
Semantics-Aware Trace Analysis

Kevin Hoffman Patrick Eugster Suresh Jagannathan
Computer Science Department, Purdue University
{kjhoffma,peugster,suresh}@cs.purdue.edu

Abstract

As computer systems continue to become more powerful and com-
plex, so do programs. High-level abstractions introduced to deal
with complexity in large programs, while simplifying human rea-
soning, can often obfuscate salient program properties gleaned
from automated source-level analysis through subtle (often non-
local) interactions. Consequently, understanding the effects of pro-
gram changes and whether these changes violate intended protocols
become difficult to infer. Refactorings, and feature additions, mod-
ifications, or removals can introduce hard-to-catch bugs that often
go undetected until many revisions later.

To address these issues, this paper presents a novel dynamic pro-
gram analysis that builds a semantic view of program executions.
These views reflect program abstractions and aspects; however,
views are not simply projections of execution traces, but are linked
to each other to capture semantic interactions among abstractions
at different levels of granularity in a scalable manner.

We describe our approach in the context of Java and demonstrate its
utility to improve regression analysis. We first formalize a subset
of Java and a grammar for traces generated at program execution.
We then introduce several types of views used to analyze regression
bugs along with a novel, scalable technique for semantic differenc-
ing of traces from different versions of the same program. Bench-
mark results on large open-source Java programs demonstrate that
semantic-aware trace differencing can identify precise and useful
details about the underlying cause for a regression, even in pro-
grams that use reflection, multithreading, or dynamic code genera-
tion, features that typically confound other analysis techniques.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—debugging aids, diagnostics, testing
tools, tracing

General Terms Algorithms, Reliability

1. Introduction

The ability to understand and analyze interactions among program
components to infer or verify salient program properties is critical
as software complexity increases.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’09, June 15–20, 2009, Dublin, Ireland.
Copyright c© 2009 ACM 978-1-60558-392-1/09/06. . . $5.00

This paper introduces a novel semantics-aware dynamic analysis
for understanding and analyzing complex programs. Our approach
achieves accuracy, flexibility and scalability through the concept
of semantic views. Semantic views are trace abstractions which
selectively aggregate collections of events with shared semantic
traits found in a program execution trace, allowing for specific
aspects and abstractions in programs to be captured accurately.
Flexibility is achieved by allowing for new, specific views to be
defined and applied. Views are linked among each other to capture
program semantics in a scalable manner, and can be leveraged
by profilers, optimizers, and bug-finders to quickly sift through a
program execution, focusing attention on those parts that signify
interesting deviations or properties.

We illustrate the usefulness of our approach by examining its utility
to identify regressions in large (well-tested) software applications.
We define a regression as a behavior that executed correctly un-
der some input in a prior software version that is no longer correct
under the same input in a newer version. Revisions are common
in complex software systems, and refactorings and feature updates
can introduce subtle regression bugs that are often not detected in
a timely manner. Identifying and fixing these regressions can be
a complex and time-consuming task, aggravated by the presence
of advanced program mechanisms such as dynamic dispatch, code
generation, and loading. For example, a query of the Apache Soft-
ware Foundation bug tracking database1 shows 455 bugs created
during 2007 that involve a regression.2 Out of these 455 bugs, 36%
took longer than two months to resolve, 15% took longer than six
months, and 11% remain unresolved as of November 2008.

Our technique provides a scalable solution to identifying precisely
the cause of regressions in large, evolving Java programs. Given
two traces corresponding to executions of a correct and regressing
version of a program, we employ a novel differencing algorithm
that extracts trace abstractions from these traces, and correlates
executions based on their similarity by means of a novel, tractable,
longest-common subseqeuence (LCS)-based approximation.

Motivating example. To illustrate the problem, Fig. 1 shows
code snippets patterned after a known regression identified as
MYFACES-11303 in the Apache MyFaces project,4 an open source
implementation of the Java Server Faces standard. The exam-
ple centers around functionality in the MyFaces framework that
automatically converts non-7-bit safe characters in the output of
an HTTP request response into their equivalent HTML numeric
entities. In this example, this conversion only occurs if the output
document type is text/html, and each character is only converted

1 http://issues.apache.org/jira/
2 Bugs marked as duplicate or invalid were not included.
3 https://issues.apache.org/jira/browse/MYFACES-1130
4 http://myfaces.apache.org/

(a) (b)
Figure 1. (a) an original non-regressing and (b) newer, regressing
version of a program.

if it is not in the range [32..127]. This range is defined program-
matically and kept in mutable variables. A bug was introduced in
a new version of this program that inadvertently sets the range to
[1..127] instead of [32..127], causing a regression when given a
document of type text/html that contains characters in the range
[1..31].

In the original version, the ServletProcessor class directly instan-
tiates the NumericEntityUtil with the correct range. This object
is not used until after the HTTP request has been fully processed
and the output generated; the actual character conversion process is
affected by dynamic state initialized much earlier during program
execution. In the new version, the BinaryCharFilter class was ex-
tracted from the ServletProcessor as part of a new generic I/O
filtering abstraction, thus confounding static analysis as no read-
ily apparent structural property is violated. The BinaryCharFilter

class however provides an incorrect range of [1..127] to the new
NumericEntityUtil object, causing the character filtering process
to later produce incorrect results, but only for certain inputs.

This example is a pattern for an entire class of regressions caused
when a piece of code incorrectly alters some dynamic state in the
program, with the manifestation of the error appearing, only in
certain cases, at some later point in the execution.5 The causal
distance between the point where the error occurs and where it
manifests makes it difficult to precisely analyze such regressions
manually, or correlate information derived from dynamic program
slicing techniques that identify all semantically related operations
to a regression.

Fig. 2 illustrates the intuition underlying our approach: different
semantic views are used to capture individual aspects of the pro-
gram and link them together. In the figure, we show views for the
main thread of execution, as well as an object view for the log
object, and a method view for method setRequestType. Observe
that these specialized views record events that may be temporally
far removed from one another. Our technique correlates these views
with views generated by the regressing version to allow the regress-
ing behavior to be localized and identified. Making such correla-
tions precise and scalable is feasible because views discard actions
unrelated to the behavior of the abstraction being traced.

5 See also https://issues.apache.org/jira/browse/SOAP-169.

!!" $%&!'()**+,-./0)1*231-(((/4
5!! $%&!'()**+,-.(((4
!!" $%&!'()**+,-./678 97:(((/4
5!! $%&!'()**+,-.(((4

Execution Trace (and Thread View) Target Object View for LOG Object #1

Method View for SP.setRequestType

!!" 6;<!'(7:=)2,./87>8?@8A2/4
5!! 6;<!'(7:=)2,.(((4 978B89=7
!!" CD+!'(17E.FGH 'GI4
5!! CD+!'(17E.(((4
,78 6J!'(KL31MN1O B CD+!'
(((
!!" $%&!'()**+,-./678 97:(((/4
5!! $%&!'()**+,-.(((4

!!" $%&!'()**+,-./0)1*231-(((/4
 (((
5!! $%&!'()**+,-.(((4
!!" 6J!'(,78<7:=7,8;PQ7./87>8?@8A2/4
 !!" 6;<!'(7:=)2,./87>8?@8A2/4
 5!! 6;<!'(7:=)2,.(((4 978B89=7
 !!" CD+!'(17E.FGH 'GI4
 ,78 CD+!'(KA31M@)9<)1-7 B FG
 ,78 CD+!'(KA)>M@)9<)1-7 B 'GI
 5!! CD+!'(17E.(((4
 ,78 6J!'(KL31MN1O B CD+!'
 (((
 !!" $%&!'()**+,-./678 97:(((/4
 (((
 5!! $%&!'()**+,-.(((4
5!! 6J(,78<7:=7,8;PQ7.(((4

Figure 2. A portion of the execution trace for our example is
shown on the left. The example is single threaded, so there is a
single thread view which is identical to the full execution trace.
There are many target object and method views. One target object
view is shown for the first LOG object, containing only method
calls and field accesses on that object. One method view is shown
for the SP.setRequestType method, showing only actions that oc-
curred when SP.setRequestType was on the top of the call stack.

Contributions. This paper makes the following contributions:

1. Semantic views: Because execution traces can be millions of
entries long, we define a new view-based trace abstraction that
allow traces to be tractably analyzed and traversed. These views
reflect the different levels of abstraction that naturally arise in
object-oriented programs (e.g. objects, methods, threads, etc.),
and provides a semantics-based means of structuring trace data.
We present a formalization of traces and views for a subset
of Java extending Featherweight Java with references, assign-
ments, and threads. We furthermore define how these views can
be correlated, linked, and navigated.

