T ∈ Thread := (t,e)
T ∈ ThreadCollection := /0 | T | T || T
∆ ∈ CommMap := MessageId → Val
C ∈ ChanMap := ChannelId → Action

〈T〉∆,C ∈ State := 〈T,CommMap,ChanMap〉

APP

〈(t,E[(λx.e) v]) || T〉∆,C →
〈(t,E[e[v/x]]) || T〉∆,C

CHANNEL

c fresh

〈(t,E[ch()]) || T〉∆,C → 〈(t,E[c]) || T〉∆,C [c7→ /0]

SPAWN

t′ f resh

〈(t,E[spawn e]) || T〉∆,C →
〈(t′,e) || (t,E[unit]) || T〉∆,C

SENDEVENT

〈(t,E[sendEvt(c,v)]) || T〉∆,C →
〈(t,E[ε[{sendWait ◦ sendAct(c,v), λx.unit}]]) || T〉∆,C

ASENDEVENT

〈(t,E[aSendEvt(c,v)]) || T〉∆ →
〈(t,E[ε[{sendAct(c,v), sendWait}]]) || T〉∆,C

RECVEVENT

〈(t,E[recvEvt(c)]) || T〉∆,C →
〈(t,E[ε[{recvWait ◦ recvAct(c), λx.unit}]]) || T〉∆,C

ARECVEVENT

〈(t,E[aRecvEvt(c)]) || T〉∆,C →
〈(t,E[ε[{recvAct(c), recvWait}]]) || T〉∆,C

SYNCEVENT

m f resh t′ f resh

〈(t,E[sync ε[{e, e′}]]) || T〉∆,C → 〈(t,E[e m]) || (t′,e′ m) || T〉∆,C

MESSAGE

∆,S m
c,v ⇒ ∆[m 7→ unit] ∆,R m

c ,v ⇒ ∆[m 7→ v]

SENDMATCH

C (c) = R m′
c : Ar

∆,S m
c,v ⇒ ∆′ ∆′,R m′

c ,v ⇒ ∆′′

〈(t,E[(sendAct(c,v)) m]) || T〉∆,C → 〈(t,E[m]) || T〉
∆′′,C [c7→Ar ]

RECVMATCH

C (c) = S m′
c,v : As

∆,S m′
c,v ⇒ ∆′ ∆′,R m

c ,v ⇒ ∆′′

〈(t,E[(recvAct(c)) m]) || T〉∆,C → 〈(t,E[m]) || T〉
∆′′,C [c7→As]

SENDBLOCK

C (c) = As C ′ = C [c 7→ As : S m
c,v]

〈(t,E[(sendAct(c,v)) m]) || T〉∆,C → 〈(t,E[m]) || T〉∆,C ′

RECVBLOCK

C (c) = Ar C ′ = C [c 7→ Ar : R m
c ]

〈(t,E[(recvAct(c)) m]) || T〉∆,C → 〈(t,E[m]) || T〉∆,C ′

SENDWAIT

∆(m) = unit

〈(t,E[sendWait m]) || T〉∆,C → 〈(t,E[unit]) || T〉∆,C

RECEIVEWAIT

∆(m) = v

〈(t,E[recvWait m]) || T〉∆,C → 〈(t,E[v]) || T〉∆,C

Figure 8: A core language for asynchronous events.



