Search with Probabilistic Guarantees in Unstructured Peer-to-Peer Networks

Ronaldo A. Ferreira Murali Krishna Ramanathan Asad Awan Ananth Grama Suresh Jagannathan
Department of Computer Sciences — Purdue University
West Lafayette, IN, USA
{rf, rmk, awan, ayg, suresh } @cs.purdue.edu

Abstract

Search is a fundamental service in peer-to-peer (P2P)
networks. However, despite numerous research efforts, ef-
ficient algorithms for guaranteed location of shared con-
tent in unstructured P2P networks are yet to be devised. In
this paper, we present a simple but highly effective proto-
col for object location that gives probabilistic guarantees
of finding even rare objects independently of the network
topology. The protocol relies on randomized techniques for
replication of objects (or their references) and for query
propagation. We prove analytically, and demonstrate ex-
perimentally, that our scheme provides high probabilistic
guarantees of success, while incurring minimal overhead.
We quantify the performance of our scheme in terms of net-
work messages, probability of success, and response time.
We also evaluate the robustness of our protocol in the pres-
ence of node failures (departures). Using simulation, we
show that our scheme performs no worse than the best
known access-frequency based protocols, without compro-
mising access to rare objects.

1. Introduction

Search is a fundamental service in peer-to-peer (P2P)
networks, one that has received considerable research at-
tention [10, 5, 15, 13]. In contrast to structured networks,
search in unstructured networks is considerably more chal-
lenging because of the lack of global routing guarantees
provided by the overlay. In spite of this apparent dis-
advantage, unstructured P2P networks have several desir-
able properties not easily achieved by their structured coun-
terparts — they support inherent heterogeneity of peers,
are highly resilient to peer failures, and incur low over-
head at peer arrivals and departures. More importantly,
they are simple to implement and incur virtually no over-
head in topology maintenance. Consequently, many real-
world large-scale peer-to-peer networks are unstructured.
Gnutella networks, like Limewire [8], for example, have

peak populations in the order of millions of users.

In typical unstructured P2P networks, such as
Gnutella [6], a peer searches by flooding a (hop) lim-
ited neighborhood. This simple method does not provide
any guarantee that an object that exists in the network can
be found. Moreover, flooding does not scale well in terms
of message overhead, since each query may generate a
significant amount of traffic. Several recent studies have
addressed these completeness and scalability issues [3, 10].
Cohen et al. [3] studies how replication can be used to
improve search in unstructured P2P networks. Objects are
replicated based on their access frequencies. The paper
evaluates different replication strategies and concludes that
the optimal replication strategy (the one that minimizes the
average search size) is proportional to the square root of
the access frequencies. Lv et al. [10], in a followup work,
suggests heuristics to approximate the optimal replication
strategy.

Our work concentrates on the problem of locating any
object (independent of its access frequency) in an efficient
manner. In this sense, it complements the work of Co-
hen and Shenker, and other replication and caching mecha-
nisms [10]. The objective of providing search guarantees,
while simultaneously minimizing messaging overhead, is
important, and has been solved elegantly for structured P2P
networks [15, 13], but it has not been fully explored in un-
structured networks. The lack of such guarantees in un-
structured networks has prevented the development of new
applications that can exploit the benefits of this environ-
ment. For instance, completely distributed Grid environ-
ments could benefit from search mechanisms that guarantee
retrieval of any available resource in the network. Similarly,
in massively distributed file systems such mechanisms can
be incorporated to preserve guaranteed file access seman-
tics.

In this paper, we present a simple but highly effective
technique for object location based on a variant of the birth-
day paradox. Our scheme installs object references at a set
with (O(yy/n)) of randomly selected peers, where n is the
number of peers in the network and v is a system param-

eter. A query to the object is routed to another set with
O(yy/n) random peers selected independently of the instal-
lation procedure. The high probability of a non-empty in-
tersection between these two sets forms the basis for our
search mechanism. We prove analytically, and demonstrate
experimentally, that our scheme provides high probabilistic
guarantees of success, while incurring minimal overhead,
even for objects with very low popularity (replication). Our
experiments also reveal that even for very small v, the like-
lihood of a query failing is negligible. By choosing 7y to be
VInn, we show that any search succeeds with high proba-
bility (w.h.p.").