2. Tractable trace differencing: A new technique for differenc-
ing view-based traces is introduced, to correlate common points
of execution by efficiently and accurately approximating the
longest-common subsequence (LCS) [3] between full program
traces. Notably, our differencing technique has linear complex-
ity in both time and space, allowing full program traces that
include dynamic state to be used in the analysis while keeping
running times and memory requirements reasonable.

3. Regression cause analysis: We show how to use our differ-
encing technique to accurately identify the causes of various
regressions. The comparisons between traces for all difference
sets are analyzed to produce a final candidate set of regression
causes. Besides identifying differences that likely caused the re-
gression, the analysis outputs a full semantic “diff” between the
original and new versions, allowing these potential causes to be
viewed in their full context, with dynamic state.

These techniques are implemented in a fully automated way in our
tool, RPRISM, requiring no code annotations or access to source
code. Benchmark results on realistic well-engineered Java pro-
grams demonstrate that our techniques yield high accuracy (few
false positives or negatives produced), is scalable (traces with mil-
lions of entries can be analyzed), and is applicable even to programs
that exploit advanced features such as multithreading, reflection,
and dynamic code generation. To our knowledge, RPRISM is the
first tool capable of performing automated regression analysis on
programs with such a feature set.

The remainder of the paper is organized as follows: Sections 2 and 3
formalize our approach in the context of a subset of Java and view-
based trace differencing respectively. Section 4 elaborates on these
concepts in the context of regression analysis. An empirical eval-
uation of our techniques, including several large case studies, is
presented Section 5. Section 6 describes related work; conclusions
are given in Section 7.

2. View Model

In this section, we present (i) an abstract model of execution traces
and a language whose evaluation produces such traces, and (ii) the
views trace abstraction.

2.1 Language

We first introduce a simple object-oriented language whose syntax
is shown in Fig. 3; its syntax and semantics follows in the spirit of
other core object-based calculi such as Featherweight Java (FJ) [11]
or Classic Java [7].

Our language augments FJ — modulo casts — with locations (of
the form l(C)), field assignments (t.f =t), sequences of terms (t),
value objects (new D(d)), and threads (T(t;)). A corresponding
program is defined as such a thread term. Note that for brevity,
locations l(C) are sometimes simply written l when the type C is
not germane to the context.

program P ::= T(t;)

class CL ::= class C extends C {A f ;K M}

creation K ::= C(A f){super(f);this.f=f;}
method M ::= A m(A x) {t; return t;}
type A ::= C |D
term t ::= x | v | t.f | t.f=t | t.m(t) | new C(t)

| newD(d) | T(t;)
value v ::= l(C) |D(d)
primitive d ∈ D

(D, d,D) ∈ {(Bool, b,B), (Int, z,Z), ..., (Float, r,R)}

Figure 3. Core language syntax.

2.2 Traces

Notably, program evaluation yields traces, whose structure is de-
scribed below and outlined in Figure 4. Such a trace is a sequence
of trace entries τ=τ1.....τn, with |τ | denoting its length (n). Differ-
ent traces are identified by their names, shown in superscripts (e.g.,
τL). A trace entry entry(eid, tid,m, µ, e) is a five-tuple consist-
ing of an entry identifier eid (the index of the entry in the trace),
and four items forming a generic “context”, namely: an identifier
of the active thread (tid), the method under execution (m), a rep-
resentation of the object on which m is executing (µ), and an event
e that captures a specific action. For now an object is considered to
be represented simply by its location l.

We make use of stacks to trace method calls. A stack S is a
sequence of stack entries of the form s(m,l,l’), representing the
invocation of method m found in object l’ from object l. We write
S.s(m,l,l’) for appending such an entry to a stack S . We write S
to denote an ordered set of stacks; each element in this set captures
the dynamic context of some actively executing thread. We write
S1 · ... · Sn to enumerate the elements in this set. Similar notation is
used to enumerate an ordered set of threads in a program state. As
shorthand, we write S·S ′ to denote the ordered set of stacks derived
by concatenation of the sets defined by S and S ′; similar shorthand
is used to define concatenation over ordered sets of threads.

Fig. 5 presents relevant definitions. Besides the usual auxiliary
functions for field and method body lookup, this includes evalu-
ation contexts used in the definition of the language’s operational
semantics, and a function E ↓ () for obtaining the representation
of an object to be stored in a trace, revisited in the next section.
For now, we ignore the representation of primitive values (thus,
E↓(D(d))=), but assume that any object representation contains
the original location, retrievable via l↓(µ) for a given µ.

event e ::= FE |ME |KE | TE
field event FE ::= get(µ, f, µ) | set(µ, f, µ)
method event ME ::= call(µ,m, µ) | return(µ,m, µ)
object event KE ::= init(A,µ, µ)
thread event TE ::= fork(S) | end(S)
object µ ::= l

trace entry τ ::= entry(eid, tid,m, µ, e)
entry ID eid ∈ Z
thread ID tid ∈ Z
stack S ::= S∅ | S.s(m,µ, µ)

Figure 4. Trace syntax.

2.3 Dynamic Semantics

Fig. 6 defines an operational semantics for our language. Global
evaluation is of the form 〈t, τ , E ,S〉=⇒〈t′, τ.τ , E ′,S′〉 in which
t is an ordered sequence of thread terms, τ is the trace being
generated, E is an object store, and S is the ordered set of stacks
corresponding to these threads. Local evaluation is of the form
〈t, τ , E ,S〉 −→

j
〈t′, τ.τ , E ′,S ′〉with j the index of the thread term

t being reduced at that step. Rules for local evaluation only include
one stack, S , corresponding to the single thread term reduced.

Rule CONGR-E relates local and global evaluation. Rule FORK-
E creates a new thread of control, and records a new entry in
the trace whose event captures the stacks representing the newly
created thread’s parentage. Note that we track the creation context
for the full ancestry of a thread (spawn-point call stack, call stack
of spawn-point of spawning thread, etc.), in order to increase the
accuracy of correlating threads between different traces. Rule END-
E records the completion of a thread. Rule CONS-E defines object
creation; the event associated with the object creation trace entry
records the class name, the representation of the parameters to
the constructor, and the representation of the created object itself.
Rule CONS-VAL-E is defined similarly for primitives. Rules FIELD-
ACC-E and FIELD-ASS-E record trace entries for field access and
assignment. The definition of method call (rule METH-E) records
a trace event that captures the object and method being invoked,
along with its arguments (the calling context being captured by the
enclosing entry). Similarly, rule RETURN-E records a trace entry
that captures details relevant to a return action; this includes a trace
event that records the method and object being returned from, and
a representation of the return value.

2.4 Views Trace Abstraction

Although complete, the traces yielded by our evaluation rules re-
quire tedious interpretation to understand the underlying program
behavior, since these traces capture features of higher-level con-
structs. We consequently formulate named projections over these
low-level traces, which link semantically related trace events.
These projections, termed views, represent various levels of ab-
straction in the executing program. Views are formed by mapping
each trace entry to a set of view names, describing which specific
views an entry is a member of. This set of names is obtained by
creating a union of the results of all of the view name mapping

Definitions

fields(Object)=∅

class C... {... M}

A m(A
′
x) {t;} ∈M

mbody(m,C)=(x, t)

E↓(D(d))=

class C extends C′ {A f ; ...}

fields(C′)=A
′
f
′

fields(C)=A
′
f
′
, A f

class C extends C′ {... M}

6 ∃...m... ∈M
mbody(m,C)=mbody(m,C′)

E↓(l(C))=l

Evaluation contexts

E ::= [] | E.f | E.f=t | v.f=E | E.m(t) | v.m(E) | new C(E)

| v,E,t | v;E;t | T(E;) | E;return t | v;return E

Figure 5. Definitions and evaluation contexts.

functions (ν) (one mapping function is defined for each type). Spe-
cific views are then obtained by trace projections over view names
of the form πpνφ|γ : T→ T (see Figure 7), where T is the domain
of traces. pνφ|γ ranges over predicates of the form T→B with T the
domain of trace entries. pνφ|γ models whether a given trace entry
is a member of a specific view (as named by γ) of a particular view
type (φ). We focus on four view types, which are defined by their
view name mapping functions:

• Thread views, νTH: One thread view is defined for each thread
tid executing in the program; it contains precisely those events
that occur within that thread, in the order of execution.
• Method views, νCM: One method view is defined for each

fully qualified method name m (for simplicity the class name
is omitted in the figures) in the program. Each method view
contains precisely those events that occur while that particular
method was at the top of the call stack.
• Target object views, νTO: For each object a target object view

is defined, containing precisely those events that occur when it
is the target of a method call or field access.
• Active object views, νAO: For each object an active object view

is defined containing those events that occur when it is on the
top of the call stack.

