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Abstract

The reliability and correctness of complex software systems can
be significantly enhanced through well-defined specifications that
dictate the use of various units of abstraction (e.g., modules, or
procedures). Oftentimes, however, specifications are either miss-
ing, imprecise, or simply too complex to encode within a signature,
necessitating specification inference. The process of inferring spec-
ifications from complex software systems forms the focus of this
paper. We describe a static inference mechanism for identifying the
preconditions that must hold whenever a procedure is called. These
preconditions may reflect both dataflow properties (e.g., whenever
p is called, variable x must be non-null) as well as control-flow
properties (e.g., every call to p must be preceded by a call to q). We
derive these preconditions using an inter-procedural path-sensitive
dataflow analysis that gathers predicates at each program point.
We apply mining techniques to these predicates to make specifi-
cation inference robust to errors. This technique also allows us to
derive higher-level specifications that abstract structural similari-
ties among predicates (e.g., procedure p is called immediately after
a conditional test that checks whether some variable v is non-null.)

We describe an implementation of these techniques, and validate
the effectiveness of the approach on a number of large open-source
benchmarks. Experimental results confirm that our mining algo-
rithms are efficient, and that the specifications derived are both pre-
cise and useful – the implementation discovers several critical, yet
previously, undocumented preconditions for well-tested libraries.

Categories and Subject Descriptors D.2.7 [Software En-
gineering]: Distribution, Maintenance, and Enhancement—
Documentation; F.3.1 [Logics and Meaning of Programs]:
Specifying and Verifying and Reasoning about Programs;
D.2.4 [Software Engineering]: Software/Program Verification—
Statistical Methods

General Terms Algorithms, Documentation, Verification

Keywords specification inference, preconditions, predicate min-
ing, program analysis
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1. Introduction

Well-defined specifications can significantly enhance the reliabil-
ity and correctness of complex software systems. When avail-
able, they can be used to verify correctness of libraries and de-
vice drivers [4, 7, 21, 36], enable modular reuse [29], and guide
testing mechanisms toward bugs [13, 18]. When specifications are
provided by the user, type systems [16, 17, 11], model check-
ing [21, 7], typestate interpretation [24, 20], and other related static
analyses [36] can be used to check whether implementations satisfy
necessary invariants.

Often, specifications are easy to define (e.g., procedure p must al-
ways be called after data structure d is initialized), or are well-
documented (e.g., pthread mutex init must be present on all
program paths reaching a call to pthread mutex lock). In many
cases, though, specifications are not known, and even when avail-
able, are often informal, imprecise, or incomplete. This is espe-
cially true for complex system software libraries. For example, con-
sider the function BN is prime in the openssl library, a widely-
used secure socket layer implementation. The function’s signature
is complex, taking five arguments, including a callback procedure.
It returns true if its first argument, which is a pointer to a bignum
object, is prime. Its documentation, however, makes no assertions
about the expected structure of its arguments; for example, it does
not specify the function’s behavior if a null pointer value is sup-
plied as the first argument. Clients must therefore either examine
its implementation to determine the appropriate constraints on ar-
guments, or proactively perform error checks before making the
call. Both approaches have obvious drawbacks, and neither work if
the client is not even aware that a potential issue exists.

One way to determine the appropriate conditions under which
BN is prime can be safely called is to examine the collection of
calls made to the function from other clients. The underlying hy-
pothesis is that the confidence and specificity of a property inferred
for BN is prime, is reflected in its satisfaction at various call sites.
However, manually identifying call sites to BN is prime over a
large number of client programs, and examining how the argu-
ments are defined and used prior to the call, is generally infeasible.
On the other hand, automated techniques for correlating invariants
across different call sites to the same procedure must take into ac-
count the possibility that programs may contain bugs which can
mask real invariants. For example, it may be the case that in some
calls to BN is prime, the first argument is incorrectly not checked
prior to the call. Failure to perform this check may not necessarily
lead to an error if the argument values at these call sites serendip-
itously happen to be non-null. Automated techniques must also be
able to distinguish between invariants that are significant enough to
be included as part of the function’s specification from those that,
while possibly true, are irrelevant. For example, there may be sev-
eral properties that hold at each call-site to BN is prime related to



global or temporary variables that are inconsequential to its speci-
fication.

In this paper, we consider the problem of statically inferring speci-
fications transparently without requiring programmer annotations.
Specifically, we consider the problem of generating specifications
that define preconditions for procedures – predicates that must al-
ways hold when the procedure is called. We consider two important
classes of preconditions: control-flow predicates that define prece-
dence properties among procedures (e.g., a call to fgets is always
preceded by a call to fopen), and data-flow predicates that cap-
ture dataflow properties associated with variables (e.g., whenever
fgets is called, pointer fp must not be null).

We define an inter-procedural, path-sensitive static analysis that
identifies a collection of constraints whose solution defines poten-
tial preconditions. If procedure p has precondition π, it means that
π holds on all calls to p. To compute preconditions, our analysis
collects a predicate set along each distinct path to each call-site. To
manage the size of this set, intersections of predicate sets are con-
structed at join points where distinct paths merge. Predicates com-
puted within a procedure are memoized and are used to compute
preconditions that capture inter-procedural control and dataflow in-
formation. To compute the preconditions of a procedure p, we con-
sider the intersection of the predicate sets at each call-site to p.

There are several significant design issues that need to be resolved
for the derived preconditions to have any practical significance. We
observe that using simple set intersection on predicates is too frag-
ile to yield interesting specifications in general. This is because the
predicates generated are insufficiently abstract (e.g., “at a call to
procedure p, variable x bound in p is read, and the contents of lo-
cations a and b allocated in p are compared.”). The intersection
of any set S with a set containing just these predicates would be
non-empty only if S contained identical predicates, reflecting the
same operations on the same variables and locations. To relax this
limitation, we examine techniques that allow us to define structural
similarities among predicate sets. Such similarities enable precon-
ditions that specify properties which are abstracted over variable
names, references, and values. We are thus able to define precon-
ditions that define more abstract properties such as “procedure q is
called whenever some integer variable v is greater than zero, and
the contents of some pair of locations l1 and l2 holding a value of
type τ are equal.”

While the use of intersection guarantees safety by ensuring that de-
rived preconditions for a procedure hold at all call-sites, it is not a
robust mechanism in the presence of errors. An error that causes a
predicate to be omitted along some path leading to a call to proce-
dure p would result in the predicate not being included as part of p’s
preconditions. To address this concern, we employ frequent item-
set and sequence mining on the predicates computed at each call-
site to p, and use the predicates that are most frequently occurring
as the preconditions for p. Like other mining-based approaches,
we assume that errors violating invariants occur infrequently, thus
making mining a feasible strategy to filter such deviations from the
generated specifications.