Effective strategies for installing references to replicas
are critical for optimizing the tradeoff between installation
overhead and search time. If reference pointers are installed
by each replica, the associated overhead is likely to be high
for popular items while yielding limited benefit in terms of
search for less popular objects. Conversely, if none of the
replicas install reference pointers, peers will not be able to
find nearby copies of replicated items. To address this prob-
lem, we present a novel approach to controlled reference in-
stallation, which we demonstrate strikes a desirable balance
between reference installation and search overheads. Exper-
imental results show that our strategy yields slightly better
average search size than the best heuristic presented in [10],
and in addition provides strong guarantees for locating rare
objects. We address these issues using an analytical frame-
work and validate our results on a variety of real (Gnutella)
and synthetic topologies.

2. Placement and Search Protocols

To share its content with other peers in the network, a
peer must install references to each of its objects at other
peers. This installation procedure is similar to the process
of publishing content in structured peer-to-peer networks.
However, in our approach a peer p can publish an object O
by installing references to O at any random set I';, of peers
selected independently of O’s identifier (or hash). More-
over, an object can be published using any form of identifi-
cation, for example, a file name or meta information about
the object.

To provide guarantees that content published by a peer p
can be found by any other peer in the network, three funda-
mental questions need to be answered: 1) Where should the
nodes in I', be located in the network? 2) What is the size
of the set I',? 3) When a peer g attempts to locate an object,
how many peers must g contact?

The answer to the first question, in our framework, is
simple — nodes in the set I', are selected uniformly from the
network, i.e., any node in the network has an equal proba-
bility of belonging to the set. This selection criterion is im-

Throughout this paper, w.h.p. (with high probability) denotes proba-
bility 1 — ﬁ

portant because it provides a measure of fault tolerance, i.e.,
in the event of a node failure, the failing node can be easily
replaced. Since conventional P2P networks are expected to
scale to millions of peers and peers only connect to a small
set of other peers, creating a uniformly sampled set in the
network is not a straightforward task. Gkantsidis et al. [5]
shows that it is possible to construct a uniform sample of
size k in an unstructured network by performing a random
walk of length Q(logn) and then proceeding with the ran-
dom walk for k more hops 2. The last k peers encountered
in the walk represent a uniform random sample. This result,
however, applies to network topologies that can be modeled
as expander graphs.

For more generic networks, like the ones encountered
in real-world networks, an auxiliary algorithm must be
executed to determine probabilistic weights for different
branches of the random walk. The theory of uniform sam-
pling in non-uniform graphs has been extensively studied
in a number of works [7, 1]. For the sake of completeness,
in Section 2.3 we briefly discuss the Metropolis-Hastings
(MH) algorithm that we use in our simulations.

The second and third questions above can be answered
using the birthday paradox [12]. The birthday paradox has
been used in [11] to define probabilistic quorums and in [2]
to estimate aggregates in distributed systems. In a proba-
bilistic quorum, quorum members are chosen uniformly at
random from all members in the network, and the quorums
have size yy/n. Malkhi et al. [11] shows that two quorums
chosen in this manner intersect with probability at least
1 — e, Probabilistic quorums were presented in the con-
text of distributed systems in which nodes have complete
knowledge of all other nodes in the system and in which the
population of nodes is stable.

procedure Publish(p):
> Create a message M as follows:
— M.TTL =c¢ x logn+7yy/n
M.SSIZE = y\/n
M.type = INSTALL
M.sender = (IPaddry, PortNoy)
— M.data = Metadata(O)

> Send M’ to a neighbor j selected with probability Prpj.

Figure 1. Algorithm for publishing content.