The key to effective program analysis using our view model of
tracing is that all these views are linked together. In the present
context it is sufficient to view these links as being implicitly given
by retaining indices of the original trace in the projected views.
For example, a trace event recording a method call o.m(...) will
be recorded in the thread view of the thread in which the call is
performed, in a method view for m, in the active object view of the
method performing the call, and in the target object view for target
object o. The trace index found in the entry can be used to navigate
from the entry found in one view to its position in another. In this
way, a program as a whole may be modeled as a complex “web” of
interconnected views. At any arbitrary point in any view, one can
use these links to visit all semantically related views (as modeled
by the defined view types), thereby organizing both the exploration
of program execution as well as the presentation of the results of
such an analysis in more meaningful ways.

3. Views-Based Trace Differencing

The comparison of traces through comparison of their correspond-
ing view trace webs allows for a powerful program analysis. The

〈t,τ ,E ,S〉 =⇒ 〈t’,τ.τ ,E ’,S’〉

〈t, τ , E ,Sj〉 −→
j
〈t′, τ ′, E ′,S ′j〉

〈T(...) · T′j(E[t]) · T(...)′′, τ , E ,S · Sj · S
′〉=⇒

〈T(...) · T′j(E[t′]) · T(...)′′, τ ′, E ′,S · S ′j · S
′〉

(CONGR-E)

〈t,τ ,E ,S〉 −→
j
〈t’,τ.τ ,E ’,S ’〉

Sj.s(m,µ, µ′) ∈ S τ=entry(|τ |, j,m, µ′, fork(S))
〈T(...) · T′j(E[T(t;)]) · T(...)′′, τ , E ,S〉=⇒
〈T(...) · T′j(E[]).T(...)′′ · T(t;), τ .τ , E ,S · S∅〉

(FORK-E)

S=S′ · Sj.s(m,µ, µ′) · S
′′

τ=entry(|τ |, j,m, µ′, end(S))
〈T(...) · T′j(v;) · T(...)′′, τ , E ,S〉=⇒〈T(...) · T(...)′′, τ .τ , E ,S′ · S′′〉

(END-E)

l 6∈ dom(E) E ′={l 7→[f1:v1, ..., fn:vn]}E S=S ′.s(m,µ, µ′)
τ=entry(|τ |, j,m, µ′, init(C, E↓(v), E↓(l))) fields(C)=A f

〈new C(v), τ , E ,S〉 −→
j
〈l(C), τ .τ , E ′,S〉

(CONS-E)

S=S ′.s(m,µ, µ′) τ=entry(|τ |, j,m, µ′, init(D, , E↓(D(d))))

〈newD(d), τ , E ,S〉 −→
j
〈D(d), τ .τ , E ′,S〉

(CONS-VAL-E)

E (l)=[..., fi:v, ...] S=S ′.s(m,µ, µ′)
τ=entry(|τ |, j,m, µ′, get(E↓(l), fi, E↓(v)))

〈l.fi, τ , E ,S〉 −→
j
〈v, τ .τ , E ,S〉 (FIELD-ACC-E)

E (l)=[..., fi:v, ...] E ′={l 7→[..., fi:v
′, ...]}E S=S ′.s(m,µ, µ′)

τ=entry(|τ |, j,m, µ′, set(E↓(l), fi, E↓(v′)))
〈l.fi=v′, τ , E ,S〉 −→

j
〈v′, τ .τ , E ′,S〉

(FIELD-ASS-E)

mbody(m,C)=(x, t)
S=S ′.s(m′, µ, µ′) S ′′=S.s(m,µ′, E↓(l))
τ=entry(|τ |, j,m′, µ′, call(E↓(l),m, E↓(v)))

〈l(C).m(v), τ , E ,S〉 −→
j
〈{l/this,v/x}t, τ .τ , E ,S ′′〉

(METH-E)

S=S ′.s(m′, ,).s(m,µ, µ′)
τ=entry(|τ |, j,m′, µ, return(µ′,m, E↓(v′)))
〈v;return v′, τ , E ,S〉 −→

j
〈v′, τ .τ , E ,S ′〉

(RETURN-E)

Figure 6. Program evaluation.

foundation for such an analysis consists in the comparison of trace
pairs. This section develops a semantics for “evaluating” pairs of
such traces to identify semantic differences.

3.1 Trace Differencing Semantics

We present a small-step semantics for “evaluating” pairs of traces
(τL, τR) (termed the left and right traces) by comparing them in
order to formalize the trace differencing process. The evaluation
produces a set, Λ, containing those trace entries that are considered
to be similar between the two traces. The set of differences is then
easily computed from Λ and the original trace. We assume that
before evaluation a special eof trace entry is appended to each
trace, and is also appended as many times as needed to the shorter

πp(τ1.τ) =

(
τ1.πp(τ) p(τ1)

πp(τ) otherwise

pνφ|γ(τ) = (γ 6= ⊥ ∧ γ = νφ(τ))

νTH(entry(i, j,m, µ, e)) = 〈TH, j〉
νCM(entry(i, j,m, µ, e)) = 〈CM,m〉

νTO(entry(i, j,m, µ, e)) =

8>>>>>>><>>>>>>>:

〈TO, l↓(µ′)〉 e = call(µ′,m, µ′′)

〈TO, l↓(µ′)〉 e = return(µ′,m, µ′′)

〈TO, l↓(µ′)〉 e = get(µ′, f, µ′′)

〈TO, l↓(µ′)〉 e = set(µ′, f, µ′′)

〈TO, l↓(µ′)〉 e = init(A,µ′′, µ′)

⊥ otherwise
νAO(entry(i, j,m, µ, e)) = 〈AO, l↓(µ)〉

Figure 7. Projection (πp), the view identification predicate
(pνφ|γ), and entry to view name mappings (νφ)

trace until both traces are the same length. The resulting augmented
trace syntax is presented in Fig. 8, along with an extended object
representation. Note that locations by themselves are unsuitable
for comparison across different program versions. We thus extend
object representations to tuples which now include, besides their
location in the case of non-value objects, an identifier (or hash) that
represents a recursively computed value representation.

object µ′ ::= 〈l, r〉
serialization r ::= D:[d] | C:[r]
trace entry τ′ ::= entry(eid, tid,m, µ, e) | eof

E ′↓(D(d))=〈 , D:[d]〉 E (l)=[f1:v1, ..., fn:vn]

E ′↓(l(C))=〈l, C:[E ′↓(v1), ..., E ′↓(vn)]〉

Figure 8. Extended trace syntax and object representation used for
differencing.

One important aspect to effective view-based differencing (or any
analysis operating over views from multiple executions or versions)
is in the formulation of effective view correlation functions (X),
which are used to determine if a given view in one execution trace
semantically corresponds to a given view in a different execution
trace. Fig. 9 defines the type signature for all correlation functions,
as well as some notation and helper relations for our differenc-
ing evaluations. One correlation function needs to be defined for
each view type. The correlation function accepts two trace entries
instead of two view names as arguments, because the correlation
function may be context-sensitive (e.g., based on value representa-
tions) as opposed to solely the view names.

Thread view correlation (XTH) is determined by considering all pos-
sible thread correlations (pairs of threads) and forming a correlation
with the “closest match” based on the spawning call stack of the
thread (and the thread’s ancestors). Method correlation (XCM) cor-
relates two methods if their full type signatures are equal. Target
object and active object correlation (XTO and XAO) correlate two
objects if either the value representations or class-specific object
creation sequence number (derivable from trace data) are equal.

Because view correlations attempt to identify relationships among
program abstractions (i.e., threads, methods, objects) found across
executions based only on the structure of their views, they are
best regarded as heuristics. Nonetheless, experimental results (Sec-
tion 5) show that the implemented correlation functions are effec-
tive in practice for regression cause analysis. We believe other cor-
relation definitions may be useful for other kinds of analyses.

Figure 10. The LCS of two strings. Note that moved subsequences
(e.g., “XY”) are not detected.

〈τL, τR,Λ〉 −→
L
〈τL

′
, τR

′
,Λ′〉

Λ′ =

(
{τ1} τ1 ∈ lcs(τOL , τOR)

{} otherwise

〈τ1.τL
′
, τR,Λ〉 −→

L
〈τL

′
, τR,Λ ∪ Λ′〉

(STEP-LEFT-LCS)

(Similar for (STEP-RIGHT-LCS) rule)

Figure 11. LCS comparison; −→
L

is parameterized over

τOL , τOR , which are defined to be the traces produced by
evaluation of the two programs to be compared, before evaluated
under −→

L
or −→
V

.

