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Abstract

Motivated by the needs and success of projects such as SEM@dnd genome@home,
we propose an architecture for a sustainable large-scaletpgeer environment for dis-
tributed cycle sharing among Internet hosts. Such netwam&gharacterized by highly dy-
namic state due to high arrival and departure rates. ThiemiaKifficult to build and main-
tain structured networks and to use state-based resolwcat@n techniques. We build our
system to work in an environment similar to current file-gignetworks such as Gnutella
and Freenet. In doing so, we are able to leverage vast netwsdurces while providing
resilience to random failures, low network overhead, andan architecture for resource
brokering. This paper describes the underlying analyacal algorithmic substrates based
on randomization for job distribution, replication, manihg, aggregation and oblivious
resource sharing and communication between participdiosgs. We support our claims
of robustness and scalability analytically with high prbitiatic guarantees. Our algorithms
do not introduce any state dependencies, and hence arerregil dynamic node arrivals,
departures, and failures. We support all analytical claiitls a detailed simulation-based
evaluation of our distributed framework.
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1 Introduction

The use of a large number of unreliable hosts over a widefaegsork to solve

compute-intensive problems has been pioneered by prgjactsas SETI@home
[1], genome@home [2], and distributed.net [3], among ath@rhile key advan-

tages such as increased performance, reliability, andlsiiay motivate the use of
decentralized peer-to-peer (P2P) systems as opposediitioinally used client-

server models, we consider the broader goal of an open emvént for cycle shar-
ing as a major driver for a move towards a P2P solution for é&simg idle CPU

cycles of Internet hosts. Such an environment would alloyvgarticipant to sub-

mit tasks, in contrast to the inflexible nature of a cliemvse model. Furthermore,
an open P2P system provides an incentive for peers to cotdrtheir resources,
expecting cycles in return, as opposed to the altruistissidascurrent systems.

In this paper, we propose and evaluate an unstructured RPReature for dis-
tributed cycle sharing among Internet hosts. The dynantigraaf P2P networks
resulting from high arrival and departure rates motivatgsahoice of an unstruc-
tured (stateless) model. A majority of Internet-deploy&dmeples of successful,
resilient, large-scale, and massively-distributed systeely on such unstructured
topologies (e.g., Gnutella [4], Freenet, etc. for file sh@gyi Our design decision
trades off the overheads of building and maintaining a sired overlay (with
associated guarantees on network path lengths) for a lgensive model (with
probabilistic guarantees on network delays).

Our P2P based architecture bears features that make tydarty suitable for con-
structing an open infrastructure for distributed cyclerstta Specifically, it does
not require an organization to manage and deploy a dedig#tadtructure. In con-
trast, one may consider the deployment of BORBased projects — each project
deploys a server complex, including a directory server, padicipating clients
register with the project using a master URL designatedHerproject. In our ar-
chitecture, nodes, which could assume the role of a proj@cieo or a working
participant, join the P2P network and know only about theimiediate neighbors.
Jobs are identified by unique identifiers, rather than ndtwode addresses. All
information® about participants and jobs are stored in a distributeddastmong
peer nodes. This avoids a single point of failure and immaaealability. Project
owners submit jobs to the network and do not need to storedindtity of nodes
computing the tasks. This allows use of a large number of siaa¢he network
without introducing state management overhead on the gregvers. Computed
results are routed to the project owners using content bedeiessing rather than

2 Berkeley Open Infrastructure for Network Computing (BOINS] is a software plat-
form for developing distributed computing applications.

3 The integrity of this data is preserved using standard ogyaiphic techniques. This is
discussed later in the paper.



network node address. We present protocols that efficientiple these function-
alities in unstructured P2P networks.

Our distributed cycle sharing system utilizes the large Ipemnof participating
nodes to achieve robustness through redundancy. Due tac#te &f the system
and the volatile nature of the participants, we rely on ranided algorithms to
build our protocols. The use of efficient randomized aldonis affords simplic-
ity, while preserving probabilistic guarantees on the @eniance of the system.
The underlying approach is novel and carries its share optexities, solutions to
which form the key contributions of this paper. The desigalgof our system are:

(1) Low job makespans by ensuring load balance.

(2) Resilience to node failures and frequent node arrivadscepartures.

(3) Validation of computed output by redundant distributedhputations.
(4) Aninterface for monitoring job progress and performaeealuation.

(5) An accounting framework for the resources contributgddrious nodes.

The key substrate supporting our design is efficient unifranmdom sampling us-
ing random walks. Uniform sampling in networks provides biasis for a variety
of randomized algorithms and is of interest on its own as.welcontext of our

system, uniform sampling allows us to design randomizedrétgns for load bal-

ancing, applying redundancy to support fault tolerancd anlding a probabilistic
rendezvous service for monitoring task progress and dmritons of participating
nodes.

Uniform Sampling in Unstructured Networks

Uniform sampling in a network requires randomly selectimpée, such that every
node in the network has the same probability of being sedeéterivial approach
to this problem would be to collect the entire set of nodefifiens at each node and
index randomly into this set of identifiers. This simple aggwh, however, does not
work for our target applications because the overhead gtietly updating system
state at each node (if at all possible) would be prohibithe alternate approach
to this problem relies on the notion of a random walk. Stgrtirom an initial
node, a random walk (of predetermined length) transitibnsugh a sequence of
intermediate nodes with probabilities defined for each éind ends at a destination
node. The likelihood of terminating a random walk at any ndeteermines whether
the walk is a uniform sampling random walk or not. Formallg eefine a uniform
sampling random walk as follows:

Definition 1.1 (Uniform sampling using random walk) A random walk of a given
length samples uniformly at random from a set of nodes of aetted network if
and only if the walk terminates at any node i belonging to teevork, with prob-
ability 1/N, where N is the number of nodes in the network.



The key parameters of interest in sampling via random wadk(@ra uniform sam-
ple should be generated irrespective of the topology of #tevork, and (ii) the
length of the walk required to reach stationarity (mixingei of the walk) should
be small. A number of researchers have studied propertiesndbm walks, e.g.,
Lovasz [6] provides an excellent survey of these techniqgliles simplest random
walk algorithm selects an outgoing edge at every node witlalgrobability, e.qg.,
if a node has degree four, each of the edges is traversed itbbability 025. It
can be shown that the probability distribution associati#d target nodes becomes
stationary after a finite length random walk (also known a&sittixing time for the
corresponding Markov chain). This length can be shown taegmh O(logN).
These concepts are discussed in greater detail in Sectibmedmain drawback of
the simple random walk is that, while it reaches a stationésiribution, this dis-
tribution is not uniform for typical networks. In fact, it sde shown that the prob-
ability of terminating a random walk at a node is directlypodional to the degree
of the node. In the context of conventional unstructured F&orks, where node
degrees can vary significantly, this does not correspona tacaeptable uniform
sample.

Much like other typical applications of random walks, oust®m is sensitive to the
quality of uniform sampling. Biases in sampling may resnlpbor performance
of randomized algorithms, congestion in underlying nekgpand significant load
imbalances. Thus, realizing random walks that yield unmifeampling irrespective
of topology is a key focus of our work. In addition to the gqtyabf uniform sam-
pling, an important performance parameter is the length@fandom walk. Since
longer random walks generally correspond to a larger numbetwork messages,
it is highly desirable to minimize the length of the walk.