if none exists, it simply records the intention of performing the re-
ceive on the channel queue. We can think of computations occur-
ring after an act as post-creation actions and those occurring after a
wait as post-consumption actions. Splitting a communication mes-
sage part into an ”act” and a ”wait” primitive functions allows for
the expression of many types of message passing. For instance, a
traditional synchronous send is simply the sequencing of a send act
followed by a send wait: sendWait ◦ sendAct(c,v). This encod-
ing immediately causes the thread executing the operation to block
after the value has been deposited on a channel, unless there is a
matching receive act currently available. A synchronous receive is
encoded in much the same manner.
We use the global communication map (∆) to track act and wait
actions for a given message identifier. A message id is created
at a synchronization point, ensuring a unique message identifier
for each synchronized event. Once a send or receive act occurs,
∆ is updated to reflect the value yielded by the act (see Rule
MESSAGE) through an auxiliary relation (⇒). When a send act
occurs the communication map will hold a binding to unit for
the corresponding message, but when a receive act occurs the
communication map binds the corresponding message to the value
received. The values stored in the communication map are passed to
the wait actions corresponding to the message (Rules SEND WAIT
and RECV WAIT).

Base Events: There are four rules for creating base events,
(SENDEVENT) and (RECVEVENT) for synchronous events, and
(ASENDEVENT) and (ARECVEVENT) for their asynchronous
counterparts. From base act and wait actions, we define asyn-
chronous events (ε[{sendAct(c,v), sendWait}]). The first com-
ponent of an asynchronous event is executed in the thread in
which the expression evaluates, and is the target of synchroniza-
tion (sync ), while the second component defines the actual asyn-
chronous computation. For asynchronous events we split the act
from the wait. Synchronous events can also be encoded using
this notation: ε[{sendWait ◦ sendAct(c,v), λx.unit}]. In a syn-
chronous event both the act and its corresponding wait occur in the
synchronous portion of the event. The base asynchronous portion
is simply a lambda that yields a unit value.

Event Evaluation: As mentioned above, events are deconstructed
by the sync operator in rule (SYNCEVENT). It strips the event con-
text (ε[]), generates a new message identifier for the base event, cre-
ates a new thread of control, and triggers the evaluation of the inter-
nal expressions. The asynchronous portion of the event is wrapped
in a new thread of control and placed in the regular pool of threads.
If the event abstraction being synchronized was generated by a base
synchronous event, the asynchronous portion is an uninteresting
value (e.g. , λx.unit). The newly created thread, in the case of an
asynchronous event, will not be able to be evaluated further as it
blocks until the corresponding act for the base event comprising
the complex asynchronous event is discharged.

Communication and Ordering: There are four rules for com-
municating over channels (SENDMATCH, RECVMATCH, SEND-
BLOCK, and RECVBLOCK. The channel map (C ) encodes abstract
channel states mapping a channel to a sequence of actions (A). This
sequence encodes a FIFO queue and provides ordering between ac-
tions on the channel. The channel will have either a sequence of
send acts (As) or receive acts (Ar), but never both at the same time.
This is because if there are, for example, send acts enqueued on it,
a receive action will immediately match the send, instead of need-
ing to be enqueued and vice versa (rules SENDMATCH and RECV-
MATCH). If a channel already has send acts enqueued on it, any
thread wishing to send on the channel will enqueue its act and vice

versa (rules SENDBLOCK) and (RECVBLOCK). After enqueueing
its action, a thread can proceed with its evaluation.
Ordering for asynchronous acts and their post consumption actions
as well as blocking of synchronous events is achieved by rules
(SENDWAIT) and (RECVWAIT). Both rules block the evaluation
of a thread until the corresponding act has been evaluated. In the
case of synchronous events, this thread is the one that initiated the
act; in the case of an asynchronous event, the thread that creates
the act is different from the one that waits on it, and the blocking
rules only block the implicitly created thread. For example, the
condition ∆(m) = unit in rule SENDWAIT is established either by
rule SENDMATCH, in the case of a synchronous action (created
by SENDEVENT), or rules SENDBLOCK and RECVMATCH for an
asynchronous one (created by ASENDEVENT).