Using the results above, the protocol employed by a peer
to publish its content follows naturally. A peer p pub-
lishes its content by performing a random walk of length
¢ x logn+ v+/n, where ¢ is a constant. In the random walk
message, p includes information about an object O (or a set

2The exact length of the random walk involves the second eigenvalue
(\) of the network graph [5].

of objects) and requests the peers along the random walk
to install references to it. The first ¢ x logn peers just for-
ward the random walk message, the remaining (yy/n) peers
install locally the references to p’s content and send back
to p their identifications (IP addresses). Node p uses these
peers as its set I',. Figure 1 illustrates the publish algorithm
and Figure 2 shows the algorithm executed by peers along
the random walk when a message is received. In the algo-
rithms, M.SSIZE specifies the size of the set I',, and is used
by peers along the random walk to determine if the content
(Metadada(O)) present in the message must be installed or
not. Prp; is the probability of a node j being selected as
the next hop by node p. In Section 2.3, we show how these
probabilities are computed.

procedure ProcessMessage(p):
> On receiving a message M, peer p executes the steps below:

— If M.type = INSTALL

o If M.TTL < M.SSIZE

- Install and index the pointers in M.data lo-
cally.

o Sets M.TTL =M.TTL - 1.
o If M.TTL >0
- Send M to a neighbor j selected with proba-
bility Prp;.
o Otherwise, do not forward M.
— If M.type = SEARCH,

o Search the local index for M.data.
o If p has a pointer to M.data, it creates a new mes-
sage M’ as follows:
- M’.type = RESPONSE
- M'.sender = (IPaddr,, PortNop)
- M'.data = (IPaddrg, PortNoy), q is the peer
that has a copy of the object.
- Send M’ to M.sender.
o If the query cannot be answered by p,
- Set M.TTL = M.TTL - 1.
- Send M to a neighbor j selected with proba-
bility Prp;.

— If M.type = RESPONSE, p retrieves object O from the
node whose address is in M.data.

Figure 2. Algorithm for processing messages.

2.1. Controlled Installation of Object References

The question of whether the replica of an object installs
reference pointers is an important one. If none of the repli-
cas install reference pointers, peers would be routed to pos-
sibly distant copies of objects, even though replicas might
exist on nearby nodes. Conversely, if every replica inserts
reference pointers, popular objects may attempt to install
reference pointers on all peers. Neither of these extremes
is desirable. To avoid this situation, we use a probabilis-
tic algorithm to determine if a node should install reference

pointers to its objects. When a peer p joins the network, it
sends a query for an object using a random walk of length
¢ x logn+v,/n. If the query is unsuccessful, then p installs
the pointers with probability one. If the query is successful
and the responding peer g is at a distance / from p (where
distance is the number of hops the random walk traversed),
then p installs the pointers with probability W.

show in Section 3 that this algorithm significantly reduces
the number of reference pointers to popular objects without
significantly reducing the probability of finding rare objects.

procedure Join(p):

> Connect to K peers already in the network, where K is a con-
stant chosen independently by p.

> Estimate the network size and assign it to 7.
> Create a message M as follows:

— M.TTL =c¢ x logn+7yy/n
— M.type = SEARCH
— M.sender = (IPaddrp, PortNop)
— M.data = Metadata(O)
> Send M to a neighbor j selected with probability Pr;.

> If M is answered by a peer at distance /, with probability

1 .
xlogniyvn execute the procedure Publish.

Figure 3. Join algorithm.

2.2. Object Search

A peer p searches for an object in the network by per-
forming a random walk. The random walk message con-
tains the query information and a time-to-live (TTL) field
set to ¢ x logn+vy/n. Nodes along the random walk pro-
cess the query by searching their local content and the refer-
ence pointers installed by other peers. If a peer can respond
to a query, it sends the response directly to the querying
peer and stops the random walk, i.e., it does not forward
the random walk message. If a peer cannot respond to a
query, it decrements the TTL field by one and, if the result-
ing value is greater than zero, forwards the message. If the
TTL value reaches zero, the message is not forwarded. Fig-
ure 4 presents the algorithm executed by a peer p to initiate
a search.

procedure Search(p):
> To search for an object O, peer p executes the steps below:

— Create a message M as follows:

M.TTL = ¢ x logn+1v/n
M.type = SEARCH

M.sender = (IPaddr, PortNop)
M.data = Metadata(O)

— Send M to a neighbor j selected with probability Pr;.

O O O O

Figure 4. Search algorithm.