It is our approach to these issues, and the kinds of specifications
generated as a result, that distinguish our work from previous ef-
forts that have used mining techniques (both dynamic [4, 14, 35,
38] and static [23, 26, 28, 13]) to extract and validate program prop-
erties. While dynamic mining techniques can be used to generate
specifications, the integrity of the specification depends upon the
comprehensiveness of the input data. On the other hand, prior static
approaches have not been well-integrated within a program analy-
sis framework, and therefore are not effective in generating useful

preconditions. Our primary contribution is this systematic integra-
tion of data flow analysis with scalable mining algorithms.

This paper makes the following additional technical contributions:

1. Precondition Inference:We present and formalize a new path-
sensitive inter-procedural static analysis for inferring precondi-
tions for procedures transparently with no programmer annota-
tions, profiling, or instrumentation.

2. Robust Specifications: We describe the use of mining tech-
niques to generate correct specifications even for programs that
may have subtle bugs that lead to necessary invariants being
erroneously omitted along certain paths. Mining also provides
a way to compensate for imprecision introduced by the static
analysis that would ordinarily result in omitting valid predicates
from a precondition.

3. Experimental Evaluation: We demonstrate the practicality of
our techniques to large open-source C programs, and provide a
detailed quantitative and qualitative assessment of the effective-
ness of our approach. Our results show that the analysis is (a)
selective – the number of elements comprising derived precon-
ditions tend to be small (less than five on average); (b) precise
– the analysis derives approximately 78% of documented spec-
ifications to library calls made by openssh; and (c) useful – we
discovered several bugs in the benchmarks that exist because of
failure to adhere to derived specifications.

2. Motivating Example

We motivate our approach using a real-world example – deriving
a specification for the bind system call in the Linux socket li-
brary. While the application of our approach is in deriving speci-
fications for undocumented procedures, it is illustrative to demon-
strate the technique for a procedure such as bind, which has a
well-documented interface. The bind system call takes three pa-
rameters, viz., a socket descriptor (type: int), the local address to
which the socket needs to bind (type: struct sockaddr *), and
the length of the address (type: socklen t). For a stream socket
to start receiving connections, it needs to be assigned to an address,
which is achieved by using bind. Summarizing the documenta-
tion, the necessary conditions that must hold before bind can be
called are:

1. A socket system call must have occurred.
2. The return value of socket must have been checked for valid-

ity.
3. The address (second parameter to bind) corresponds to a spe-

cific address family (e.g., AF UNIX, AF INET).

Ideally, our goal is to obtain the above information by tracking
various calls to bind in the source. Figure 1 shows code fragments
of two procedures (out of eight, total) that invoke the bind system
call in openssh-4.2p1.

Figure 1(a) shows a code fragment from the file sshd.c where
bind is invoked from main. Before the call to bind, as per
the documented requirements, observe that there is a call to
socket on line 1287. The returned value listen socket is
checked to ensure that it is a valid descriptor, and the address
is set (lines 1075 and 1272). In fact, in a convoluted chain,
the procedure fill default server options in main invokes
add listen addr, which in turn invokes add one listen addr
where the address that is eventually used in bind is set. Apart from



870 main(...)
883 struct addrinfo *ai;
918 initialize server options(&options);
1075 fill default server options(&options);
1272 for (ai=options.listen addrs; ai;ai=ai->ai next) {
1273 if(ai->ai family != AF INET &&

ai->ai family != AF INET6)
1274 continue;
1275 if (num listen socks >= MAX LISTEN SOCKS)

...
1278 if ((ret = getnameinfo(...))) {

...
1287 listen sock = socket(ai->ai family,...);
1289 if (listen sock < 0) {

...
1294 if (set nonblock(listen sock) == -1) {

...
1302 if (setsockopt(...) == -1)
1304 error(’’setsockopt SO REUSEADDR: ...’’);
1309 if (bind(listen sock, ai->ai addr,

ai->ai addrlen) < 0) {
...

(a) sshd.c

991 ssh control listener(void)
993 struct sockaddr un addr;
997 if (options.control path == NULL ||
998 options.control master == SSHCTL MASTER NO)
999 return;
1003 memset(&addr, 0, sizeof(addr));
1004 addr.sun family = AF UNIX;
1005 addr len = offsetof(...)
1008 if (strlcpy(addr.sun path, options.control path,
1009 sizeof(addr.sun path)) >= sizeof(addr.sun path))
1010 fatal(’’ControlPath too long’’);
1012 if ((control fd = socket(PF UNIX,

SOCK STREAM, 0)) < 0)
1013 fatal(...);
1015 old umask = umask(0177);
1016 if (bind(control fd, (struct sockaddr*)&addr,

addr len) == -1) {
...

(b) ssh.c

Figure 1. Code fragments of two different call sites to bind in openssh-4.2p1.

sshd.c ssh.c
Variables Attributes Variables Attributes
(*ai).ai addrlen {(arg(3), bind)} addr.sun family {(:=, 1)}
ai {(:=, options.listen addrs),( !=, 0) } addr len {(:=, res( strlen)), (arg(3), bind)}
inetd flag {(=, 0)} old umask {(:=, res( umask))}
listen sock {(:=,res( socket)), (≥, 0), control fd {(:=, res( socket)),

(arg(1), bind), (arg(1), setsockopt)} (≥, 0), (arg(1), bind)}
num listen socks {(<, 16)} options.control master {( !=, 0)}
ret {(:=, res( getnameinfo)), (=, 0)} options.control path {( !=, 0)}

Table 1. A subset of predicates associated with the bind calls shown in Figure 1.

these known requirements, other operations dependent on the appli-
cation context are also performed (e.g., the family of the address is
checked in line 1273, the num listen socks is checked in line
1275, etc.). By observing just a single use of bind alone, we can
generate some properties on the required operations before bind
is called.

Table 1 shows the subset of properties generated for the corre-
sponding bind call. For example, we observe a property where
a variable listen sock is assigned the return value of socket,
has a value greater than or equal to 0 and is the first parameter in
calls to setsockopt and bind. As explained above, these proper-
ties form some of the preconditions for calls to bind. However, not
all properties generated before this bind call need to hold always
before any other call to bind. For example, ret is assigned the
return value of getnameinfo and is equal to 0 before the bind
call. This property may be relevant in the context of calls to bind
in sshd.c, but may not be relevant in calls made within other files.
Unfortunately, simply examining this single call without any a pri-
ori knowledge of bind’s behavior would not permit us to discard
this property from its specification.

To improve precision, we collect properties from other call sites
to bind. Figure 1(b) presents one such call site in procedure
ssh control listener in ssh.c. For this call, we obtain prop-
erties that include the known requirements (see lines 1004, 1005,
1012) and also shown in Table 1. We also obtain other irrelevant
operations (e.g., the control path is checked at line 997, size of

path checked in 1008, etc.). Based on the properties here and the
properties previously obtained with respect to the bind call in Fig-
ure 1(a), an intersection of the derived properties can be computed.
By repeated application of this process to each call to bind at
other call-sites, we obtain the necessary operations that must be
performed before every call to bind.