We present two trace differencing semantics — one leveraging
the longest common subsequence (LCS) algorithm, and the other
leveraging our views trace abstraction.

3.2 LCS-based Trace Differencing Semantics

Well-known differencing tools such as Unix diff are founded on
longest common subsequence (LCS) algorithms [3] in order to de-
termine a minimal set of differences between two sequences (e.g.,
lines of text in two files). Fig. 10 visualizes how the LCS identifies
the differences between two strings. Fig. 11 presents an evaluation
semantics that leverages the LCS of the two traces in order to de-
termine which trace entries should be placed in Λ. Note that two
trace entries are considered to correspond based on the equality
predicate, =e . The LCS evaluation relation relies on preserving the
original traces before any evaluation takes place. The computation
of the LCS also results in a correspondence mapping between all
common entries. This allows each contiguous run of differences in
the traces to be viewed as either an insertion, deletion, or modifi-
cation. Using the LCS to understand differences between program
traces is beneficial for correlating similar yet not exactly identical
events. For example, if a new version of a program adds a new pa-
rameter to a function, the LCS will gravitate towards correlating
identical values, thereby identifying the new parameter as the one
difference.

However, there are two major challenges in applying the LCS al-
gorithm to execution traces. First, the algorithm for computing the
LCS is not aware of program semantics and may blindly correlate
neighboring entries in the original trace with entries very far apart
in the new trace (e.g., consider commonly occuring values, such
as 0 or null). Second, the computational complexity of bare LCS
is Ω(n2) [3], making it intractable on long program traces. Faster
solutions are known if the input “alphabet” is fixed, but are not
applicable in the present case, as the input alphabet includes value
representations, which are innumerable. The standard dynamic pro-
gramming algorithm requires O(n2) space in order to reconstruct
the LCS (not just its length). The algorithm becomes impractical
when applied to longer program traces, requiring huge memory be-
sides time to compute the LCS. Existing algorithms with reduced
space complexity require roughly twice the computation time [9].

Event equality τ1 =e τ2 True if the underlying primitive values (including those generated by E↓ in Fig. 8) of the events of the two entries are equal
Trace index index(τ , τ) The index of the entry in τ which has an eid that

matches the eid of the entry τ
index(τ , entry(j, k,m, µ, e)) =(

i τ = τ1.....τ i−1.entry(j, n,m′, µ′, e′)....
−∞ otherwise

Trace
intersection

τ ∩=e τ
′ τ with only those elements that are also in τ ′ according

to event equality (=e) (τ1.τ)∩=e τ
′ =

(
τ1.(τ ∩=e τ

′) ∃τ i ∈ τ ′ : τ1 =e τ i

τ ∩=e τ
′ otherwise

Trace window win(τ ,∆)(τ) Trace τ with only those elements whose index is in the
range [index(τ , τ)±∆] (∆ constant, τ ∈ τ)

win(τ ,∆)(τ) = πp∆ (τ)

p∆(entry(i, j,m, µ, e)) = (i ∈ [index(τ , τ)±∆])
Correlation Xφ(τ1, τ2) Returns 〈νφ(τ1), νφ(τ2)〉 if the views of type φ of the

two entries are correlated or 〈⊥,⊥〉 otherwise
View correlation functions, as described in Section 3.1

LCS lcs(τ , τ ′) Longest common subsequence of τ and τ ’ with respect
to event equality (=e)

Refer to [3] for details

Figure 9. Helper relations for trace differencing evaluation semantics.

〈τL, τR,Λ〉 −→
V
〈τL

′
, τR

′
,Λ′〉

τ1 =e τ
2

〈τ1.τL
′
, τ2.τR

′
,Λ〉 −→

V
〈τL

′
, τR

′
,Λ ∪ {τ1, τ2}〉

(STEP-VIEW-MATCH)

Λ′ = {τr | LinkedSimilarEntries(τ1, τ3, τr)}
τ1 6=e τ

3 τ2 =e τ
4 τL

′
∩=e τ

R′ = 〈〉
〈τ1.τL

′
.τ2.τL

′′
, τ3.τR

′
.τ4.τR

′′
,Λ〉 −→

V
〈 τ2.τL

′′
, τ4.τR

′′
,Λ ∪ Λ′〉

(STEP-VIEW-NOMATCH)

index(τVL , τ5) ∈
ˆ
index(τVL , τ1)±∆

˜
index(τVR , τ6) ∈

ˆ
index(τVR , τ3)±∆

˜
〈γL, γR〉 = Xφ(τ5, τ6)

τr ∈ lcs(win(τ5,∆)(πpνφ|γL
(τOL)),

win(τ6,∆)(πpνφ|γR
(τOR)))

LinkedSimilarEntries(τ1, τ3, τr)
(SIMILAR-FROM-LINKED-VIEWSφ)

Figure 12. View-based comparison; −→
V

is parameterized over

τOL , τOR ,τVL , τVR . We define τVL , τVR to be the two thread
views being compared, but before being evaluated under −→

V
.

3.3 Views-based Trace Differencing Semantics

The aforementioned challenges of LCS can be overcome by lever-
aging our views trace abstraction. Instead of differencing the raw
pair of traces produced by the contextual semantics, we instead ap-
ply a trace differencing evaluation semantics to one or more pairs
of correlated thread views. Evaluation of each pair of views (−→

V
)

proceeds by removing the head elements and if they are equal, plac-
ing them in set Λ. For the other case where the head elements are
different, any secondary views linked to nearby entries in the main
views are explored to find correlations between entries in the left
and right traces, and then removing from the heads of the left and
right main views any entries up until the next common point of
correlation.

Fig. 12 formalizes the above intuition of how one pair of thread
views is evaluated. The rule (STEP-VIEW-MATCH) handles the case
where the heads of the evaluated thread view pair have equal
events, in which case the entries are removed and added to Λ.
The (STEP-VIEW-NOMATCH) rule handles the other case. It adds to
Λ those entries that were found to be similar by comparing cor-
responding views nearby the differing entries, as modeled by
LinkedSimilarEntries. The evaluation step also removes from
the heads of the traces any differing entries up until the next pair

of similar entries. Evaluation thus alternates between the two rules
until the end of the traces is reached.

The generic rule (SIMILAR-FROM-LINKED-VIEWSφ) defines how to
construct LinkedSimilarEntries for a given view type, φ.
Not shown are the concrete rules, one for each view type (with
φ instantiated to TH, CM, TO, or AO). To further explain the
LinkedSimilarEntries relation, for a given pair of trace en-
tries from the left and right thread views (τ1, τ3) for whom
secondary views should be explored to identify similar entries,
a similar entry τr is identified according to the antecedent of
(SIMILAR-FROM-LINKED-VIEWS). The first and second lines of the an-
tecedent constrain the free variables τ5 and τ6 to be trace entries
within a constant distance from the entries τ1 and τ3 respectively.
The third line requires that entries τ5 and τ6 either have corre-
sponding thread views, method views, or object views (which views
the two entries have in correspondence are called matching views).
Line four then constrains free variable τr such that it must be in
the LCS of fixed-size windows of the matching views. In this way,
similar entries in corresponding secondary views are identified us-
ing LCS, but over fixed-size windows of the nearby entries in the
views as opposed to the entire view or the entirety of the raw traces.

When differencing a raw pair of traces produced by a program, we
evaluate each pair of corresponding thread views (as determined
by XTH) under−→

V
, each producing a different set Λ. These sets are

unioned together to form the final similarity set, Λf . The final set
of differences is then derived from Λf by set subtraction. We have
shown our technique to exhibit O(n) complexity in both space and
time; the proof has been omitted due to space restrictions and is
available in a tech report [10].

3.4 Example

Fig. 13 shows how the differencing algorithm works for the mo-
tivating example shown in Fig. 1. As each trace evaluation rule
removes one or more entries from the head of the traces, the
numbered circles show the progression of the evaluation as rules
are applied. From the start of the trace up to and including the
call to the setRequestType method (from circle 0 to 1), the
(STEP-VIEW-MATCH) is applicable, adding these entries to set Λ. At
circle 1, the (STEP-VIEW-NOMATCH) rule becomes applicable. τ1 and
τ3 correspond to entry 9 in the left and right traces, respectively
(the fact that the entry id is the same is coincidental here).