2.3. Uniform Sampling

In a simple random walk, all neighbors of a node p have
the same probability of being selected as the next hop, i.e.,
Pr,j =1/K. It is well known [12] that a simple random
walk in an undirected graph of a minimum length propor-
tional to logn converges to a stationary distribution 7. The
probability of a node i being selected as a sample of the
distribution /" is equal to d;/2m, where d; is the degree
of node i and m is the number of edges of the graph. In
real-world network, the degrees of the nodes vary signifi-
cantly. Therefore, a simple random walk selects nodes with
different probabilities, with low degree nodes having lower
probabilities of being selected. We present an algorithm that
modifies the transition probabilities between nodes to pro-
duce a probability transition matrix with stationary uniform
distribution. Thus, a random walk on a network with node
transition probabilities defined using this algorithm results
in a uniform sample. The algorithm is traditionally pre-
sented in the context of Markov chains, but its adaptation
to a distributed network is straightforward [1].

Metropolis-Hastings

The algorithm is an adaptation for uniform sampling of
the classical Metropolis-Hastings algorithm [7, 1]. In the
distributed algorithm, each node i sends a message stating
its degree information, d;, to each of its neighbors j € ¥ (i),
where (i) is the set of nodes directly connected to i. Once
the information of each of the neighbors is received, the
transition probabilities are set up as follows:

1/max(d;,d,) if i # jand j € W(i)
Pt = 1= ey (Prt) ifi=j
0 otherwise.

The result of this algorithm in the entire network is the
implicit construction of a double stochastic matrix. A ran-
dom walk of a given minimum length using the probabilities
above results in uniform samples. Due to space limitations,
we refer the reader to [7, 1] for more details on the algo-
rithm and its associated theory.

2.4. Failures

An important aspect of current P2P networks is the de-
parture or failure of nodes. To account for this, we must
install additional references. The following theorem deter-
mines the number of references.

Theorem 1 If f denotes the fraction of nodes leaving the
network in a given time period, f * |I',| new references need
to be installed after the time period to maintain search suc-
cess rate.

Proof: Since peers in the network leave frequently, a peer p
must ensure that approximately yy/n peers (1 <7y < vInn)

in its set I', are still present in the network to guarantee the
high probability of successful searches. A departing node
in I';, can be easily replaced by selecting a new node uni-
formly at random from the network. Since a fraction f of
nodes leave the network, it is expected that approximately
a fraction f of the nodes from I';, also leave the network.
Therefore, p must periodically select f « |I',| new peers to
replace nodes in I', that might have left the network. O

In [14], Gummadi et al. show that in the Gnutella net-
work 50% of the nodes leave the system every hour. If we
assume the same departure model, a peer p sharing an ob-
a3

ject must ad peers hourly to I',,.

2.5. Analysis of Search Success

The success of the search algorithm used in conjunction
with the publish algorithm is quantified by the following
theorem.

Theorem 2 Any object in the network can be found w.h.p

in O(v/nlnn) hops.

Proof: Let O be any object owned by a peer p. The fail-
ure of a search on p’s content can be analyzed by defining
an indicator random variable X, in the following manner:

X 1,ifT,NYy =0 Yg:q#p
0, otherwise

where I’ is as defined before, and Y, is the set of peers
present on the random walk initiated by any peer g issuing
a query.

The probability that X), is equal to one, i.e., I', does not

wn
intersect with Yy, Pr(X, = 1] = (l — %) . The ex-

pected value of X, (E[X,]) is approximately e, When
Y= VInn, object O cannot be located with probability %
Therefore, any object in the network can be found w.h.p in

O(vnlnn) hops. O

3. Experimental Evaluation

In this section, we study the performance of our search
technique and compare its performance with different algo-
rithms presented in the literature. We first investigate the
case where there are multiple objects in the network and
nodes have fixed cache sizes. In order to certify that our
controlled replication strategy minimizes the average search
size, we compare our scheme with the best heuristic pre-
sented and evaluated in [10]. We use the same parameters
presented in [10] to avoid complicated tunings of the two
algorithms. Later in this section, we investigate the perfor-
mance of our scheme under different parameters and much
larger networks.

Lv et al. [10] proposes a heuristic that replicates objects
proportional to the search size. Each query keeps track of

0.1 0.1

RR - WP
Square Root = Square Root =

.
Frthaga
Wm

0.001 0.001
1 10 100 1 10 100

Obiject Rank Object Rank

() (b)

Figure 5. Distribution of replication ratios
of the two different strategies. Objects are
ranked by their access frequencies, with low
rankings indicating highly accessed objects.

