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Abstract

Motivated by the needs and success of projects such as SETI@home and genome@home,
we propose an architecture for a sustainable large-scale peer-to-peer environment for dis-
tributed cycle sharing among Internet hosts. Such networksare characterized by highly dy-
namic state due to high arrival and departure rates. This makes it difficult to build and main-
tain structured networks and to use state-based resource allocation techniques. We build our
system to work in an environment similar to current file-sharing networks such as Gnutella
and Freenet. In doing so, we are able to leverage vast networkresources while providing
resilience to random failures, low network overhead, and anopen architecture for resource
brokering. This paper describes the underlying analyticaland algorithmic substrates based
on randomization for job distribution, replication, monitoring, aggregation and oblivious
resource sharing and communication between participatinghosts. We support our claims
of robustness and scalability analytically with high probabilistic guarantees. Our algorithms
do not introduce any state dependencies, and hence are resilient to dynamic node arrivals,
departures, and failures. We support all analytical claimswith a detailed simulation-based
evaluation of our distributed framework.
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1 Introduction

The use of a large number of unreliable hosts over a wide-areanetwork to solve
compute-intensive problems has been pioneered by projectssuch as SETI@home
[1], genome@home [2], and distributed.net [3], among others. While key advan-
tages such as increased performance, reliability, and scalability motivate the use of
decentralized peer-to-peer (P2P) systems as opposed to traditionally used client-
server models, we consider the broader goal of an open environment for cycle shar-
ing as a major driver for a move towards a P2P solution for harnessing idle CPU
cycles of Internet hosts. Such an environment would allow any participant to sub-
mit tasks, in contrast to the inflexible nature of a client-server model. Furthermore,
an open P2P system provides an incentive for peers to contribute their resources,
expecting cycles in return, as opposed to the altruistic basis for current systems.

In this paper, we propose and evaluate an unstructured P2P architecture for dis-
tributed cycle sharing among Internet hosts. The dynamic nature of P2P networks
resulting from high arrival and departure rates motivates our choice of an unstruc-
tured (stateless) model. A majority of Internet-deployed examples of successful,
resilient, large-scale, and massively-distributed systems rely on such unstructured
topologies (e.g., Gnutella [4], Freenet, etc. for file sharing). Our design decision
trades off the overheads of building and maintaining a structured overlay (with
associated guarantees on network path lengths) for a less expensive model (with
probabilistic guarantees on network delays).

Our P2P based architecture bears features that make it particularly suitable for con-
structing an open infrastructure for distributed cycle sharing. Specifically, it does
not require an organization to manage and deploy a dedicatedinfrastructure. In con-
trast, one may consider the deployment of BOINC2 based projects – each project
deploys a server complex, including a directory server, andparticipating clients
register with the project using a master URL designated for the project. In our ar-
chitecture, nodes, which could assume the role of a project owner or a working
participant, join the P2P network and know only about their immediate neighbors.
Jobs are identified by unique identifiers, rather than network node addresses. All
information3 about participants and jobs are stored in a distributed fashion among
peer nodes. This avoids a single point of failure and improves scalability. Project
owners submit jobs to the network and do not need to store the identity of nodes
computing the tasks. This allows use of a large number of nodes in the network
without introducing state management overhead on the project servers. Computed
results are routed to the project owners using content basedaddressing rather than

2 Berkeley Open Infrastructure for Network Computing (BOINC) [5] is a software plat-
form for developing distributed computing applications.
3 The integrity of this data is preserved using standard cryptographic techniques. This is
discussed later in the paper.
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network node address. We present protocols that efficientlyenable these function-
alities in unstructured P2P networks.

Our distributed cycle sharing system utilizes the large number of participating
nodes to achieve robustness through redundancy. Due to the scale of the system
and the volatile nature of the participants, we rely on randomized algorithms to
build our protocols. The use of efficient randomized algorithms affords simplic-
ity, while preserving probabilistic guarantees on the performance of the system.
The underlying approach is novel and carries its share of complexities, solutions to
which form the key contributions of this paper. The design goals of our system are:

(1) Low job makespans by ensuring load balance.
(2) Resilience to node failures and frequent node arrivals and departures.
(3) Validation of computed output by redundant distributedcomputations.
(4) An interface for monitoring job progress and performance evaluation.
(5) An accounting framework for the resources contributed by various nodes.

The key substrate supporting our design is efficient uniformrandom sampling us-
ing random walks. Uniform sampling in networks provides thebasis for a variety
of randomized algorithms and is of interest on its own as well. In context of our
system, uniform sampling allows us to design randomized algorithms for load bal-
ancing, applying redundancy to support fault tolerance, and building a probabilistic
rendezvous service for monitoring task progress and contributions of participating
nodes.

Uniform Sampling in Unstructured Networks

Uniform sampling in a network requires randomly selecting anode, such that every
node in the network has the same probability of being selected. A trivial approach
to this problem would be to collect the entire set of node identifiers at each node and
index randomly into this set of identifiers. This simple approach, however, does not
work for our target applications because the overhead of frequently updating system
state at each node (if at all possible) would be prohibitive.An alternate approach
to this problem relies on the notion of a random walk. Starting from an initial
node, a random walk (of predetermined length) transitions through a sequence of
intermediate nodes with probabilities defined for each linkand ends at a destination
node. The likelihood of terminating a random walk at any nodedetermines whether
the walk is a uniform sampling random walk or not. Formally, we define a uniform
sampling random walk as follows:

Definition 1.1 (Uniform sampling using random walk) A random walk of a given
length samples uniformly at random from a set of nodes of a connected network if
and only if the walk terminates at any node i belonging to the network, with prob-
ability 1/N, where N is the number of nodes in the network.
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The key parameters of interest in sampling via random walk are: (i) a uniform sam-
ple should be generated irrespective of the topology of the network, and (ii) the
length of the walk required to reach stationarity (mixing time of the walk) should
be small. A number of researchers have studied properties ofrandom walks, e.g.,
Lovasz [6] provides an excellent survey of these techniques. The simplest random
walk algorithm selects an outgoing edge at every node with equal probability, e.g.,
if a node has degree four, each of the edges is traversed with aprobability 0.25. It
can be shown that the probability distribution associated with target nodes becomes
stationary after a finite length random walk (also known as the mixing time for the
corresponding Markov chain). This length can be shown to approachO(logN).
These concepts are discussed in greater detail in Section 4.The main drawback of
the simple random walk is that, while it reaches a stationarydistribution, this dis-
tribution is not uniform for typical networks. In fact, it can be shown that the prob-
ability of terminating a random walk at a node is directly proportional to the degree
of the node. In the context of conventional unstructured P2Pnetworks, where node
degrees can vary significantly, this does not correspond to an acceptable uniform
sample.

Much like other typical applications of random walks, our system is sensitive to the
quality of uniform sampling. Biases in sampling may result in poor performance
of randomized algorithms, congestion in underlying networks, and significant load
imbalances. Thus, realizing random walks that yield uniform sampling irrespective
of topology is a key focus of our work. In addition to the quality of uniform sam-
pling, an important performance parameter is the length of the random walk. Since
longer random walks generally correspond to a larger numberof network messages,
it is highly desirable to minimize the length of the walk.

Technical Contributions

The paper makes the following specific contributions:

• It presents a scalable, robust, and efficient architecture for a P2P resource-sharing
network.