To summarize the example, observe that deriving the desired pre-
conditions using intersection must account for the fact that (a) the
names of relevant variables in the two files are not comparable (e.g.,
listen sock in sshd.c and control fd in ssh.c); (b) opera-
tions relevant to the bind call (e.g., listen sock ≥ 0 in sshd.c
and ((control fd = ...) ≥ 0) in ssh.c) are interspersed
with irrelevant operations; (c) the types of corresponding param-
eters to bind before casting are different ( struct sockaddr *
in sshd.c and struct sockaddr un * in ssh.c); (d) there is
no fixed order of calls to procedures setting the address family and
the call to socket in the two files and (e) there can be differ-
ent number of attributes associated with the corresponding vari-
ables across call-sites (e.g., listen sock is used as a parameter
in setsockopt whereas control fd does not have any such at-
tribute.).

3. Specification Language

We formalize our informal discussion above by defining a simple,
call-by-value language equipped with first-class procedures and



references. Superscripts on expressions denote labels that are used
in defining our analysis. The exact semantics for the language is
standard and omitted here.
Informally, a let-expression binds x in e, λ y.e′ constructs a
lexically-scoped first-class procedure, y(z) denotes call-by-value
application, ref(y) constructs a first-class reference cell that holds
the value denoted by y, and deref(y) extracts the value of the cell
bound to y. The expression ( set x := y!1 in e!)!′ assigns the
value of y to the cell bound to x, and continues with e. Bound
and free variables are defined as usual. A program P is a closed
expression, and e! ∈ P is true if e! is a subexpression of P .
In addition to the usual assumption that bound variables are distinct
from free variables in different expressions, we also assume that
all bound variables in a program are distinct. The last variable of
an expression, which yields the expression’s value, is defined as
follows:

last(x!) = x!

last(( let x = t!1 in e!)!′) = last(e!)

last(( set x := y!1 in e!)!′) = last(e!)

Our analysis is defined in two steps. First, we compute a flow anal-
ysis for the program, F , that associates with every variable and
label, a set of abstract values. An abstract value is either a con-
stant, a label corresponding to the definition point of a procedure
(abstract procedure) or reference (abstract location), or a primitive
operation paired with the abstract values of its arguments. Thus,
given variable x, F (x) (or F ($), if given label $) defines the set
of procedures, constants, references, and primitive operations that
x (or the expression with label $) can denote during execution of
the program. We do not present details of the analysis here, but any
monovariant flow analysis in the spirit of [30, 33] suffices for our
purpose.
A judgment is a three-place relation on specification maps, flows,
and expressions. Thus, the judgment ∆ |=F e! is read “Assuming
a flow analysis F , expression e! has the preconditions defined by
∆($).” Given a flow function F , and program P , we are interested
in the least specification map ∆ for which the judgment holds.
Specification inference is defined by a collection of inference rules
(see Figure 2) that leverages the result of the flow analysis. Each
rule is of the form:

c1, . . . , cn

∆ |=F e
,

where the consequent defines a judgment whose validity depends
upon the satisfiability of the constraints defined by the antecedent.
The constraints impose restrictions on the structure of the specifica-
tion map ∆, a map that identifies a set of preconditions with every
program point.
A precondition π of an expression e defines an action or predicate
that must hold prior to e’s execution. Our analysis tracks a num-
ber of such actions; these actions are defined with respect to the
abstract values computed for each expression in the program by
the flow analysis. Thus, an action of the form read($, v̂) asserts
that a reference created at label $ holding the abstract value v̂ is
read; write($, v̂) asserts a similar condition for reference assign-
ment; and, alloc($, v̂) holds if in an expression ref(z)! ∈ P and
F (z) = v̂. In the same vein, bind(x, v̂) is true whenever variable
x is bound to e! and F ($) is v̂, and cbind(x, v̂) is used to express
predicates that reflect if-splitting of flow values across conditionals;
finally, call($1 ← $2) is used to capture control-flow precedence
relationships among procedure calls – it holds whenever a proce-
dure with label $2 is invoked after an invocation of a procedure with
label $1, with no intervening invocation of any other procedure.

The rules for expressions that bind constants and primitive oper-
ations are straightforward. The preconditions of the expression in
the let-body within which the binding occurs includes the precon-
ditions of the let expression, as well as a precondition that reflects
the existence of the new binding. If a variable is bound in a let-
expression to the result of a call to a primitive operation, the precon-
ditions of the expression in the let-body must include this action;
the values of the arguments to the primitive are approximated by
the abstract values of the operation’s arguments as determined by
the flow analysis.

A reference binding induces a precondition on the let-body that
includes both the binding as well as a predicate that captures the
reference creation. Since references are first-class, a variable occur-
rence may be bound to many different references during its lifetime.
In an expression of the form, ( let x = deref(y)!1 in e!)!′ ,
consider the set of references that y may be bound to (defined by
F (y)). Each element in this set contains a label $ corresponding
to a reference expression ref(z) found in the program. The pre-
condition for e! must therefore include predicates that reflect the
potential read of each such location, and predicates that reflect the
binding of x to the contents of these locations. Assignment expres-
sions are defined similarly, with write predicates replacing reads as
a consequence of the operation. The preconditions following a con-
ditional include the intersection of the specification sets of the two
branches; within these branches, an action that reflects the value of
the Boolean guard is included as part of the precondition associated
with the respective branches.

We now describe the rules dealing with procedure abstraction and
call. The precondition associated with the procedure body is de-
fined as the intersection of a collection of sets, each of which rep-
resents the specifications extant at a specific (distinct) call point to
the procedure. Thus, the specifications defining the entry to a pro-
cedure reflect the common preconditions extant at every call point
to the procedure. For example, the specification associated with the
entry to the procedure body defines a predicate that relates the for-
mal parameter to an abstract value. This value is constructed as the
intersection of the abstract values (set of labels, constants, etc.) of
the actual parameters to the procedure. Similarly, the intersection
of the set of preconditions that exist at each such call defines the
smallest set of predicates that is guaranteed to hold whenever the
procedure is called.

A procedure call y(z) is defined similarly. Its definition relies on an
auxiliary procedure Λ that given the label of an expression e! ∈ P
returns the label of the closest enclosing λ, if one exists, and the
distinguished label $main, otherwise. If the set of procedures that y
may be associated with is Py (as determined by our flow analysis),
then the intersection of the specifications extant upon exit from each
procedure p ∈ Py defines the conditions present upon exit from the
call guaranteed to hold for all procedures p that may be invoked at
this call. Observe that these rules are slightly different from typical
static analyses that would consider the definition of the procedure
independently from its call-sites. This is because preconditions that
hold at the entry to a procedure p depend upon the conditions
extant at all call-sites to p; similarly, the invariants that hold upon
completion of a call depend upon the invariants extant at the return
point of all procedures that could be invoked at that call.