Replication Ratio (Normalized)
°
2

Replication Ratio (Normalized)
°
=4

the search size and when the query is finished the object is
replicated on as many sites as the number of probed nodes.
The replicas are placed in nodes selected uniformly from
the network. This heuristic is justified by observing that
the number of replicas of an object i (7;) can be described
by the differential equation 7; = qicrﬁi, where 7; is the time
derivative of r;, g; is the query frequency of i, and c is a
constant.

Furthermore, r; = A,/g; is a fixed point of the equa-
tion involving the logarithm of the object ratios. This sim-
ple calculation suggests that replicating proportional to the
number of sites probed would yield square-root replication,
which has been shown to be optimal [3].

We reproduce the set of experiments presented in [10]
to compare our strategy, which we refer as WP — With
Pointers, with the best heuristic (RR - Random Replication)
presented in [10]. We simulate two different topologies:
random graph with 9,836 nodes and power-law with 9,230
nodes. These numbers and the remaining of the parameters
described next are exactly the same as the ones presented
in [10]. The simulation starts by uniformly placing m = 100
distinct objects into the network. Then queries to objects
are generated according to a Zipf-like distribution with pa-
rameter o0 = 1.2. Each query is initiated from a node that
does not have a copy of the object being queried, query-
ing nodes are selected uniformly from the network. Each
node has a small cache that can store at most 40 objects.
The cache replacement policy is Random Deletion. That is,
when a cache eviction is necessary, an object is selected ran-
domly from all objects present in the cache. As discussed
in [10], Random Deletion is one of the policies that can help
in achieving Square-Root replication. Policies based on ac-
cess frequencies, like LRU, do not have this property.

Figure 5 shows the replication ratios produced by the two
heuristics in the power-law graph, the random graph yields
similar results. Figure 5-(a) shows the results for the RR
heuristic and Figure 5-(b) shows the results for our heuris-
tic. The reference points (Square Root) represent the dis-

tribution that is the square root of the query distribution.
As we can see, our strategy better approximates the opti-
mal strategy. The performance gain, however, is minimal.
The average search size in our scheme is only two percent
better than in the RR heuristic. Our main point is to show
that our scheme is as good as the best replication heuris-
tic currently known while having the extra benefit of giving
strong guarantees of locating rare objects. This last point
will be made clear in the next experiments. The striking
difference between the two strategies can be seen at the tail
of the distribution. Our strategy places a few more copies
of low ranked objects (about 12% more copies for the 40%
less popular objects) while placing copies no more than the
necessary for high ranked objects.

The previous experiment shows that our scheme is com-
petitive with the best known heuristic that replicates ob-
jects based on access frequencies. We now turn our at-
tention to scalability and accuracy issues of our scheme.
In the next set of experiments, we assume that one object
is replicated at a fraction o of the peers. The fraction o
is varied from 0.0033% (a single object is present in the
network) to 0.12%. These values are chosen to simulate
objects of differing popularity, from very rare objects to
extremely popular ones. For this particular set of exper-
iments, the frequencies of accesses of the objects are not
taken into consideration. Pointers to objects are possibly
installed only by the owners at the beginning of the simu-
lation and queries to the single object are performed from
all other nodes. We show our results using as comparison a
simple random walk scheme without replication. The main
goal of these experiments is to show that rare objects can be
found using searches with bounded TTL. We also investi-
gate the impacts of simple random walks in our scheme and
random walks using the transition probabilities computed
by the Metropolis-Hastings algorithm.

Our simulation setup closely resembles the setup in [5]
to facilitate accurate comparisons with the base case. We
simulate the algorithms over three different topologies: ran-
dom graph, power-law graph, and real topology trace. Due
to space limitations, we show only the results for the real
topology trace, the results for the other topologies are qual-
itatively similar to the ones obtained with the trace. We
refer the reader to [4] for the results on the other topologies
and for a more extensive study of different parameters. The
topology trace is a partial view of the Gnutella network that
is available at [9]. The number of nodes in this particular
view is equal to 30,607. An illustration of this topology
is also available at [9]. In this trace, most nodes have low
degrees and a few nodes have high degrees.

