
Randomized Protocols for Duplicate Elimination in Peer-to-Peer Storage Systems

Ronaldo A. Ferreira Murali Krishna Ramanathan Ananth Grama Suresh Jagannathan
Department of Computer Sciences – Purdue University

West Lafayette, IN, USA
{rf, rmk, ayg, suresh}@cs.purdue.edu

Abstract

Distributed peer-to-peer storage systems rely on volun-
tary participation of peers to effectively manage a storage
pool. Files are generally replicated in several sites to pro-
vide acceptable levels of availability. If disk space on these
peers is not carefully monitored and provisioned, the system
may not be able to provide availability for certain files. In
particular, identification and elimination of redundant data
are important problems that may arise in long-lived sys-
tems. Scalability and availability are competing goals in
these networks: scalability concerns would dictate aggres-
sive elimination of replicas, while availability considera-
tions would argue conversely. In this paper, we provide a
novel and efficient solution that addresses both these goals
with respect to management of redundant data. Specifi-
cally, we address the problem of duplicate elimination in
the context of systems connected over an unstructured peer-
to-peer network in which there is no a priori binding be-
tween an object and its location. We propose a new ran-
domized protocol to solve this problem in a scalable and
decentralized fashion that does not compromise availability
requirements of the application. Performance results using
both large-scale simulations, and a prototype built on Plan-
etLab, demonstrate that the protocols provide high proba-
bilistic guarantees of success, while incurring minimal ad-
ministrative overheads.

1. Introduction

Peer-to-peer storage systems have been proposed as cost-
effective alternatives for providing scalable backup and
archival storage [3, 10]. Peers contribute storage space in
their disk to the system and in return they are allowed to
backup their data at other peers. Effective storage man-
agement is a critical issue in the deployment of such sys-
tems. A particularly growing concern is how to efficiently
and safely prune unwanted copies of data. Greedy peers can
eagerly replicate their data at other peers and cause the col-

lapse of the system. Even if a particular peer is restrained
from eagerly replicating its data, as dictated in systems such
as Samsara [4], the system as a whole must provide a mech-
anism for removing excess data while leaving a minimum
number of replicas in the network that satisfy availability
needs.

In this paper, we investigate the problem of removing du-
plicates in distributed peer-to-peer storage systems. We ex-
amine this issue in the context of unstructured networks [9]
in which no assumption can be made about the relationship
between an object and the peers in which it resides. In con-
trast to structured peer-to-peer networks [20, 16], unstruc-
tured networks are highly resilient to node failures and incur
ver low overhead on node arrivals and departures. These
characteristics make unstructured networks very attractive
for users with limited resources. Unfortunately, the issue of
object location, which is central to the problem of identify-
ing redundant copies, is significantly more complex in this
environment.

We assume peers in the storage system are coopera-
tive and non-malicious. Peers divide their storage into two
spaces: a private and a public space. The private space con-
tains the peer’s data and is not subject to duplicate elimina-
tion, each peer is responsible to keep its own data locally.
The public space holds data from other peers and is subject
to the elimination procedure. We see this public space as a
backup space that can be periodically reused. A peer that
needs to restore data from the network should use object
location techniques as the ones developed in [19] and [7].

The problem we address is thus defined as follows: Con-
sider a peer-to-peer storage system, designed without any
assumptions on the structure of the underlying network, and
which contains multiple peers, each peer holding numer-
ous files. How can a peer determine which files need to
be kept using minimum communication overhead? Further-
more, how can the storage system as a whole make sure that
each file is present in at least k peers, where k is a system
parameter chosen to satisfy a client or application’s avail-
ability requirements?