Technical Contributions
The paper makes the following specific contributions:

e It presents a scalable, robust, and efficient architectura P2P resource-sharing
network.

e The basis for the proposed network is a load balancing a&gdn, and monitor-
ing scheme that relies on efficient randomized algorithingrdsents a random
walk based algorithm for uniform sampling in large real-ldanetworks with
low overhead. This sampling methodology provides a sutestoa our random-
ized algorithms.

e It provides empirical results that demonstrate the efficyast our algorithms for
computing a large number of tasks on unstructured P2P nktwath high node
failure and arrival rates. For example, we show that our samided algorithm
based P2P infrastructure achieves an efficiency of over 40ffpared to an ideal
parallel ensemble, even when network overhead is significan



The rest of this paper is organized as follows. In Section@ swmmarize related
results. In Section 3, we present an overview of our randatioz-based P2P com-
puting architecture. In Section 4, we show how uniform sangptan be achieved
via random walks. We also present an algorithm that allofwsient (short length)
random walks to obtain uniform sampling. In Section 5, we eitglly evaluate the
performance of our architecture. We show that our architectields high efficien-
cies for distributed computations. We also evaluate sirasdor job replication. We
derive conclusion from our work in Section 6.

2 Related Work

SETI@home [1], genome@home [2], and distributed.net [8]aamnong the early
examples of distributed cycle sharing systems that utdif&rge number of Inter-
net hosts. However, these systems are custom made for exgtagks originat-
ing at a single source. In contrast, our system allows shaCiAU cycles among
peers and running multiple jobs from disparate users in gteark. Projects such
as BOINC [5] and XtremWeb [7] also aim to provide a multi-dpgtion global
(Internet-wide) computing platform. However, both of tegsojects are based on
a hierarchical client/server architecture and rely on apsgtitiated and maintained
by a single organization. On the other hand, we architectgtoival computing
platform based on a decentralized unstructured peergo+ptwork comprised of
Internet hosts.

The Condor [8] project aims at utilizing distributed comipgtresources in a net-
work to provide high throughput. A mechanism called ClasgAaked to advertise
attributes of available resources and jobs. Condor actdaskar between the re-
sources and the jobs, using the attributes provided tortil&i to our system, this
provides an open environment in which multiple users caméujobs. However,
task management in Condor is centralized, which makes thieoement more
tightly coupled. It is assumed that Condor will be deployed ananaged by an
organization. In contrast our architecture allows seffamization of participants.
Instead of using state information we rely on randomizatianthermore, our sys-
tem can provide a decentralized ClassAd based task albooaiechanism using the
rendezvous service and hence can be considered compleynen@ondor. Sim-
ilarly, an implementation using our architecture couldilgdsorrow mechanisms
such as checkpointing and sandboxed execution from Condor.

Our work can also be considered complementary to much of tr& wn grid
computing including Globus [9,10], Legion [11], Avaki [12Purdue University
Network Computing Hub (PUNCH) [13], and Sun’s Grid Engind][1Each of
these systems implements a centralized or a hierarchicahgesent component,
which is different from our fully decentralized approachur@®2P communication
fabric and randomized techniques can be applied to thesensgas well.



Butt et al. [15] uses a well known structured P2P networkifly§$6,17]) for locat-
ing and allocating computing resources. A Java VM is usecdégate and monitor
the progress of the execution on peers. A credit system fouatting services is
also provided. In contrast, we build our system on top of astructured P2P net-
work, motivated by the success of massive unstructuredarksafor file sharing.
Our main emphasis is on architecting allocation and comoafimn mechanisms
that yield high efficiency and are robust in the face of highlendepartures and
failures. Our system also provides mechanisms for job roang, aggregation,
reputation, and communication between oblivious hosts.ud& randomization
techniques that provide probabilistic guarantees and lveoverhead. The ar-
chitecture presented in [18] is another example of CPU sbarsing a structured
P2P network (Chord [19]). Similarly, G2-P2P [20] also rela a node addressing
scheme based on Pastry [16] and Tapestry [21].

3 Architectural Overview

In this section, we provide a brief overview of unstructuR&P networks and de-
scribe a simple randomized job allocation scheme that aehigood load balance.
We also motivate the need for redundancy in the context getaapplications
and show how our protocol caters to replicating tasks in gtgvark. A key as-
pect of our P2P cycle sharing environment is a decentraligedezvous service
for monitoring job progress, supporting loosely couplaéiiftask communication,
and aggregating completed tasks. We describe the distdlmanstruction and the
probabilistic guarantees on the performance of this ser¥Me also show how our
architecture can be leveraged to manage reputation ofcipating hosts in the
network as a means to counter “free-riders” in the system.

3.1 Unstructured Peer-to-Peer Networks

Unstructured P2P networks are characterized by decergdationtrol and lack of
a well-defined overlay topology. Node connections are farna@domly. However,
as the graph evolves, long-lived nodes gain a higher nunflermections due to
their higher availability and as they become known, oveetiby other peers in the
network. High degree nodes are called super nodes. The enmesglf-organized
network graph has a highly skewed degree distribution vetihiodes having high
degrees while most nodes have only few neighbors and ara oftenected to
the super nodes. These networks have some desirable featwole as low diam-
eter, and resilience to random failures and frequent nodeahand departures.
More importantly, they are simple to implement and incutuatly no overhead
in topology maintenance. Consequently, many real-wornlgelascale peer-to-peer
networks are unstructured. However, the lack of structuakes it difficult to locate



shared resources in the network. In such networks, the ma@tbod for locating
resources is by flooding a (hop) limited neighborhood. Tipigraach, however,
has high overhead in terms of network messages and doesawidgguarantees
of locating existing objects in the network.

In this paper, we build our system on top of an unstructuréaiork, and present
algorithms that provide performance guarantees with higtbability (w.h.p.)*
while incurring low overheads.

3.2 Job Allocation with Redundancy

We first present a simple job allocation strategy that adseappropriate redun-
dancy and good load balance. Conventional unstructurech®@®rks comprise of
tens, even hundreds of thousands of nodes. Consequemtigutational resources
exist for building sufficient redundancy into the systemeiiéhare two main moti-
vating factors for redundancy:

(1) Resilience. In an open Internet environment, failueesl(departures) of nodes
must be expected. In such an environment, replication ofsdme task to
multiple hosts is needed to account for failure of nodes.

(2) Validation. We can expect that some of the nodes wouldmetrrong results,
either because of malicious or other reasons. Results feweral nodes can
be cross-checked to detect faults, and possibly selectraatayutput (e.g.,
simply using majority) from the available set of reportedui¢s. Indeed, sev-
eral current systems such as SETI@home use similar methods.

We assume that a jod, can be broken down into independert subtasks. We
denote byN the number of Internet hosts in the peer-to-peer networkplie the
number of Internet hosts that are engaged in computing thé jdbhe subtasks af
can be clustered into batchdxg (b, .. .), each withK subtasks. We discuss, later in
this section, the possible considerations to be taken whib®singK. During job
submission, each batch is replicated by a factorl. For exampler = 2 implies
that two nodes will be assigned the same batch to compute.