As currently defined, the preconditions associated with each pro-
gram point are constructed by simple unions and intersections of
abstract value sets computed by an inter-procedural dataflow anal-
ysis. It is straightforward to see that the predicates computed repre-
sent a conservative summary of the information present in the flow
function.



SYNTAX:

e ∈ Exp ::= x! |

( let x = t!1 in e!)!′ |

( set x := y!1 in e!)!′

t ∈ Term ::= c | λ x.e | x(y) |

( if x then e!t
1

else e
!f

2
) |

ref(x) | deref(x) |
op(x1, . . . , xn)

DOMAINS:

F ∈ Flow = Var + Label → AVal
v̂ ∈ AVal = P(Label + Constant+

Op(AVal × . . . × AVal))
∆ ∈ SpecMap= Label → P(Pred)
Λ ∈ ProcMap= Label → Label
π ∈ Pred = read(Label ,AVal) + write(Label ,AVal)+

alloc(Label ,AVal) + bind(Var ,AVal)+
cbind(Var ,AVal) + call(Label ← Label)

∆($′) ∪ {bind(x, {c})} ⊆ ∆($)

∆ |=F ( let x = c!1 in e!)!′

∆($′) ∪ {alloc($1, F (y)),bind(x, $1)} ⊆ ∆($)

∆ |=F ( let x = ref(y)!1 in e!)!′

S = {write($i, F (y)) | $i ∈ F (x), ref(z)!i ∈ P}
∆($′) ∪ {S} ⊆ ∆($)

∆ |=F ( set x := y!1 in e!)!′

∆($′) ∪ {bind(x, op(F (x1), . . . , F (xn)))} ⊆ ∆($)

∆ |=F ( let x = op(x1, . . . , xn)!1 in e!)!′

S = {read($i, F ($i)),bind(x,F ($i)) | $i ∈ F (y) ∧ ref(z)!i ∈ P}
∆($′) ∪ {S} ⊆ ∆($)

∆ |=F ( let x = deref(y)!1 in e!)!′

∆($′) ∪ {cbind(y, true)} ⊆ ∆($t)
∆($′) ∪ {cbind(y, false)} ⊆ ∆($f )

∆$′ ∪ (∆($t) ∩ ∆($f )) ∪ {bind(x, F ($1))} ⊆ ∆($)

∆ |=F ( let x = ( if y then e!t
1

else e
!f

2
)!1 in e!)!′

⋂
{∆($i) | ( let zi = xi(yi) in ei)

!i , $1 ∈ F (x)} ⊆ ∆($1)
{bind(w, v̂) | ( let zi = xi(yi) in ei)!i , $1 ∈ F (x), v̂ = ∩(F (yi))} ⊆ ∆($b)

∆($′) ∪ {bind(x, $1)} ⊆ ∆($)

∆ |=F ( let x = (λw.e
!b
b )!1 in e!)!′

S = {$j | $i ∈ F (y) ∧ (λwi.ei)
!i ∈ P ∧ e

!j

j = last(ei)}
∆($′) ∪ {call(Λ($1) ← $i) | $i ∈ F (y) ∧ (λwi.ei)

!i ∈ P} ∪ {
⋂
{∆($j) | $j ∈ S} ∪ {bind(x,S)} ⊆ ∆($)

∆ |=F ( let x = y(z)!1 in e!)!′

Figure 2. Specification inference via flow analysis.

let r = λ z. ref(z)!1

...
g1 = λ c1. let y1 = λ w. ref(w)!2

y2 = r(c1)
y3 = y1(y2)
y4 = deref(y3)
y5 = deref(y2)

in ... op1(y2, y3)
... op2(y4, y3)
... set y2 := c1 in f(...)

g2 = λ c2. let x1 = ref(c2)!3

x2 = λ w’. ... ref(w’)!4 ...
x3 = ref(c3)!5

x4 = x2(c4)
in ... op2(x1, x4)

... op1(x3, x1)

... set x3 := c3 in ... f(...)

Figure 3. A program fragment illustrating the need for structural matching of predicates. Syntactic sugar is used to simplify the examples.

There are two interesting issues to note about the analysis. First, a
predicate is recorded as part of a precondition at a program point
only if the predicate occurs on all paths to that point. Consider
a module whose designer expects certain preconditions to hold
when procedures defined within the module are called. Our anal-
ysis would certainly infer these preconditions for correctly written
programs, but fail to identify the desired specification in the pres-
ence of errors that result in the omission of some of these legitimate
predicates. The ability of the analysis to derive meaningful specifi-
cations in the presence of errors is consequently poor. There is an
obvious conundrum here, given that the inferred specifications are
derived from a program source that potentially contains bugs, and

can thus potentially compromise the integrity of the specifications
themselves.

Second, the intersection of precondition sets fails to consider struc-
tural equivalence among predicates. In particular, our specification
language does not permit predicates to be abstracted over an ar-
bitrary set of locations, names, or constants. To illustrate this, con-
sider the program fragments shown in Figure 3. We are interested in
the specification that should be inferred for the entry to procedure
f based on the preconditions extant at its two call-sites in g1 and
g2. Suppose g1 and g2 are called from the following expression:

if pred then g1(c) else g2(c)



alloc("1,{ c})
read("1,{ c1})
write("1,{ c})
alloc("2,{"1})
read("2,{"1})
op2({"1},{"2})
op1({"1},{"2})

alloc($3,{ c})
alloc($4,{ c4})
alloc($5,{ c3})
write($5,{ c3})
op2({$3},{$4})
op1({$3},{$5})

(a) (b)

Figure 4. A subset of the preconditions that hold prior to the call
to procedure f in procedure g1 (a) and procedure g2 (b).

At the calls to f in procedures g1 and g2, there are a number of
preconditions that hold. Ignoring predicates that describe variable
bindings, the most interesting are those related to abstract locations
$1 and $2 (see Figure 4(a)) allocated and accessed by procedure g1

and abstract locations $3,$4, and $5 accessed by procedure g2 (see
Figure 4(b)).

Based on the structure of the rules, we would conclude that no
interesting preconditions exist that are common to both calls since
the sets of locations manipulated by the two procedures are disjoint.
This is clearly overly conservative.

For example, it is the case that prior to both calls (i) two locations
are allocated and used in operation op2 ($1 and $2 in procedure
g1, and $3 and $4 in procedure g2), and (ii) the contents of one of
these locations ($1 in g1 and $3 in g2) holds the constant c. By
“unifying” $1 and $3, and $2 and $4, we derive the preconditions
for f: “there exist a pair of locations (call them a and b) such that
a and b are used as arguments in an operation op2, and hold the
constant c”.

Surprisingly, by considering an alternative mapping of locations in
the two calls, we can deduce another equally valid specification.
Prior to both calls it is also the case that (i) two locations are
allocated ($1 and $2 in g1, and $3 and $5 in g2) and used in
operation op1; and (ii) one location is written with a constant ($1
in g1 and $5 in g2).