LinkedSimilarEntries for (τ1,τ3) identifies those entries that
should be placed in set Λ due to the exploration of corresponding
secondary views nearby to these entries. The two secondary views
displayed in the figure represent two such corresponding views.
Circles 2 and 3 depict the relevant fixed windows in the secondary
views over which the LCS is computed, and the checkmarks in

> LOG1.addMsg('Handling..')
 ...
< LOG1.addMsg(..)
> SP1.setRequestType('text/html')
 > STR1.equals('text/html')
 < STR1.equals(..) ret=true

 > NUM1.new(32, 127)
 set NUM1._minCharRange = 32
 set NUM1._maxCharRange = 127
 < NUM1.new(32, 127)
 set SP1._binConv = NUM1

 ...
 > LOG1.addMsg('Set req..')
 ...
 < LOG1.addMsg(..)
< SP.setRequestType(..)

Original Thread View

> LOG1.addMsg('Handling..')
 ...
< LOG1.addMsg(..)
> SP1.setRequestType('text/html')
 > STR1.equals('text/html')
 < STR1.equals(..) ret=true
 > BINFLT1.new()
 > NUM1.new(1, 127)
 set NUM1._minCharRange = 1
 set NUM1._maxCharRange = 127
 < NUM1.new(1, 127)
 set BINFLT1._binConv = NUM1
 < BINFLT.new()
 > SP1.addFilter(BIN)
 ...
 > LOG1.addMsg('Set req..')
 ...
 < LOG1.addMsg(..)
< SP.setRequestType(..)

New Thread View

> NUM1.new(32, 127)
set NUM1._minCharRange = 32
set NUM1._maxCharRange = 127
< NUM1.new(32, 127)
> NUM1.process(..)
...

Original NUM1 Object View

> NUM1.new(1, 127)
set NUM1._minCharRange = 1
set NUM1._maxCharRange = 127
< NUM1.new(1, 127)
> NUM1.process(..)
... ﴾different﴿

New NUM1 Object View

> STR1.equals('text/html')
< STR1.equals(..) ret=true
> NUM1.new(32, 127)
< NUM1.new(32, 127)
set SP1._binConv = NUM1
...
> LOG1.addMsg('Set req..')
< LOG1.addMsg(..)

Original SP.setRequestType Method View

> STR1.equals('text/html')
< STR1.equals(..) ret=true
> BINFLT1.new()
< BINFLT.new()
> SP1.addFilter(BIN)
...
> LOG1.addMsg('Set req..')
< LOG1.addMsg(..)

New SP.setRequestType Method View

0

4
5

7

9

8

2 LCS

3 LCS

…
…
…
…

…

…

…

…

…
…
…

…

…

…
…
…
…
…
…

Lockstep
scanning
Views
Exploration

Key

Skipped

… Mark Anchors
In Other Views

1

…

6

Figure 13. How the views-based trace differencing semantics works for part of our example. The primary view and two secondary views
are shown. Evaluation progression is labeled with circles 0–9.!"""# denotes entries that differ. !"""#denotes entries placed in set Λ via evaluation
of the (STEP-VIEW-MATCH) rule.!"""# denotes entries placed in set Λ via evaluation of the (STEP-VIEW-NOMATCH) rule. For example, the thread view
entry at circle 5 (set NUM-1._maxCharRange = 127) was marked with!"""# due to comparisons within the NUM-1 object view.

these views depict which entries are thereby identified as corre-
sponding (and thus should be in set Λ). Entries thus identified as
corresponding due to exploration in secondary views are denoted
with the anchor symbol in the figure.

Note that even though these entries appear “nearby” to the current
positions in the thread views in this example, in large traces these
entries identified as similar from secondary views could be thou-
sands or hundreds of thousands of trace entries away. In this way
exploration of secondary views allows for recognizing semantically
correlating events that could be very far apart in the thread views.
This characteristic is one reason this approach allows for greater
accuracy than LCS, as this approach remains resilient to reorder-
ings of operations in the thread views whereas LCS identifies these
reorderings as differences.

With LinkedSimilarEntries fully formed for the given point
(τ1,τ3), the antecedent of (STEP-VIEW-NOMATCH) identifies the next
closest point of correspondence (circle 5) in the left and right thread
views (τ2,τ4) and removes all entries from the heads of the traces
up to but not including this next point of correspondence (circle 4).

Evaluation thus proceeds alternating between these two rules un-
til the end is reached: at circle 5, (STEP-VIEW-MATCH) is applied,
placing entry 11 (left) and entry 12 (right) into set Λ and pro-
ceeding to circle 6. Here (STEP-VIEW-NOMATCH) is applied again,
LinkedSimilarEntries is formed again for this unique point

(thereby exploring nearby secondary views that correspond), and
identifying the next point of correspondence as the position at cir-
cle 8. The (STEP-VIEW-MATCH) is then applied for all remaining traces
until the end is reached at circle 9.

4. Regression Cause Analysis

We envision many types of dynamic analyses benefiting from our
views trace abstraction and our views-based trace differencing se-
mantics, including object protocol inference, property checking
(e.g., typestate), impact analysis, and automated debugging. As
mentioned we focus our attention in this paper on how semantics-
aware trace differencing empowers regression-cause analysis.

4.1 Algorithm

To identify the causes of regressions, we employ our semantics-
aware trace differencing to identify all the semantic differences
between an original, non-regressing version and a new, regressing
version of a program for one or more regressing test cases. Let
A represent this set of semantic differences, termed the suspected
differences set. The size of set A is usually too large to be effective
for finding the regression cause through manual inspection (having
in practice hundreds or thousands of differences). The goal of the
analysis algorithm is thus to remove from set A those differences

that are not likely to have caused the regressing behavior. The
algorithm proceeds as follows:

1. A set of differences that are expected to occur under correct
execution between the original and the new version is built
(call this set B), by comparing execution traces for runs of
the two versions for test case(s) with correct behavior. These
differences are not likely to be related to the cause of the
regression, because the regressing behavior was not observed
during execution of these correct test case(s). This set B is the
expected differences set.

2. A set of differences for the new version between a correct
test case and the regressing test case is built (C). This set of
differences includes the difference(s) that cause the regressing
behavior. The correct test case should be similar in functionality
to the regressing test case so that the resulting set of differences
is small and yet still includes the difference(s) causing the
regression (this is similar to the requirements of [21] and can
be computed automatically using techniques from [22]). This
set C is termed the regression differences set.

3. The set of differences between the original and new version
that are highly likely to be responsible for the cause of the
regression, termed D, is now calculated as follows:

D = (A−B) ∩ C

The choice of set B impacts the effectiveness of this approach
because the cause for a regression can appear within the execution
trace for non-regressing test cases. Eliminating the differences may
thereby eliminate the cause, introducing false negatives.

In practice, however, we find that filtering differences as described
does not compromise accuracy for three reasons. First, our dynamic
traces are complete, so the cause of the regression must be in A,
implying there are no false negatives at this stage. Second, elim-
inating the expected differences (B) eliminates many false posi-
tives, increasing accuracy. Since these differences did not exhibit
within the program output, it is highly likely they are related to
correct program evolution instead. Third, intersecting with the re-
gression differences set (C) further eliminates false positives. As
C only contains differences within the new program version, there
are fewer differences (only those caused by the differing inputs of
the regressing and non-regressing test cases and excludes any dif-
ferences due to program evolution), and yet is still likely to contain
the regression cause.

The other source of false negatives is due toA∩C. If the regression
is caused by the removal of code in the new version, then there is no
possibility for set C to contain the regression-inducing differences.
For these cases, the analysis can be changed to:

D = (A−B)− C

Subtracting set C for these cases will further reduce false positives
without introducing false negatives, allowing the analysis to effec-
tively find regression causes due to the removal of code in newer
versions. We empirically evaluate the effectiveness of our approach
in practice in Section 5.

4.2 Example Revisited

Recall that a regression is caused in our example when the class
BinaryCharFilter is instantiated with the incorrect range of
[1..127] instead of [32..127]. The most interesting code fragments
related to this regression are depicted in Fig. 1.

Even though there are many differences in the new version of
the code, only seven are relevant to the regression and its cause.
Our tool correctly identifies these seven changes, with no false
positives. It also correctly identifies 20 other runs of differences
as not being related to the regression.

To achieve these results we created two test cases: (a) a test case
that reproduced the regression, and (b) a test that used a different
document type, so conversion of the characters was not applied in
both versions (and thus does not exhibit the regressing behavior).
First, we collected dynamic traces for the original and new versions
for both test cases. Next, the semantic differencing tool was run on
the following pairs of traces: (i) original version vs. new version
for the regressing test case (forms the suspected differences set);
(ii) original version vs. new version for the non-regressing test case
(forms the expected differences set); (iii) a new version of the non-
regressing test case vs. a new version of the regressing test case
(this forms the regression differences set).

