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Abstract

Concurrency bugs are often due to inadequate synchroniza-
tion that fail to prevent specific (undesirable) thread inter-
leavings. Such errors, often referred to as Heisenbugs, are
difficult to detect, prevent, and repair. In this paper, we
present a new technique to increase program robustness
against Heisenbugs. We profile correct executions from pro-
vided test suites to infer fine-grained atomicity properties.
Additional deadlock-free locking is injected into the pro-
gram to guarantee these properties hold on production runs.
Notably, our technique does not rely on witnessing or ana-
lyzing erroneous executions.

The end result is a scheme that only permits executions
which are guaranteed to preserve the atomicity properties
derived from the profile. Evaluation results on large, real-
world, open-source programs show that our technique can
effectively suppress subtle concurrency bugs, with small
runtime overheads (typically less than 15%).

Categories and Subject Descriptors D.2.5 [Software En-

gineering]: Testing and Debugging—Debugging aids, Di-
agnostics, Monitors, Tracing; D.3.4 [Programming Lan-
guages]: Processors—Debuggers

General Terms Algorithms, Experimentation, Measure-
ment, Reliability, Performance

Keywords Concurrency bugs, profile, atomicity, locking,
debugging

1. Introduction

Debugging concurrent programs is challenging because of
non-determinism induced by schedulers and unintended racy
behavior. Consequently, bugs that do manifest are often not
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easily reproduced – even though a program may yield many
different results on the same input, only a small fraction of
these may be erroneous; these failures are called Heisen-

bugs. There has been much recent work devoted to dis-
covering these bugs. For example, logging and replay tech-
niques [13, 22] monitor program executions and allow re-
play when failures do occur, albeit at the expense of some-
times substantial space and time overheads during normal
execution. Alternatively, one could enrich testing strategies
to discover specific interleavings that lead to such failures;
these techniques perform a directed and bounded search over
program executions [23, 25], but assume that the failures
have been observed and the failure inducing inputs are pro-
vided. Unfortunately, discovering such inputs during testing
for large code bases is often problematic.

Even if a specific interleaving can be automatically dis-
covered to consistently reproduce a failure, the onus for un-
derstanding the reason for the failure, and more importantly
preventing it, remains squarely on the programmer. Heisen-
bugs are triggered by race conditions, atomicity violations,
and unintended dependence ordering violations. In general,
these conditions do not directly and immediately lead to fail-
ures, but gradually contaminate program state; thus, the ac-
tual point where a failure is triggered may be far removed
from the primary cause. Even if the root cause can be identi-
fied, preventing the bug from occurringmay require substan-
tial non-local reasoning. For example, preventing an atomic-
ity violation by adding locks may have the unintended con-
sequence of introducing a deadlock, or unnecessarily limit-
ing concurrency.

We believe that expecting programmers to repair Heisen-
bugs by tedious analysis and meticulous reasoning of failed
executions is untenable for complex real-world applications.
An alternative approach explored in this paper takes advan-
tage of the fact that Heisenbugs occur rarely – thus, the ex-
pected behavior of an execution is not to manifest the er-
ror. This observation leads us to focus on correct executions
(the common case) to infer apparent atomicity properties.
For our purposes, these properties capture pairs of thread-
local accesses to a shared variable that occur without in-
terleaved remote accesses from other threads. Significantly,



we do not require that these pairs be related lexically; thus,
they can cross different function boundaries and conditional
branches. Our technique considers these pairwise accesses
as a set of constraints. A path-sensitive locking scheme is de-
rived by solving these constraints. Acquisitions and releases
of a set of new locks, generated by our analysis, are sub-
sequently injected into the program. The locking scheme is
safe as it only allows a subset of executions that are allowed
in the original program - this subset is guaranteed to pro-
duce behavior consistent with the atomicity properties ob-
served in the profile. Because we infer atomic accesses that
are substantially more fine-grained than what programmers
can easily express using lexical bracketing of atomic code re-
gions, the approach enables effective suppression of Heisen-
bugs with little loss of concurrency, and without requiring
programmers to employ the low-level and non-modular rea-
soning that would otherwise be necessary to remedy the er-
ror.

Thus, the distinguishing feature of our technique is that
it does not require the availability of erroneous executions
to prevent concurrency bugs that arise because of an atom-
icity violation. Instead, the injected instrumentation effec-
tively only admits executions that respect the atomic regions
inferred by profiling correct runs. Notably, our approach is
not replay-based: the instrumented program allows different
interleavings from those witnessed in the profile with respect
to non-atomic regions, only guaranteeing the absence of in-
terleaved accesses in those that are. Moreover, the technique
is safe: any execution realizable under the instrumented pro-
gram is also realizable under the original; a corollary of our
safety condition is that our injected instrumentation does not
introduce deadlocks.