A simple randomized job submission algorithm that allowdication can be con-
structed as follows:

(1) A hostA that wants to submit subtasks of its job sets the batchisiamd
a replication factor. Each batch has an associated meta-information which

4 The term w.h.p. indicates probability of success equal%oﬁﬁm.
5 We subsequently discuss the need for inter-subtask coneation and show how our
architecture addresses this requirement.



includes the job identifier and a unique name (created asta dag, MD5, of
the batch content). The meta-information always accongsathie batch.

(2) For each batch, hostselects a nodd3, uniformly at random by performing
a random walk and submits a batch to it. The replication facts also sent
with the batch.

(3) Each node that receives a batch decremebysone and it > 0 sends a copy
of the batch to another node chosen uniformly at random. Pplated value
of r is sent with the batch. The address of n@&l@.e., the direct descendent
of nodeA) is also sent. Thus, each batch is replicated at a totalhafdes in
the network.

Steps 2 and 3 are atomic, i.e., ncdlknows that either they were successfully and
entirely completed or that they failed. This is implemenisthg the 2-phase com-
mit strategy as follows. Each time a node receives a batsenids an ACK to the
node that sent it the batch (i.e., its parent). Furthermeaeh time a node success-
fully receives an ACK from its child, it sends a message ®r@spective) nodB.
After a timeout period, nodB compares the number of such messages receaiyed,
with r — 1 and resubmits batches to make up for the difference. Thisng using
the same protocol as step 3, except this tmel —r’ represents the number of
replicas needed. Once a totalrof 1 messages are received it sends an activation
messag@ to all ther — 1 nodes and itself. A message is sent to nadedicating
successful distribution of the given batch. Each of the Ived nodes (including
nodeA) monitor the life of nodeB and abort this transaction if nodgfails. Asr

is usually a small constant number, and the messages exahang only control
messages, the associated overhead of this scheme orBramks not result in a
bottleneck for nodd. The state information, involved in this mechanism, can be
discarded once the transaction completes successfulger@dthat the replication

is done by a node B and not node A. We use this approach to aveirtbad on
node A when the number of subtasks is large.

In ideal conditions, note that the number of batches sem lgmainsn/K since
redundant replication is taken care of by nodes downstr&milarly, note that
replication of each batch occurs in parallel. The total nandd messages for sub-
mitting the batches in the network is given by/K. In real-world situations, this
translates to reducing the cost of job submissions for mastes. Certainly, any
node failures during this transaction result in higher beads due to resubmis-
sions.

Several jobs can be initiated on the network concurrenthceésour job allocation
protocol is based on randomization, a node may be assignezltivem one batch,
either of the same job or of different jobs. A node processtshes one at a time
on a first come first served basis. We emphasize that this naimed protocol is

6 This message does not require an ACK, i.e., the batch wilbaotsubmitted to cater to
the failure of a node which successfully received a batcleedut failed before activation.



simple, does not maintain any persistent state informatéiod has a low overhead
arising from random walks for uniform sampling.

3.2.1 Uniform Sampling and Load Balancing

Assume that a total ain batches need to be assigned to th@rocessors. If we
assign batches uniformly at random to thegrocessors, we can provide bounds
on the quality of load balance achieved. Givebatches, we answer the following
guestions:

(1) What is the expected fraction of nodes that will have albassigned to them?
(2) What is the probability that a node gets a given numbeolos fo perform?
(3) What is the maximum load on a node?

The arguments we present next suggest that usiagN logN provides good uti-
lization of the network w.h.p. and at the same time yieldsrapoobability of high
load imbalance.

Lemma 3.1 Given m batches, the expected fraction of processors that ddatch
assigned to them is— e ™N.

Proof: The probability that a given processor does not get a batbbnwa single
batch is submitted, is2 1/N. Thus, whemmbatches are distributed, the probability
that a given processor does not get any of these batchesis lgyv

_1 m . ~—Mm/N
(1-)"~

bl

assuming thall is large. We define an indicator random varia§levhich assumes
the value 1 if thaé!™ host did not get any batch, and 0 otherwise. We want to find
the expected number of processors that do not get any basthg Uinearity of
expectation, we have:

s ik 1 m —m/N
EX|=E in :_;E[xi]:N(l—N) ~ Ne

Thus, the number of nodes that will get at least one batchoogss isN — Ne ™N|
and the fraction of nodes that will get at least one batch ¢agss is
(N—Ne™N)/N=1—e "N, 0

This lemma simply implies that ih < N at most, approximately, 65% of the nodes
will be used. Similarly, ifm > NlogN, with high probability all nodes will be used.
This result is significant because the utilization levelrad system is an important
performance metric for a parallel ensemble.



Next, we determine what load balance characteristics cariaimed if job sub-
mission is based on uniform sampling. We find the probabihigt a given node
getsexactly Mbatches to process, when a totalnobatches are submitted to the
distributed system consisting &f nodes. Note that thedd batches can be any
combination chosen from tha batches. Then, the probability is given by:

MIGREH

Given thatm andN are large compared td, the above expression can be approx-

imated by:
m\ (M N e ™Nm/NM
M/ \N N - M!

Similarly, the probability that a node gedsleast Mbatches is given by:
m 1 M
M/ \N

Building on the above derivations, we show in the followiegnima, that a high
load on a single processor occurs with low probability. We tlee case where
the number of batches = O(NlogN), which refers to the condition that yields
good system utilization (i.e., almost &l nodes get a batch to process) with high
probability.

Lemma 3.2 If m= O(NIlogN), the probability that the maximum load on any node
is more tharQ(logN) is low.

Proof: For simplicity, we setm= NlogN. We denote the maximum load (i.e., the
maximum number of batches assigned to any node) td b&€he probability that
anynode is assigned at leddtbatches is given by the following expression.

N<Nl|(\)/|gN)(%)M

We can derive a bound on this probability by settidg= e?logN (i.e., M =
Q(logN)). Thus, the probability that any node has a load more &4mgN can
be shown to be low (i.e.,/N) as follows.

NlogN\ 1 \ eNlogN . 1
- < -

N( M )(N) (ezlogN> (N)
N N 1

- - <

ge?logN N& — N’



Using this lemma, we show in the following theorem, that jobrission using
uniform random sampling results in a good load balance astdhg nodes in the
network.

Theorem 3.1 When m> NlogN the load imbalance on a node diminishes.

Proof: Whenm=NlogN, a perfect deterministic algorithm allocates bfatches
to each machine. For this case, from the previous lemma, we kinat the prob-
ability that the maximum load on a machineCi$logN) is low. Therefore, a ran-
domized algorithm that uses uniform sampling to distriliatks approaches a de-
terministic algorithm and yields good load balance. O

3.2.2 Choosing Batch Sizes

Selecting an appropriate batch size in a distributed enxient is a challenging
task and depends on several variables. Kruskal and Wei$sHi2@vs that when
the running times of the subtasks are independent and eaddigtdistributed (i.i.d.)
random variables with megnand variance?, then the estimated completion time
is given by:

n nh
E(T):Bu-l—ﬁ-l—o\/ZKlogp (1)

wheren is the number of subtaskp,is the number of processotsis the network
delay, anK is the batch size. It is assumed thatlogp is large, and for smaller
values the error is not substantial. This expression isequéineral and holds for
processing time distributions including exponential, gaam\Weibull, uniform, de-
terministic, and truncated normal distributions. The aace in the time required to
complete the processing of a task,depends on the following parameters:

(1) The number of concurrent jobs scheduled on the procesEbis corresponds
to the number of subtasks allocated to a single processbjemends on the
load balance achieved by the job submission algorithm.