5. Evaluation

RPRISM employs aspect-oriented programming (AOP) [12] to
dynamically instrument Java programs via AspectJ’s load-time
weaver. Pointcuts provide a flexible mechanism to capture the seg-
ments of the execution trace that should be recorded. The imple-
mentation is layered and provides the following features: trace seg-
mentation, call stack tracking, event recording, view construction,
trace serialization, and tracing control. Tracing of long-running
programs are accomodated through smart trace segmentation–
AspectJ pointcuts are used to specify relatively short regions of
program execution to record as a single trace segment, and once
a trace segment has finished executing, all trace data is offloaded
to disk and the associated tracing memory is reclaimed. While the
program is running the execution trace is collected but not ana-
lyzed – the analysis is performed offline after the trace data has
been serialized to disk.

RPRISM implements the view correlation of Section 3.1, and also
relaxes method and object view correlation (to be more tolerant
to refactorings) using a context-sensitive correlation function that
correlates views if their entries are the same “distance” (number of
trace entries) away from two points in the traces that are known to
be semantically correlated to each other. This relaxation improves
robustness in the presence of refactorings, such as if methods or
classes have been renamed, or methods have been split or com-
bined. For example, if a method has been renamed, then there will
be a difference at the point of the call site, but it is probable that
there will be call sites in the versions where either the immedi-
ately preceding or succeeding statement is semantically correlated.
Under the relaxation, the secondary views will be explored at the
point of the call site of the renamed method. When the secondary
views are analyzed, the (mostly) unchanged code in the method
whose name was refactored produces many new semantic correla-
tions back in the main view, thus providing tolerance to the method
rename refactoring.

RPRISM approximates the value representations in our formalism
using the Java hashCode and toString (truncated to 128 chars)
methods, which we found is a good approximation in practice,
providing both reasonable performance and accuracy. Note that if
an object uses the default java.lang.Object implementation of
these methods, the value representation is forced to be empty as
it is not meaningful across different program versions.

In this section we first quantitatively assess the effectiveness of our
semantics-aware trace differencing, comparing it to an optimized

version of LCS with respect to both accuracy and performance.
The differing software versions for this assessment are based on
the iBUGS project [5]. We further evaluate our regression-cause
analysis by discussing in detail RPRISM’s accuracy and perfor-
mance on four real-life regressions. All tests were executed on a
server with eight 1.8Ghz dual-core Opteron processors and 32GB
of RAM. Note that RPRISM is currently single-threaded, with the
extra cores only in use during the VM’s parallel garbage collection.

99% 100% 105% 110% 125% 150% 200%
0

1

2

3

4

N
um

be
r o

f C
as

es

A ccuracy (R P rism vs LC S)

(a) Accuracy

0.5x 1x 5x 10x 50x 100x 500x 1000x 2500x 5000x
0

1

2

3

4

5

6

N
um

be
r o

f C
as

es

Speedup (RPrism vs LCS)

(b) Speedup

Figure 14. Quantitative results based on iBugs Rhino dataset com-
paring RPRISM with an optimized LCS implementation.

5.1 Quantitative Assessment

Our goal is to assess both (i) the semantics-aware trace differenc-
ing, and (ii) the regression-cause analysis. Existing research bug
databases contain few if any real regressions (focusing on explicit
bugs instead). Without any immediately suitable benchmark regres-
sion bug database, we built on the Rhino dataset in the iBUGS
project [5]. The Rhino dataset is a set of 29 bugs from the Mozilla
Rhino project,6 which implements JavaScript in Java and consists
of 304 KLOC (including tests), 242 classes, and 15K tests. Rhino
compiles JavaScript into an intermediate form, which is then ei-
ther interpreted or compiled to standard Java classes. Our data here
is based on the interpretive mode, as it produced longer and more
complex traces, but RPRISM runs equally well with the compiled
mode.

We integrated RPRISM into the automated build process, provid-
ing unattended runs over all bugs. We introduced regressions into
each post-fix version by either using the actual cause of the bug it-
self if the bug was a regression or by using a distribution of root
causes that matches the distribution found for semantic bugs in the
Mozilla project in an empirical study [13]. Root causes considered
are categorized as missing features (26.4%), missing cases (17.3%),
boundary conditions (10.3%), control flow (16.0%), wrong expres-
sions (5.8%), or typos (24.2%). We ensured that each injected re-
gression caused the test case associated with the bug to fail.

We utilized RPRISM to trace the working and regressing versions
and to calculate the differences between the traces. As we are
modeling what RPRISM would provide to developers if it were part
of a completely automated build process, we do not follow the final
step of manually creating similar non-regressing test cases, which
would only increase accuracy further. A developer could complete
this final step if they wished to further refine RPRISM output when
fixing the regression.

6 http://www.mozilla.org/rhino/

Measurements. To assess the effectiveness of our view-based
trace differencing technique we define two measures: accuracy and
speedup. Accuracy measures how many semantic correlations are
identified with RPRISM vs the number of correlations identified
with the LCS comparison. Accuracy is precisely defined using the
following formula:

Accuracy =
((totalEntries− rprismNumDiffs)/totalEntries)

((totalEntries− lcsNumDiffs)/totalEntries)
Note that because RPRISM can identify reorderings of operations
it often identifies fewer semantic differences than LCS (resulting in
more semantic correlations), resulting in an accuracy value greater
than 100%. An accuracy of 100% in this section should be read as
meaning “RPRISM identified the same number of semantic differ-
ences as in the LCS comparison.” Speedup is defined as the number
of trace entry compare operations performed during the LCS com-
parison divided by the number of compare operations performed
during comparison with RPRISM.

Results. Salient measurements from our experiments are shown
in Fig. 14. Most traces were between 10K and 100K entries, with
a few outliers ranging up to 1.9 million entries. Trace size was
optimized by leveraging AspectJ pointcuts to exclude the internal
workings of unrelated code, such as libraries and data structures.

RPRISM organizes contiguous sets of differences into difference se-
quences, thereby organizing tool output into comprehensible units.
More than two-thirds of the bugs produced less than 50 difference
sequences, with the remainder ranging from 50 to 130 difference
sequences. We found that the cause of the divergence is often ob-
served in the first handful of differences sequences. If further refine-
ments are required, an alternate but non-regressing test case can be
created, and then the number of difference sequences is typically
cut by an order of magnitude or more (see next section).

We calculated the precise LCS where possible using an optimized
version of the LCS algorithm (common-prefix/suffix optimiza-
tions). Fig. 14(a) measures accuracy by comparing the relative
number of trace entries marked as different by each approach.
RPRISM achieves greater than 100% accuracy in all but 3 cases
because it is able to make semantically correct correlations (such
as detecting moved trace entries) that the LCS is inherently not able
to detect. The remaining 3 cases had accuracy greater than 99%.

We evaluate RPRISM’s efficiency by measuring speedup relative to
the number of compare operations (Fig. 14(b)). The LCS approach
failed on traces longer than 100K entries (due to memory exhaus-
tion), whereas RPRISM successfully analyzed traces as long as 1.9
million entries. RPRISM achieved speedups of more than 100x vs
the LCS algorithm. For two very small traces RPrism had speedups
less than 1x, because of the extra comparisons in secondary views.
Observed wall clock times for trace differencing are also reason-
able – running time of the algorithm took less than 1 second in all
cases, except for the trace with 1.9 million entries, which took 110
seconds.

Note that the histograms include data for only 14 of the 29 bugs
in the iBugs Rhino suite, for the following reasons: Two bugs
were not runnable due to a problem with the iBugs distribution.
The LCS algorithm failed due to memory exhaustion for 3 bugs.
The remaining bugs had trouble generating tracing data, due to
problems with the AspectJ weaver (invalid bytecode was produced
by the AspectJ weaver).

5.2 Real-life Regressions

To assess RPRISM’s utility in identifying regression causes, we
analyze four previously documented regressions in significantly

LCS-based Differencing Views-based Differencing
Benchmark LOC Trace Tracing Num Diff. Regression False False Analysis Mem Num Diff. Regression False False Analysis Mem Speedup

Entries Secs. Diffs. Seqs. Diff. Seqs. Pos. Neg. Secs. (GB) Diffs. Seqs. Diff. Seqs. Pos. Neg. Secs. (GB)
Daikon 169K 15K 185 352 43 3 0 1 44 0.85 179 42 3 0 1 3.4 0.07 12.9x
Xalan-1725 365K 98K 90 2,338 145 0 0 1 1,515 26.9 1,197 296 1 0 0 18.3 0.10 82.8x
Xalan-1802 286K 44K 99 4,269 117 11 0 0 582 7.43 3,602 184 10 0 0 61.5 0.21 9.4x
Derby-1633 720K 337K 182 (out of memory failure at 32GB) 125,562 2,663 6 4 0 80.1 0.34 -

Table 1. Benchmark and analysis characteristics (time/memory are median of 3 runs).