Combinators: Complex events are built from the combinators de-
scribed earlier; their definitions are shown in Figure 9. We define
two variants of wrap, SWRAP for specifying extensions to the syn-
chronous portion of the event and AWRAP for specifying exten-
sion to the asynchronous portion of the event. In the case of a
synchronous event, we have SWRAP extend the event with post-
consumption actions as the base event will perform both the act
and wait in the synchronous portion of the event. Similarly, lever-
aging AWRAP on a synchronous event allows for the specification
of general asynchronous actions. If the base event is asynchronous,
SWRAP expresses post creation actions and AWRAP post consump-
tion actions.

The specification of the guard combinator is a bit more complex.
Since a guard builds an event expression out of a function, that
when executed yields an event, the concrete event is only generated
at the synchronization point. This occurs because the guard is only
executed when synchronized upon. The rule GUARD simply places
the function applied to a unit value (the function is really a thunk)
in a specialized guarded event context (ε[(λx.e)unit]g). The rule
SYNC GUARDED EVENT simply strips the guarded event context
and synchronizes on the encapsulated expression. This expression,
when evaluated, will yield an event. Guarded events cannot be
immediately extended with an SWRAP or AWRAP as the expression
contained within a guarded event context is a function. Instead,
wrapping an event in a guarded context simply moves the wrap
expression into the event context.

6. Case Study: A Parallel Web-server
We have implemented asynchronous events in Multi-MLton, an
open source, multi-core aware implementation of MLton [14]. Our
implementation closely follows the semantics given in Section 5,
and comprises roughly 4K LOC wholly written in ML.
Swerve [14] is an open-source, third-party, multithreaded web-
server wholly written in CML and is roughly 16K lines of CML
code. We briefly touch upon three aspects of Swerve’s design that
were amenable to using asynchronous events, and show how these
changes lead to substantial improvement in throughput and perfor-
mance.
To better understand the utility of asynchronous events, we con-
sider the interactions of four of Swerve’s modules: the Listener,
the File Processor, the Network Processor, and the Timeout
Manager. The Listener module receives incoming HTTP requests
and delegates file serving requirements to concurrently execut-
ing processing threads. For each new connection, a new listener
is spawned; thus, each connection has one main governing en-
tity. The File Processor module handles access to the under-
lying file system. Each file that will be hosted is read by a file
processor thread that chunks the file and sends it via message-



SWRAP

〈(t,E[sWrap(ε[{e, e′}],λx.e′′)]) || T〉∆,C →
〈(t,E[ε[{λx.e′′ ◦ e, e′}]]) || T〉∆,C

AWRAP

〈(t,E[aWrap(ε[{e, e′}],λx.e′′)]) || T〉∆,C →
〈(t,E[ε[{e, λx.e′′ ◦ e′}]]) || T〉∆,C

GUARD

〈(t,E[aGuard(λx.e)]) || T〉∆,C → 〈(t,E[ε[(λx.e) unit]g]) || T〉∆,C

SYNC GUARDED EVENT

〈(t,E[sync ε[e]g]) || T〉∆,C → 〈(t,E[sync e]) || T〉∆,C

SWRAP GUARDED EVENT

〈(t,E[sWrap(ε[e]g,λx.e′)]) || T〉∆,C →
〈(t,E[ε[sWrap(e,λx.e′)]g]) || T〉∆,C

AWRAP GUARDED EVENT

〈(t,E[aWrap(ε[e]g,λx.e′)]) || T〉∆,C →
〈(t,E[ε[aWrap(e,λx.e′)]g]) || T〉∆,C

Figure 9: Combinator extension for a core language for asynchronous events.

passing to the Network Processor. The Network Processor,
like the File Processor, handles access to the network. The
File Processor and Network Processor execute in lock-step,
requiring the Network Processor to have completed sending a
chunk before the next one is read from disk. Timeouts are processed
by the Timeout Manager through the use of timed events.