(2) The processing capability of participating hosts.

(3) The variation and non-deterministic nature of progegsequirements of each
subtask.

Each term in Equation 1 has important implications. The fegn corresponds to
the time it would take an ideal parallel system wytprocessors to compute the
n subtasks. The second terms captures the benefit from agiggegdbs in terms
of reducing the communication cost. The final term represtrg overhead due to
uneven finishing times of the processors. The most impontaplication of this
result is the tradeoff between communication, which desgeaas 1K, and the
variance in processing times, which increases/Ks

In the above discussion, there is no mention of the failune @Geparture) of nodes
in the network. This, however, needs to be considered bedhase is an important

11



relationship between the size of the batch and the lifetifn@ vode. As a sim-
ple illustration, consider the minimum processing timelbbatches, mifT (b). If
minT (b;) is greater than the expected lifetime of the nodes, the systeuld be
reduced to using only a fraction of the nodes whose lifetisnaige compared to
the expected completion time of the job. Heavy load on suaesamplies that
it would take much longer to complete the jobs, which furtfetuces the set of
nodes that have suitable lifetimes. Furthermore, being tablise long lived nodes
would require a job allocation scheme that maintains ste#tamation. This can
be prohibitively expensive in large dynamic networks. Ose wf a randomized
approach avoids these overheads, but at the same time epsib$e to failure un-
der the conditions just discussed. Thus, a batch size shmukimall enough, so
that the required time for processing the batch is comparabihe lifetime of the
nodes. Lifetime of nodes is also important in the contextavatioping a replication
strategy, as discussed in Section 3.2.3.

In summary, the size of a batdK, should be:

(1) Large enough so that the network overhead is reduced,

(2) Small enough so that total job completion is minimallfeafed by variations
in processing times taken by hosts,and

(3) Small enough so that the computation time required favarghost is com-
parable to the host's lifetime.

Furthermore, the results from Section 3.2.1 suggest thia¢ ifotal number of tasks
to be computed in the network (from all jobs)n&§ then the number of batches,
n’ /N, should beNlogN for good load balance and network utilization. We propose
K =log®N as an ideal compromise for aggregating tasks. This allowspctation

of a very large number of tasks in the netwonk= Nlog®N. It also results in a
good network utilization since the number of batches is gefit. For example,
for a network of 100,000 hosts, around 150 million tasks caexecuting, which
would achieve high utilization, while the load imbalanceulkbbe bounded. As
K grows faster than loly, Equation 1 can approximate (with low error) the total
running time fom'’ tasks. Plugging in these values shows that this value gives

a low network overhead ash/pK = hlogN. It also results in a low impact on
execution time variations as,/Klogp = alog®2N.

3.2.3 Multi-Step Replication

We revisit the replication strategy keeping in view the fiett increased replica-
tion at submission time implies increased time to compitetibthe jobs. Increased
makespan of a job implies that more nodes would leave theanktduring that
time, conditioned on the distribution of lifetime of the resin the network.

Lety be the number of nodes leaving the network in unit time. Weotkethe time
for completion ofn tasks byT(n). As defined earlierr denotes the number of

12



replicas of a given task in the network. Recall that the prokgiven earlier in this
section performs replication at job submission time. Then= yT (nr) gives the
number of nodes leaving the network during the makespanegbtihh The level of
replication to deterministically counter the failures webrequirer = ns. This, in
turn, asserts the stability conditiop=n¢/T(n-n¢) < 1/T(n), i.e., at most one
node failure over the job makespan. This stability requaetis degenerate.

Thus, a job submission protocol should use a multi-stepa&iubn strategy instead
of replication-at-initiation. This algorithm is well sed for a high node failure rate
environment. The protocol works as follows:

(1) Ahost,A, that wishes to submit subtasks of its job, sets the batehisizZThe
replication factor is set to one.

(2) For each batch, hogt selects a node uniformly at random, by performing a
random walk, and submits a batch to it.

(3) HostA also calculateg, which is the time it would take an ideal parallel
ensemble to complete the job,Bs= n/N It then waits for a timeT, where
€ is the expected efficiency of our distributed system withailtires. This
can be estimated using Kruskal’s equation (cf. Equation 1).

(4) After waiting for this time period, it collects the jolsat have been computed
using the algorithm presented in Section 3.3.2.

(5) HostA determines the jobs that did not run to completion and re#stihem
with r = 2. If n¢ jobs were missingl is calculated again as m@xn¢ /N, 1) -
K. The waiting and re-submission, withncremented at each step, continues
until results for all tasks are retrieved.

Note that this scheme does not require the complex multis@domic transaction
for replication, as required by the replication-at-irtio& protocol, described in
Section 3.2. However, the overhead of replication in terimsamdwidth usage is
experienced by the node that introduces the job to the nktiloiSection 5, we
show using simulation that this multi-step protocol in fagecutes tasks much
faster than the replication-at-initiation strategy whRis tstrategy uses more than
3 replicas. However, the key advantage is that this algorigichieves 100% job
completion, which the other algorithm cannot achieve, irshoases.

3.3 Rendezvous Service

The rendezvous service provides a communication fabriwdst nodes that are
oblivious to each other. The key used for communication issmurce identifier
or a resource query string, rather than a node address. §hisalogous to the
directory service in a client-server architecture. Howguelike its client-server
based counterpart, a rendezvous service does not haveralieedtrepository and
the peers need not know or register with any predefined sande. The required
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information is maintained in a completely distributed fashamong the peers.

3.3.1 Construction

Nodes become a part of the rendezvous service by creatirgndézvous service
set” (RS-set). The RS-set of each node contains pointeyNtimgN peers selected
uniformly at random. This construction is similar to the Ipabilistic quorum pre-
sented in [23]. The creation of the RS-set at each node oatardistributed fash-
ion asynchronously. Each node is responsible for maintgigiNIogN live peers
in its RS-set, when there are node failures. The provider relsaurce publishes
its resource identifier to its RS-set. Similarly, the nodekiog for this resource
sends a query to its own RS-set. If there is an intersectibmdsn RS-sets of the
producer and the consumer then the consumer can accessdaheces

Theorem 3.2 Any two RS-sets of sizéNTogN nodes intersect w.h.p.

Proof: Since the RS-sets contaifiNlogN nodes selected uniformly at random,
the probability that a given node of one RS-set is not in theloRS-set is given by

1— 7“\',\] logN| Thus, the probability that none ¢fNTogN nodes of one RS-set are in

the other RS-set is:
(1_ v/NTogN ogN)VNlogN 1

N TN
The probability that at least one node in the two sets intérisel — % which
implies that the two RS-sets intersect with high probapilit O

Note that this service has very low overhead. The overheautesiting the RS-
set is amortized over the life of the node. Similarly, oRffNTogN messages are
required for each query. We can compare this with floodinggre@tthe number of
network messages increases exponentially with the nunfbdess. In the rest of
this section, we show how this service is used in our architec

3.3.2 Monitoring and Merging Jobs

When a node completes the execution of a batch, it inforrR3tset using the job
identifier. With high probability, one of the nodes in the B&-of this node also
belongs to the RS-set of the owner of the job. Such an inténgecode retrieves
the results. Each of the nodes in the RS-set of job ownerstaiaimdependent
bit vectors, where the jobs received by them are marked. Wmeorequests these
vectors from its RS-set, once in a given interval. It may alsawnload the results
for the completed tasks. Alternatively, the owner may asRB-set nodes to submit
completed jobs to it once a certain number of new resultsvaitadle. If replication
factorr > 1 is used in submitting jobs the owner would get multiple espf the
same job. This information can be used to verify that theltesnatch, and thus
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provide a validation mechanism.