• The basis for the proposed network is a load balancing, replication, and monitor-
ing scheme that relies on efficient randomized algorithms. It presents a random
walk based algorithm for uniform sampling in large real-world networks with
low overhead. This sampling methodology provides a substrate for our random-
ized algorithms.

• It provides empirical results that demonstrate the efficiency of our algorithms for
computing a large number of tasks on unstructured P2P networks with high node
failure and arrival rates. For example, we show that our randomized algorithm
based P2P infrastructure achieves an efficiency of over 40% compared to an ideal
parallel ensemble, even when network overhead is significant.
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The rest of this paper is organized as follows. In Section 2, we summarize related
results. In Section 3, we present an overview of our randomization-based P2P com-
puting architecture. In Section 4, we show how uniform sampling can be achieved
via random walks. We also present an algorithm that allows efficient (short length)
random walks to obtain uniform sampling. In Section 5, we empirically evaluate the
performance of our architecture. We show that our architecture yields high efficien-
cies for distributed computations. We also evaluate strategies for job replication. We
derive conclusion from our work in Section 6.

2 Related Work

SETI@home [1], genome@home [2], and distributed.net [3] are among the early
examples of distributed cycle sharing systems that utilizea large number of Inter-
net hosts. However, these systems are custom made for executing tasks originat-
ing at a single source. In contrast, our system allows sharing CPU cycles among
peers and running multiple jobs from disparate users in the network. Projects such
as BOINC [5] and XtremWeb [7] also aim to provide a multi-application global
(Internet-wide) computing platform. However, both of these projects are based on
a hierarchical client/server architecture and rely on a setup initiated and maintained
by a single organization. On the other hand, we architect ourglobal computing
platform based on a decentralized unstructured peer-to-peer network comprised of
Internet hosts.

The Condor [8] project aims at utilizing distributed computing resources in a net-
work to provide high throughput. A mechanism called ClassAdis used to advertise
attributes of available resources and jobs. Condor acts as abroker between the re-
sources and the jobs, using the attributes provided to it. Similar to our system, this
provides an open environment in which multiple users can submit jobs. However,
task management in Condor is centralized, which makes the environment more
tightly coupled. It is assumed that Condor will be deployed and managed by an
organization. In contrast our architecture allows self-organization of participants.
Instead of using state information we rely on randomization. Furthermore, our sys-
tem can provide a decentralized ClassAd based task allocation mechanism using the
rendezvous service and hence can be considered complementary to Condor. Sim-
ilarly, an implementation using our architecture could easily borrow mechanisms
such as checkpointing and sandboxed execution from Condor.

Our work can also be considered complementary to much of the work on grid
computing including Globus [9,10], Legion [11], Avaki [12], Purdue University
Network Computing Hub (PUNCH) [13], and Sun’s Grid Engine [14]. Each of
these systems implements a centralized or a hierarchical management component,
which is different from our fully decentralized approach. Our P2P communication
fabric and randomized techniques can be applied to these systems as well.
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Butt et al. [15] uses a well known structured P2P network (Pastry [16,17]) for locat-
ing and allocating computing resources. A Java VM is used to execute and monitor
the progress of the execution on peers. A credit system for accounting services is
also provided. In contrast, we build our system on top of an unstructured P2P net-
work, motivated by the success of massive unstructured networks for file sharing.
Our main emphasis is on architecting allocation and communication mechanisms
that yield high efficiency and are robust in the face of high node departures and
failures. Our system also provides mechanisms for job monitoring, aggregation,
reputation, and communication between oblivious hosts. Weuse randomization
techniques that provide probabilistic guarantees and havelow overhead. The ar-
chitecture presented in [18] is another example of CPU sharing using a structured
P2P network (Chord [19]). Similarly, G2-P2P [20] also relies on a node addressing
scheme based on Pastry [16] and Tapestry [21].

3 Architectural Overview

In this section, we provide a brief overview of unstructuredP2P networks and de-
scribe a simple randomized job allocation scheme that achieves good load balance.
We also motivate the need for redundancy in the context of target applications
and show how our protocol caters to replicating tasks in the network. A key as-
pect of our P2P cycle sharing environment is a decentralizedrendezvous service
for monitoring job progress, supporting loosely coupled inter-task communication,
and aggregating completed tasks. We describe the distributed construction and the
probabilistic guarantees on the performance of this service. We also show how our
architecture can be leveraged to manage reputation of participating hosts in the
network as a means to counter “free-riders” in the system.

3.1 Unstructured Peer-to-Peer Networks

Unstructured P2P networks are characterized by decentralized control and lack of
a well-defined overlay topology. Node connections are formed randomly. However,
as the graph evolves, long-lived nodes gain a higher number of connections due to
their higher availability and as they become known, over time, by other peers in the
network. High degree nodes are called super nodes. The emergent self-organized
network graph has a highly skewed degree distribution with few nodes having high
degrees while most nodes have only few neighbors and are often connected to
the super nodes. These networks have some desirable features such as low diam-
eter, and resilience to random failures and frequent node arrival and departures.
More importantly, they are simple to implement and incur virtually no overhead
in topology maintenance. Consequently, many real-world large-scale peer-to-peer
networks are unstructured. However, the lack of structure makes it difficult to locate
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shared resources in the network. In such networks, the naivemethod for locating
resources is by flooding a (hop) limited neighborhood. This approach, however,
has high overhead in terms of network messages and does not provide guarantees
of locating existing objects in the network.

In this paper, we build our system on top of an unstructured network, and present
algorithms that provide performance guarantees with high probability (w.h.p.)4

while incurring low overheads.

3.2 Job Allocation with Redundancy

We first present a simple job allocation strategy that achieves appropriate redun-
dancy and good load balance. Conventional unstructured P2Pnetworks comprise of
tens, even hundreds of thousands of nodes. Consequently, computational resources
exist for building sufficient redundancy into the system. There are two main moti-
vating factors for redundancy:

(1) Resilience. In an open Internet environment, failures (and departures) of nodes
must be expected. In such an environment, replication of thesame task to
multiple hosts is needed to account for failure of nodes.

(2) Validation. We can expect that some of the nodes would return wrong results,
either because of malicious or other reasons. Results from several nodes can
be cross-checked to detect faults, and possibly select a correct output (e.g.,
simply using majority) from the available set of reported results. Indeed, sev-
eral current systems such as SETI@home use similar methods.

We assume that a job,J, can be broken down inton independent5 subtasks. We
denote byN the number of Internet hosts in the peer-to-peer network. Let p be the
number of Internet hosts that are engaged in computing the job J. The subtasks ofJ
can be clustered into batches (b1,b2, . . .), each withK subtasks. We discuss, later in
this section, the possible considerations to be taken whilechoosingK. During job
submission, each batch is replicated by a factorr ≥ 1. For example,r = 2 implies
that two nodes will be assigned the same batch to compute.

A simple randomized job submission algorithm that allows replication can be con-
structed as follows:

(1) A hostA that wants to submit subtasks of its job sets the batch sizeK and
a replication factorr. Each batch has an associated meta-information which

4 The term w.h.p. indicates probability of success equal to 1− 1
NΩ(1) .

5 We subsequently discuss the need for inter-subtask communication and show how our
architecture addresses this requirement.
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includes the job identifier and a unique name (created as a hash, e.g., MD5, of
the batch content). The meta-information always accompanies the batch.