An important issue for the effective elimination of data
in a storage system is the identification of common data
in different peers. Adya et al. [1] proposes convergent en-
cryption to solve this problem. With convergent encryption,
it is possible to safely store encrypted data in other peers
and at the same time recognize if two files from different
users have the same content. Convergent encryption uses
an encryption key derived from the content of the file and
it was used in [5] to identify blocks of data with the same
content. Doucer et al. [5] motivates the importance of du-
plicate elimination problem and proposes SALAD, a dis-
tributed data structure to aggregate file content information
and location information. In building this data structure, an
underlying structure of the files based on their content and
location is maintained; this structure is similar to the index
employed by structured peer-to-peer networks. It is unclear
how their approach can be easily adapted to an unstructured
environment.
To address these concerns, we present the design, im-

plementation, and evaluation of two novel solutions to the
problem of identifying and eliminating duplicates in un-
structured peer-to-peer storage systems. Our approaches are
applicable to many kinds of storage environments [17, 10].
Our key insight is that the problem of duplicate elimination
can be abstracted to a relaxed and probabilistic version of
the leader election problem. We want to elect a group of
k leaders for each file. The elected leaders are responsible
for storing the file. Our leader election protocol (specifi-
cally for this application) is different from traditional leader
election algorithms in two important respects:

• The probabilistic nature of the protocol may produce
more or fewer leaders than desired, with small proba-
bility, O(1

n
), for a system with n nodes.

• Other nodes participating in the protocol that are not
elected as leaders need not know the identity of the
elected leaders.

Our first approach to the elimination problem uses prob-
abilistic quorum systems [12]. In this approach, each node
creates a quorum for each one of its replicas by choos-
ing

√
n lnn nodes in the system uniformly at random and

queries the quorum on whether it needs to keep the file. If it
receives a negative response from any node in the quorum,
the file is discarded. The details on how a quorum mem-
ber responds to a query is given in Section 2. In the worst
case, if a replica is present at all peers, the total message
complexity of the elimination algorithm is O(n

√
n lnn).

In the second approach, we use a novel randomized
leader election protocol. The protocol proceeds in two
phases. In the first phase, consisting ofO(log n) rounds, the
number of nodes that are potential leaders is reduced. The
second phase proceeds similar to the probabilistic quorum

approach: a quorum is formed for each of the remaining
nodes, and the k leaders are chosen. This protocol has opti-
mal message complexityO(n) for a network with n nodes.
We evaluate these protocols using real-world file sys-

tem traces from Microsoft Research [6]. We consider both
a detailed simulation to study the scalability of the proto-
cols, and a prototype implementation on PlanetLab [15] to
quantify administrative overheads and efficiency in a real-
istic network environment. Our experiments measure the
amount of space reclaimed, memory and communication
overhead, and the average storage gain per node.

2. Duplicate Elimination Protocols
In this section, we present a detailed description of our

duplicate elimination protocols. These protocols assume
that all nodes are interested in eliminating duplicates and
are non-malicious. Central to our protocol is a leader elec-
tion mechanism in which leaders elected to preserve a file
are obligated to do so, while all other participants are free
to remove it.

2.1. A Probabilistic Quorum (PQ) Approach

Our first strategy is based on ideas proposed for building
probabilistic quorum systems. A quorum system is defined
as a set of subsets of peers, every two of which intersect. To
guarantee that every two quorums intersect with high prob-
ability, the number of members in each quorum is equal to√

n lnn [12], where n is the number of peers in the network.
For duplicate elimination, k nodes need to be elected

among the nodes holding a specific file. Each node with the
file creates a quorum with the size of the quorum defined as
above; by the properties enjoyed by quorum systems, each
quorum intersects the quorum of any other node that has the
same file with high probability.
Each node with a file that needs to be eliminated sends

a REQUEST TO KEEP message to all its quorum mem-
bers. It decides to keep or delete the file based on the re-
sponse to this message. A REQUEST TO KEEP message
contains the following information:

• SENDER ID: identity of the sender;
• FILE DESCRIPTOR: content hash of the file;
• RANDOM NUMBER: a random number locally
generated by the node.

Each quorummember waits for a time period (which is a
system parameter) and processes all the messages received.
At the end of the time period, it takes all the messages
received for the same FILE DESCRIPTOR. Positive re-
sponses (ACKs) are sent to the k peers that have the largest
random numbers among all the messages with the same file
descriptor. The ACKs include the random numbers that
were selected by the quorum member. Negative responses

(NAKs) are sent to the rest of the peers. A peer that receives
at least one NAK deletes the file. A peer that receives only
positive responses must sort all the random numbers in the
ACKs it receives to verify if its random number is among
the top k. If this is the case, the peer keeps the file, oth-
erwise the file is deleted. If a file is present in all peers in
the network, which corresponds to the worst case scenario,
the message complexity of this protocol is O(n

√
n lnn).