Number of Views Size of Analysis Sets
Benchmark Total views Thread views Method views Target object views A B C D
Daikon 559 1 127 431 42 NA 22 3
Xalan-1725 1,679 1 446 1,232 296 243 113 1
Xalan-1802 1,811 1 497 1,313 184 183 10 10
Derby-1633 6,874 3 1,761 5,110 2,663 4 310 10

Table 2. Number of views (in the original program version only) and size of the sets in the regression-cause analysis algorithm for our
benchmarks. Set A is the suspected differences set, set B is the expected differences set, set C is the regression differences set, and set D is
the result of the analysis.

sized open-source software projects, namely Daikon [6], Apache
Xalan7 (2 regressions), and Apache Derby.8 Our reasons for choos-
ing these regressions are as follows: The Daikon regression was
chosen because this exact same regression was also evaluated by
JUnit/CIA [17], providing a comparison to a previously established
method for regression-cause analysis. The first Xalan regression
was chosen because it involved an extreme separation of cause and
effect, as the cause is within a dynamic bytecode compiler and the
visible effects are not exhibited until the compiled bytecode is exe-
cuted. The second Xalan regression was chosen because the cause
of the regression was in a completely rearchitected module in the
code, and exhibited a large amount of code churn in general (79K
lines); we wanted to observe how this level of code churn would
affect accuracy. The Derby regression was chosen because it in-
volved multiple threads, a larger code base (2x), and offered larger,
longer-running traces (3x) than the other regressions.

The versions to use when analyzing each regression were deter-
mined as follows: With Daikon, we used the versions as published
in the evaluation of JUnit/CIA. For the others, we chose the last
publicly released version that was working correctly, and the first
publicly released version after the regression was reported but not
yet fixed (at least 5 months between the versions chosen in all
cases).

Table 1 summarizes characteristics of the benchmarks and our anal-
ysis results. For comparison, we present the results of the regression
analysis based on both the LCS-based and view-based differenc-
ing semantics. Num Diffs. states the number of distinct differences
identified. Diff. Seqs. states how many difference sequences (each
representing one higher-level semantic difference that manifests as
a contiguous set of differences) were formed from the raw differ-
ences. Regression Diff. Seqs. states how many of these sequences
were identified by RPRISM as being regression related. False Pos.
states the number of semantic differences incorrectly identified as
regression-related by RPRISM; False Neg. states the number of
regression-inducing differences (as identified by the developers in
the bug description) that exist between the non-regressing and re-
gressing versions that were not identified. Speedup is based on wall
clock time of the differencing analysis. Table 2 summarizes the
number of views and the sizes of the regression analysis sets. Note
that the contents of sets A, B, C, and D can all be very different,
which is why |D| can be much smaller than |C| and why |D| can
be larger than |A| − |B|.

7 http://xml.apache.org/xalan-j/
8 http://db.apache.org/derby/

Daikon. Daikon is an extensible tool for dynamically detecting
likely program invariants (169 KLOC, 1100 classes). We revisit
a regression first considered in the evaluation for JUnit/CIA [17].
This regression is exhibited by an outdated version of the testXor

test case. The regression was caused by changes in two meth-
ods in class daikon.diff.XorVisitor, namely shouldAddInv1 and
shouldAddInv2 [17]. The older testXor version was selected as the
regressing test case and the newer testXor version was selected as
the non-regressing test case. Note that Daikon took the longest to
trace even though it produced the shortest traces because the test
case involved the most number of distinct classes, resulting in 98%
of the time for tracing spent performing aspect weaving.

Out of 42 difference sequences, RPRISM identified 3 of these as
relating to the regression; 2 of these differences correctly identi-
fied changes in the shouldAddInv2 method as the regression cause,
although the change in shouldAddInv1 was not identified (a false
negative). The other difference was related to the effect of the re-
gression but not the causes. Notably, RPRISM was more precise
than JUnit/CIA for this regression. Whereas JUnit/CIA also cor-
rectly identified the changed methods that caused the regression,
it also labeled 2 other changes as “Red” (highly likely to be the
cause), and 31 other changes as “Yellow” (changes that might be a
cause) [17].

Apache Xalan. Xalan is an implementation of XSLT, an XML
transformation language (365 KLOC, 1500 classes). We consider
a bug from Xalan’s bug database, XALANJ-1725,9 involving a
regression from version 2.5.1 to 2.5.2. Version 2.5.2 incorporates
4 months of code changes, including 84 feature enhancements and
bug fixes. The cause of the regression is quite difficult to pinpoint
because the bug is in the XSLT compiler (which generates Java
bytecode). This is an extreme case of separation of cause and effect,
as the former lies in incorrectly generated bytecode, so the latter
only manifests upon execution of that bytecode. This makes it
extremely difficult for any static analysis technique to accurately
understand and identify precisely both cause and effect.

The bug report provided an XSLT file that was correct on version
2.5.1 but not on version 2.5.2. To obtain a similar non-regressing
test case, we modified the XSLT file and removed the small section
of the file that was causing incorrect behavior while leaving the
remainder of the file the same, and it was constructed without
foreknowledge of the regression cause. Alternatively, automated
techniques could be applied to construct the alternate test case [22].

9 https://issues.apache.org/jira/browse/XALANJ-1725

Views-based differencing was more precise than LCS, as it only
produced about half as many differences as LCS produced. Note
that the number of difference sequences is larger for views-
based differencing because there are more similarities interspersed
among the differences. Consequently, the views-based difference
sequences tended to be shorter and more concise, as evidenced by
the average number of differences per sequence (4.04 vs 16.12 for
LCS). This trend is also true for all other bugs where LCS was com-
putable, with RPRISM producing finer-grained and thereby more
precise results. This finer granularity allowed the views-based dif-
ferencing to precisely identify the regression cause of this bug,
whereas the LCS-based differencing failed to produce any regres-
sion differences.

RPRISM identified 296 semantic differences between the origi-
nal and new versions for the regressing test case. After apply-
ing our regression cause analysis algorithm the suspected dif-
ferences set was reduced to 1 difference. This identified differ-
ence is in the checkAttributesUnique method and called by the
LiteralElement.translate method, which was identified as the
regression cause in the Xalan bug database.

Xalan-1802. We consider another regression in Xalan exhibited
between versions 2.4.1 and 2.5.1 (12 months, 79K new or changed
lines of code, 97 bugfixes/feature changes).10 As before we gener-
ated a similar, non-regressing input file from the regressing input
file provided with the bug. In this case the regression was caused
not by small incremental changes but by a bug for a corner case in
a completely re-architected portion of the code relating to names-
paces. Note that the views-based analysis took more time for this
bug than the other Xalan bug even though the traces were half the
size, because there were more differences in the main views, and
consequently more secondary views had to be explored during anal-
ysis. Note that this trend does not apply to the LCS-based approach,
whose running time is approximately quadratic with respect to the
trace size (sometimes less because of optimizations).

Apache Derby. Derby is a mature Java implementation of a re-
lational database system. We consider a regression from version
10.1.2.1 to 10.1.3.1 relating to query predicates and subqueries,
as documented in Derby bug DERBY-1633.11 The bug descrip-
tion provided a regressing SQL query and sample database. We
formed the alternate test case by modifying the predicate causing
the regression in the SQL query. Both code size and trace size here
are substantially larger than for the other regressions we consid-
ered. Of unique note here is that Derby is multithreaded and gen-
erated multiple thread views during tracing. Our views trace ab-
straction allowed for proper analysis and elimination of behavior
on other threads not related to the regression. The bug was caused
by an incomplete corner case in new query optimizations intro-
duced in version 10.1.3.1. The large number of differences (125K)
was caused by observing version 10.1.2.1 executing the query vs
10.1.3.1 throwing an error during query compilation. The analysis
algorithm was able to effectively eliminate these regression side-
effects and non-relevant differences, instead identifying 6 differ-
ence sequences all directly related to the regression (as confirmed
by reviewing the posted code patch for the regression). Four false
positives were also observed, relating to differences from use of
database locks that were not related to the regression cause.