(2) For each batch, hostA selects a node,B, uniformly at random by performing
a random walk and submits a batch to it. The replication factor r is also sent
with the batch.

(3) Each node that receives a batch decrementsr by one and ifr > 0 sends a copy
of the batch to another node chosen uniformly at random. The updated value
of r is sent with the batch. The address of nodeB (i.e., the direct descendent
of nodeA) is also sent. Thus, each batch is replicated at a total ofr nodes in
the network.

Steps 2 and 3 are atomic, i.e., nodeA knows that either they were successfully and
entirely completed or that they failed. This is implementedusing the 2-phase com-
mit strategy as follows. Each time a node receives a batch, itsends an ACK to the
node that sent it the batch (i.e., its parent). Furthermore,each time a node success-
fully receives an ACK from its child, it sends a message to (its respective) nodeB.
After a timeout period, nodeB compares the number of such messages received,r ′,
with r −1 and resubmits batches to make up for the difference. This isdone using
the same protocol as step 3, except this timer − 1− r ′ represents the number of
replicas needed. Once a total ofr −1 messages are received it sends an activation
message6 to all ther −1 nodes and itself. A message is sent to nodeA indicating
successful distribution of the given batch. Each of the involved nodes (including
nodeA) monitor the life of nodeB and abort this transaction if nodeB fails. As r
is usually a small constant number, and the messages exchanged are only control
messages, the associated overhead of this scheme on nodeB does not result in a
bottleneck for nodeB. The state information, involved in this mechanism, can be
discarded once the transaction completes successfully. Observe that the replication
is done by a node B and not node A. We use this approach to avoid overload on
node A when the number of subtasks is large.

In ideal conditions, note that the number of batches sent byA remainsn/K since
redundant replication is taken care of by nodes downstream.Similarly, note that
replication of each batch occurs in parallel. The total number of messages for sub-
mitting the batches in the network is given bynr/K. In real-world situations, this
translates to reducing the cost of job submissions for master nodes. Certainly, any
node failures during this transaction result in higher overheads due to resubmis-
sions.

Several jobs can be initiated on the network concurrently. Since our job allocation
protocol is based on randomization, a node may be assigned more than one batch,
either of the same job or of different jobs. A node processes batches one at a time
on a first come first served basis. We emphasize that this randomized protocol is

6 This message does not require an ACK, i.e., the batch will notbe resubmitted to cater to
the failure of a node which successfully received a batch earlier but failed before activation.

8



simple, does not maintain any persistent state information, and has a low overhead
arising from random walks for uniform sampling.

3.2.1 Uniform Sampling and Load Balancing

Assume that a total ofm batches need to be assigned to theN processors. If we
assign batches uniformly at random to theN processors, we can provide bounds
on the quality of load balance achieved. Givenmbatches, we answer the following
questions:

(1) What is the expected fraction of nodes that will have a batch assigned to them?
(2) What is the probability that a node gets a given number of jobs to perform?
(3) What is the maximum load on a node?

The arguments we present next suggest that usingm= N logN provides good uti-
lization of the network w.h.p. and at the same time yields a low probability of high
load imbalance.

Lemma 3.1 Given m batches, the expected fraction of processors that have a batch
assigned to them is1−e−m/N.

Proof: The probability that a given processor does not get a batch, when a single
batch is submitted, is 1−1/N. Thus, whenmbatches are distributed, the probability
that a given processor does not get any of these batches is given by:

(1− 1
N

)m ≈ e−m/N,

assuming thatN is large. We define an indicator random variableXi, which assumes
the value 1 if theith host did not get any batch, and 0 otherwise. We want to find
the expected number of processors that do not get any batch. Using linearity of
expectation, we have:

E[X] = E

[

N

∑
i=

Xi

]

=
N

∑
i=1

E[Xi] = N(1− 1
N

)m ≈ Ne−m/N

Thus, the number of nodes that will get at least one batch to process isN−Ne−m/N,
and the fraction of nodes that will get at least one batch to process is
(N−Ne−m/N)/N = 1−e−m/N. �

This lemma simply implies that ifm≤ N at most, approximately, 65% of the nodes
will be used. Similarly, ifm≥ N logN, with high probability all nodes will be used.
This result is significant because the utilization level of the system is an important
performance metric for a parallel ensemble.
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Next, we determine what load balance characteristics can beclaimed if job sub-
mission is based on uniform sampling. We find the probabilitythat a given node
getsexactly Mbatches to process, when a total ofm batches are submitted to the
distributed system consisting ofN nodes. Note that theseM batches can be any
combination chosen from them batches. Then, the probability is given by:

(

m
M

)(

1
N

)M (

1− 1
N

)m−M

Given thatm andN are large compared toM, the above expression can be approx-
imated by:

(

m
M

)(

1
N

)M (

1− 1
N

)m−M

≈ e−m/N(m/N)M

M!

Similarly, the probability that a node getsat least Mbatches is given by:

(

m
M

)(

1
N

)M

Building on the above derivations, we show in the following lemma, that a high
load on a single processor occurs with low probability. We use the case where
the number of batchesm = O(N logN), which refers to the condition that yields
good system utilization (i.e., almost allN nodes get a batch to process) with high
probability.

Lemma 3.2 If m= O(N logN), the probability that the maximum load on any node
is more thanΩ(logN) is low.

Proof: For simplicity, we setm= N logN. We denote the maximum load (i.e., the
maximum number of batches assigned to any node) to beM. The probability that
anynode is assigned at leastM batches is given by the following expression.

N

(

N logN
M

)

(
1
N

)M

We can derive a bound on this probability by settingM = e2 logN (i.e., M =
Ω(logN)). Thus, the probability that any node has a load more thane2 logN can
be shown to be low (i.e., 1/N) as follows.

N

(

N logN
M

)

(
1
N

)M ≤ N(
eNlogN
e2 logN

)M(
1
N

)M

=
N

ee2 logN
=

N

Ne2 ≤ 1
N

.

�
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Using this lemma, we show in the following theorem, that job submission using
uniform random sampling results in a good load balance amongst the nodes in the
network.

Theorem 3.1 When m≥ N logN the load imbalance on a node diminishes.

Proof: Whenm= N logN, a perfect deterministic algorithm allocates logN batches
to each machine. For this case, from the previous lemma, we know that the prob-
ability that the maximum load on a machine isΩ(logN) is low. Therefore, a ran-
domized algorithm that uses uniform sampling to distributetasks approaches a de-
terministic algorithm and yields good load balance. �

3.2.2 Choosing Batch Sizes

Selecting an appropriate batch size in a distributed environment is a challenging
task and depends on several variables. Kruskal and Weiss [22] shows that when
the running times of the subtasks are independent and identically distributed (i.i.d.)
random variables with meanµ and varianceσ2, then the estimated completion time
is given by:

E(T) =
n
p

µ+
nh
pK

+σ
√

2K logp (1)

wheren is the number of subtasks,p is the number of processors,h is the network
delay, andK is the batch size. It is assumed thatK/ logp is large, and for smaller
values the error is not substantial. This expression is quite general and holds for
processing time distributions including exponential, gamma, Weibull, uniform, de-
terministic, and truncated normal distributions. The variance in the time required to
complete the processing of a task,σ, depends on the following parameters:

(1) The number of concurrent jobs scheduled on the processors. This corresponds
to the number of subtasks allocated to a single processor, and depends on the
load balance achieved by the job submission algorithm.