Our contributions are summarized as follows:

• We propose a novel profile-based program analysis that
can be used to suppress Heisenbugs for complex, large-
scale concurrent applications.

• Central to our approach is the inference of salient atom-
icity properties from profiles of benign executions gener-
ated from test suites, without requiring the availability of
failure-inducing inputs.

• Our instrumentation algorithm injects path-sensitive lock
acquisitions and releases to tolerate atomic sections that
are not lexical (e.g., because the atomic region may span
different lexically-delimited scopes).

• We evaluate our technique on a set of large, real-world
open-source programs. Benchmark results show that our
technique can effectively suppress subtle hard-to-identify
and repair concurrency bugs. Performance evaluation on
realistic workloads indicate that the runtime overhead of
our technique is small, typically on the order of 15%.

The remainder of the paper is structured as follows. The
next section presents additional motivation and some details
of the benchmark corpus we used in our study. Section 3 ex-

amines one of these benchmarks as a case study to illustrate
some of the technical challenges our techniquemust address.
Section 4 gives an overview of our solution using this case
study as a representative example. We present the scope of
our technique with respect to the kinds of concurrency bugs
it can suppress in Section 5. We present details of the pro-
filer in Section 6. The lock placement algorithm and instru-
mentation mechanism is given in Section 7. The deadlock
resolution algorithm is described in Section 8. Extensions
to our approach are required to deal with conditional syn-
chronization and shared heap objects; these extensions are
described in Section 9. We formalize the safety properties of
our solution in Section 10. An evaluation study with respect
to overhead and effectiveness is given in Section 11. Related
work is given in Section 12 and conclusions are provided in
Section 13.

2. Motivation

Existing concurrency bug detection/fixing techniques [18,
25] often rely on exploiting negative information - given the
observation of a known or likely concurrency bug, acquire an
input that triggers the bug. The implication is that bug reme-
diation first requires either manifestation of the bug or iden-
tification of likely sources. In contrast, our technique infers
potential atomic regions from observed correct executions,
and enforces atomicity in these regions, thereby guarantee-
ing that atomicity invariants witnessed in these executions
are automatically preserved; by doing so, it prevents bugs
that arise because an execution fails to preserve these invari-
ants without the need for having a failure-inducing input.

We conducted a detailed evaluation study to support our
intuition. Our study looked at 13 concurrency bugs from 6
widely used concurrent applications including the apache
web server and the mysql database server. (Table 1) Mysql
comes with an extensive regression test suite, as well as
several widely used database performance evaluation bench-
marks such as sysbench-oltp and tpcc. Apache and the
other programs do not have a their own test suites, but there
are commonly used static/dynamic workloads that can be
used as representative inputs. The test inputs used for pro-
filing each benchmark are shown in Table 2.

These programs run correctly with the test inputs. We
collected atomicity profiles from these runs and analyzed
whether enforcing these properties would suppress future
bugs, i.e. bugs reported after the program and the test suites
were released. Our atomicity criteria was based on observed
pairwise atomic sections: a code region (not necessarily
lexical) bracketed by two accesses to the same variable in the
same thread, without any intervening access to that variable
by another thread.

We observed that the test suites collectively provide cov-
erage over the faulty statements, even though they do not
trigger the failures. Indeed, the key atomic pairs are eas-
ily observed from the passing test cases; these regions in-



program bug, date module affected, description atomic pair
aget,
0.4

- A data race between threads downloading a web page and SIGINT signal handler. When
the data race occurs, the downloaded file is corrupted. The shared variable bwritten is
consistently protected by lock bwritten mutex except inside the signal handler.

bwritten needs read lock in
save log() in Resume.c:41.

pbzip2,
2.094

- An order violation between the main thread and threads doing file compression (consumer
threads) on mutex fifo->mut. The main thread may delete the mutex before all
consumer threads are done using it.

fifo->mut needs a read lock in
func. consumer() in
pbzip2.cpp:873-994

nszip,
1.8

342577,
23/6/2006

A data race in Mozilla nsZipArchive::SeekToItem on nsZipItem::flags. The data race
corrupts the decompressed file.

nsZipItem::flags needs write lock
in func.
nsZipArchive::SeekToItem() in
nsZipArchive.cpp:1381-1408

apache,
2.2.6

44402,
2/12/2008

In worker multi-processing module (mpm), the recycled pools list gets corrupted under
high concurrency causing server to crash. First observed while running specweb99 static
content workload with 1000 simultaneous connections and 500 threads per worker. The
server would run for anything between 10 minutes to 4 hours before it would crash.

recycled pool::next in
fdqueue.c:104-107, func.
ap queue info set idle() needs
read lock.

apache,
2.0-
head

25520,
15/12/2003

In mod log config, log lines are corrupted at high volumes in access log. buffered log::outcnt needs write
lock in
mod log config.c:1432-1469, in
func. ap buffered log writer()

spider-
monkey,
1.5

133773,
27/3/2002

An order violation bug in Mozilla JavaScript engine in func. js DestroyContext() on
JSRuntime::state leads to crash.