When this protocol is applied separately for each file, the
message complexity must include the number of files. In
Section 2.2.2, we discuss how information about separate
files can be aggregated to keep the message complexity the
same as the message complexity for a single file.

2.2. A Randomized Election (RE) Approach
As an alternative to probabilistic quorum systems, we

also consider a randomized leader election protocol based
on a balls and bins [14] abstraction. The protocol oper-
ates in two phases. In the first phase, the number of nodes
holding the same file is reduced. In the second phase, the
remaining nodes decide the k leaders that should keep the
file. The main features of the protocol are as follows:

• There are k peers holding a copy of the file at the end
of the protocol with high probability.

• The message complexity of the protocol isO(n)where
n is the number of peers in the system.

• Any peer among the set of peers having a duplicate is
equally likely to be elected as one of the k leaders.

To simplify the explanation, we assume that there is one
file in the entire system and each peer holds one copy of
this file. Although our presentation assumes a synchronous
protocol, we consider how to relax this assumption in Sec-
tion 2.2.1.
A contender is a participating peer in the protocol that

holds a copy of the file. A mediator is a peer that receives a
message from a contender and determines whether the con-
tender participates in subsequent steps of the protocol. The
mediator is similar to a quorum member in the probabilistic
quorum approach. A round is composed of communication
between a single contender and a set of mediators. The set
of contenders can change with each round of the protocol.
A contender that does not proceed to a new round deletes
the copy of the file.
In a realization of this balls-and-bins abstraction, a peer

can be a contender as well as a mediator at the same time.
Casting a ball into a randomly chosen bin corresponds to
sending a REQUEST TO KEEP message from a con-
tender to a randomly chosen mediator picked uniformly
at random. The REQUEST TO KEEP message has the
same fields as the REQUEST TO KEEP message in the
PQ approach and an extra field (ROUND NUMBER) with
the round number.

! Set the number of messages mj for round j as follows

mj =

 √

2j ln 2, first phase
√

n lnn, second phase

! Select a set of mj mediators uniformly at random from all
the nodes in the system.

! For each mediator selected in the previous step, send
a REQUEST TO KEEP message along with a RAN-
DOM NUMBER ri.

! Proceed to the next round j + 1 if and only if ACKs are
received from all the mediators. Otherwise, delete the copy
of the file locally.

Figure 1. Contender actions.

The protocol is played as a tournament in two phases.
The first phase consists of log n − log(c × k) rounds for a
system of n nodes, where c is constant and k is a system
parameter (the desired number of replicas). In round i of
this phase, each contender casts mi balls into n bins, the
precise expressions for mi in terms of n and i are given in
Figure 1. A contender is said to ‘win’ a bin if its ball is the
only one that lands in the bin. If a contender wins all the
bins that its balls land in, it is considered a winner in this
round and proceeds to the next round.
The number of mediators that a contender sends mes-

sages to (the number of balls to cast) in a round is calcu-
lated independently by every contender based on the system
size (total number of nodes) and the round number. Each
mediator sends an ACK if it receives only a single RE-
QUEST TO KEEP message. Otherwise, it sends a NAK
to all the contenders that sent a message to it. A contender
deletes a file if it receives at least a single NAK, otherwise
it proceeds to the next round. The number of contenders re-
maining after each round is reduced by half on average. The
remaining contenders at the end of the first phase proceed
to the second phase. The expected number of contenders
at the end of the first phase is c × k. The second phase of
the protocol is exactly the probabilistic quorum approach
but with a reduced number of contenders. Details about the
protocol are summarized in Figures 1 and 2.

! Receive messages from each contender.
! First Phase:

– If exactly one contender sent a RE-
QUEST TO KEEP message, send an ACK to
that contender and proceed to round j + 1.

– Otherwise, send a NAK to all the contenders that sent
a request and proceed to round j + 1.

! Second Phase:
– Perform the actions described for the Probabilistic
Quorum protocol.

Figure 2. Mediator actions.