3.3.3 Reputation Monitor

Reputation monitoring requires publishing the informat{td) of malicious nodes
to the RS-set of the node that discovers the malicious &gtivine mechanisms for
detecting malicious activity are independent of this ssbmy and an example is
provided later. Repeated offenses of a malicious nodetriessdveral nodes report-
ing against the node. If nodewants to query the reputation of nogeit simply
gueries its RS-set. The overlap between the RS-sets retheatequired informa-
tion. Using this information, and observing that severadesreported againgt
nodex may not accepy in its RS-set, or not submit or accept jobs from ngde
This discourages free-riders and malicious users in thesysl he integrity of the
reputation monitor is robust to collaborative malicioui\aty since a large num-
ber of randomly chosen nodes (RS-sets of multiple nodeg) #ee information.
Such systems have been proposed in the context of convehtil@sharing P2P
networks and have been shown to handle free-riders in aldeateanner [24].

As a simple example of discovering malicious activity, ddes the case where a
node submits wrong results. The RS-set of the master recedgilts computed
by all participating nodes. It compares the multiple restdt the same batch and
accepts the most repeated result as the correct resultDroeriodes which sub-

mitted wrong result is broadcast to the RS-set of the job owne

3.3.4 Decoupled Communication

A node might need to search for information without knowingietr node has the
required information. For example, a node processing arteskneed to know the
result of some preceding task. Such cases may arise if thtasksbof a job are
not completely independent. Similarly, several other gxashof resource location
can be cited. In these scenarios, a node needs to send a toeitytize requested
resource to its RS-set and with high probability it will irgect with the RS-set of
the provider of the resource.

3.4 Security Considerations

Using a decentralized approach for submitting jobs andeggding results makes
the system prone to several security threats. We discuss ebthese issues here
and describe how they can be handled in our architecture.

Attack on load balancing: a malicious node may try to ovetlaaother node by
selecting it repeatedly during the random sampling prodg@as architecture is in-
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herently safe from such attacks because a node under attacketegate the task to
another randomly chosen node without affecting the loadrzahg scheme. This
is because the load balancing scheme only requires thatttesrare chosen ran-
domly and the above action does not affect the “randomndssgiitorm sampling
(cf. Section 4).

Modification of data passing through intermediate nodethigrprotocols described
earlier in this section, data destined for a given node mdptvearded via another
node. This happens when the RS-set nodes forward resulie tmmner of the job
and in the replication-at-initiation protocol. In theseses, standard digital signa-
tures suffice to ensure the integrity of the data. BOINC [oMmmtes an example of
the application of these techniques. Similarly, in the icgion-at-initiation pro-
tocol the first node in the chain of replication is resporesitdl make sure that
replicas are sent to random nodes. Using digital signatime$ob owner can be
sure thatr replicas were forwarded, however, it cannot be ensuredatihaie r
nodes are not collaborating malicious nodes.

Several other scenarios involving threats due to collgbh@amalicious actions
need to be evaluated in greater detail. Similarly, some efuitresolved security
issues of existing systems, e.g., [25], are pertinent topoaject. A comprehen-
sive evaluation of the security vulnerabilities and felsiiounter measures is a
key focus of our ongoing and future work in the area of operastfuctures for
Internet-scale cycle sharing.

4 Uniform Sampling With Random Walks

In this section we introduce random walks and show how theybeaused to per-
form random sampling. If the underlying network does notehavegular degree
distribution, i.e., if few nodes are connected to many, arahynnodes are con-
nected to a few nodes, then a random walk, with transitioosifa node to its
randomly chosen neighbor, does not yield a uniform sampkerétisit Kruskal’s

equation and argue that skewed sampling results in bad l@latde and long job
makespan. We show how the transition probability from onghisor to another
must be modified to achieve a uniform sampling, and give aordkgn that com-

putes the required transition probabilities.

4.1 Sampling With Random Walks

Random walks can be abstracted as Markov chains defined etateaspace and
a given state transition matrix. The network nodes form tia¢esspace and the
probability of moving from a node to its neighbor govern trensitions. Using a
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Markov chain model, we show in this section that (1) a randaakwef a given
minimum length on a connected aperiodic graph (which reprissthe network)
reaches a stationary node sampling distribution, and $&pale random walkan-
not achieve uniform sampling unless nodes in the network dentical numbers
of connections. We also discuss various parameters thexindiete the length of the
random walk required to achieve a stationary sample digtab.

Let G(V, E) be a simple connected undirected graph representing édistl sys-
tem with |V| = N nodes andE| = e links. The degree, or number of links, of a
nodei, 1 <i <N, is given byd;. The set of neighbors of a nodds given by
(i), where edgéi, j) € E,Vj € I'(i). TheN x N adjacency matrix o6 is given
by A= {a;}, where 1<i,j <N, &; = 1 if the edge(i, j) € E, and 0 otherwise.
The correspondindyl x N transition probability matrix, given bl = {pj; }, is the
probability of moving from node to a nodej in one hop.P is a row-stochastic
matrix, i.e.,y ; pij = 1.

For asimple random walkhe transition from nodeto its neighbor is governed by
the transition probability matri¥, whereVj € I'(i), pij = 1/d; and 0 otherwise.
The sequence of nodes can be denotef@s 11, ...}, whereX; =i implies that
at stept the walk is at node.

If we consider nodes i as states in a finite state space, then the random walk
represents a discrete-time stochastic proc£$g¢>0. For this stochastic process
we have,

Pr(Xe+1=j|Xo=1lo0,....,. X%—1=lt—1, % =1)

=Pr(X1=j|X =1) = pij )

Equation (2) simply implies that a random walkneemorylessi.e., during a ran-
dom walk the probability of transition from noddo nodej in one step depends
only on nodel. Thus, a random walk can be conveniently modeled as a Markov
chain, more specifically a homogeneous Markov chain, simeeight hand side of
Equation (2) is independent of Such a Markov chain has the following proper-
ties: itisirreducible if the grapts is connected and is aperiodiddis aperiodic. A
graphG is aperiodic if the greatest common divisor of the lengthliofycles in the
graph is 1. In particular, an undirected aperiodic grapmoabe bipartite, which

is a reasonable assumption for real networks in which cdrorecare established
randomly.

4.1.1 Convergence to Random Sampling

It is well known that an irreducible and aperiodic Markov ichhas a stationary
distributiontt’ = 10" P, andrt’ = 1" P! follows (whereP! implies t-step transitions).

It is easy to show ([26], page 132) thmt the component corresponding to node
i, 1<i<n, isdi/2e. Fromm = 1P, we see thattis a left eigenvector oP
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with eigenvalu€ 1. The right eigenvector for eigenvalue 1liga vector of all
ones), sincd1 = 1. It follows thatP® = 11" . This implies that a very long walk
converges to the stationary distributiairrespective of the initial distribution, i.e.,
the starting point of the walk.