Lock-step File and Network I/O: Swerve was engineered assum-
ing lock-step file and network I/O. While adequate under low re-
quest loads, this design has poor scalability characteristics. This is
because (a) file descriptors, a bounded resource, can remain open
for potentially long periods of time, as many different requests are
multiplexed among a set of compute threads, and (b) for a given re-
quest, a file chunk is read only after the network processor has sent
the previous chunk. Asynchronous events can be used to alleviate
both bottlenecks.
To solve the problem of lockstep transfer of file chunks, we might
consider using simple asynchronous sends. However, Swerve was
engineered to require the file processor to be responsible for detect-
ing timeouts. If a timeout occurs, the file processor sends a notifica-
tion to the network processor on the same channel used to send file
chunks. Therefore, if asynchrony was used to simply buffer the file
chunks, a timeout would not be detected by the network processor
until all the chunks were processed. Changing the communication
structure to send timeout notifications on a separate channel would
entail substantial structural modifications to the code base.
The code shown in Fig. 10 is a simplified version of the file pro-
cessing module modified to use asynchronous events. It uses an ar-
bitrator defined within the file processor to manage the file chunks
produced by the fileReader. Now, the fileReader sends file
chunks asynchronously to the arbitrator on the channel arIn (line
12) as a post-consumption action. Each such asynchronous send
acts as an arbitrator for the next asynchronous send (lines 18-20).
The arbitrator accepts file chunks from the fileReader on this
channel and synchronously sends the file chunks to the consumer
as long as a timeout has not been detected. This is accomplished
by choosing between an abortEvt (used by the Timeout man-
ager to signal a timeout) and receiving a chunk from file processing
loop (lines 13-20). When a timeout is detected, an asynchronous
message is sent on channel arOut to notify the file processing
loop of this fact (line 9); subsequent file processing then stops. This
loop synchronously chooses between accepting a timeout notifica-
tion (line 17), or asynchronously processing the next chunk (lines
11 - 12).

datatype Xfr = TIMEOUT | DONE | X of chunk
1. fun fileReader name abortEvt consumer =
2. let
3. val (arIn, arOut) = (channel(), channel())
4. fun arbitrator() = sync
5. (choose [
6. wrap (recvEvt arIn,
7. fn chunk => send (consumer, chunk)),
8. wrap (abortEvt, fn () =>
9. (aSync(aSendEvt(arOut, ()));
10. send(consumer, TIMEOUT)))])
11. fun sendChunk(chunk) =
12. aSync(aWrap(aSendEvt(arIn, X(chunk)),arbitrator))
13. fun loop strm =
14. case BinIO.read (strm, size)
15. of SOME chunk => sync
16. (choose [
17. recvEvt arOut,
18. wrap(alwaysEvt,
19. fn () => (sendChunk(chunk);
20. loop strm))])
21. | NONE => aSync(aSendEvt(arIn, DONE))
22. in
23. case BinIO.openIt name of
24. NONE => ()
25. | SOME strm => (loop strm; BinIO.closeIt strm)
26. end

Figure 10: A simplified version of the file processing module in Swerve.

Since asynchronous events operate over regular CML channels, we
were able to modify the file processor to utilize asynchrony without
having to change any of the other modules or the communication
patterns and protocols they expect. Being able to choose between
synchronous and asynchronous events in the fileReader function
also allowed us to create a buffer of file chunks, but stop file
processing file if a timeout was detected by the arbitrator.

Parallel Packetizing: In CML, channels are often used to im-
plement shared input/output buffered streams. For example, in
Swerve, the network processor uses a buffered stream to collect
concurrently-processed data chunks generated by the file processor.
These chunks are subsequently transformed into packets amenable
for transmission back to the client. Asynchronous receives allow
parallel processing of these chunks that automatically preserves
the order in which these chunks were generated. Associated with
each element in the buffered stream is a thread that asynchronously
waits for the element to be deposited, processes the chunk into a



packet, and sends it on a dedicated local channel. This functional-
ity is encapsulated within an event (that leverages an asynchronous
receive) that is eventually synchronized by a collator thread which
waits for packets to be generated before sending the result back to
the client:

1. fun packetEvt(is) =

2. aGuard(fn () =>

3. let val c = channel()

4. in sWrap(aWrap(aRecvEvt(is),

5. fn x => send(c, packetize(parse(x))),

6. fn () => recvEvt(c)))

7. end)

When the event returned by packetEvt is synchronized, an asyn-
chronous receive event is deposited on the input stream ( is ), and a
new event is returned, which, when synchronized in turn, will yield
the final packet to be sent on the network.
Given a parameter, bufferSize , of how many packets we wish
to processes in parallel, we can express the collate function as
follows:

1. fun collate(bufferSize) =

2. let fun createEvents(0, evts) = evts

3. | createEvents(x, evts) =

4. createEvents(x-1, evts@[sync(packetEvt(is))])

5. fun sendPackets([]) = ()

6. | sendPackets(e::evts) =

7. (networkIO.send(socket,sync(e));

8. sendPackets(evts))

9. in sendPackets(createEvents(bufferSize, []))

10. end

The auxiliary function createEvents synchronizes on bufferSize
number of parseAndPacketEvts . This results in a list of events
which, when synchronized, will yield the final packets. This list of
events consists of the synchronous receive events over local chan-
nels returned by parseAndPacketEvts .
Without asynchronous events, the concurrency afforded by this
implementation could be realized by having a collection of explicit
packet-izing threads all contending on the stream, waiting for a
new element to be deposited. However, because these threads can
process the chunks out-of-order, additional metadata such as a
sequence number must be provided in the deposited chunks. This
requires modifying the module which is responsible for the input
stream to embed relevant metadata, as well as augmenting the
collator to make sure to stitch things back into correct order using
these sequence numbers. Asynchronous receives implicitly provide
these ordering guarantees, alleviating the burden of weaving this
metadata management in the protocol, resulting in cleaner, more
modular, code.

Underlying I/O and Logging: To improve scalability and respon-
siveness, we also implemented a non-blocking I/O library com-
posed of a language-level interface and associated runtime support.
The library implements all MLton I/O interfaces, but internally uti-
lizes asynchronous events. The library is structured around callback
events as defined in Sec. 4.1 operating over I/O resource servers.
Internally, all I/O requests are translated into a potential series of
callback events.

Web-servers utilize logging for administrative purposes. For long
running servers, logs tend to grow quickly. Some web-servers (like
Apache) solve this problem by using a rolling log, which automat-
ically opens a new log file after a set time period (usually a day).
In Swerve, all logging functions were done asynchronously. Using
asynchronous events, we were able to easily change the logging
infrastructure to use rolling logs. Post consumption actions were

utilized to implement the rolling log functionality, by closing old
logs and opening new logs after the appropriate time quantum.
In addition, Swerve’s logging infrastructure is tasked with exiting
the system if a fatal error is detected. The log notates that the
occurrence of the error, flushes the log to disk, and then exits the
system. This ensure that the log contains a record of the error prior
to the system’s exit. Unfortunately, for the modules that utilize
logging, this poses additional complexity and breaks modularity.
Instead of logging the error at the point which it occurred, the
error must be logged after the module has performed any clean
up actions because of the synchronous communication protocol
between the module and the log. Thus, if the module logs any
actions during the clean up phase, they will appear in the log
prior to the error. We can leverage asynchronous callback events to
extend the module without changing the communication protocol
to the log.

1:let val logEvt = aSendEvt(log, fatalErr)

2: val logEvt’ = callbackEvt(logEvt,

3: fn () => (Log.flush();

4: System.exit()))

5: val exitEvt = aSync(logEvt’)

6:in ( clean up; sync(exitEvt))

7:end

In the code above, logEvt corresponds to an event that encapsu-
lates the communication protocol the log expects: a simple asyn-
chronous send on the log’s input channel log. The event logEvt’
defines a callback. This event, when synchronized, will execute an
asynchronous send to the log and will create a new event that be-
comes bound to exitEvt. When exitEvt is synchronized upon,
we are guaranteed that the log has received the notification of the
fatal error. With this simplification we can also simplify the log by
removing checks to see if a logged message corresponds to a fatal
error and the exit mechanism; logging and system exit are now no
longer conflated.