2.2.1 An Asynchronous Protocol

We now relax the assumptions made earlier and provide a
solution that supports asynchronous communication among
mediators and contenders. In the asynchronous case, mes-
sages from contenders to a mediator for a specific round
need not be received at the same time. Therefore, in every
round of the first phase, a mediator sends an ACK to the
first contender request for that round. A NAK is sent to
subsequent requests from other contenders for that round.
In the first phase of the asynchronous protocol, a con-

tender sends REQUEST TO KEEP messages, along with
a round number to a set of mediators picked uniformly at
random as in the synchronous protocol. A mediator M
maintains a vector V of size equal to the number of rounds
(logn). All the entries in V are initially set to zero. On
receiving a REQUEST TO KEEP from a contender C in
round j, if entry j in V atM is zero,M sends an ACK toC
and sets the entry j to C (signifying that the winner of the
jth round at M is C). Otherwise a NAK is sent to C. The
purpose of this step is to reduce the number of contenders
that proceed to subsequent rounds. The contenders that sur-
vive (which do not receive even a single negative response)
all the rounds in the first phase proceed to the second phase
of the protocol.
The second phase of the asynchronous protocol follows

the protocol for probabilistic quorum given in Section 2.1.
Due to space limitations, we omit the proofs of the algo-
rithms. We refer the reader to [8] for the proofs and a more
detailed set of experiments.

2.2.2 Aggregation

We now relax the assumption on the presence of a unique
file in the entire system and explain how the protocol can
be extended to deal effectively with multiple files. A simple
extension would be to perform the leader election for each
file in the system separately. However, this approach re-
sults in a protocol complexity ofO(n∗# of unique files). A
better approach that reduces message complexity, and thus
improves efficiency, is to hold a single election. In this case,
each contender C1 initially sends messages to mediators
with a list of all the files in its local node. On a collision
with contender C2 at the mediator M , M sends ACKs for
files held by C1 that are not present in C2. C1 proceeds to
the next round with the list of files for which it received an
ACK. The complexity of this method is O(n

√
n lnn). The

multiplicative factor
√

n lnn is present because each node,
in the worst case, can go to the second phase of the pro-
tocol for a disjoint set of files. Given that the number of
unique files is likely to be significantly larger than the num-
ber of nodes in the system, the latter approach is expected to
be more scalable. Also, observe that the same aggregation
scheme can be applied to the PQ approach. The resulting

complexity in this case is also O(n
√

n lnn).

2.3. Algorithmic Issues

Effective realization of the duplicate elimination ap-
proaches presented in the paper builds on a number of recent
results on generating randomwalks, and efficiently estimat-
ing network size for unstructured networks. In our proto-
cols, the nodes need to pick quorum members or mediators
uniformly at random. We accomplish this by performing
a biased random walk using the Metropolis-Hastings (MH)
algorithm [13, 2], which provides a method to hasten the
mixing time of a random walk to reach a stationary uni-
form distribution. We have implemented the Metropolis-
Hastings algorithm as part of our protocols.
Another input to our protocol is the size of the network.

An estimate of the number of processes in the system is
needed to determine the number of messages that need to
be sent in each round of the protocol. Horowitz et al. [11]
presents an estimation scheme that allows a node to esti-
mate the size of its network based only on local information
with constant overhead by maintaining a logical ring. In
our current implementation, we have the system size as a
parameter. The use of an estimation scheme is part of our
future work.

3. Implementation and Experimental Results
In this section, we present experimental results for the

two protocols described in the previous section. Our ex-
periments consider both a detailed large-scale simulation,
as well as a prototype implementation on PlanetLab. For
the PlanetLab experiments, we use file traces from real ma-
chines.

3.1. Simulation Setup and Results

Recent studies show that the topology of unstruc-
tured networks can be modeled using power-law random
graphs [18]. In our experiments, we use a power-law ran-
dom graph with 50,000 nodes. To generate the graph, we
first generate the degrees of the nodes according to a power-
law distribution with parameter α = 0.8 and then connect
the nodes randomly.
We assume that one file is the target of duplicate elim-

ination and that the file is duplicated at a percentage β of
the nodes. The file is placed at nodes selected uniformly
at random from the network. We vary β from 1% to 50%.
These percentages are chosen to simulate files of differing
popularity, from very rare files to extremely popular ones;
in other words, popular files are duplicated at many nodes,
while unpopular ones are not. The desired number of repli-
cas k is varied from 1 to 100, and the value of c is fixed
and equal to 2. This value of c is sufficient to guarantee the

accuracy of the protocol, as discussed in Section 3.1.3, and
it also minimizes the network overhead by allowing a small
number (twice the value of k) of peers to participate in the
second phase of the protocol.