(2) The processing capability of participating hosts.
(3) The variation and non-deterministic nature of processing requirements of each

subtask.

Each term in Equation 1 has important implications. The firstterm corresponds to
the time it would take an ideal parallel system withp processors to compute the
n subtasks. The second terms captures the benefit from aggregating jobs in terms
of reducing the communication cost. The final term represents the overhead due to
uneven finishing times of the processors. The most importantimplication of this
result is the tradeoff between communication, which decreases as 1/K, and the
variance in processing times, which increases as

√
K.

In the above discussion, there is no mention of the failure (and departure) of nodes
in the network. This, however, needs to be considered because there is an important
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relationship between the size of the batch and the lifetime of a node. As a sim-
ple illustration, consider the minimum processing time of all batches, minT(bi). If
minT(bi) is greater than the expected lifetime of the nodes, the system would be
reduced to using only a fraction of the nodes whose lifetime is large compared to
the expected completion time of the job. Heavy load on such nodes implies that
it would take much longer to complete the jobs, which furtherreduces the set of
nodes that have suitable lifetimes. Furthermore, being able to use long lived nodes
would require a job allocation scheme that maintains state information. This can
be prohibitively expensive in large dynamic networks. Our use of a randomized
approach avoids these overheads, but at the same time is susceptible to failure un-
der the conditions just discussed. Thus, a batch size shouldbe small enough, so
that the required time for processing the batch is comparable to the lifetime of the
nodes. Lifetime of nodes is also important in the context of developing a replication
strategy, as discussed in Section 3.2.3.

In summary, the size of a batch,K, should be:

(1) Large enough so that the network overhead is reduced,
(2) Small enough so that total job completion is minimally affected by variations

in processing times taken by hosts,σ, and
(3) Small enough so that the computation time required for a given host is com-

parable to the host’s lifetime.

Furthermore, the results from Section 3.2.1 suggest that ifthe total number of tasks
to be computed in the network (from all jobs) isn′, then the number of batches,
n′/N, should beN logN for good load balance and network utilization. We propose
K = log2N as an ideal compromise for aggregating tasks. This allows computation
of a very large number of tasks in the network,n′ = N log3N. It also results in a
good network utilization since the number of batches is sufficient. For example,
for a network of 100,000 hosts, around 150 million tasks can be executing, which
would achieve high utilization, while the load imbalance would be bounded. As
K grows faster than logN, Equation 1 can approximate (with low error) the total
running time forn′ tasks. Plugging in these values shows that this value ofK gives
a low network overhead asn′h/pK = hlogN. It also results in a low impact on
execution time variations asσ

√
K logp = σlog3/2N.

3.2.3 Multi-Step Replication

We revisit the replication strategy keeping in view the factthat increased replica-
tion at submission time implies increased time to completion of the jobs. Increased
makespan of a job implies that more nodes would leave the network during that
time, conditioned on the distribution of lifetime of the nodes in the network.

Let γ be the number of nodes leaving the network in unit time. We denote the time
for completion ofn tasks byT(n). As defined earlier,r denotes the number of
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replicas of a given task in the network. Recall that the protocol given earlier in this
section performs replication at job submission time. Then,nf = γT(nr) gives the
number of nodes leaving the network during the makespan of the job. The level of
replication to deterministically counter the failures would requirer = nf . This, in
turn, asserts the stability condition:γ = nf /T(n ·nf ) ≤ 1/T(n), i.e., at most one
node failure over the job makespan. This stability requirement is degenerate.

Thus, a job submission protocol should use a multi-step replication strategy instead
of replication-at-initiation. This algorithm is well suited for a high node failure rate
environment. The protocol works as follows:

(1) A host,A, that wishes to submit subtasks of its job, sets the batch size,K. The
replication factorr is set to one.

(2) For each batch, hostA selects a node uniformly at random, by performing a
random walk, and submits a batch to it.

(3) Host A also calculatesT, which is the time it would take an ideal parallel
ensemble to complete the job, asT = n/Nµ. It then waits for a timeεT, where
ε is the expected efficiency of our distributed system withoutfailures. This
can be estimated using Kruskal’s equation (cf. Equation 1).

(4) After waiting for this time period, it collects the jobs that have been computed
using the algorithm presented in Section 3.3.2.

(5) HostA determines the jobs that did not run to completion and resubmits them
with r = 2. If nf jobs were missing,T is calculated again as max(r ·nf /N,1) ·
µ. The waiting and re-submission, withr incremented at each step, continues
until results for all tasks are retrieved.

Note that this scheme does not require the complex multi-party atomic transaction
for replication, as required by the replication-at-initiation protocol, described in
Section 3.2. However, the overhead of replication in terms of bandwidth usage is
experienced by the node that introduces the job to the network. In Section 5, we
show using simulation that this multi-step protocol in factexecutes tasks much
faster than the replication-at-initiation strategy when this strategy uses more than
3 replicas. However, the key advantage is that this algorithm achieves 100% job
completion, which the other algorithm cannot achieve, in most cases.

3.3 Rendezvous Service

The rendezvous service provides a communication fabric between nodes that are
oblivious to each other. The key used for communication is a resource identifier
or a resource query string, rather than a node address. This is analogous to the
directory service in a client-server architecture. However, unlike its client-server
based counterpart, a rendezvous service does not have a centralized repository and
the peers need not know or register with any predefined servernode. The required
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information is maintained in a completely distributed fashion among the peers.

3.3.1 Construction

Nodes become a part of the rendezvous service by creating a “rendezvous service
set” (RS-set). The RS-set of each node contains pointers to

√
N logN peers selected

uniformly at random. This construction is similar to the probabilistic quorum pre-
sented in [23]. The creation of the RS-set at each node occursin a distributed fash-
ion asynchronously. Each node is responsible for maintaining

√
N logN live peers

in its RS-set, when there are node failures. The provider of aresource publishes
its resource identifier to its RS-set. Similarly, the node looking for this resource
sends a query to its own RS-set. If there is an intersection between RS-sets of the
producer and the consumer then the consumer can access the resource.

Theorem 3.2 Any two RS-sets of size
√

N logN nodes intersect w.h.p.

Proof: Since the RS-sets contain
√

N logN nodes selected uniformly at random,
the probability that a given node of one RS-set is not in the other RS-set is given by

1−
√

N logN
N . Thus, the probability that none of

√
N logN nodes of one RS-set are in

the other RS-set is:
(

1−
√

N logN
N

)

√
N logN

≈ 1
N

.

The probability that at least one node in the two sets intersect is 1− 1
N , which

implies that the two RS-sets intersect with high probability. �

Note that this service has very low overhead. The overhead ofcreating the RS-
set is amortized over the life of the node. Similarly, only

√
N logN messages are

required for each query. We can compare this with flooding, where the number of
network messages increases exponentially with the number of hops. In the rest of
this section, we show how this service is used in our architecture.

3.3.2 Monitoring and Merging Jobs

When a node completes the execution of a batch, it informs itsRS-set using the job
identifier. With high probability, one of the nodes in the RS-set of this node also
belongs to the RS-set of the owner of the job. Such an intersecting node retrieves
the results. Each of the nodes in the RS-set of job owners maintain independent
bit vectors, where the jobs received by them are marked. The owner requests these
vectors from its RS-set, once in a given interval. It may alsodownload the results
for the completed tasks. Alternatively, the owner may ask its RS-set nodes to submit
completed jobs to it once a certain number of new results are available. If replication
factor r > 1 is used in submitting jobs the owner would get multiple copies of the
same job. This information can be used to verify that the results match, and thus
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provide a validation mechanism.