To extract commonalities such as those among sets of predicates
extant at the two calls requires us to match locations, names, and
constants across these different sets. As the example illustrates,
there are potentially many such matches that can be constructed. Of
course, some commonalities could be extracted by examining the
body of f, but this would compromise scalability and modularity.
Other commonalities can be derived by examining f’s signature,
the types of values stored in these locations, etc. We exploit some
of these heuristics in our implementation.

As we show in the next section, simply enumerating the set of all
possible matches over the predicate sets used to define precondi-
tions is infeasible. We therefore consider an alternate strategy to
identify matches among the precondition sets computed at different
call-sites (or among procedures called at the same call-site) inspired
by data mining techniques. As we shall discuss, these approaches
sacrifice optimality for scalability and efficiency; our experimen-
tal results reveal that they yield surprisingly valuable specifications
even in the presence of complex control- and data-flow, even in the
presence of bugs that result in invariants being omitted along cer-
tain program paths.

4. Extracting specifications

We use mining as a tool for deriving common properties across
multiple call sites instead of ensuring that properties hold across

each call site. The reasons for adopting such a strategy are two-fold.
First, even when programs are well-tested, they are not necessarily
free from errors. Hence, by imposing the strong requirement that
a property must hold at each call-site in order to be a precondition
candidate, we may omit preconditions that otherwise might have
been detected. Second, by identifying frequently occurring proper-
ties, we can detect call-sites where the preconditions do not hold.
If the property is indeed a valid precondition, its absence at certain
call-sites may point to an error. To motivate our problem further,
we consider two examples taken from our benchmark suite.

Consider the code fragment in Figure 5(a). This fragment shows
part of procedure RI FKey check from PostgreSQL, version
8.1.3. Observe that the call to ri BuildQueryKeyFull at line 303
is preceded by calls to ri DetermineMatchType, heap open,
and ri CheckTrigger in this order. This pattern occurs at sev-
eral other locations in the program, which suggests that this
might be a feasible control predicate precondition. However, in
one specific instance of the call to ri BuildQueryKeyFull
at line 250, the rule is not satisfied, since there is no call to
ri DetermineMatchType preceding it. The absence of this call
is significant; if the match type is RI MATCH TYPE PARTIAL, the
call to ri BuildQueryKeyFull is erroneous because the proce-
dure does not handle arguments of this type.

Figure 5(b) shows the code fragment of the procedure
add listen addr found in file serverconf.c from
openssh 4.2p1. This procedure is called from the procedure
fill default server options, which in turn precedes a call
to bind. In the body of the procedure, there are several calls to
add one listen addr, which is responsible for setting an address
family, eventually supplied as the second argument to bind. There
are several ways in which a call to add one listen addr can
take place; notably, when port == 0 and options->num ports
is less than one, the call does not happen. It so happens that
lines 403 and 404 reveal that this situation cannot arise, and
thus the loop must be executed at least once whenever port is
zero. Unfortunately, in the absence of a theorem prover or model
checker [15] that can assert options->num ports is always
greater than zero at line 407 because of the operations performed at
lines 403 and 404, we must conclude that it is not always the case
that add one listen addr is called from add listen addr,
and thus, the second argument to bind need not always be set
to a specific address family. Even if there are no bugs in the
program, limitations of the analysis in determining a precise set
of feasible paths can be overcome using mining techniques. By
mining the set of predicates computed along different paths to
bind calls, we discover that it is only along one path (namely
the infeasible one described above) that the second argument
to bind is not set to an address family. By setting confidence
thresholds appropriately, the absence of this predicate would not
be considered a critical omission, and the predicate asserting that
the second argument to bind is always set would be recorded as
part of bind’s preconditions.

4.1 Mining Strategies

Recall that our analysis collects control-flow and dataflow predi-
cates. The elements in a set of dataflow predicates have no order-
ing relationship among one another. Control-flow predicates, on the
other hand, do reflect a specific ordering: each element represents
a procedure call, and the order of calls defines a precedence rela-
tion. We use frequent itemset mining to derive preconditions for
dataflow predicate sets, and subsequence mining to derive precon-
ditions for control-flow predicates.



181 RI FKey check(PG FUNCTION ARGS)
182 {
199 ri CheckTrigger(...);
210 pk rel = heap open(...);
248 if (tgnargs == 4)
249 {
250 ri BuildQueryKeyFull(...);
294 }
296 match type = ri DetermineMatchType(...);
298 if (match type == RI MATCH TYPE PARTIAL)
299 ereport(...);
303 ri BuildQueryKeyFull(...);
437 }

(a) PostgreSQL-8.1.3

399 add listen addr(ServerOptions *options,
char *addr, u short port)

400 {
403 if (options->num ports == 0)
404 options->ports[options->num ports++]

= SSH DEFAULT PORT;
407 if (port == 0)
408 for (i = 0; i < options->num ports; i++)
409 add one listen addr(options,

addr, options->ports[i]);
410 else
411 add one listen addr(options, addr, port);
412 }

(b) openssh-4.2p1

Figure 5. Code fragments illustrating the application of mining techniques.

void c1() {
if(packets > 0)

pack flag = true;
size = MAX SIZE;
buf = allocbuf(size);
readbuf(buf, size);
...
...
...
...

}

(a) c1

void c2() {
if(packets > 0)

size = MIN SIZE;
buf = allocbuf(size);
if(buf != NULL)
while(l = lock(buf));
readbuf(buf, size);

...

...

...
}

(b) c2

void c3() {
if(packets > 0)
i = 0;
pack flag = true;
size = MIN SIZE;
buf = allocbuf(size);
if(buf != NULL)

while(l = lock(buf));
readbuf(buf, size);

...
}

(c) c3

void c4() {
if(packets > 0)

i = 0;
size = MAX SIZE;
buf = allocbuf(size);
while(l = lock(buf));
readbuf(buf, size);
...
...
...

}

(d) c4

Figure 6. Illustrative example.

4.1.1 Frequent Itemset Mining

To obtain a specification on predicates where ordering is not criti-
cal, we use maximal frequent itemset mining [9]. In this technique,
there is assumed to be a set of transactions; each transaction con-
tains a collection of elements. The elements that occur in at least
n transactions, where n is a confidence threshold specified by the
user, is a frequent itemset. For our application, a transaction is a
call-site and the set of predicates that hold at the call-site form the
elements of the transaction.

We illustrate the mining process using the code fragments shown
in Figure 6. We observe that there are four different call-sites to
function readbuf and each call-site is preceded by a number of
operations. For ease of understanding, we use the same names for
the associated variables across call-sites. Based on the operations
preceding each call to readbuf, a number of properties are gleaned
and are shown in Table 2. Observe that there are four1 transactions,
equal to the number of call-sites of readbuf in the example. For
example, observe that there are six items for transaction c3. Each
item is composed of multiple attributes ( e.g., the item associated
with variable l has two attributes viz., l is assigned the return value
of lock(buf) and is equal to 0 before the call to readbuf.). When
the frequent items are extracted at confidence 75%, we obtain the
following specification:

packets: {>,0}
size: {(arg(1), allocbuf), (arg(2), readbuf)}
l: {(=,0), (:=,res( lock))}

1 Each transaction encodes properties on all possible paths to the call-site.

buf: {(arg(1), lock), (arg(1), readbuf),
( !=,0), (:=,res( allocbuf))}

Depending upon on the level of precision required by the user,
the above mining technique can be easily translated into the more
restrictive intersection technique, by simply fixing n to be the total
number of call-sites (confidence = 100%).