3.1.1 Message Overhead

1e+8

1e+7

1e+6

1e+5

1e+4

1e+3
 0 5 10 15 20 25 30 35 40 45 50

To
ta

l N
um

be
r o

f M
es

sa
ge

s

Percentage of Duplicates

PQ
RE(k=1)

RE(k=10)
RE(k=50)

RE(k=100)

Figure 3. Total number of messages in the
system vs Percentage of Duplicates.

We first investigate the scalability of the approaches with
respect to the total number of messages exchanged in the
system. Figure 3 shows the number of messages for the
two duplicate elimination approaches applied to a file with
varying duplicate percentages, and with different values of
k. In the PQ approach, the parameter k has no impact in
the number of messages, for all values of k the results are
the same. This is expected, since the protocol consists of
a single round where all peers that contain a replica send
the same number of messages to the quorum members. The
decision of deleting a file is made locally based on the re-
sponses received. This protocol, however, does not scale
well when the percentage of duplicates increases in the net-
work. When the file is replicated in 50% of the nodes, the
number of messages in the PQ approach is more than one
order of magnitude greater than the worst case (k = 100) of
the RE approach. This shows that the RE is more resilient
to the number of duplicates in the network, and therefore
much more scalable.

3.1.2 Load Distribution
We evaluate the load on each node in the system with re-
spect to the number of messages handled. We study the
load when the percentage of duplicates is 50% and k = 100,
which corresponds to the highest load among the different
parameters studied. Figure 4 shows the number of messages
for each node. For each approach, the nodes were sorted in-
dependently based on the number of messages processed.
We only compare the nodes in the figure based on its rank-
ing of messages processed in the two approaches. The load
per node is greater using the PQ protocol than RE due to

the larger number of total messages in the former case. Re-
call that RE eliminates roughly half the contenders at each
round, thus significantly reducing the number of messages
processed in subsequent rounds.

 1

 10

 100

 1000

 0 10000 20000 30000 40000 50000

Nu
m

be
r o

f M
es

sa
ge

s
pe

r N
od

e

Nodes

PQ
RE

Figure 4. Number of messages received per
node (Y-axis in Log Scale).

The load is evenly spread across all nodes in the system
for the PQ approach. We can see that the biased random
walk using the Metropolis-Hastings algorithms is able to
select peers uniformly from the network. For the RE ap-
proach, however, we observe a slight discrepancy in which
a small set of nodes process more messages. This is due to
an optimization we use in the implementation of the pro-
tocol. The winners of each round should pick new sets of
mediators in a way that any node can be selected uniformly
from the network. However, in our simulation, the winners
include the same mediators from a previous round in the
set of mediators for the new round, and only select addi-
tional nodes from the network to satisfy the number of me-
diators for the new round. Therefore, the mediators which
are picked by the nodes which eventually have to keep the
files must process more messages than the rest of the nodes
in the system. This simple optimization, however, does not
interfere with the accuracy of the protocol, as discussed be-
low.

3.1.3 Accuracy of the Protocols
The final goal of both protocols is to delete all duplicates
while leaving k copies in the network. To evaluate how
close to this goal the protocols perform, we fix the object
popularity to 1% (500 copies) and vary k. In 10,000 differ-
ent runs with different seeds, the protocols always matched
the values of k, for k from 1 to 100.

3.2. PlanetLab Experiment

Although PlanetLab is smaller than what we would ex-
pect from a large-scale storage system (and what our sim-
ulation results measure), it is nonetheless a useful testbed

for evaluating the performance of our application, and ad-
dressing important issues that arise in a real implementation
which are not captured in a simulation study.
In PlanetLab, nodes are spread around the world, and

are connected to the Internet with varying bandwidths. The
message delays are what a large scale application would en-
counter in a realistic scenario. Nodes in PlanetLab consist
of PCs with Pentium IV processors with at least 512MB of
RAM and run Linux as their operating system [15].
In our experiment, we use a separate application (com-

mand center) to control data collection and initiation of the
nodes. The command center informs the nodes which file
system they should use and how they should connect to each
other. The number of connections of each node is generated
using a zipf-like distribution.