3.3.3 Reputation Monitor

Reputation monitoring requires publishing the information (ID) of malicious nodes
to the RS-set of the node that discovers the malicious activity. The mechanisms for
detecting malicious activity are independent of this subsystem and an example is
provided later. Repeated offenses of a malicious node result in several nodes report-
ing against the node. If nodex wants to query the reputation of nodey, it simply
queries its RS-set. The overlap between the RS-sets revealsthe required informa-
tion. Using this information, and observing that several nodes reported againsty,
nodex may not accepty in its RS-set, or not submit or accept jobs from nodey.
This discourages free-riders and malicious users in the system. The integrity of the
reputation monitor is robust to collaborative malicious activity since a large num-
ber of randomly chosen nodes (RS-sets of multiple nodes) keep this information.
Such systems have been proposed in the context of conventional file-sharing P2P
networks and have been shown to handle free-riders in a scalable manner [24].

As a simple example of discovering malicious activity, consider the case where a
node submits wrong results. The RS-set of the master receives results computed
by all participating nodes. It compares the multiple results for the same batch and
accepts the most repeated result as the correct result. The ID of nodes which sub-
mitted wrong result is broadcast to the RS-set of the job owner.

3.3.4 Decoupled Communication

A node might need to search for information without knowing which node has the
required information. For example, a node processing a taskmay need to know the
result of some preceding task. Such cases may arise if the subtasks of a job are
not completely independent. Similarly, several other examples of resource location
can be cited. In these scenarios, a node needs to send a query about the requested
resource to its RS-set and with high probability it will intersect with the RS-set of
the provider of the resource.

3.4 Security Considerations

Using a decentralized approach for submitting jobs and aggregating results makes
the system prone to several security threats. We discuss some of these issues here
and describe how they can be handled in our architecture.

Attack on load balancing: a malicious node may try to overload another node by
selecting it repeatedly during the random sampling process. Our architecture is in-
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herently safe from such attacks because a node under attack can delegate the task to
another randomly chosen node without affecting the load balancing scheme. This
is because the load balancing scheme only requires that the nodes are chosen ran-
domly and the above action does not affect the “randomness” of uniform sampling
(cf. Section 4).

Modification of data passing through intermediate nodes: inthe protocols described
earlier in this section, data destined for a given node may beforwarded via another
node. This happens when the RS-set nodes forward results to the owner of the job
and in the replication-at-initiation protocol. In these cases, standard digital signa-
tures suffice to ensure the integrity of the data. BOINC [5] provides an example of
the application of these techniques. Similarly, in the replication-at-initiation pro-
tocol the first node in the chain of replication is responsible to make sure thatr
replicas are sent to random nodes. Using digital signaturesthe job owner can be
sure thatr replicas were forwarded, however, it cannot be ensured thatall the r
nodes are not collaborating malicious nodes.

Several other scenarios involving threats due to collaborative malicious actions
need to be evaluated in greater detail. Similarly, some of the unresolved security
issues of existing systems, e.g., [25], are pertinent to ourproject. A comprehen-
sive evaluation of the security vulnerabilities and feasible counter measures is a
key focus of our ongoing and future work in the area of open infrastructures for
Internet-scale cycle sharing.

4 Uniform Sampling With Random Walks

In this section we introduce random walks and show how they can be used to per-
form random sampling. If the underlying network does not have a regular degree
distribution, i.e., if few nodes are connected to many, and many nodes are con-
nected to a few nodes, then a random walk, with transitions from a node to its
randomly chosen neighbor, does not yield a uniform sample. We revisit Kruskal’s
equation and argue that skewed sampling results in bad load balance and long job
makespan. We show how the transition probability from one neighbor to another
must be modified to achieve a uniform sampling, and give an algorithm that com-
putes the required transition probabilities.

4.1 Sampling With Random Walks

Random walks can be abstracted as Markov chains defined over astate space and
a given state transition matrix. The network nodes form the state space and the
probability of moving from a node to its neighbor govern the transitions. Using a
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Markov chain model, we show in this section that (1) a random walk of a given
minimum length on a connected aperiodic graph (which represents the network)
reaches a stationary node sampling distribution, and (2) asimple random walkcan-
not achieve uniform sampling unless nodes in the network have identical numbers
of connections. We also discuss various parameters that determine the length of the
random walk required to achieve a stationary sample distribution.

Let G(V,E) be a simple connected undirected graph representing a distributed sys-
tem with |V| = N nodes and|E| = e links. The degree, or number of links, of a
node i, 1 ≤ i ≤ N, is given bydi . The set of neighbors of a nodei is given by
Γ(i), where edge(i, j) ∈ E,∀ j ∈ Γ(i). TheN×N adjacency matrix ofG is given
by A = {ai j}, where 1≤ i, j ≤ N, ai j = 1 if the edge(i, j) ∈ E, and 0 otherwise.
The correspondingN×N transition probability matrix, given byP = {pi j}, is the
probability of moving from nodei to a nodej in one hop.P is a row-stochastic
matrix, i.e.,∑ j pi j = 1.

For asimple random walkthe transition from nodei to its neighbor is governed by
the transition probability matrixP, where∀ j ∈ Γ(i), pi j = 1/di and 0 otherwise.
The sequence of nodes can be denoted as{Xt ,Xt+1, ...}, whereXt = i implies that
at stept the walk is at nodei.

If we consider nodes inG as states in a finite state space, then the random walk
represents a discrete-time stochastic process,{Xt}t≥0. For this stochastic process
we have,

Pr(Xt+1 = j|X0 = i0, ...,Xt−1 = it−1,Xt = i)

= Pr(Xt+1 = j|Xt = i) = pi j
(2)

Equation (2) simply implies that a random walk ismemoryless, i.e., during a ran-
dom walk the probability of transition from nodei to node j in one step depends
only on nodei. Thus, a random walk can be conveniently modeled as a Markov
chain, more specifically a homogeneous Markov chain, since the right hand side of
Equation (2) is independent oft. Such a Markov chain has the following proper-
ties: it is irreducible if the graphG is connected and is aperiodic ifG is aperiodic. A
graphG is aperiodic if the greatest common divisor of the length of all cycles in the
graph is 1. In particular, an undirected aperiodic graph cannot be bipartite, which
is a reasonable assumption for real networks in which connections are established
randomly.

4.1.1 Convergence to Random Sampling

It is well known that an irreducible and aperiodic Markov chain has a stationary
distributionπT = πTP, andπT = πTPt follows (wherePt implies t-step transitions).
It is easy to show ([26], page 132) thatπi , the component corresponding to node
i, 1 ≤ i ≤ n, is di/2e. From πT = πTP, we see thatπ is a left eigenvector ofP
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with eigenvalue7 1. The right eigenvector for eigenvalue 1 is1 (a vector of all
ones), sinceP1 = 1. It follows thatP∞ = 1πT . This implies that a very long walk
converges to the stationary distributionπ irrespective of the initial distribution, i.e.,
the starting point of the walk.