6.1 Results

To measure the efficiency of our changes in Swerve, we leveraged
the server’s internal timing and profiling output for per-module
accounting. The benchmarks were run on an AMD Opteron 865
server with 8 processors, each containing two symmetric cores, and
32 GB of total memory, with each CPU having its own local mem-
ory of 4 GB. The results as well as the changes to the largest mod-
ules are summarized in Table 1. Translating the implementation to
use asynchronous events leads to a 4.7X performance improvement
as well as a 15X reduction in client-side observed latency over the
original, with only 103 lines of code changed out of 16KLOC.
Not surprisingly, the results show that asynchronous commu-
nication, when carefully applied, can yield substantial perfor-
mance gains. More significantly, however, is that these gains were
achieved with only small changes to the overall structure of the
application. These changes were almost always mechanical, often
just involving the replacement of a synchronous event combinator
with an asynchronous one. No changes were required to module
interfaces or the program’s overall logical structure.
To put the performance gains in perspective, our modified version
of Swerve with asynchronous events has a throughput within 10%
of Apache 2.2.15 on workloads that establish up to 1000 concurrent
connections and process small/medium files at a total rate of 2000
requests per second. For server performance measurements and
workload generation we used httperf – a tool for measuring web-
server performance.



Module LOC LOC modified improvement
Listener 1188 11 2.15 X
File Processor 2519 35 19.23 X
Network Processor 2456 25 24.8 X
Timeout Manager 360 15 4.25 X
Swerve 16,000 103 4.7 X

Table 1: Per module performance numbers for Swerve.

7. Related Work
Many functional programming languages such as Erlang [1], Jo-
Caml [10], and F# [18] provide intrinsic support for asynchronous
programming. In Erlang, message sends are inherently asyn-
chronous. In JoCaml, complex asynchronous protocols are de-
fined using join patterns [2, 11] that define synchronization pro-
tocols over asynchronous and synchronous channels. In F#, asyn-
chronous behavior is defined using asynchronous work flows that
permit asynchronous objects to be created and synchronized. Con-
venient monadic-style let! -syntax permits callbacks, represented
as continuations, to be created within an asynchronous computa-
tion. While these different techniques provide expressive ways to
define asynchronous computations, they do not focus on issues of
composability (our primary interest in this paper), especially with
respect to asynchronous post-consumption actions. There have also
been efforts to simplify asynchronous programming in imperative
languages [3] by providing new primitives that are amenable to
compiler analysis; here again, the primary focus is not on compos-
ability or modularity of asynchronous event-based protocols.
Reactive programming [12] is an important programing style often
found in systems programming that uses event loops to react to
outside events (typically related to I/O). In this context, events do
not define abstract communication protocols (as they do in CML),
but typically represent I/O actions delivered asynchronously by the
underlying operating system. While understanding how reactive
events and threads can co-exist is an important one, we believe
such efforts are orthogonal to the focus of this work.Indeed we can
encode reactive style programming idioms in ACML through the
use of asynchronous receive events and/or lightweight servers.
Asynchronous exceptions as discussed in [13] provide abstractions
that concurrent applications can use to allow one thread to seam-
lessly and asynchronously signal another. Kill-safe abstractions [8]
provide a related solution to safely terminate a cooperative user-
level thread without violating sensible invariants on shared objects.
While asynchronous events are a general mechanism for compos-
able and modular asynchronous programming, and thus were not
designed specifically with these purposes in mind, we believe they
can be used to serve such roles effectively as well, as described in
the logging infrastructure example given in Sec. 6.
There have been incarnations of CML in languages and systems
other than ML (e.g., Haskell [4, 17], Scheme [8], and MPI [5]).
There has also been much recent interest in extending CML with
transactional support [6, 7] and other flavors of parallelism [9]. We
believe transactional events [6, 7] provide an interesting platform
upon which to implement a non-blocking version of sChoose that
retains the same semantics. Additionally, we expect that previous
work on specialization of CML primitives [15] can be applied to
improve the performance of asynchronous primitives.