3.2.1 File Traces
The file traces we use in our experiments are data sets ob-
tained from [6]. These traces correspond to 10, 568 file sys-
tems from 4,801 Windows machines in a commercial envi-
ronment. The trace contains 140 million files totaling 10.5
TB of data. For our experiments in PlanetLab, we were able
to consistently acquire 132 nodes to run our application; we
use this number for the benchmarks shown below. We ran-
domly choose 132 file systems from the trace and assign
one file system to each PlanetLab node. We process the ob-
tained trace to eliminate any duplicates within the same file
system, and thus our results do not reflect duplicate elimina-
tion of files that belong to the same file system. Even though
we could run multiple processes per machine and build a
larger overlay network, we decided not do it to avoid the
introduction of artificial delays between processes running
in the same machine.
A unique id of 20 bytes is generated for each file within

the file system by hashing the file name plus the file size.
The file systems are assigned at random to the PlanetLab
nodes without considering the storage, bandwidth and pro-
cessing power of the nodes, or any specific topological rela-
tionships among the nodes. We assume these traces corre-
spond to backed up data on the peers that are subject to du-
plicate elimination. The characteristics of the file systems
used in our experiments as well as the other parameters are
given in Table 1.

3.2.2 Experimental Results
Since the overheads in the PQ protocol are much higher than
the RE and because our simulation results indicate that RE
exhibits better scalability characteristics, our experiments in
PlanetLab are conducted using only the RE protocol.
Our experiments examine how the effectiveness and

overheads of the protocol as the minimum file size for du-
plicate elimination is varied. Files below a minimum size
are not considered by the protocol. The minimum file size

Maximum number of files in a FS 31,533
Minimum number of files in a FS 2
Average number of files per FS 6,719.15
Maximum FS size 4,678MB
Minimum FS size 100KB
Average FS size 653MB
Total space used 86,232MB
Unique files in the system 420,487

Table 1. System parameters.
is varied from 10KB to 10MB. The following parameters
are investigated during the experiment:
• Total Space Reclaimed: This gives the total amount
of space reclaimed in the entire system. We show this
value to be close to optimal, which is the sum of all the
sizes of all unique files in the system.

• Communication Overhead: This gives the total num-
ber of messages including REQUEST TO KEEP,
ACK, and NAK in the system.

• Storage per node: This parameter gives the file size
distribution with respect to the nodes in the system. At
the end of the protocol, the space used at each node
should decrease as a percentage of the number of du-
plicates it originally held.

• Memory Overhead per node: Each node in the sys-
tem can potentially act as a mediator. Measuring mem-
ory load, the maximum memory used at any point of
the execution, helps us in identifying the additional
memory needed by the system to support the protocol.

Figure 5 presents the main results of the experiments.
We calculate the initial storage system size by obtaining file
system sizes from each node. Similarly, from the file sys-
tems used, we find the number of unique files separately
for all the file systems used and the corresponding storage
size. The unique storage system size is the optimal storage
size. The initial and unique storage system sizes are rep-
resented by horizontal lines in the figure. We perform the
RE approaches for varying minimum file sizes from 10KB
to 10MB. Only files greater than the established minimum
file size are considered for duplicate elimination. After the
conclusion of the protocol, we obtain the final file system
sizes for each node and compute the final storage system
size. As the figure shows, with increase in the minimum file
size, the final storage size deviates from the optimum stor-
age. When the minimum file size is 10KB, the final storage
size is close to the optimum, which is around 50% of the
initial storage size. In other words, the protocol performs
better when the percentage of files considered for duplicate
elimination increases, as expected.
The total number of messages processed in the system

is also presented on the right axis of the figure. With in-
crease in the minimum file size, the number of messages

 5e+10

 6e+10

 7e+10

 8e+10

 9e+10

 10000 8000 6000 4000 2000 0
 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06
To

ta
l S

to
ra

ge
 (i

n
By

te
s)