The dynamic nature of the network population is be-
lieved to be an important parameter in P2P systems. In a
system that involves publication of reference pointers, it be-
comes even more important to examine the impact of vary-

ing conditions. The different scenarios used to account for
node dynamics are as follows:

1. Static: All the peers in the system are present with no
departures and change in connections.

2. Dynamic: All the peers in the system are present
throughout the simulation. However, we periodi-
cally select two edges at random (selected uniformly)
and exchange their end points. This characteristic is
closely related to the operation of a real P2P system,
where nodes frequently choose to reconnect to other
nodes [5].

3. Failures without updates: In this scenario, when a peer
leaves the network, a new peer joins the network keep-
ing the size of the network constant. We assume that
the object owners do not leave the network during the
simulation, but peers holding pointers to the objects
can leave. Pointers to objects are installed only at the
beginning of the experiment, object owners do not in-
stall pointers in the new peers.

4. Failures with updates: This is the same as the previ-
ous scenario, except that the owner of an object peri-

odically (after T units of time) installs its pointers in

a set of L ;{a(/)ﬁ peers picked uniformly at random from

the network, where f is the percentage of peers leaving
the network in a period equal to 7. In [14], Saroiu et
al. show that 50% of the peers leave the network in a
period of one hour. In this case, f = 50 and T = 60.

The average number of hops necessary to resolve a
query gives a measure of the network overhead of a search
scheme, we start by investigating this parameter. In this
simulation scenario, all nodes in the network issue one
query for the object. We assume that the queries are is-
sued after the object owners have already installed pointers
to the objects. We simulate random walks of unbounded
length, the random walk stops only when the object or a
pointer to it is found.

tess [Static WP ——
Static SRW -

Dynamic WP

- Dynamic SRW
Terd 1 T Failures WP -------
MMMMM Failures SRW ------

... __Refresh WP

1e+3 -

o~

Average Number of Hops

10

0 0.02 0.04 0.06 0.08 0.1 0.12
Object Popularity

Figure 6. Average number of hops in the
Gnutella topology.

Figure 6 presents the average number of hops to success-
fully resolve a query as a function of object popularity for

our approach (WP) and for the base case using pure random
walk (SRW). The base case is to give an idea of the im-
provements that can be achieved by using pro-active repli-
cation. The average number of hops is on a log scale. In
these experiments, 7y is fixed to 1. As can be observed for
the static case, when the object is present at a single peer
(00 =0.0033%), the average number of hops to successfully
find the object is approximately 100, which is much smaller
than vnlnn = 562, the suggested theoretical limit for guar-
antees of success. The three superior lines represent the
results for the pure random walk scheme, while the inferior
lines represent the results for our scheme. When peers fail
without refresh, it can be observed that the average number
of hops has a slight increase. However, when peers fail with
refresh, the average number of hops decreases slightly due
to periodic refreshing of pointers onto new nodes. Since
the owners of the object do not fail in the network and only
the others fail, pure random walk is not affected by failures
without refresh.

In the next experiment, we investigate the percentage
of queries that fail when the TTL of the random walk is
bounded. In this scenario, all nodes in the network issue
one query for the object. We assume that the queries are
issued after the object owners have already installed point-
ers to the objects. The random walk will end whenever a
response to a query is found or it has reached its TTL. We
set TTL to yy/n and use different values for y.

0.8

Gnutella: WP ——

0.6 Gnutella: SRW -
} Power Law: WP

Power Law: SRW

04 Random Graph: WP -------
I Random Graph: SRW ------

% Query Fails

0.2

0 0.02 0.04 0.06 0.08 0.1 0.12
Object Popularity

0.8

Gnutella: WP ——

0.6 Gnutella: SRW -
} Power Law: WP

Power Law: SRW

04 Random Graph: WP -------

. Random Graph: SRW ------

% Query Fails

0.2

0 0.02 0.04 0.06 0.08 0.1 0.12
Object Popularity

Figure 7. Percentage of failures of a query as
a function of object popularity. TTL =y,/n, top
v= 1 and bottom y=2.