4.1.2 Sequence Mining

For control-flow predicates, frequent itemset mining does not suf-
fice since the order of elements in the transaction is not consid-
ered. For deriving precedence relations [31], we use sequence min-
ing [2]. A sequence mining algorithm takes as input a set of se-
quences (I), a user-defined confidence threshold, and outputs a set
(S) of sequences that occur as subsequences in a minimum frac-
tion (as specified by the confidence threshold) of input sequences.
Observe that if a subsequence s is frequently occurring, all subse-
quences of s also occur at least as frequently as s. Therefore, we
consider only maximal subsequences, i.e., it must be the case that
every sequence(si) in S is not a subsequence of any other sequence
present in S.

For example, if the set of sequences is given by {(a ← b ← c ←
e), (a ← d ← c ← e), (d ← a ← c ← e), (a ← c ← d ←
e ← f), (e ← f ← d ← c ← a)}, a sequence miner detects
(a ← c ← e) as a frequently occurring subsequence. Observe that,
the same set of transactions without ordering in frequent itemset
mining would generate the set {a, c, d, e}. For our application,
a transaction corresponds to a call site and the sequence within
a transaction corresponds to the sequence of procedure calls that



Variables Transactions
c1 c2 c3 c4

packets {(>, 0)} {(>, 0)} {(>, 0)} {(>, 0)}
pack flag {(:=, true)} {(:=,true)}
size {(:=, MAX SIZE), {(:=, MIN SIZE), {(:=, MIN SIZE), {(:=, MAX SIZE),

(arg(1), allocbuf), (arg(1), allocbuf), (arg(1), allocbuf), (arg(1), allocbuf),
(arg(2), readbuf)} (arg(2), readbuf)} (arg(2), readbuf)} (arg(2), readbuf)}

buf {(:=, res( allocbuf)), {(:=,res( allocbuf)), ( !=, 0), {(:=,res( allocbuf)), ( !=, 0), {(:=, res( allocbuf)), ( !=, 0),
(arg(1), readbuf)} (arg(1), lock), (arg(1), lock), (arg(1), lock),

(arg(1), readbuf)} (arg(1), readbuf)} (arg(1), readbuf)}
l {(=, 0), (:=,res( lock))} {(=, 0), (:=, res( lock))} {(=, 0), (:=, res(lock))}
i {(:= 0)} {(:= 0)}

Table 2. Transactions associated with calls to readbuf shown in Figure 6.

occurred before the call site. Our implementation uses the Apriori-
all algorithm by Agrawal and Srikant [2], which is known to scale
to over a million sequences. For the example shown in Figure 6, we
generate the specification allocbuf ← lock ← readbuf.

4.2 The Structural Similarity Problem

In Figure 6, the names of the variables are the same across multiple
call-sites whereas this does not hold in real programs (as noted ear-
lier in this section). In other words, as discussed earlier, predicates
computed along different paths may share structural, if not syntac-
tic similarities. In order to capture such similarities, a technique to
determine the locations, names, values, etc. that can be abstracted
uniformly among different sets is necessary.
Consider every predicate expression as being mapped to
a set of locations. Thus, assume a set of location sets,
{L1 = {$11, $12, ...$1m1

}, L2 = {$21, $22, ...$2m2
}, ... Lk =

{$k1, $k2, ...$1mk}}, where Li corresponds to locations associated
with predicates that reach call-site i of procedure P . Now, for ev-
ery element in Li, we wish to find a corresponding element in every
other Lj such that the cumulative matching of the attribute sets for
such a mapping is maximal. Given three sets A,B and C, we say
A and B match maximally, if and only if | A ∩ B | is greater than
| A ∩ C | or | B ∩ C |.

THEOREM 1. The maximal matching problem as stated above is
NP-hard.

Proof By reduction from maximal bipartite (k, ∗)-clique in a bi-
partite graph. [37, 19].

Fortunately, there are a number of heuristics that can be employed
to map locations based on semantic information available within
programs. We describe below heuristics that match the attribute sets
across multiple call-sites that we have used in our implementation.

• Type: Attribute sets can be divided based on the type of the
variable. e.g., two variables, x and y with attributes [ x: {(:=,
true)}] and [ y: {(>, 20)}] can never be matched.

• Parameter: If variables are supplied as arguments to the same
parameter for a given procedure at different call-sites, their at-
tributes can be matched. Note, however, that while using posi-
tional parameter information for the purposes of matching may
be a useful heuristic, other variables that are not used as param-
eters, but nevertheless are significant as preconditions, need to
be detected as well (e.g., matching attribute sets associated with
l in Figure 6).

• Result:Variables that are assigned the return values of the same
function can have their attribute sets matched.

let a = λ arga. let ptr = ref(...) in p(...)
in ...

let mkptr = λ z. let ptr = ref(...) in ...
b = λ argb. ... mkptr(...) ... p(...)
in ...

let mkptr = λz. let ptr = ref(...) in ...
e = λ arge. ... mkptr(...)
c = λ argc. ... e (...) ... p (...)
in ...

Figure 7. Example showing the need for FPA evaluation.

5. Implementation Design
Our implementation takes as input the program source and a user-
defined confidence level for determining when a property should
form part of a precondition. We first generate the control-flow graph
for each procedure using an efficient program analysis tool [6]. The
direction of all edges in the control flow graph are reversed, since
we need to construct preconditions. The graphs obtained are fed
into the intra-procedural analysis framework, which builds the ini-
tial set of predicates. This data is processed by the inter-procedural
analysis framework iteratively until a fixed-point is reached.
There are two categories of fixed-point iterations that are essential
for generating predicates that cross multiple function boundaries.
One iteration (FPA – Fixed Point Iteration A) corresponds to the
set of tasks accomplished when a procedure is invoked and which
are at a lower level of the invocation tree and the other iteration
(FPB – Fixed Point Iteration B) corresponds to the set of operations
performed before a call to the procedure. We discuss this issue in
detail.
Figure 7 presents an example for FPA. From the example, it is clear
that calls to procedures a, b, and c always allocate a pointer variable
and then call procedure p. Furthermore, procedure mkptr always
allocates the pointer variable. To reduce redundant computation
of these properties, we maintain a memoization table for each of
the procedures in the source, and update the information iteratively
until fixed point is reached.
Observe that while the above fixed point iteration accumulates
facts in one direction (down the call graph invocation path towards
the leaves), there is a necessity for fixed point computation in
the reverse direction as well (towards the root in the call graph).
Consider the example shown in Figure 8. It is clear that before p
is invoked, apart from the pointer being allocated, cond is always
true. However, to obtain this information, a fixed point iteration
(FPB) in the direction towards the root of the call graph needs to be
performed.



let x = λ argx. if cond then a(...) else ...
in ...

let y = λ argy. if cond then b(...) else c(...)
in ...

let call y = λ argk. if cond then y(...)
in ...