The above results indicate that a long enough random walk converges to a random
sample irrespective of where the walk started. Thus, a random walk is a good can-
didate for random sampling in a network. However, we also know that the resulting
sample distribution is dependent on the degree of the node:πi = di/2e. This last
result implies that the random sample is uniform (πuni f orm = (1/N)1) only if the
graphG is regular (i.e., the degrees of all nodes are equal). Since typical large scale
real-world unstructured networks tend to have non-uniformdegree distributions
(e.g., power-law degree distribution of unstructured P2P networks [28]), uniform
sampling in practical scenarios poses a significant challenge.

4.1.2 Length of Walk for Random Sampling

The sample distribution at stept of the walk depends onPt , which in turn de-
pends on the eigenstructure ofP. From the Perron-Frobenius theorem, we have
Pt = λt

1v1uT
1 + O(tm2−1|λ2|t), wherev1 is the right eigenvector corresponding to

eigenvalueλ1 andu1 is the left eigenvector, andm2 is the algebraic multiplicity
of λ2 (see, [27] Chapter 6). Rewriting the above equation, we havePt = P∞ +
O(tm2−1|λ2|t). These results simply imply that

Pt = 1πT +O(tm2−1|λ2|t). (3)

As |λ2| < 1, whent is large,|λ2|t ≈ 0. Therefore, the smaller the second largest
eigenvalue modulus (SLEM), the faster the convergence to stationary distribution.
As a result, a walk of smaller length is required for random sampling. Also note
that there is a limit on the minimum length on the walk, i.e., any walk of length
greater than this minimum yields a random sample. The lengthof the required
walk, or themixing time, is often approximated asO(logN)[6], however the exact
factors involved depend on the construction (and thus the SLEM) of the transition
probability matrix.

4.2 Uniform Sampling in Nonuniform Networks

As mentioned in Section 4.1.1, a random walk of a given minimum length con-
verges to a stationary distributionπ. If the stationary distributionπuni f orm is such

7 SinceP is a non-negative primitiveN×N matrix (i.e., irreducible and aperiodic), from
basic linear algebra, we also know thatP hasN distinct eigenvalues 1= λ1 > |λ2| ≥ · · · ≥
|λN| [27].
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thatπuni f orm= (1/N)1, the random walk will terminate at any node in the network
with equal probability (c.f. Definition 1.1).

However, if the stationary distribution isπi = di/2e, we pick the high degree nodes
with a much higher probability. This implies that such nodeswill have a high num-
ber of tasks to compute. The variance in the node sampling increases the variance
of the processing time of the nodes, as the processing resource of the node would
be divided over the tasks assigned to it. If the resulting variance of the running
time from the mean processing time of the nodes iss2, then the Kruskal’s equation
would be written as:

E(T) =
n
p

µ+
nh
pK

+
√

σ2+s2
√

2K logp (4)

This directly impacts the expected running times of jobs. Note that variance of the
degree of the nodes may be very high if the underlying graph follows power-law
degree distribution. In Section 5.2.1, we experimentally demonstrate that using sim-
ple random walks for sampling in nonuniform networks yield apoor load balance,
and consequently a large job turnover time.

4.2.1 Modifying Transition Probabilities

To achieve a uniform stationary distribution in an irregular graph, we need to mod-
ify its probability transition matrix.

LetPbe a probability transition matrix of a Markov chain, thenπT
uni f orm= πT

uni f ormP,

which is the same as(1/N)1T = (1/N)1TP. This means that the sum of each col-
umn vector ofP is 1, i.e.,P is column stochastic. A probability transition matrix
which is column stochastic in addition to being row stochastic is calleddoubly
stochastic. Note that symmetric transition probability matrix are doubly stochastic.
Thus, if we create a matrix withpi j = p ji we will achieve a uniform stationary dis-
tribution, and hence a random walk using these transition probabilities will yield a
uniform sample.

Two well known algorithms, maximum-degree algorithm (MD) [29] and Metropolis-
Hastings algorithm [30,31], yield a symmetric transition probability matrix. How-
ever, these algorithms need a long walk to reach stationarity, if the graph has a
highly skewed degree distribution. In our previous work [29], we present a detailed
discussion and experimental evaluation of these algorithm, and suggested a new
algorithm for building a transition matrix. Here, we reproduce the algorithm, how-
ever, the details and evaluation are omitted.
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4.2.2 Random Weight Distribution Algorithm

In this section, we present our distributed algorithm, referred to as the Random
Weight Distribution (RWD) algorithm. RWD is a completely decentralized algo-
rithm that sets up transition probabilities in a connected network to enable efficient
uniform sampling via random walks.

The algorithm proceeds as follows. In the initialization phase each node, locally,
sets transitions probability as:

prwd
i j =



















1/ρ if i 6= j and j ∈ Γ(i), whereρ ≥ dmax

1−di/ρ if i = j

0 otherwise.

Here,ρ is a static system parameter with the constraint that it should be greater than
maximum degree,dmax. This parameter is static because we can sufficiently overes-
timatedmax knowing system properties (e.g., popular P2P clients have amaximum
connection limit [32]). Note that this phase results in a high self-transition proba-
bility for low degree node. Also note that the resulting transition probability matrix
is symmetric.

After the initialization is complete, each node attempts todistribute its self-transition
probability randomly and symmetrically to its neighbors. The termweight of a node
refers to the self-transition probability of the node at anygiven time during the ex-
ecution of the algorithm. At a nodei, the algorithm terminates when either the
weight of the node becomes zero or the weight of all nodesj ∈ Γ(i) becomes zero.
Intuitively, a low self-transition probability implies that the walk mixes faster and
converges to a stationary uniform distribution with a fewernumber of steps. The
pseudo code for the complete RWD algorithm is shown in Figure1.

Remark 4.1 Each step in the RWD algorithm maintains symmetry in the global
transition probability matrix Prwd. Therefore, the transition probability matrix re-
mains symmetric when the algorithm terminates. Thus, a random walk based on
Prwd will have stationary distributionπuni f orm.

The overhead of messages due to our algorithm are minimal as explored in our
earlier work [29].

5 Performance Evaluation

We present here detailed simulation results for various performance aspects of our
system. First, we evaluate the efficiency of our system for different job loads. We
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At each nodei:
⊲ Initialization
1. N := Γ(i)
2. δ := Quantum
3. pii = 1−di/ρ
4. foreach j ∈ Γ(i) repeat
5. pi j = 1/ρ
6. end foreach

⊲ Random Weight Distribution
1. while pii ≥ δ and N 6= {∅}
2. j := random(N)
3. reply := sendmesg( j, INCREASE)
4. if reply= ACK then
5. pi j := pi j + δ
6. pii := pii −δ
7. else
8. N := N− j
9. end if
10. end while

⊲ Receive Message Handler
1. mesg:= receive()
2. j := get sender(mesg)
3. type:= get type(mesg)
2. if pii ≥ δ and type= INCREASEthen
3. pi j := pi j + δ
4. pii := pii −δ
5. reply := ACK
6. else
7. reply := NACK
8. end if

Fig. 1. The Random Weight Distribution algorithm.

show that job allocation using random walks with transitionmatrix generated using
the RWD algorithm yields good load balance due to uniform sampling. In compar-
ison, job allocation using sampling based on simple random walk yields a highly
skewed load balance. A comparison of the efficiency of the twoschemes reflects the
impact of sampling techniques. Next, we study the performance of our architecture
under varying node failure rates. We compare the replication-at-initiation and the
multi-step replication schemes in terms of job completion time and their resilience
to failures. We show that replication-at-initiation is notable to fully recover results
for tasks when failure rates are high, even when the replication factor is increased.
Furthermore, increased replication results in significantly higher job completion
times. In contrast, the multi-step scheme is always able to recover computed re-
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sults for all of the submitted tasks and the overhead associated is low, compared to
replication-at-initiation using a high replication level.