M
es

sa
ge

s
Pr

oc
es

se
d

Minimum File Size

Initial Storage
Unique Storage

Final Storage
Messages Processed

Figure 5. The X-axis represents the minimum
file size for which the duplicate elimination
was performed, Left axis represents the sys-
tem storage size, Right axis represents the
total number of messages processed in the
system. Initial and final storage system sizes
along with the unique storage size is also
given.

exchanged in the system reduces. The presence of the mes-
sages processed along with the final storage space gives an
approximate estimate on the minimum file size that needs
to be used. For example, when the minimum file size is
set at 100KB, the number of messages processed is quite
low with final storage space slightly deviating from the op-
timum storage space. There is a clear trade-off between the
space reclaimed as a function of the minimum file size and
the message overhead. By increasing the minimum file size,
the message overhead is reduced, but the number of dupli-
cates in the system is increased.

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

 4.5e+09

 5e+09

 0 20 40 60 80 100 120 140

St
or

ag
e

Si
ze

 (i
n

by
te

s)

Nodes (Sorted by Storage Size)

Initial Storage
Final Storage, Min. File Size = 10K
Final Storage, Min. File Size = 500K

Figure 6. Storage size per node for varying
minimum file sizes. Nodes are sorted based
on the initial file size.

We next study the amount of storage reclaimed per node.
Figure 6 presents the initial storage size for each node in the
system. The results for minimumfile size 10K and 500K are

shown in the Figure. We use only these two for clarity in the
presentation. The results for other minimum file sizes show
similar pattern. It is clear that for both minimum file sizes,
the amount of storage per node decreases for the majority
of the nodes. Furthermore, the storage reclaimed per node
when the minimum file size is 10K is greater than when it is
500K. This can be explained due to the elimination of more
smaller- sized files.

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100 120 140

M
em

or
y

Us
ed

 (i
n

M
B)

Nodes

Min. File Size = 10KB
Min. File Size = 100KB
Min. File Size = 500KB
Min. File Size = 1MB
Min. File Size = 10MB

Figure 7. Memory overhead (in MB) per node
for varying minimum file sizes. Nodes are
sorted based on the memory overhead.

The amount of memory consumed per node as a media-
tor is shown in Figure 7. The nodes are sorted based on the
amount of memory consumed and the experiment is exe-
cuted for different minimum file sizes. When the minimum
file size is 10K, the average amount of memory consumed
across all nodes is approximately 5MB. Though most of
the nodes have equal memory consumption, there are a few
nodes that have more memory overhead. This is similar to
the observations made in the simulation results. The medi-
ators which are part of the mediator sets for the nodes that
eventually keep the file receive more messages than the rest.
The same observations make in Section 3.1.2 about our im-
plementation apply in this case. Observe, though, that the
deviation from the average is not significant. The memory
consumed is smaller with increase in the minimum file size,
which is due to fewer number of files selected for duplicate
elimination.

4. Related Work

Douecer et al. [5] addresses the duplicate elimination
problem for a wide-area storage system. In their paper,
they propose SALAD, a Self Arranging, Lossy, Associative
Database, which is a distributed data structure to aggregate
file content and location information. The database is dis-
tributed across machines, where each machine is a leaf and
a group of leaves form a cell. The records are sorted into

buckets and the buckets are assigned to a cell. By building
this data structure, an underlying structure is formed and has
to be maintained. This is similar to the distributed indexing
approach present in many popular structured peer-to-peer
networks [20, 16]. We address the more general problem of
trying to eliminate duplicates without making any assump-
tions on the structure of the overlay network.
Pastiche [3] is a peer-to-peer backup system where each

peer tries to minimize storage overhead by selecting peers
that share a significant amount of data. The problem of
greedy hosts was identified in [3] and a few solutions were
proposed. The solutions initially proposed were based on
equivalence classes, solution of cryptographic puzzles, and
some form of electronic currency. All solutions were con-
sidered complicated and with significant overhead. The au-
thors revisit this problem in [4] and propose Samsara, a fair-
ness enforcement mechanism. In this scheme, each peer
that requests storage space of another peer must agree to re-
serve some space in its own disk to the peer it is requesting
the storage. For the problem of greedy peers, the scheme
performs well. However, there is no solution to the problem
of common data that are highly replicated by different peers
in the network.