Figure 8. Example showing the need for FPB evaluation.

procedure BUILDPREDICATES
! Input: G(V,E), directed, acyclic (reversed) CFG of α;

V is topologically sorted;
! Output: true if dflow or cflow changes from previous

iteration for any node in V; false otherwise;
! Auxiliary Information:

LCS: longest common subsequence of multiple strings;
data predicates(i): data predicates generated at i;
concat(i,j,k): concatenates strings i, j, k;
CALLSITE(i): true if i is a callsite;
RETURN(i): true if i is the exit node from procedure α;

1 for each node i = 1 to |V|
2 for all neighbors j of i
3 in data flow(i) ←∩ dflow(j)
4 in control flow(i) ← LCS(cflow(j))
5 dflow(i) ← in data flow(i) ∪ data predicates(i)
6 if CALLSITE(i) is true then
7 dflow(i)← dflow(i) ∪ data signature[func(i)]
8 cflow(i)← concat(cflow(i), func(i),
9 control signature[func(i)])
10 if RETURN(i) is true then
11 data signature[ α] ← dflow(i)
12 control signature[ α] ← cflow(i)

Figure 9. Algorithm for building predicates.

Figure 9 presents pseudo-code describing details on building the
control and data flow predicates, apart from computing procedure
summaries (memoization tables) used in FPA. The algorithm fol-
lows closely from the analysis formalized in Figure 2. At the end of
FPA, a set of predicates ( data precond and control precond)
for all the procedures in the program are obtained. Figure 10
presents the pseudo-code that performs the mining process that
forms part of FPB iteration. There are two mining implementations
that we use in our approach – a frequent item-set miner [9] on data
flow predicates, where ordering is not necessary, and a sequence
miner [2] for control flow predicates. At the end of FPB, the pre-
conditions for the procedures are obtained.

6. Experiments

We validate our ideas on selected benchmark sources, with a view
to demonstrating its scalability and effectiveness. We extract pre-
conditions for seven sources: apache, linux, openssh, osip,
postgreSQL, procmail and zebra. Specific details relating to
the sources are provided in Table 3. The size of selected bench-
marks varies from 9K to 1.98MLoc. Since default configurations
are used to compile these sources, we believe that the number of
control flow nodes represents a more reliable indicator of effective
source size than lines of code. The number of control flow nodes
ranges from 16K to 958K. We also present the number of proce-
dures examined in the table.

We implemented our tool in C++ and perform experiments on
a Linux 2.6.11.10 (Gentoo release 3.3.4-r1) system running on
an Intel(R) Pentium(R) 4 CPU machine operating at 3.00GHz,

procedure CONCATPREDICATES
! Input: α: a procedure in the program;

C = {c1, c2, ...cn} is the set of call sites of α;
E = {e1, e2, ...en} is the set of enclosing procedures
for respective call sites;

! Output: true if dflow precond or cflow precond
changes from previous iteration; false otherwise;

! Auxiliary Information:
in control flow(ci): see Figure 9
concat(i,j,k): concatenates strings i, j, k;

1 for each node ci

2 dflow t(ci) ← dflow(ci) ∪ dflow precond[ei]
3 cflow t(ci) ← concat(cflow precond[ei],

in control flow(ci), -)
4 Input dflow t for all ci into the frequent itemset miner
5 dflow precond[α] ← result of Step 4
6 Input cflow t for all ci into the sequence miner
7 cflow precond[α] ← result of Step 6

Figure 10. Mining preconditions.

with 1GB memory. The time taken for performing the analysis is
presented in Table 3.

6.1 Quantitative Assessment

We derive two kinds of predicates – data-flow and control-flow. For
data-flow predicates, we derive assignments to variables and logi-
cal relations between variables with other variables and constants.
Control-flow predicate specify the procedures that are called before
the associate procedure is called. The total number of preconditions
generated for procedures mined at 70% confidence is presented in
Table 3. Our choice of mining at 70% is somewhat arbitrary, chosen
to be resilient to latent errors in the benchmark, without comprising
accuracy of the results. The predicate size distribution (the number
of predicates found within a precondition) for the generated pre-
conditions is given in Figure 11. For generated data-flow precondi-
tions, the size of the predicate set is less than three for a majority
of the procedures. For example, observe that approximately 95%
of the procedures in postgreSQL have fewer than two predicates
in their preconditions. In the case of control-flow predicates, we
observe the predicate set size to be less than five for a majority of
the procedures. Thus, the output of the tool is tractable for further
examination and analysis by users.

To further quantify the effect of the confidence threshold on the
preconditions derived, we performed experiments on apache over
different thresholds. Figure 12 presents the results on the change
in the number of preconditions with change in confidence. As
expected, we observe that the number of predicates derived reduces
with increase in the confidence threshold, although the change
is not dramatic. For example, there are 60 additional procedures
for which no preconditions are derived when the confidence level
changes from 60% to 100%. This is expected because increase in
confidence, leads to more aggressive pruning of predicates.

Experiments we conducted that did not include the structural
matching heuristics resulted in uninteresting (and fewer) precon-
ditions. This is expected as the attribute sets across call-sites are
improperly matched. We also found that parameter matching was
by far the most useful heuristic to employ since most real programs
employ a coding style that encodes significant semantic informa-
tion through the flow of parameters and results into and out of func-
tions.
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Figure 11. Predicate distributions.

Source Version LoC CFG Procedure Total number of specifications Analysis
nodes count Data-flow Control-flow time(s)

apache 2.2.3 273K 102K 2079 556 330 157
linux 2.2.26 1.98M 958K 7465 5862 101 1258
openssh 4.2p1 68K 88K 1281 625 202 120
osip 3.0.1 24K 34K 666 213 51 46
postgreSQL 8.1.3 618K 548K 8568 3348 615 1007
procmail 3.22 9K 16K 298 84 105 26
zebra 0.95a 183K 145K 3342 1397 608 162

Table 3. Benchmark Information.