JSRuntime::state needs read lock
in func. main().

mysql,
4.0.12

791,
4/7/2003

In log.cc (binlog), when SQL FLUSH LOGS is executed concurrently with another SQL
statement, e.g. SQL INSERT, the latter may not be recorded in binlog.

MYSQL LOG::log type needs
write lock in log.cc:867-869,
func. MYSQL LOG::new file()

mysql,
4.0.12

12848,
29/8/2005

In sql cache.cc (query cache), access to query cache while the cache is been resized
caused server to crash. The bug was reproduced by running query cache.test (size: 450
lines) in mysql-test suite for 1-2min.

Query cache::bins needs write
lock in sql cache.cc:733-755, in
func. Query cache::resize()

mysql,
5.0.16

14747,
8/9/2005

In the index tree adaptive search module in Innobase database engine, two threads trying
to drop a hash index could race with one another, leading to a server crash. After the bug
was first reported, the developers added diagnostics to the code and there was no activity
for several months until it was reported again. Even then there was no way to reliably
reproduce it except for the observation that crash happened often on big queries.

buf block struct::index needs
write lock in btr0sea.c:893-1015
in func.
btr search drop page hash index()

mysql,
6.0.6

35714,
31/3/2008

A data race between THD::awake() and thd scheduler::thread detach() on variable
THD::mysys var led to a server crash.

THD::mysys var needs read lock
sql class.cc:859-893 in
THD::awake().

mysql,
5.0.19

16333,
10/1/2006

In the safe mutex API, assertion failure occurred in safe mutex assert not owner() due to
inconsistent values in fields count and thread in safe mutex objects. The crash was
reproduced by running oltp test in sysbench benchmark. The server would crash approx.
18min into the run when using 8 client connections and a test database having 1 million
records.

A multi-variable atomicity
violation. safe mutex t::count
and safe mutex t::thread need
write lock in safe mutex lock() in
thr mutex.c:163-170

mysql,
5.0.24

20850,
4/7/2006

A data race occurred between server termination code in end slave, and slave threads on
variable Master info. The func. end slave could destroy the Master info object before all
slaves were done using it. To reproduce the bug the developers ran MySQL replication
tests (size: 80 lines) in a loop with each iteration restarting the server. It many take as
many as 36 iterations before the server would crash and the crash happens during server
shutdown.

Master info::run lock needs read
lock in func. handle slave io() in
slave.cc:3414-3745

Table 1. Some known data race/atomicity violation/order violation bugs and how they can be prevented by enforcing pairwise
atomicity observed in passing runs. Bugs 44402, 14747, 16333 have not been discussed in literature before. Many of these bugs
such as mysql 12848, 14747, 16333, 20850, and apache 44402 were difficult to deterministically reproduce and diagnose
according to the bug reports, due to the special inputs required, the large number of threads involved, and the long execution
time necessary to trigger the failure. Please refer to Table. 2 for inputs used for profiling.

duce a failure only with certain inputs that do not happen
to be used in the regressions and benchmarks, or under cer-
tain unforeseen schedules. By enforcing atomicity in these
regions (i.e., by injecting suitable locks), we were able to
successfully prevent these bugs: inputs identified from the
bug reports that were previously able to trigger the bug no
longer did, and the inserted locks prohibited previously al-
lowed faulty schedules. Thus, the transformed program sup-
presses these bugs from occurring in the first place. Many of

these bugs such as mysql 12848, 16333, 20850, and apache
44402 were difficult to deterministically reproduce and di-
agnose when they were reported, due to the special inputs
required, the large number of threads involved and the long
execution time necessary to reach the failure. Indeed, several
of the bugs we consider have not been studied in the research
literature to the best of our knowledge. Note that we focus
on reported bugs only because it simplifies validation.



foo()
{
if (<COND1>){

P = NULL;
}

if (P){
... = *P;

}
}

foo()
{
if (<COND1>){

acquire(L)
P = NULL;
release(L)

}

acquire(L)
if (P){

... = *P;
}
release(L)

}

Figure 1. An input dependent atomicity violation. The orig-
inal code is shown on the left; the version instrumented by
our technique is on the right.