The main contribution of this experimental study is that it serves as a proof-of-
concept of the feasibility of a randomization-based unstructured P2P computing
environment.

5.1 Setup

Our simulation testbed implements the RWD algorithm for uniform sampling of
nodes, the two job distribution protocols discussed in Section 3.2, and the ren-
dezvous service for job aggregation and progress monitoring. These algorithms are
implemented to function on top of an unstructured P2P network. The P2P network
is a connected graph of nodes, where each edge denotes a link between the nodes.
Hence, each node knows only about its neighbors in the graph.We use a power-
law random topology for the network. Such graphs are often used in the literature
to model large non-uniform network topologies. It is believed [33] that unstruc-
tured P2P networks have power-law topologies. In a power-law random graph, if
the nodes are sorted in descending order of degree, theith node has degreeD/ia,
whereD is a constant. The parametera = 0.8 is used. This value ofa is com-
monly used in evaluation studies of P2P networks [34]. The underlying topology
is constructed by first selecting the degree of each node using a power-law distri-
bution and then connecting them randomly. Motivated by real-world systems [32],
we limit the maximum degree to 100. In typical P2P clients such as Limewire [32],
these restrictions are often specified to restrict the number of connections of a given
node in order to limit the load on the node. We fix the network size toN = 10,000
nodes. Base on this network size, the optimal number of subtasks (cf. Section 3)
is equal to 7.8 million. We use this number in most of our experiments, unless
otherwise stated.

5.1.1 Network Delays and CPU Time

Communication due to random walks, job submission, result aggregation, and progress
monitoring has an associated network delay cost that affects the performance of our
distributed cycle sharing ensemble. In our evaluation, we use network delay mea-
surements taken from the Internet using thousands of node pairs on PlanetLab [35],
as discussed below.

The P2P network is an overlay network, i.e., neighbors in theP2P network may not
be neighbors in the underlying Internet graph. A message between any two nodes
(even if they are neighbors) in the P2P network may actually be routed over sev-
eral hops in the underlying network and the end-to-end delaybetween these nodes
need to be considered. Furthermore, in the case of random walks, which consists
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of several hops in the P2P network, we have to accumulate the per-hop delays. To
realistically account for the network delays, we measured the end-to-end cost of
transferring messages, using TCP, between thousands of node pairs on PlanetLab.
We gathered delay samples for over 14,000 pairs of nodes. The number of samples
we could gather is limited by the availability of nodes on PlanetLab. PlanetLab con-
sists of over 500 nodes but several of them could not be contacted during our exper-
iment runs. The delays measured depend on the sizes of the messages transferred.
For random walk messages, we used a size of 1KB. For a message containing a
job to be executed, we used a maximum size of 500KB8 . This size corresponds to
the maximum work unit file of SETI@home [1]. As the P2P networkused in our
experiments consists of 10,000 nodes, we require 100 million pairs, which is not
feasible to collect using PlanetLab. Thus, we assign network delays (for each mes-
sage size) between the 10,000 nodes by sampling from the 14,000 measurement
set.

The next parameter to be configured for the experiments is theCPU time consumed
per task. We assume that the CPU time per task is an exponential random variable
with meanµ. The nature of computation to be executed determinesµ, and this
value varies greatly across different application domains. If the CPU time is large
compared to the network costs then the efficiency of the system, in comparison to
an ideal parallel ensemble, is higher. On the other hand, if the CPU time is smaller
compared to the network costs then the efficiency of the system is lower. To allow
a conservative evaluation of our system, we setµ = 11s. This value corresponds to
the mean network delay (from our Internet measurements) fortransferring a 500KB
file over TCP. Also, note that this choice favors using a higher number of subtasks
per batch as per Kruskal’s equation (cf. Equation 1).

5.2 Efficiency and Computational Throughput

We study the efficiency of our system in comparison to an idealN processor par-
allel ensemble, which computesn tasks inµn/N time. As stated in the discussion
in Section 3, ifN logN batches are submitted, then w.h.p. each processor has a task
to perform. Similarly, if possible, we would like to have batch sizes approaching
K = log2N tasks (which translates to an optimaln = N log3N). In the cases where
n/K < N, we useK = max(n/N,1). To evaluate the efficiency of our system for dif-
ferent job sizes and batch sizes, we use the parameters described in Table 1. Note
that although we would like to haveN logN batches each time, due to substan-
tial network overhead, we prioritize larger batch size overthe number of batches
that can be submitted. As a result, when there are only 10,000batches,≈ 30% of
the machines in the network have no tasks to process. This is consistent with the

8 The exact size depends on the number of subtasks in the message. 500KB corresponds
to the maximum number of subtasks (84 as discussed latter) inthe batch.

23



predictions from Section 3.2.1. The resulting efficiency ofthe system is plotted in

Number of jobs,n Cluster size,K Number of batches

N = 10000 N/N = 1 N = 10000

N logN = 92000 logN = 9 N = 10223

N log2N = 846400 log2 N = 84 N = 10072

N log3N = 7800000 log2 N = 84 N logN = 92858
Table 1
Number of jobs and batch size parameters used for evaluatingthe efficiency of our system.

Figure 2. As predicted, the system has the highest efficiencywhenK = log2N and
the number of batches isN logN. The efficiency achieved in this case is 44.4%,
which is excellent for such loosely coupled dynamic environments, given that the
order of processing time is almost the same as the network overhead. We expect
that in the real system there would usually be enough job submission requests to
meet the optimum value of number of tasks in the system.
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Fig. 2. Efficiency of our system when compared with an ideal parallel ensemble.

5.2.1 Effect of Sampling Techniques

Uniform node sampling is the underlying substrate for all our randomized algo-
rithms. Our RWD algorithm computes transition probabilities in such a way that
a random walk yields a uniform sample. In comparison, a simple random walk
(SRW) is biased towards high degree nodes. We compare the load balance achieved
using these two strategies and evaluate the impact of load imbalance due to the
SRW algorithm.

To compare the load balance of the two schemes, we use the optimal parameters
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Fig. 3. Load per node using uniform sampling with RWD (a) versus sampling using simple
random walk (b).

n = N log3N andK = log2N. The resulting percentage of the total number of tasks
assigned to each machine are plotted in Figure 3. Thex-axis of the plot represents
nodes sorted in ascending order by degree. The number of tasks assigned to each
machine for the sampling using transition matrix generatedfrom RWD has a uni-
form distribution, with low load imbalance as seen in the plot in Figure 3(a). On
the other hand the number of tasks assigned to a machine by sampling using SRW
is biased to the degree of the node as seen in Figure 3(b). Thus, some nodes end up
receiving almost 5 times higher load than other nodes.
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Fig. 4. Performance advantage of uniform sampling using random walk with RWD versus
simple random walk.