Figure 7 shows the percentage of queries failing for dif-
ferent topologies as a function of object popularity. In our
approach, when there is a single object present in the net-
work and y = 1, the influence of topology is quite signifi-

cant. The random graph topology has the lowest failure rate
of queries at 15% with the highest being 39% in a power
law topology. We believe that this is a direct consequence
of the power law nature of the graph. The intuitive reason-
ing is that the random walk needs to take more hops from a
high degree peer to move from one locality to another (the
locality being defined as the concentration of peers around
a high degree peer). We explore this issue further in this
section when we discuss the impact of the MH algorithm
in node sampling. With increase in object popularity, the
failure percentage of our method approaches zero rapidly.
Pure random walk almost always fails when there is a sin-
gle object in the network. In our approach almost all the
queries are successful when y = 2, while the pure random
walk gives a maximum of 40% success rate when the ob-
ject popularity is increased to the highest value used in the
experiment.

Another parameter that we investigate in our scheme is
the percentage of peers owning an object that install point-
ers to an object in the network. In this scenario, the popu-
larity of an object is varied from 0.0033% to 50%. The ex-
periment is conducted for different topologies under static
conditions. There are no searches carried out after the in-
stallation phase. Figure 8 shows, on a logarithmic scale, the
percentage of object owners that install pointers to an object
for different topologies. When almost 50% of the peers own
a copy of the object, only a very small percentage (0.0002)
of the peers owning the object install pointers to the object.
This result is due to our algorithm for controlling installa-
tion of pointers. In this algorithm, a peer installs pointers to
an object with probability proportional to the length of the
random walk for querying the object.

Gnutella

Power Law -
Random Graph

0.1
0.01 H

0.001

Fraction of Replicas Installing Pointers

0.0001
] 0.1 0.2 0.3 0.4 0.5

Object Popularity

Figure 8. Percent of object owners installing
pointers.

As discussed in Section 2.3, a random walk is capable
of producing random samples of a graph. The samples,
however, are not uniform, but instead depend on the degree
of the nodes. In the next set of experiments, we investi-
gate the differences between samples produced using sim-
ple random walks and uniform samples produced using ran-
dom walks with the transition probabilities computed with
the MH algorithm. We also compare both schemes with

the pure random walk. Figure 9 shows the average num-
ber of hops for a successful query for the three different
schemes. As we can see, the impact of the MH algorithm in
our scheme is negligible.

100000

Simple RW ——
WP with MH -

WP
10000

1000

Average Number of Hops (Log Scale)

] 0.02 004 006 008 0.1 0.12
Object Popularity

Figure 9. Average number of hops for the dif-
ferent search schemes.

Figure 10 shows the percentage of failed queries when
we use a bounded TTL equal to /n. The interesting re-
sult here is that our scheme with MH performs a lot better
for rare objects (popularity smaller than 0.05%), while our
scheme with a simple random walk performs better when
the popularity of the object is increased.

100 F

Simple RW ——
WP with MH -
WP

Average Number of Hops (Log Scale)
5

1

0 002 0.04 006 0.08 0.1 0.12
Object Popularity

Figure 10. Failure probability for bounded TTL
messages for the different search schemes.

The conclusions of the experiments are:

e Installing pointers to an object at /n peers selected
uniformly at random from the network results in prob-
ability of success close to one for queries initiated from
any node in the network.

e The cost associated with a search is drastically reduced
using our approach.

e The approach is robust under realistic failure models.

e Controlled replication helps in limiting the number of
peers having a replicated copy of an object installing a
pointer to it.

e True uniform sampling can help in the location of rare
objects when compared to sampling using simple ran-
dom walks.

Some practical considerations can be made about our
scheme. Even though we present simulation results using
sequential random walks, the scheme can be easily extended

to perform the random walks in parallel and, consequently,
speed up the search time. The basis of our algorithm is in
uniform sampling. A uniform sample with k£ nodes can be
obtained by performing k random walks of length O(logn)
in parallel. Another possible optimization is in the possi-
bility of caching the v/nInn pointers and initially querying
the nodes in this cache. This simple optimization has the
potential of solving queries in the time equivalent to a one
hop lookup. These optimizations, however, add additional
costs in terms of number of messages.

4. Related Work

Cohen and Shenker [3] improves the efficiency of search
in unstructured P2P networks by replication. The replica-
tion strategies assume that access frequencies of the ob-
jects are known, and the replication of an object should be
based on its popularity. In our approach, we do not assume
knowledge of object access frequency, and use replication
of pointers to speed up queries. Moreover, our technique
does not distinguish between frequently and infrequently
accessed objects. An important consequence of our ap-
proach is that we can provide probabilistic guarantees on
locating rare objects in the network. In this sense our work
complements the work of Cohen and Shenker, and other
replication and caching mechanisms.