To make our discussion concrete, consider the example
in figure 1, which is an abstraction of several real atomicity
violations we have observed. Here, P is a shared pointer
which is not protected consistently with a lock. The function
foo() is called by multiple threads, leading to interleaving
of accesses to P. The assignment that sets P to NULL is
guarded by the condition COND1. For all test inputs found
in the regression test suite, COND1 is always false. Hence,
it is not possible to induce the bug even after exhaustively
exploring the possible schedules for the test runs.

Consequently, we do not observe any writes to P from
other threads; our profile, on the other hand, indicates that
the two reads to P are pairwise atomic – they occur with no
intervening access to P by another thread. Since the reads are
not protected, our technique transforms the program to put
these accesses within an atomic section. In addition, even
though we have not seen the execution of the assignment to
P in our profile, enforcing the atomicity of the two reads re-
quires us to also instrument the write access to ensure that
it is not allowed to be interleaved with the reads. Our lock
injection mechanism guarantees that even when COND1 is
true (under some new input provided later during a produc-
tion run), two threads will never be interleaved within foo()
such that one sets P to NULL between the two read accesses
to P.

3. Technical Challenges

Realizing our ideas for real world programs is challenging.
We use a concurrency bug found in MySQL-4.0.12 (bug id
791) to illustrate these challenges. This non-deterministic
bug results in SQL queries not being properly logged. Log-
ging failure is problematic because mysql relies on its log
to revoke and replay queries in the presence of transactional
commit failures. The failure is caused by an atomicity vio-
lation. The relevant code snippets are shown in Fig. 2. Ig-
nore all the highlighted statements for the moment; these are

statements inserted by our technique, and are not present in
the original program. At line 867 in function new file()
(the right-hand side code fragment), the current log file
reaches its size limit and is closed. A new log file is sup-
posed to be created at line 870 to continue logging. Al-
though there is a program lock LOCK log that protects the
main body of new file(), the lock is not consistently held
in other accesses of log type. For instance, in function
mysql insert() (shown on the left-hand side), the call to
mysql bin log.is open() at line 311 entails accessing
log type (see the definition of is open() on the top-left
of the figure), yet the access is not protected. In the failure-
inducing schedule as shown by the arrows between the lines
311, 867 and 870, the value is set to LOG CLOSED by the
invocation to close() first at line 867, the predicate at 311
is evaluated before the value is set again at line 870 and thus
takes the false branch, with the insert query not logged.

Like most Heisenbugs, this error illustrates two signifi-
cant complexities: (a) finding the bug is challenging, and not
likely to be easily exposed by typical testing strategies; and
(b) even after the bug is found, there is a deep causal chain
of dependencies that must be followed in order to determine
how best to repair it. For example, given knowledge of the
bug and its cause, we might be tempted to lock the call to
is open() at line 311. However, non-trivial reasoning must
be brought to bear to ensure that such a change is in fact
correct:

• It is unclear if deadlocks would be introduced.

• The body of new file() is protected by multiple locks
(not shown in the figure). There may be many other
accesses to log type just like that at line 311, with some
of them already protected by some subset of the locks
in new file(). It is hence difficult to determine which
lock(s) should be held in order to provide consistent
protection.

• Wrapping the access at line 311 with lock LOCK log
would still not resolve the bug because there is another
access to log type in the call to is open() at line 1922.
Atomicity must be preserved between these two accesses
as well.

• We might choose to simply protect the whole body of
mysql insert() with lock LOCK log. However, doing
so likely limits concurrency unnecessarily since only the
two accesses to the log need to be protected. The execu-
tion of the rest of the function body can be interleaved
with other threads.

4. Overview of Our Solution

Our technique is divided in three phases: a profiling phase
collects pairwise atomicity information; a lock placement
phase derives a locking scheme that satisfies the atomicity
constraints collected by the profiler; and a deadlock reso-

lution phase resolves possible deadlocks induced by the in-



sql_class.h
MYSQL_LOG::bool is_open() { 
     return log_type != LOG_CLOSED; }150

  log.cc
void MYSQL_LOG::new_file(…) {
    acquire(READ(log_type), 805);
    if (!is_open()) {
         release(READ(log_type));
         return; 
    } 
    if (need_lock) {
        acquire(EXCLUSIVE(log_type), 810);
        pthread_mutex_lock(&LOCK_log);
    }
    if (!no_rotate)  {
       if (generate_new_name(…)) ...
       if (log_type == LOG_BIN) … 
    } 
    acquire(EXCLUSIVE(log_type), 867);
    close();  /*present log full and closed*/
    … 
    open(…);  /*start a new log*/
    release(EXCLUSIVE(log_type));
    if (need_lock)
        pthread_mutex_unlock(&LOCK_log);
}