A load imbalance implies that the job would take longer time to finish. We com-
pare the system efficiency when batches are allocated with sampling using the two
techniques. The number of jobs used aren = N log3N, N log2N, and the cluster
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sizes used in both cases is log2N. The plot in Figure 4 shows this comparison. The
system using RWD performs much better irrespective of the loads assigned to it
and the performance advantage increases as the load increases.

5.3 Performance Under Node Failures

An important aspect of our architecture is its performance under node failures. The
key parameters of interest are: percentage of tasks that aresuccessfully completed
and are retrieved by the owner of the job, increase in completion time due to repli-
cation, and performance under varying failure rates. For these experiments, we use
K = log2N, n = N log3N andN = 10,000 nodes.

5.3.1 Node Failure Model

Node failures are modeled using a parameterα, which represents the fraction of
nodes that fail in the time it would have taken for the job to complete in an en-
vironment without failure. This definition is useful for modeling node lifetime in
comparison to the lifetime of the job. Node lifetimes are modeled as zipf random
variables that are correlated to the degree of the node. The parameterα is used to
normalize these lifetimes in relation to the job makespan time.

The number of nodes in the network is kept roughly constant bymatching the ar-
rival and failure rates. The size of the P2P does not have any implication on the
load balance achieved by our randomized algorithms. However, the size of the P2P
system does impact two important parameters, which are the length of the random
walk and the size of the RS-set. In our system, these parameters are estimated based
on the largest size of the network and hence remain appropriate if the size of the
network shrinks. This is because, for uniform sampling, theonly requirement is on
the minimum length of the walk; a walk length longer than the minimum still yields
a uniform sample (cf. Section 4.1.2). Similarly, if the RS-sets have a larger size than
required, the intersection between two RS-sets is still guaranteed with high proba-
bility. Certainly, longer walks and larger sized RS-sets are not optimal with respect
to minimizing system overhead, however, correctness takesprecedence. Our model
for node failures, which keeps network size to be roughly constant, is focused to
cleanly exhibit the relative performance evaluation of thetwo replication schemes.

5.3.2 Evaluation

We compare the performance of the two schemes described in the paper, namely
replication-at-initiation and multi-step replication. For the replication-at-initiation
method, we use a replication factor of two (i.e., two copies of the replicated pro-
cesses are submitted to the system). The effect of higher replication levels is dis-
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cussed later. We let the owner query the system (through the rendezvous service)
for its running tasks often enough so that it knows almost instantaneously if no
more of its tasks are running. This is unrealistic in a real-world environment, but
our results here are meant to provide a bound on how well the system can perform.
For the multi-step replication method, the system assumes an efficiency of 40%
and estimates the job makespan as was described in the protocol. It performs the
multi-step replication until at least one copy of each task’s result is obtained, and
then stops. The parameterα is varied from 0.05 to 0.5.
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Fig. 5. Percentage of unique task results successfully retrieved by the owner for the repli-
cation-at-initiation scheme.

The plot in Figure 5 shows the percentage of unique tasks successfully retrieved by
the owner for the replication-at-initiation scheme. As thefraction of failing nodes
increases, the success ratio decreases rapidly. In comparison, the multi-step pro-
tocol achieves a 100% completion rate. The plot in Figure 6(a) compares the job
completion time of the replication-at-initiation with tworeplicas and the multi-
step algorithm. The job completion times are normalized with respect to the time
it would take the job to finish in an environment with no failures. The plot shows
that forα ≤ 0.2 the multi-step algorithm performs better. However, asα increases,
the time taken by the multi-step algorithm increases. On theother hand, the time
for the replication-at-initiation scheme decreases gradually. This gradual decrease
is because many tasks are lost with the failing nodes and thusthe time for the net-
work to have no tasks executing is reached earlier. Note alsothat the time taken by
the multi-step technique starts to level off when the rate offailure is higher. This
is because the multi-step technique has an increasing degree of replication at each
step. Once the replication level becomes high, it compensates for the high failure
rate.

The plot in Figure 6(b) shows the average number of replicas found. We observe
that the average number of replicas found by the replication-at-initiation scheme de-
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Fig. 6. (a) Completion time for the two schemes. (b) Number ofreplicas found by the
master for the two schemes.

crease because of increased failures. On the other hand, forthe multi-step scheme,
each iteration of replication submission increases the replication rate. With high
failure rates, the number of replicas submitted is higher and thus the average num-
ber of replicas received is higher. Quantitatively, the multi-step replication scheme
has fewer redundant replicas and hence uses resources more efficiently. However,
as discussed earlier the replicas received can be useful forvalidating results. Nev-
ertheless, the multi-step scheme can be easily modified to increase the redundancy
in a controlled fashion, simply by submitting replicated tasks even after one result
for that task has been successfully received.
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Fig. 7. Effect of varying replication level for failure rateα = 0.5: (a) percentage of the
jobs completed, (b) average number of replicas found by the master, (c) completion time
normalized w.r.t. time required for job execution without failures.

To evaluate the benefit of using different levels of replication in the replication-
at-initiation scheme, we repeat the experiment withα = 0.5, while varying the
replication level. The number of replicas submitted is increased from 1 (i.e., no
redundancy) to 9 i.e., logN. The plots in Figure 7 summarize the results. The plot
in Figure 7(a) shows that increasing the replication level results in the number of
tasks completed to asymptotically approach 100%. However,a perfect result is not
achieved even with very high replication levels. The plot inFigure 7(b) shows that
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average number of results retrieved from replicas is almost50% of the number of
replicas submitted. This is consistent with the failure fraction α = 0.5. When more
replicas are submitted, there is a higher chance of the replicas reaching a long lived
node. Due to the zipf distribution such long lived nodes might have a much higher
lifetime compared to the average. Finally, the plot in Figure 7(c) shows that the
time for completion (i.e., no tasks of this job remain on the network) proportionally
increases as the number of replicas increase. An important contrast can be drawn
here to the performance of the multi-step technique. Forα = 0.5, the time taken by
7 fold replication, which achieves 99.2% completion, is almost 2.2 times more than
the multi-step technique, which always achieves 100% replication.

6 Conclusion

In this paper, we present a distributed architecture for sharing processor cycles in
unstructured P2P networks. The use of unstructured P2P networks is motivated by
the success of massive real-world networks for file sharing.We present randomized
algorithms for allocating tasks in the network, which achieve a good load balance
and low job makespan. We analytically show that random job allocation using uni-
form sampling achieves good load balance. We present two protocols that incorpo-
rate redundancy for resilience against frequent node departures and validation of
the execution output. The parameters that affect job throughput are discussed in the
context of our allocation scheme. Our architecture includes a rendezvous service
that allows job progress monitoring, aggregation of tasks,node reputation manage-
ment, and context-based communication between oblivious hosts. We show that the
rendezvous service provides probabilistic guarantees forlocating resources.

Our algorithms are built on the premise of uniform sampling in an unstructured
network. We show that random walks are ideal for random sampling, however, the
resulting samples are affected by the topology of the network. We present an algo-
rithm that allows uniform sampling via random walks irrespective of the underlying
network topology. This is done by building a transition matrix for the walk in a dis-
tributed fashion. The resulting transition probability matrix also reduces the length
of the random walk required to converge to uniform stationarity. The efficiency of
the resulting cycle sharing system is evaluated using comprehensive simulation.
The system is also evaluated with varying rates of node failures. The simulation
results reflect the efficiency and robustness of our randomization based protocols.
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