Lv et al. [10] shows, using simulations, that random walk
is a good technique for searching unstructured P2P net-
works. Search and replication mechanisms are extensively
studied in [10], including a realization of the square root
replication policy developed by Cohen and Shenker [3], and
their impact on searches for popular objects. The conclu-
sion of this work is that a random walk approach has better
performance compared to the standard approach of search-
ing by flooding. We show experimentally that our scheme
is as good as the best heuristic presented in [10].

Gkantsidis et al. [5] performs an extensive study of ran-
dom walks in P2P networks. The authors explore the per-
formance of random walks for searching and uniform sam-
pling. For searching, the authors show that random walks
perform better than flooding when the length of the random
walk is the same as the number of peers covered by flooding
with bounded TTL. Another important result in the paper is
that it is possible to simulate selection of a uniform sample
of elements from an expander graph by performing a ran-
dom walk of required length.

5. Conclusion

In this paper, we present the design of an efficient search
protocol for unstructured P2P networks that provides proba-
bilistic guarantees on the success of a search. To the best of
our knowledge, ours is the first result that provides (prob-
abilistic) guarantees of detecting even rare objects in un-
structured P2P networks independent of topologies and with

reasonable bounds on associated overhead. Supported by
elaborate experiments, we show that our approach performs
well under different topologies and under dynamic scenar-
ios that include node departures.

Acknowledgments

This research has been partially funded by the National
Science Foundation grant CNS 0509387. The first author
has been partially funded by CNPq and UFMS, Brazil.

References

[1] A. Awan, R. Ferreira, A. Grama, and S. Jagannathan. Dis-
tributed Uniform Sampling in Large Real-World Networks.
Technical Report, Department of Computer Sciences, Pur-
due University, October 2004.

[2] M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani.
Estimating Aggregates on a Peer-to-Peer Network. Techni-
cal Report, Computer Science Department, Stanford Univer-
sity, 2003.

[3] E.Cohen and S. Shenker. Replication Strategies in Unstruc-
tured Peer-to-Peer Networks. In Proceedings of ACM SIG-
COMM’02, pages 177-190, Pittisburg, PA, August 2002.

[4] R. Ferreira, M. K. Ramanathan, A. Awan, A. Grama, and
S. Jagannathan. Search with Probabilistic Guarantees in
Unstructured Peer-to-Peer Networks. Technical Report, De-
partment of Computer Sciences, Purdue University, 2005.

[5] C. Gkantsidis, M. Mihail, and A. Saberi. Random Walks
in Peer-to-Peer Networks. In Proceedings of IEEE INFO-
COM’04, Hong Kong, March 2004.

[6] Gnutella. http://gnutella.wego.com/.

[7] W.Hastings. Monte Carlo Sampling Methods Using Markov
Chains and their Applications. Biometrika, 57(1):97-109,
1970.

[8] Limewire. http://www.limewire.com/.

[9] Limewire.org, Snapshots of the Gnutella network. http:
//crawler.limewire.org/data.html.

[10] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search
and Replication in Unstructured Peer-to-Peer Networks. In
Procceedings of ACM ICS’02, pages 84-95, New York, NY,
June 2002.

[11] D. Malkhi, M. Reiter, and R. Wright. Probabilistic Quorum
Systems. In Proceedings of ACM PODC’97, pages 267—
273, Santa Barbara, CA, August 1997.

[12] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge University Press, 1995.

[13] A. Rowstron and P. Druschel. Pastry: Scalable, Decentral-
ized Object Location and Routing for Large-Scale Peer-to-
Peer Systems. In Proceedings of ACM SIGCOMM’01, pages
247-254, San Diego, CA, August 2001.

[14] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A Measure-
ment Study of Peer-to-Peer File Sharing Systems. In Pro-
ceedings of MMCN °02, San Jose, CA, January 2002.

[15] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Bal-
akrishnan. Chord: A Scalable Peer-To-Peer Lookup Ser-
vice for Internet Applications. In Proceedings of ACM SIG-
COMM’01, pages 149-160, San Diego, CA, August 2001.