8. Concluding Remarks
This paper presents the design, rationale, and implementation for
asynchronous events, a concurrency abstraction that generalizes the
behavior of CML-based synchronous events to enable composable
construction of asynchronous computations. Our experiments indi-
cate that asynchronous events can seamlessly co-exist with other
CML primitives, and can be effectively leveraged to improve per-
formance of realistic highly-concurrent applications.
Acknowledgements. This work is supported by the National Sci-
ence Foundation under grants CCF-0701832 and CCF-0811631,
and a gift from Samsung Corporation.

References
[1] Joe Armstrong, Robert Virding, Claes Wikstrom, and Mike Williams.

Concurrent Programming in Erlang. Prentice-Hall, 2nd edition, 1996.
[2] Jean-Pierre Banâtre and Daniel Le Métayer. Programming by Multiset

Transformation. Commun. ACM, 36(1), 1993.
[3] Prakash Chandrasekaran, Christopher L. Conway, Joseph M. Joy, and

Sriram K. Rajamani. Programming asynchronous layers with clarity.
In FSE, pages 65–74, 2007.

[4] Avik Chaudhuri. A Concurrent Ml Library in Concurrent Haskell. In
ICFP, pages 269–280, 2009.

[5] Erik Demaine. First-Class Communication in MPI. In MPIDC ’96:
Proceedings of the Second MPI Developers Conference, 1996.

[6] Kevin Donnelly and Matthew Fluet. Transactional Events. The
Journal of Functional Programming, pages 649–706, 2008.

[7] Laura Effinger-Dean, Matthew Kehrt, and Dan Grossman. Transac-
tional Events for ML. In ICFP, pages 103–114, 2008.

[8] Matthew Flatt and Robert Bruse Findler. Kill-safe Synchronization
Abstractions. In PLDI, pages 47–58, 2004.

[9] Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw.
Implicitly-Threaded Parallelism in Manticore. In ICFP, pages 119–
130, 2008.

[10] Cédric Fournet, Fabrice Le Fessant, Luc Maranget, and Alan Schmidt.
JoCaml: A Language for Concurrent Distributed and Mobile Program-
ming. In Advanced Functional Programming, pages 129–158. 2002.

[11] Cédric Fournet and Georges Gonthier. The reflexive cham and the
join-calculus. In POPL, pages 372–385, 1996.

[12] Peng Li and Steve Zdancewic. Combining Events and Threads for
Scalable Network Services, and Evaluation of Monadic, Application-
Level Concurrency Primitives. In PLDI, pages 189–199, 2007.

[13] Simon Marlow, Simon Peyton Jones, Andrew Moran, and John Reppy.
Asynchronous Exceptions in Haskell. In PLDI, pages 274–285, 2001.

[14] MLton. http://www.mlton.org.
[15] John Reppy and Yingqi Xiao. Specialization of CML Message-

Passing Primitives. In POPL, pages 315–326, 2007.
[16] John H. Reppy. Concurrent Programming in ML. Cambridge Univer-

sity Press, 1999.
[17] George Russell. Events in Haskell, and How to Implement Them. In

ICFP, pages 157–168, 2001.
[18] Don Syme, Adam Granicz, and Antonio Cisternino. Expert F#.

Apress, 2007.
[19] Lukasz Ziarek, K.C. Sivaramakrishnan, and Suresh Jagannathan.

Composable Asynchronous Events. Technical Report TR-11-09,
Dept. of Computer Science, Purdue University, 2011.