The above results indicate that a long enough random wakketgas to a random
sample irrespective of where the walk started. Thus, a randalk is a good can-
didate for random sampling in a network. However, we alsonkti@at the resulting
sample distribution is dependent on the degree of the rigde:d; /2e. This last
result implies that the random sample is uniform{;orm = (1/N)1) only if the
graphG is regular (i.e., the degrees of all nodes are equal). Sypedl large scale
real-world unstructured networks tend to have non-unifalegree distributions
(e.g., power-law degree distribution of unstructured P2Rvorks [28]), uniform
sampling in practical scenarios poses a significant chgdlen

4.1.2 Length of Walk for Random Sampling

The sample distribution at stetpof the walk depends o', which in turn de-
pends on the eigenstructure Bf From the Perron-Frobenius theorem, we have
Pt = Aviu] + O(t™ 1|5, wherev; is the right eigenvector corresponding to
eigenvalue\; andus is the left eigenvector, andy is the algebraic multiplicity

of A\, (see, [27] Chapter 6). Rewriting the above equation, we Hve P* +
O(t™~1Az|Y). These results simply imply that

Pt =1t +O(t™ 1A, h). (3)

As |Az| < 1, whent is large,|A2|' ~ 0. Therefore, the smaller the second largest
eigenvalue modulus (SLEM), the faster the convergenceatmsiry distribution.
As a result, a walk of smaller length is required for randommging. Also note
that there is a limit on the minimum length on the walk, i.@y avalk of length
greater than this minimum yields a random sample. The lengtine required
walk, or themixing time is often approximated a(logN)[6], however the exact
factors involved depend on the construction (and thus tHeN§Lof the transition
probability matrix.

4.2 Uniform Sampling in Nonuniform Networks

As mentioned in Section 4.1.1, a random walk of a given mimmength con-
verges to a stationary distribution If the stationary distributiomyniform iS such

7 SinceP is a non-negative primitivél x N matrix (i.e., irreducible and aperiodic), from
basic linear algebra, we also know thahasN distinct eigenvalues £ A1 > [Ag| > --- >
IAn| [27].
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thatTyniform = (1/N)1, the random walk will terminate at any node in the network
with equal probability (c.f. Definition 1.1).

However, if the stationary distribution 1§ = d; /2e, we pick the high degree nodes
with a much higher probability. This implies that such nodéshave a high num-
ber of tasks to compute. The variance in the node samplingases the variance
of the processing time of the nodes, as the processing i@sobithe node would
be divided over the tasks assigned to it. If the resultingavene of the running
time from the mean processing time of the nodes ishen the Kruskal’s equation
would be written as:

E(T):Du—i—g—ﬂ—l-\/oz—i—sZ\/ZKlogp (4)

p

This directly impacts the expected running times of jobsteNbat variance of the
degree of the nodes may be very high if the underlying grapbws power-law
degree distribution. In Section 5.2.1, we experimentadijpdnstrate that using sim-
ple random walks for sampling in nonuniform networks yieldcer load balance,
and consequently a large job turnover time.

4.2.1 Modifying Transition Probabilities

To achieve a uniform stationary distribution in an irregeaph, we need to mod-
ify its probability transition matrix.

Let P be a probability transition matrix of a Markov chain, & orm= T i ormP

which is the same a&l/N)1" = (1/N)1TP. This means that the sum of each col-
umn vector ofP is 1, i.e.,P is column stochasticA probability transition matrix
which is column stochastic in addition to being row stocttaist called doubly
stochasticNote that symmetric transition probability matrix are ttyustochastic.
Thus, if we create a matrix withjj = pj; we will achieve a uniform stationary dis-
tribution, and hence a random walk using these transitiobatuilities will yield a
uniform sample.

Two well known algorithms, maximum-degree algorithm (MR3®] and Metropolis-
Hastings algorithm [30,31], yield a symmetric transitiaonlpability matrix. How-
ever, these algorithms need a long walk to reach statigndfrithe graph has a
highly skewed degree distribution. In our previous work][2@ present a detailed
discussion and experimental evaluation of these algorid suggested a new
algorithm for building a transition matrix. Here, we repuooe the algorithm, how-
ever, the details and evaluation are omitted.
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4.2.2 Random Weight Distribution Algorithm

In this section, we present our distributed algorithm, nrefé to as the Random
Weight Distribution (RWD) algorithm. RWD is a completelyantralized algo-
rithm that sets up transition probabilities in a connectetivark to enable efficient
uniform sampling via random walks.

The algorithm proceeds as follows. In the initializatioraplé each node, locally,
sets transitions probability as:

1/p ifi £ jandjerl(i), wherep > dmax
pi'l =1 1-di/pifi=]

0 otherwise

Here,p is a static system parameter with the constraint that itishmeigreater than
maximum degrednax. This parameter is static because we can sufficiently overes
timatedmax knowing system properties (e.g., popular P2P clients hamexamum
connection limit [32]). Note that this phase results in ahhsglf-transition proba-
bility for low degree node. Also note that the resulting séion probability matrix

is symmetric.

After the initialization is complete, each node attempwdisiribute its self-transition
probability randomly and symmetrically to its neighboreeftermweight of a node
refers to the self-transition probability of the node at giwen time during the ex-
ecution of the algorithm. At a node the algorithm terminates when either the
weight of the node becomes zero or the weight of all ngde$ (i) becomes zero.
Intuitively, a low self-transition probability implies # the walk mixes faster and
converges to a stationary uniform distribution with a femamber of steps. The
pseudo code for the complete RWD algorithm is shown in Fidure

Remark 4.1 Each step in the RWD algorithm maintains symmetry in theailob
transition probability matrix B¥d. Therefore, the transition probability matrix re-
mains symmetric when the algorithm terminates. Thus, aoandalk based on
PWd will have stationary distributiomniform.

The overhead of messages due to our algorithm are minimat@ered in our
earlier work [29].

5 Performance Evaluation

We present here detailed simulation results for varioutbbop@ance aspects of our
system. First, we evaluate the efficiency of our system ffedint job loads. We
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At each nodei:

> Initialization

1. N:=T(i)

2 0 := Quantum

3. pi =1—di/p

4. foreach j e[ (i) repeat
5 pij =1/p

6 end foreach

> Random Weight Distribution

1 while p;j >0 and N # {2}
2 j :==random(N)

3 reply:=sendmesdj,INCREASE
4. if reply= ACKthen
5. pij := pij +0

6 Pii '= pii — 9

7 else

8 N:=N-—j

9. end if

10. end while

> Receive Message Handler

1 mesg= receive)
2 j := get.sendefmesqg
3 type:= gettypgmesg
2. if pi > o6 and type= INCREASREhen
3. Pij i= Pij +90
4 Pii '= pii — 9

5 reply:= ACK
6 else

7 reply:= NACK
8 end if

Fig. 1. The Random Weight Distribution algorithm.

show that job allocation using random walks with transitostrix generated using
the RWD algorithm yields good load balance due to uniformgarg. In compar-
ison, job allocation using sampling based on simple randatk wields a highly
skewed load balance. A comparison of the efficiency of thesmtemes reflects the
impact of sampling techniques. Next, we study the perfoaani our architecture
under varying node failure rates. We compare the replinadieinitiation and the
multi-step replication schemes in terms of job completioretand their resilience
to failures. We show that replication-at-initiation is radtle to fully recover results
for tasks when failure rates are high, even when the repicdactor is increased.
Furthermore, increased replication results in signifigahigher job completion
times. In contrast, the multi-step scheme is always able¢ovwer computed re-
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sults for all of the submitted tasks and the overhead adsakis low, compared to
replication-at-initiation using a high replication level

The main contribution of this experimental study is thatatves as a proof-of-
concept of the feasibility of a randomization-based urstned P2P computing
environment.