805

810

830
834

867

870

log.cc
MYSQL_LOG::generate_new_name(){
    if (log_type != LOG_NORMAL)
}
bool MYSQL_LOG::open( ) {
    log_type = … ;
}
void MYSQL_LOG::close( ) {
    … 
    log_type= LOG_CLOSED;

124

143

1496
sql_insert.cpp
int mysql_insert() {
   acquire(READ(log_type), 311);
   if (mysql_bin_log.is_open()) {
       … 
       if (mysql_bin_log.is_open()…)
           release(READ(log_type));

/* write to the log file*/ 
   }           
   else  release(READ(log_type));               

311

1922

<805, 830, R>    <830, 834, R>   <834, 867, R>    <867, 870, X>    <311, 1922, R>
  Atomic Pairs

Access Trace of log_type
[…:805:150] → /*remote reads*/ → […:830:124] →…  →   … → […:867:1496] → […:870:143]

A

B

C

D

E

F

G

H

Figure 2. A real bug inMySQL-4.0.12. The arrows between statements show the failure inducing schedule before applying our
technique. The shared variable is log type. The access trace of the variable is shown below the code snippets. Each entry of
the trace is an access with context information. The pairwise atomicity profile is presented in the bottom. Each profile entry is a
triple. The first two elements are a pair of intraprocedural program points with atomicity. The last element is the atomicity type.
R means read atomicity, i.e., remote reads have been observed to be interleaved with this pair. X means exclusive atomicity,
i.e. no interleaving remote access has been observed in the profile. The shaded statements are instrumentations added by our
technique. Primitive acquire(READ(log type),805)means acquiring a read lock for variable log type, starting at 805.

serted locks. We illustrate these steps using the example in
Fig. 2 in the remainder of the section.

Profiling. Our technique first collects a set of traces. To
simplify our discussion, we only present a trace relevant to
variable log type below the code snippets. Each trace entry
represents an access annotated with its context. For instance,
the first entry [... : 805 : 150] means that the access is the
read at line 150 in function is open(), which was invoked
at line 805, and so on.

We then consider each pair of consecutive thread-local
accesses to see if they have ever been interleaved with ac-
cesses from other threads. For a given pair of local accesses,
we identify an intraprocedural path such that locking that
path ensures atomicity of these accesses. Thus, our instru-
mentation phase does not need to inject locking over arbi-
trary inter-procedural paths.

In the example, the common function body of the first two
local entries is new file, and the two accesses to log type
are interleaved with remote reads. These accesses are thus
aggregated to the atomic pair 〈805, 830,READ〉, permitting
read atomicity (i.e. remote reads are allowed but remote
writes are not) between lines 805 and 830. Similarly, since

no interleaved remote accesses have been observed between
entries [... : 867 : 1496] and [... : 870 : 143], which cor-
respond to the accesses in close() and open() respec-
tively, the atomic pair 〈867, 870,EXCLUSIVE〉 is derived
as shown, representing exclusive atomicity (i.e. no remote
reads and writes are allowed).

Lock placement. Given a profiled trace, we infer synchro-
nizations that satisfy all pairwise constraints. The high-
lighted statements are the synchronizations introduced. Ig-
nore the lock acquisition at C© for the moment. A read-lock
is acquired at A© to ensure read atomicity from 805 to 830.
The lock is released at B© since taking the false branch at 805
indicates line 830 is no longer reachable. The read atomic
pairs 〈830, 834,READ〉 and 〈834, 867,READ〉 do not lead to
new acquisitions as they can be considered as a continuation
of the pair from 805 to 830. The lock is upgraded to exclu-
sive at D© based on 〈867, 870,EXCLUSIVE〉. It is released at
E©, right after the access in 870. This avoids unnecessarily
limiting concurrency.

Similarly, the atomic pair 〈311, 1922,READ〉 entails the
acquisition at F© and the release at G© and H©. The latter
release is because 1922 is not reachable. Observe that our



acquisition primitives take the line number as a parameter to
achieve intra-procedural path-sensitive locking, explained in
more detail in Section 7.

Deadlock resolution. Observe that our technique augments
but does not remove existing synchronization actions. Cor-
rectness arguments dictate that instrumentation should not
alter the original program semantics. However, adding locks
may interfere with existing ones or may interfere (e.g.,
cause deadlock) with locks added for other variables. Our
technique resolves deadlocks by injecting additional ac-
quisitions. Consider the synchronizations added to function
new file() by our technique (ignoring C© for now). There
is a potential deadlock due to the interference with program
lock LOCK log. In particular, the program lock may be ac-
quired (at 810) when the read lock for log type is held (at
A©); and in a different thread, the exclusive lock may be ac-
quired (at D©) when the program lock is held (at 810). Our
technique breaks the cycle by adding an extra acquire()
(at C©)1. This operation ensures that the exclusive lock for
log type is always held when the program lock is acquired.
It is straightforward to see that the resulting instrumented
program effectively prevents the bug.