10 https://issues.apache.org/jira/browse/XALANJ-1802
11 https://issues.apache.org/jira/browse/DERBY-1633

5.3 Impact of Code Refactorings on Accuracy of RPRISM

Refactorings and greater chronological distance between the work-
ing and regressing version certainly increase the size of the sus-
pected differences set (set A). The differences due solely to refac-
toring or other modifications that are not regression-related are
modeled by the expected differences set (set B) (difference be-
tween non-regressing test cases for the two versions). When set
B is subtracted from set A, this removes most of these unrelated
differences. Furthermore, intersection with the regression differ-
ences set (between similar regressing and non-regressing tests on
the same version) also serve to further eliminate other unrelated
refactoring changes. Our evaluation shows that even in cases where
there were months of active development and lots of code churn
RPRISM effectively identified the regression cause with precision.
For example, Xalan-1802 exhibited 12 months of active develop-
ment and 79K new or changed lines of code between versions,
and RPRISM correctly trimmed the suspected differences set down
from 184 difference sequences to 10 difference sequences.

6. Related Work

Dynamic program slicing [1] is a technique that identifies all state-
ments that directly or indirectly affect a variable’s value for given
program inputs. This produces far more information than the hand-
ful of differences produced by RPRISM. In dynamic slicing the
number of statements is often measured as a percentage of exe-
cuted statements, with percentages in the 0.1% to 1% range being
considered excellent (e.g., see [19]). By this measure, the results
for RPRISM are 0.02% (Daikon), 0.001% (Xalan-1725), 0.0035%
(Xalan-1802), and 0.003% (Derby-1633).

Execution indexing [20] is a technique that can be used to corre-
late related program points between executions. It leverages prop-
erties of an execution’s dynamic state based on its nesting struc-
ture (loops, calls, etc.) to uniquely label program points. Our view-
based projections can be regarded as a form of execution indexing
that correlates events across different executions based on causal
semantic properties (e.g., order of method calls, object allocations,
object field reads and writes, etc.). Rather than using full context in-
formation to determine an index, we use anchor points derived from
a derivative of an LCS calculation on program traces; our technique
is especially well-suited for regression analysis over program ver-
sions. In general, there has been substantial work on software fault
localization using dynamic execution traces that are also related
to our work. These approaches employ a variety of techniques in-
cluding statistical machine learning [14], program slicing [24, 18]
control-flow similarity metrics [8], or state-space exploration and
refinement [21]. These techniques cannot be easily adapted to iden-
tify regression failures between different versions of a program.

Pothier et al. [15] present a portable Trace-Oriented Debugger for
Java which uses efficient instrumentation techniques for event gen-
eration and a scalable storage system for completeness and efficient
querying. RPRISM is a complementary infrastructure for regres-
sion cause analysis. While RPRISM could query Trace-Oriented-
Debugger to effectively construct views, we present an approach
for implementing tracing using AspectJ, which automatically pro-
vides semantic information by identifying trace boundaries.

JDiff [2] is a tool for identifying the differences between two Java
programs. In their approach, the authors use method level repre-
sentation to model object-oriented features, build a representation
for pairs of matching methods, and subsequently identify the dif-
ferences/similarities across methods. RPRISM operates at a finer

granularity to detect such differences, and is robust even in the pres-
ence of concurrency, reflection, dynamic class loading and other
advanced language features.

CHIANTI is a tool for change impact analysis of Java programs by
Ren .et al [16]. It identifies a set of changes responsible for a mod-
ified test’s behavior and the set of tests that are affected by a mod-
ification. The differences between two versions are decomposed
into a set of atomic changes and, based on static or dynamic call
graph sequences, the above mentioned details are estimated. This
system is extended in JUNIT/CIA [17] to classify which atomic
changes are likely to have caused specific test cases to fail. Unlike
RPRISM, this approach requires source code and is not well-suited
for cases involving dynamic code generation (such as in our Xalan
case study).

DSD-Crasher [4] is a proactive bug-finding technique that auto-
matically finds bugs via a three-phase approach: (i) automatically
computing program invariants via dynamic analysis, (ii) statically
analyzing the code to look for possible execution paths where in-
variants fail, (iii) validating these potential failures through auto-
matic test case generation.

7. Conclusion

This paper presents a novel view-based technique for tractably
comparing large execution traces in semantically meaningful ways.
We have illustrated the usefulness of this technique through the
problem of precisely identifying deeply buried causes of regres-
sions introduced in evolving complex applications.

We have presented an automated regression cause analysis algo-
rithm based on our technique. RPRISM, an implementation of these
ideas, was applied to large, real-world Java applications, and was
able to identify the cause of regressions with a high degree of preci-
sion, even when the applications employ multi-threading, dynamic
code generation, and reflection, features that confound previously
proposed analyses.

Acknowledgments

We would like to thank Murali Krishna Ramanathan and the anony-
mous reviewers for their time and effort spent improving this paper.

References
[1] H. Agrawal and J.R. Horgan. Dynamic Program Slicing. In PLDI’90,

pages 246–256, 1990.

[2] T. Apiwattanapong, A. Orso, and M.J. Harrold. JDiff: A Differencing
Technique and Tool for Object–Oriented Programs. ASE’07, 14(1):3–
36, 2007.

[3] L. Bergroth, H. Hakonen, and T. Raita. A Survey of Longest Common
Subsequence Algorithms. In SPIRE’00, page 39, 2000.

[4] C. Csallner and Y. Smaragdakis. DSD-Crasher: A Hybrid Analysis
Tool for Bug Finding. In ISSTA’06, pages 245–254, 2006.

[5] Valentin Dallmeier and Thomas Zimmermann. Extraction of Bug
Localization Benchmarks from History. In ASE, pages 433–436,
2007.

[6] M. Ernst, J. Cockrell, W. Griswold, and D. Notkin. Dynamically Dis-
covering Likely Program Invariants to Support Program Evolution.
TSE, 27(2):1–25, 2001.

[7] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen.
Classes and Mixins. In Proceedings of the 25th ACM SIGPLAN-
SIGACT symposium on Principles of Programming Languages, pages
171–183. ACM Press, 1998.

[8] Liang Guo, Abhik Roychoudhury, and Tao Wang. Accurately
Choosing Execution Runs for Software Fault Localization. In CC,
pages 80–95, 2006.

[9] D. S. Hirschberg. A Linear Space Algorithm for Computing Maximal
Common Subsequences. CACM, 18(6):341–343, 1975.

[10] Kevin Hoffman, Patrick Eugster, and Suresh Jagannathan. RPrism:
Efficient Regression Analysis Using View-Based Trace Differencing.
Technical Report dynt-200811-1, Purdue University, 2008.

[11] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Feath-
erweight Java: A Minimal Core Calculus for Java and GJ. ACM
TOPLAS, 23(3):396–450, May 2001.

[12] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-Oriented Programming. In
ECOOP’97, pages 220–242, 1997.

[13] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and
Chengxiang Zhai. Have Things Changed Now?: An Empirical Study
of Bug Characteristics in Modern Open Source Software. In ASID,
pages 25–33, 2006.

[14] Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I. Jordan.
Bug Isolation via Remote Program Sampling. In PLDI ’03, pages
141–154, 2003.

[15] G. Pothier, E. Tanter, and J. Piquer. Scalable Omniscient Debugging.
In OOPSLA’07, pages 535–552, 2007.

[16] X. Ren, F. Shah, F. Tip, B. Ryder, and O. Chesley. Chianti: A Tool
for Change Impact Analysis of Java Programs. In OOPSLA’04, pages
432–448, 2004.

[17] M. Stoerzer, B. Ryder, X. Ren, and F. Tip. Finding Failure-Inducing
Changes in Java Programs Using Change Classification. In ESEC-
FSE-14, pages 57–68, 2006.

[18] F. Tip. A Survey of Program Slicing Techniques. Journal of
programming languages, 3:121–189, 1995.

[19] G. A. Venkatesh. Experimental results from dynamic slicing of
C programs. ACM Transactions on Programming Languages and
Systems, 17(2):197–216, 1995.

[20] Bin Xin, William N. Sumner, and Xiangyu Zhang. Efficient Program
Execution Indexing. In PLDI ’08, pages 238–248, 2008.

[21] Andreas Zeller. Isolating Cause-Effect Chains from Computer
Programs. In FSE-10, pages 1–10, 2002.

[22] Andreas Zeller and Ralf Hildebrandt. Simplifying and Isolating
Failure-Inducing Input. TSE, 28(2):183–200, 2002.

[23] X. Zhang and R. Gupta. Cost Effective Dynamic Program Slicing. In
PLDI’04, pages 94–106, 2004.

[24] X. Zhang and R. Gupta. Matching Execution Histories of Program
Versions. In ESEC/FSE-13, pages 197–206, 2005.