5.1 Setup

Our simulation testbed implements the RWD algorithm forfermn sampling of
nodes, the two job distribution protocols discussed iniSec8.2, and the ren-
dezvous service for job aggregation and progress mongtofinese algorithms are
implemented to function on top of an unstructured P2P ndtwidne P2P network
is a connected graph of nodes, where each edge denotes &tinédn the nodes.
Hence, each node knows only about its neighbors in the gk&huse a power-
law random topology for the network. Such graphs are ofted uis the literature
to model large non-uniform network topologies. It is beéidf33] that unstruc-
tured P2P networks have power-law topologies. In a powerrémdom graph, if
the nodes are sorted in descending order of degreé!thede has degre®/i?,
whereD is a constant. The parametar= 0.8 is used. This value o& is com-
monly used in evaluation studies of P2P networks [34]. Thaedging topology
is constructed by first selecting the degree of each node aspower-law distri-
bution and then connecting them randomly. Motivated by-vealld systems [32],
we limit the maximum degree to 100. In typical P2P clientshsas Limewire [32],
these restrictions are often specified to restrict the numib@nnections of a given
node in order to limit the load on the node. We fix the networe $0N = 10,000
nodes. Base on this network size, the optimal number of skbtaf. Section 3)
is equal to 7.8 million. We use this number in most of our ekpents, unless
otherwise stated.

5.1.1 Network Delays and CPU Time

Communication due to random walks, job submission, reggjtegation, and progress
monitoring has an associated network delay cost that affeetperformance of our
distributed cycle sharing ensemble. In our evaluation, senetwork delay mea-
surements taken from the Internet using thousands of nadegraPlanetLab [35],

as discussed below.

The P2P network is an overlay network, i.e., neighbors irPie network may not
be neighbors in the underlying Internet graph. A messagedsat any two nodes
(even if they are neighbors) in the P2P network may actualyduted over sev-
eral hops in the underlying network and the end-to-end deddyween these nodes
need to be considered. Furthermore, in the case of randoks wahich consists
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of several hops in the P2P network, we have to accumulateethkqp delays. To
realistically account for the network delays, we measuhedend-to-end cost of
transferring messages, using TCP, between thousands efpaig on PlanetLab.
We gathered delay samples for over@dO0 pairs of nodes. The number of samples
we could gather is limited by the availability of nodes onrfeth.ab. PlanetLab con-
sists of over 500 nodes but several of them could not be cmttatiring our exper-
iment runs. The delays measured depend on the sizes of tlsagesstransferred.
For random walk messages, we used a size of 1KB. For a messag@ning a
job to be executed, we used a maximum size of 508KBhis size corresponds to
the maximum work unit file of SETI@home [1]. As the P2P netwuosled in our
experiments consists of 1000 nodes, we require 100 million pairs, which is not
feasible to collect using PlanetLab. Thus, we assign nétdelays (for each mes-
sage size) between the , D00 nodes by sampling from the ,DO0 measurement
set.

The next parameter to be configured for the experiments K& time consumed
per task. We assume that the CPU time per task is an expolamitkom variable
with meanp. The nature of computation to be executed determinesnd this
value varies greatly across different application domdirthe CPU time is large
compared to the network costs then the efficiency of the systecomparison to
an ideal parallel ensemble, is higher. On the other hanbeifXPU time is smaller
compared to the network costs then the efficiency of the sysdower. To allow
a conservative evaluation of our system, wepset11s. This value corresponds to
the mean network delay (from our Internet measurements)dosferring a 500KB
file over TCP. Also, note that this choice favors using a highenber of subtasks
per batch as per Kruskal’s equation (cf. Equation 1).

5.2 Efficiency and Computational Throughput

We study the efficiency of our system in comparison to an itlepfocessor par-
allel ensemble, which computegasks inun/N time. As stated in the discussion
in Section 3, ifNlogN batches are submitted, then w.h.p. each processor has a task
to perform. Similarly, if possible, we would like to have blatsizes approaching
K = log?N tasks (which translates to an optinmet Nlog®N). In the cases where
n/K <N, we useK = maxn/N, 1). To evaluate the efficiency of our system for dif-
ferent job sizes and batch sizes, we use the parametersodesir Table 1. Note
that although we would like to havdlogN batches each time, due to substan-
tial network overhead, we prioritize larger batch size aber number of batches
that can be submitted. As a result, when there are only 1(h@@thesr 30% of
the machines in the network have no tasks to process. Thangistent with the

8 The exact size depends on the number of subtasks in the nee§&89IKB corresponds
to the maximum number of subtasks (84 as discussed lattdre ipatch.

23



predictions from Section 3.2.1. The resulting efficiencylef system is plotted in

Number of jobsn Cluster sizeK | Number of batches

N =10000 | N/N =1 |N =10000
NlogN  =92000 |logN =9 [N =10223
Nlog?N =846400 | log?’N =84 | N =10072

Nlog®N =7800000| log?N =84 | NlogN =92858

Table 1
Number of jobs and batch size parameters used for evaludnefficiency of our system.

Figure 2. As predicted, the system has the highest efficiem@nK = log? N and
the number of batches NlogN. The efficiency achieved in this case is.4%,
which is excellent for such loosely coupled dynamic envinents, given that the
order of processing time is almost the same as the netwonthead. We expect
that in the real system there would usually be enough job sdiom requests to
meet the optimum value of number of tasks in the system.
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Fig. 2. Efficiency of our system when compared with an ideahlel ensemble.

5.2.1 Effect of Sampling Techniques

Uniform node sampling is the underlying substrate for all mndomized algo-
rithms. Our RWD algorithm computes transition probalabtin such a way that
a random walk yields a uniform sample. In comparison, a smphdom walk
(SRW) is biased towards high degree nodes. We compare tthéédance achieved
using these two strategies and evaluate the impact of lohdlance due to the
SRW algorithm.

To compare the load balance of the two schemes, we use theadarameters
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Fig. 3. Load per node using uniform sampling with RWD (a) usrsampling using simple
random walk (b).

n= Nlog®>N andK = log?N. The resulting percentage of the total number of tasks
assigned to each machine are plotted in Figure 3.xF&es of the plot represents
nodes sorted in ascending order by degree. The number of aaskgned to each
machine for the sampling using transition matrix gener#ttesh RWD has a uni-
form distribution, with low load imbalance as seen in thet joFigure 3(a). On
the other hand the number of tasks assigned to a machine lplisgrasing SRW

is biased to the degree of the node as seen in Figure 3(b), Stine nodes end up
receiving almost 5 times higher load than other nodes.

05 f T

(Nlog3N)

Efficiency

SRW RWD SRW RWD

Fig. 4. Performance advantage of uniform sampling usingoanwalk with RWD versus
simple random walk.