5. Scope

Many common kinds of concurrency bugs, such as data races
and order violations, often involve violation of atomicity
invariants. As long as a bug manifests such a violation, it
is feasible to apply our technique to prevent it.

thread1() {
acquire(L)

A: p = ...;
release(L)

acquire(L)
C: *p;

release(L)
}

thread2() {

B: p = null;

}

Figure 3. A data race involving an atomicity violation.

We have observed that many bugs reported as data races
entail violation of pairwise atomicity. Fig. 3 presents a sim-
plified, yet typical, example. Here, executing statements A,
B and C in that order results in a null pointer dereference. It
might be assumed that the bug arises because of a race be-
tween B and C. However, if correct executions exhibit pair-
wise atomicity between the access to p at C and its pre-
ceding access at A, enforcing atomicity between these two
statements would effectively suppress the bug. Mysql bugs
14747, 35714, and 20850 in Table 1 belong to this category.

Order violations are a type of concurrency bug that often
involve atomicity violations as well. An order violation oc-
curs when accesses to a shared variable in different threads

1 Our runtime allows a lock to be acquired multiple times.

fail to execute these accesses in the specific order in which
they were intended to be executed. For example, a socket
may be intended to be first created and initialized in one
thread, and then used in another. We observe that in many
cases, ensuring a specific order can be preserved by enforc-
ing atomicity. In the case of sockets, this would mean that
the creation and initialization of the socket should be atomic.
The spidermonkey bug and the pbzip-2 bug in Table 1 be-
long to this category.

So far, we have assumed pairwise atomicity invariants are
defined with respect to the same variables. But in practice,
there are cases in which atomicity is required to hold across
multiple variables. For example, a flag that must be set if
the corresponding pointer becomes null is an instance in
which atomic accesses to two variables is required. Breaking
such atomicity can lead to failures. We leverage existing
techniques (e.g., [19]) to identify correlated shared variables
(essentially those that are accessed together in most cases),
representing them as a single abstract shared variable.

Other concurrency bugs that do not necessarily involve
atomicity violations, such as those that lead to deadlocks,
are not handled by our technique.

6. Profiling Atomic Pairs

TRACE-LANGUAGE L

S ∈ L ::= 〈v, T 〉; S | ε
T ∈ V arT race ::= 〈t, rw, c, is〉; T | ε

t ∈ Thread ::= {t1, t2, ...}
c ∈ Context ::= l

rw ∈ AccessType ::= {Rd, Wr}
v ∈ V ar ::= {x, y, z, ...}

is ∈ LockInstanceSet ::= P(Lock × Int)
Lock ::= {k1, k2, ...}

l ∈ Label ::= {entry, exit, l1, l2, ...}

Figure 4. Trace Syntax

The first component of our technique is a profiler that
identifies atomic access pairs. We say two local accesses
to a variable observed by a profile are exclusive-atomic if
no remote (i.e., non-thread-local) accesses occur between
them. Any execution which respects the behavior witnessed
by the profile ensures that an exclusive lock on that variable
is acquired prior to the first access, and released after the
second. Two local accesses are read-atomic if only remote
reads occur between the two accesses, without the presence
of an intervening remote write. To mimic the conditions
of the profiled run on subsequent executions, we require
that a read lock be held for this pair. If a remote write
was ever observed between the two accesses in the profile,
then no atomicity condition holds (denoted as no-atomic).
We distinguish read-atomic from exclusive-atomic to allow



more concurrency. It is an important design choice given the
non-trivial number of atomic invariants we need to enforce.

Traditionally, atomicity is defined lexically by the pro-
grammer – thus, we typically reason about atomicity in
terms of methods or code blocks. Transplanting such no-
tions into a profiling context is not straightforward, however.
Lexically-scoped atomic regions are difficult to identify and
profile because (a) multicore architectures permit real con-
currency, allowing any code region to execute concurrently
with code regions in other threads, confounding easy iden-
tification of lexical region interleavings; and (b) it is hard to
aggregate region-based profiles; the same region may occur
in the profile multiple times, exhibiting atomicity in some
instances, but not others. We cannot simply mark the whole
region as not being atomic because sub-regions (before and
after a given remote access) may still be atomic. Thus, iden-
tifying atomicity using lexically-scoped code regions could
be sub-optimal if atomicity is only needed in a small portion
of such regions.

Profiling atomic pairs, instead of code regions, addresses
these issues. The variable sensitive locking that can be
derived by discovering these pairs allows arbitrary (non-
lexical) interleavings of atomic regions. In this sense, atomic
pairs provide atomicity at fine granularity, and facilitate ag-
gregation of larger atomic regions from smaller atomic pairs.