5. Conclusion

This paper addresses the problem of duplicate elimina-
tion in storage systems in the context of unstructured peer-
to-peer networks in which there is no a priori binding be-
tween an object and its location. We abstract the problem
of retaining a copy of a file to one of electing leaders in
a distributed system. We show using both simulation and
a prototype implementation in PlanetLab that the protocols
are scalable with respect to message complexity and to node
resource utilization. To the best of our knowledge, our work
is the first to address the duplicate elimination problem in
unstructured networks.

Acknowledgments

This research has been partially funded by the National
Science Foundation grant CNS 0509387. The first author
has been partially funded by CNPq and UFMS, Brazil.

References

[1] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken,
J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P.
Wattenhofer. FARSITE: Federated, Available, and Reliable
Storage for an Incompletely Trusted Environment. In Pro-
ceedings of OSDI’02, Dec 2002.

[2] A. Awan, R. Ferreira, A. Grama, and S. Jagannathan. Dis-
tributed Uniform Sampling in Large Real-World Networks.

Technical Report, Department of Computer Sciences, Pur-
due University, October 2004.

[3] L. Cox, C. Murray, and B. Noble. Pastiche: Making Backup
Cheap and Easy. In Proceedings of OSDI ’02, Boston, MA,
December 2002.

[4] L. Cox and B. Noble. Samsara: Honor Among Thieves in
Peer-to-Peer Storage. In Proceedings of SOSP 2003, Bolton
Landing, NY, October 2003.

[5] J. Douceur, A. Adya, W. Bolosky, D. Simon, and
M. Theimer. Reclaiming Space from Duplicate Files in
a Serverless Distributed File System. In Proceedings of
ICDCS’02, Vienna, Austria, July, 2002.

[6] J. Douceur and W. Bolosky. A Large-Scale Study of File-
System Contents. In Proceedings of SIGMETRICS’99,
pages 59–70, 1999.

[7] R. Ferreira, M. K. Ramanathan, A. Awan, A. Grama, and
S. Jagannathan. Search with Probabilistic Guarantees in Un-
structured Peer-to-Peer Networks. In Proceedings of IEEE
P2P’05, Konstanz, Germany, August 2005.

[8] R. Ferreira, M. K. Ramanathan, A. Grama, and S. Jagan-
nathan. Randomized Protocols for Duplicate Elimination in
Peer-to-Peer Storage Systems. Technical Report, Depart-
ment of Computer Sciences, Purdue University, 2005.

[9] Gnutella. http://gnutella.wego.com/.
[10] A. Goldberg and P. Yianilos. Towards an Archival Inter-

memory. In Proceedings of IEEE Advances in Digital Li-
braries (ADL), 1998.

[11] K. Horowitz and D. Malkhi. Estimating Network Size
from Local Information. Information Processing Letters,
88(5):237–243, December 2003.

[12] D. Malkhi, M. Reiter, and R. Wright. Probabilistic Quo-
rum Systems. In Proceedings of PODC ’97, pages 267–273,
Santa Barbara, CA, August 1997.

[13] N.Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and
E. Teller. Equations of State Calculations by Fast Comput-
ing Machines. Journal of Chemical Physics, 21:1087–1091,
1953.

[14] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge University Press, 1995.

[15] PlanetLab. http://www.planet-lab.org/.
[16] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and

S. Shenker. A Scalable Content-Addressable Network. In
Proceedings of ACM SIGCOMM ’01, pages 247–254, San
Diego, CA, August 2001.

[17] Y. Saito, C. Karamanolis, M. Karlsson, and M. Mahalingam.
Taming Aggressive Replication in the Pangaea Wide-Area
File System. In Proccedings of OSDI ’02, Boston, MA, De-
cember 2002.

[18] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A Measure-
ment Study of Peer-to-Peer File Sharing Systems. In Pro-
ceedings of MMCN ’02, San Jose, CA, USA, January 2002.

[19] N. Sarshar, P. Boykin, and V. Roychowdhury. Percolation
Search in Power-LawNetworks: Making Unstructured Peer-
to-Peer Networks Scalable. In Proceedings of IEEE P2P’04,
Zurich, Switzerland, August 2004.

[20] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable Peer-To-Peer lookup service for
internet applications. In Proceedings of ACM SIGCOMM
’01, pages 149–160, San Diego, CA, August 2001.