A load imbalance implies that the job would take longer timdinish. We com-
pare the system efficiency when batches are allocated witplgay using the two
techniques. The number of jobs used are Nlog®N, Nlog?N, and the cluster
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sizes used in both cases is 04 The plot in Figure 4 shows this comparison. The
system using RWD performs much better irrespective of thaeldoassigned to it
and the performance advantage increases as the load iesreas

5.3 Performance Under Node Failures

An important aspect of our architecture is its performanugen node failures. The
key parameters of interest are: percentage of tasks thatiacessfully completed
and are retrieved by the owner of the job, increase in conopiéime due to repli-
cation, and performance under varying failure rates. Fesdlexperiments, we use
K =log?N, n= Nlog®N andN = 10,000 nodes.

5.3.1 Node Failure Model

Node failures are modeled using a parametewhich represents the fraction of
nodes that fail in the time it would have taken for the job tonpdete in an en-
vironment without failure. This definition is useful for melthg node lifetime in
comparison to the lifetime of the job. Node lifetimes are ®led as zipf random
variables that are correlated to the degree of the node. atsmneten is used to
normalize these lifetimes in relation to the job makespareti

The number of nodes in the network is kept roughly constarhbiching the ar-
rival and failure rates. The size of the P2P does not have rapjigation on the
load balance achieved by our randomized algorithms. Horvthesize of the P2P
system does impact two important parameters, which arestiggh of the random
walk and the size of the RS-set. In our system, these paresregteestimated based
on the largest size of the network and hence remain apptepfithe size of the
network shrinks. This is because, for uniform sampling,adhly requirement is on
the minimum length of the walk; a walk length longer than theimum still yields

a uniform sample (cf. Section 4.1.2). Similarly, if the R&sshave a larger size than
required, the intersection between two RS-sets is stiltajuaed with high proba-
bility. Certainly, longer walks and larger sized RS-setsraot optimal with respect
to minimizing system overhead, however, correctness fatexedence. Our model
for node failures, which keeps network size to be roughlystamt, is focused to
cleanly exhibit the relative performance evaluation oftihie replication schemes.

5.3.2 Evaluation

We compare the performance of the two schemes describee ipagper, namely
replication-at-initiation and multi-step replicationoiRhe replication-at-initiation
method, we use a replication factor of two (i.e., two copitthe replicated pro-
cesses are submitted to the system). The effect of highkcagpn levels is dis-
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cussed later. We let the owner query the system (throughetiderzvous service)
for its running tasks often enough so that it knows almostaimsneously if no

more of its tasks are running. This is unrealistic in a reattd/environment, but
our results here are meant to provide a bound on how well tstesycan perform.
For the multi-step replication method, the system assumesffeciency of 40%

and estimates the job makespan as was described in the girdtquerforms the

multi-step replication until at least one copy of each task’sult is obtained, and
then stops. The parameteiis varied from 005 to Q5.
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Fig. 5. Percentage of unique task results successfullievett by the owner for the repli-
cation-at-initiation scheme.

The plot in Figure 5 shows the percentage of unique tasksesafudly retrieved by
the owner for the replication-at-initiation scheme. As tiaetion of failing nodes
increases, the success ratio decreases rapidly. In caopathe multi-step pro-
tocol achieves a 100% completion rate. The plot in Figurg é¢mpares the job
completion time of the replication-at-initiation with tweplicas and the multi-
step algorithm. The job completion times are normalizedhwéispect to the time
it would take the job to finish in an environment with no fadar The plot shows
that fora < 0.2 the multi-step algorithm performs better. Howevemascreases,
the time taken by the multi-step algorithm increases. Orother hand, the time
for the replication-at-initiation scheme decreases galiguT his gradual decrease
is because many tasks are lost with the failing nodes andtieusme for the net-
work to have no tasks executing is reached earlier. Notethégdhe time taken by
the multi-step technique starts to level off when the ratéaddire is higher. This
is because the multi-step technique has an increasingealefreplication at each
step. Once the replication level becomes high, it compesdat the high failure
rate.

The plot in Figure 6(b) shows the average number of replicasd. We observe
that the average number of replicas found by the replicadtainitiation scheme de-
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Fig. 6. (a) Completion time for the two schemes. (b) Numberegiicas found by the
master for the two schemes.

crease because of increased failures. On the other harttiefarulti-step scheme,
each iteration of replication submission increases thécagmn rate. With high
failure rates, the number of replicas submitted is highertans the average num-
ber of replicas received is higher. Quantitatively, the timstiep replication scheme
has fewer redundant replicas and hence uses resources fimesnty. However,
as discussed earlier the replicas received can be usefuhlidating results. Nev-
ertheless, the multi-step scheme can be easily modifiea¢ttease the redundancy
in a controlled fashion, simply by submitting replicatedks even after one result
for that task has been successfully received.
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Fig. 7. Effect of varying replication level for failure rate= 0.5: (a) percentage of the
jobs completed, (b) average number of replicas found by tasten (c) completion time
normalized w.r.t. time required for job execution withoaildires.

To evaluate the benefit of using different levels of replamatn the replication-
at-initiation scheme, we repeat the experiment vaite- 0.5, while varying the
replication level. The number of replicas submitted is @ased from 1 (i.e., no
redundancy) to 9 i.e., Idg. The plots in Figure 7 summarize the results. The plot
in Figure 7(a) shows that increasing the replication leeslits in the number of
tasks completed to asymptotically approach 100%. Howeveerfect result is not
achieved even with very high replication levels. The ploEigure 7(b) shows that
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average number of results retrieved from replicas is alfh0% of the number of
replicas submitted. This is consistent with the failurefien a = 0.5. When more

replicas are submitted, there is a higher chance of theceeplieaching a long lived
node. Due to the zipf distribution such long lived nodes rltgve a much higher
lifetime compared to the average. Finally, the plot in Fegidfc) shows that the
time for completion (i.e., no tasks of this job remain on tkéwxork) proportionally

increases as the number of replicas increase. An importentast can be drawn
here to the performance of the multi-step technique oFer0.5, the time taken by
7 fold replication, which achieves 99.2% completion, is@t22 times more than
the multi-step technique, which always achieves 100%capdn.

6 Conclusion

In this paper, we present a distributed architecture forisggrocessor cycles in
unstructured P2P networks. The use of unstructured P2Rorietus motivated by
the success of massive real-world networks for file shaivegpresent randomized
algorithms for allocating tasks in the network, which aghia good load balance
and low job makespan. We analytically show that random jtdzation using uni-
form sampling achieves good load balance. We present twoqwls that incorpo-
rate redundancy for resilience against frequent node tleparand validation of
the execution output. The parameters that affect job tHrputare discussed in the
context of our allocation scheme. Our architecture inctualeendezvous service
that allows job progress monitoring, aggregation of tasksle reputation manage-
ment, and context-based communication between obliviostshWe show that the
rendezvous service provides probabilistic guarantee®dating resources.

Our algorithms are built on the premise of uniform samplingan unstructured
network. We show that random walks are ideal for random saghowever, the
resulting samples are affected by the topology of the nétwe present an algo-
rithm that allows uniform sampling via random walks irresipee of the underlying
network topology. This is done by building a transition mator the walk in a dis-
tributed fashion. The resulting transition probabilitytndaalso reduces the length
of the random walk required to converge to uniform statidaparhe efficiency of
the resulting cycle sharing system is evaluated using cehgmsive simulation.
The system is also evaluated with varying rates of noderisluThe simulation
results reflect the efficiency and robustness of our randatiniz based protocols.
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