To realize our design, we need to overcome a number of
technical challenges. Most importantly, atomic pairs are not
lexically well formed; for example, two accesses could oc-
cur in different calling contexts. For instance, function A()
might call B(), with the first access occurring in B(); after
B() returns, A() might subsequently call C(), which per-
forms the second access. Moreover, existing synchroniza-
tion present in the program may contribute to the atomic-
ity properties observed in the profile. Hence, we should ex-
clude identifying atomic accesses that are already guaran-
teed based on program structure.

We instrument programs to generate traces, which are
then analyzed to identify atomic pairs. The trace syntax is
presented in Fig. 4. A trace S is a sequence of variable sub-
traces, which define the access history of a shared variable.
The reason for such a design is that there is a sequential
order for accesses to the same variable instance while such
an order may not be available across variables. An entry
in the variable trace represents a shared variable access,
consisting of the thread id t, the calling context c, the access
type rw , and the lock instance set is . The lock instance
set describes the set of lock instances held at the access
point. A lock may have multiple instances at runtime, with
an instance generated by an acquisition and destroyed by
the corresponding release. Hence, we use a pair 〈k, i〉 to
represent the ith instance of lock k.

The profiling rules are presented in Fig. 5. The profiler
takes a trace as input and generates a set of access pairs for
each shared variable. Each pair is associated with a type

that could be no-atomic (NONE ), read-atomic (READ),
exclusive-atomic (EXCLUSIVE ), or top (&); the ordering
relationship among these types form a simple lattice as de-
fined in Fig. 5. In order to determine if the atomicity of a
pair is already guaranteed by the program, we introduce two
relations: the pair lock set L describing the locks that guard
both accesses; and, the lock set LS for a variable describing
the set of common locks held by all accesses of the variable.

The rules are divided into three sets, the first describing
the evaluation of a variable trace, the second computing vari-
able lock sets, and the third computing the atomic pairs. The
triple defining a trace evaluation configuration, 〈T, L, Z〉
contains a trace T , an access pair lockset L, and an access
pair atomicity set Z . Rule (Exclusive) considers the case
when two consecutive local accesses are not interleaved with
any remote access. To ensure that subsequent executions re-
spect this observed atomicity, we must ensure that the instru-
mented version of the program is (a) adequately augmented
with locks to enforce atomicity, and (b) the locking protocol
is consistent with all other observed accesses of this pair. To
address (a), we appeal to the definition of frontier shown in
the figure. Suppose the first access (within the procedure la-
beled l4) occurs in context: c1 = [l1 : l2 : l3 : l4] and the
second (within the procedure labeled l6) occurs in context
c2 = [l1 : l2 : l5 : l6]. The frontier of these two contexts is
defined to be frontier (c1, c2) = 〈l3, l5〉. Thus, the frontier
identifies l3 and l5 as the call-sites found within l2 that en-
capsulate the access pair. We use this information to insert
an exclusive lock around the region that encloses l3 and l5 in
procedure l2 to provide atomicity guarantees without having
lock acquisitions and releases span procedure boundaries. If
the locks necessary to provide atomicity of the pair were
not hoisted upto l2, but instead acquired within l4 and re-
leased within l6, runtime disambiguationwould be necessary
to consider the different possible call paths to l4 (and l6), to
ensure that the lock is only acquired in the profiled contexts.
In the rule, the set s represents the locks that are held at both
l1 and l2. By intersecting this lock set with L(l1, l2), the set
of locks that protect all occurrences of access pair 〈l1, l2〉,
we define the minimum set of locks that are used to protect
this pair. Consider two occurrences of pair 〈l1, l2〉 in which
there is no intervening remote operation between the first
pair, but there is one between the second. The atomicity re-
quirement on this pair is naturally dictated by the weakest

observed action; in this case, the observed remote operation
between the second pair of accesses precludes treating the
access pair bracketed by l1 and l2 as atomic.

Rule (Read) defines the conditions under which an in-
tervening remote read operation occurs between an access
pair, and rule None defines the conditions under which an
intervening remote write operation takes place. In the latter
case, no additional synchronization is required to enforce ex-
ecutions faithful to the profile; in the case of remote reads,
read locks can be used to permit executions to admit inter-



DEFINITIONS

α ∈ AtomicType ::= {NONE , READ , EXCLUSIVE ,"}, " > EXCLUSIVE > READ > NONE .
Z ∈ Pairs ::= Label × Label −→ AtomicType L ∈ PairLockSet ::= Label × Label −→ P(Lock)

A ∈ V arPairs ::= V ar −→ P(Label × Label × AtomicType) LS ∈ P(Lock)

frontier(c1 · l1, c2 · l2) =















〈l1, l2〉 if c1 = c2;
frontier(c1 · l1, c2) if c1 ⊂ c2;
frontier(c1, c2 · l2) if c2 ⊂ c1;
frontier(c1, c2) otherwise.