6.2 Qualitative Assessment

To study the quality of our results, we examine the effectiveness of
our technique in discovering protocols associated with library calls
made in openssh. We mine the predicates at a 100% confidence
threshold. We correlate the effectiveness of the analysis by compar-
ing our results manually with the documentation found in the man
pages of the corresponding library functions.
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Figure 12. Reduction in number of predicates in apache with
increase in confidence threshold

Out of the 242 library procedures that are invoked in openssh, we
derive preconditions correctly for 199 of them (77.13% accuracy).
Moreover, we were able to derive preconditions for an additional
nine procedures that were not documented. We observe 12 false-
positives (our tool derives preconditions where none exist) and 31
false negatives (our tool did not derive the preconditions the doc-
umented specification claims should hold). These false negatives
are potential sources of bugs. False positives occur primarily be-
cause there is an insufficient number of use cases for mining to

effectively prune away irrelevant predicates. For example, in a few
cases, a predicate is included in the precondition to a procedure call
because the procedure was invoked only twice and in both cases,
the calling context contained similar irrelevant invariants.
Besides being potential sources of bugs, false negatives can also
manifest because of limitations in the implementation. In addition
to the obvious approximations introduced by our heuristics (recall
that a precise solution to structural matching, the heart of the
precondition inference problem, is NP-hard), there are two other
limitations in our approach addressed briefly below:

• Absence of theorem proving: A precondition for the proce-
dure BN mod word is that the second parameter must not be
equal to zero. We do not observe any explicit sanity check on
the second parameter in the program source. On further inspec-
tion, we notice that there is a chain of assignments leading to
the second parameter, where we may be able to prove that the
second parameter will be non-zero on any invocation. Automat-
ically formulating this conclusion is possible with the aid of a
theorem prover. The integration of theorem proving to the ex-
isting infrastructure to handle these predicates is part of our on-
going research.

• Closed world assumptions: Sometimes preconditions are for-
mulated with respect to environment variables whose values are
directly manifest in the program source. Since our implementa-
tion analyzes the program source in a closed-world setting, it is
unable to accurately derive preconditions for those procedures
whose predicates depend upon values of environment variables.

6.2.1 Bug Detection

We discuss several bugs detected in openssh-4.2p1. In the code
fragment shown below, neither variables p or q are checked



for being non-null. Subsequent use of these values in proce-
dure prime test results in a segmentation fault. The computa-
tional complexity of the Miller-Rabin primality testing performed
in prime test makes it difficult to generate comprehensive test
suites that would detect this bug. We exercised this fault by
making the system run out of buffer space and using the test
case (ssh-keygen -T <outfile> -f <infile>), the program
crashes in the then latest release openssh-4.4p1. Based on our re-
port, these bugs are now fixed in openssh-4.5p1. We also observe
a similar bug associated with invocation of BN new and subsequent
absence of sanity check in the procedure gen candidates.
473 p = BN new();
474 q = BN new();
475 ctx = BN CTX new();

Observe that return value of BN CTX new is also not checked as
being non-null. Even though this does not result in a crash, this
violation potentially leads to a significant degradation in the per-
formance of the library call BN is prime used in prime test, as
documented in the man pages.

There are several other instances of similar errors in the program.
The existing documentation for library procedure initgroups, for
example, claims that the first parameter to this procedure must al-
ways be non-null. However, our analysis does not generate predi-
cates to this effect because this check is not performed. Similarly,
before invoking procedure RSA size, the field n of its parameter
must be non-null. Even though the parameter is checked for being
non-null, n itself is not. A similar bug exists in the invocation of
DH size. Any one of these bugs can be exercised with appropriate
inputs, and could lead to a server crash.

7. Related Work

There has been significant research towards automatically validat-
ing program properties, and detecting program errors when pro-
grams are annotated with partial specifications describing desired
invariants [3, 16, 11, 21, 7, 24, 20, 36, 8, 22, 15]. Our approach
differs fundamentally from these other efforts insofar we assume
no input from the programmer on the specifications that need to be
validated.

In [4], Ammons et al. perform specification mining by summa-
rizing frequent interaction patterns as state machines that capture
temporal and data dependencies when interacting with API’s or
abstract data types. Subsequently, Ammons et al. present an ap-
proach [5] to debug derived specifications using concept analysis.
Ernst et al. [14] present Daikon, a tool for dynamically detecting in-
variants in a program. Yang et al. [38] present scalable dynamic in-
ference techniques that also work effectively with imperfect traces.
While these techniques can indeed be used to derive preconditions,
they critically rely on test input providing comprehensive coverage.
In this regard, they differ in obvious ways from our approach.

Li and Zhou present PR-Miner [26], a tool that relies on mining [1]
to identify frequently occurring program patterns. Our work dif-
fers significantly from theirs because we integrate mining within a
path-sensitive dataflow framework. Livshits and Zimmermann [28]
present a tool which uses mining to analyze revision histories of
programs. Li et al. [25] also use data mining techniques to detect
copy-paste bugs in large software systems. Mandelin et al. [29]
present a technique for synthesizing jungloid code fragments au-
tomatically based on the input and output types that describe the
code. Their approach is useful for reusing existing code. Because
none of these techniques tightly integrate dataflow and control-flow
information with the mining engine, it would be difficult to leverage

them for deriving useful preconditions. It is precisely this synthesis
that is the distinguishing contribution of this work.

There are several other related approaches that address the prob-
lem of mining specifications. An automatic specification mining
technique that uses information about exceptions and errors to
identify temporal safety rules is presented in [34]. Engler et al.
[13] use mining to detect relations between pairs of functions,
and Kremenek et al. [23] significantly generalizes these earlier
ideas. However, [23] is domain specific, and requires either ma-
chine learning or user specifications to generate initial annotation
probabilities, and employs naming conventions for identifying in-
teresting procedures to improve accuracy. As a result, their ap-
proach would be ineffective in deriving the specifications for the
example programs in Figures 1, 5, or Section 6.2.

To summarize, unlike these other efforts, our approach requires
no annotations or guidance from programmers, leverages no pre-
sumed semantics of library or primitive functions, is not restricted
to limited program contexts (e.g., examining only pairs of func-
tions [13], leveraging program semantics [34], or using domain-
specific knowledge [23]), and can detect arbitrarily large and com-
plex preconditions (e.g., Figure 5).

Apart from mining based approaches, many other interesting tech-
niques have been devised for bug detection in software systems [18,
39, 27]. Rinard et al. [32] present an approach on failure oblivious
computing that enables servers to run even in the presence of mem-
ory errors. Castro et al. [10] present an approach where a data flow
graph is generated and ensures that the data flow integrity is pre-
served at run time. Because our work focuses on an entirely new di-
mension, namely statically extracting preconditions from program
source transparently, it is conceivable that it could be used in con-
junction with these other approaches to operate with even greater
precision and scale.

8. Conclusion

This paper focuses on the problem of deriving specifications us-
ing predicate mining and describes a static inference mechanism
for detecting the preconditions that must be valid whenever a pro-
cedure is invoked. We derive these preconditions using an inter-
procedural path-sensitive dataflow analysis that gathers predicates
at each program point. We apply mining techniques to these pred-
icates to make specification inference robust in the presence of er-
rors. We demonstrate the practicality of our techniques by apply-
ing it to large open-source C programs. Quantitative and qualitative
analysis of the preconditions generated by our system validate its
effectiveness.
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