L = {k1, . . . , kn|new lock()ki ∈ Prog}
L0(l1, l2) = L
Z0(l1, l2) = "

DESCRIPTION

Input: A trace S.
Output: A mapping A that maps a variable to a set of atomic pairs.

PROCESSING PER-VARIABLE TRACE

〈l1, l2〉 = frontier(c1, c2) s = {k|(k, i) ∈ is1 ∩ is2} L′ = L[〈l1, l2〉 *→ L(l1, l2) ∩ s]
(1)

Z′ = Z[〈l1, l2〉 *→ min(Z(l1, l2),EXCLUSIVE)]

〈T ; 〈t, rw1, c1, is1〉; 〈t, rw2, c2, is2〉, L, Z〉
inst
=⇒ 〈T ; 〈t, rw1, c1, is1〉, L

′, Z′〉
(Exclusive)

T2 ,= nil ¬∃〈t, rwx, cx, isx〉 ∈ T2 ¬∃〈t′, Wr, c′, is′〉 ∈ T2 t ,= t′

Condition (1) from rule (Exclusive) Z′ = Z[〈l1, l2〉 *→ min(Z(l1, l2),READ)]

〈T1; 〈t, rw1, c1, is1〉; T2; 〈t, rw2, c2, is2〉, L, Z〉
inst
=⇒ 〈T1; 〈t, rw1, c1, is1〉; T2, L

′, Z′〉
(Read)

T2 ,= nil ¬∃〈t, rwx, cx, isx〉 ∈ T2 〈t′, Wr, c′, is′〉 ∈ T2

Condition (1) from rule (Exclusive) Z′ = Z[〈l1, l2〉 *→ NONE]

〈T1; 〈t, rw1, c1, is1〉; T2; 〈t, rw2, c2, is2〉, L, Z〉
inst
=⇒ 〈T1; 〈t, rw1, c1, is1〉; T2, L

′, Z′〉
(None)

LOCKSET
〈〈t, rw, c, is〉;T, LS〉

ls
=⇒ 〈T, LS ∩ {k|(k, i) ∈ is}〉

(LockSet)

ATOMIC PAIRS

〈T,L〉
ls
=⇒ ...

ls
=⇒ 〈ε, LS〉 〈T,L0, Z0〉

inst
=⇒ ...

inst
=⇒ 〈ε, L, Z〉 X = {〈l1, l2, Z(l1, l2)〉 | L(l1, l2) ∩ LS = φ ∧ Z(l1, l2) ,= "}

〈〈v, T 〉;S, A〉
atom
=⇒ 〈S,A[v *→ X]〉

(Pairs)

Figure 5. Profiling rules.

vening remote read operations. Rule (LockSet) specifies the
computation of the variable lock set. Rule (Pairs) generates
the atomic pairs for a variable. Specifically, a profiled atomic
pair is admitted only if the pair and all other accesses of the
same variable are not consistently protected by a program
lock; these pairs represent regions that are potential targets
for subsequent lock instrumentation.

7. Lock Placement

We now discuss how appropriate synchronization can be in-
serted into a program to respect profiled pairwise atomicity
constraints. Recall that atomic pairs need not be lexically-
scoped. To avoid limiting concurrency, we need to release
locks that protect atomic pairs at the earliest possible point,
taking into consideration their non-lexical organization.

Moreover, atomic pairs may overlap: two atomic pairs may
span the same code region.

Any synchronization injection protocol must be cog-
nizant of these issues. In this section, we consider how to in-
ject appropriate synchronization for a single shared variable;
in Section 8, we consider extensions that resolve conflicts
between inserted locks for multiple variables or between an
inserted lock and a program lock.

The profiling semantics identifies an atomic pair as a pair
of local accesses to the same variable with no intervening re-
mote access. To ensure safety, we over-approximate profiled
information; specifically, we consider all paths between two
accesses that comprise an atomic pair as exhibiting the same
atomicity characteristics with respect to the variable that de-

fines the pair. Our treatment is an over-approximation be-
cause the profile is necessarily incomplete, i.e., not all paths



between the two accesses are guaranteed to be exercised by
the profiling input suite. On the other hand, the approxima-
tion is safe and adding additional synchronization only af-
fects the degree of concurrency realized.

We define an intraprocedural flow analysis to decide
where additional synchronization must be inserted. For each
control flow node, represented by a label, we compute the
set of locks that ought to be held upon entry to that node and
then decide the required synchronization instrumentation ac-
cordingly. If no profile is available for a pair of accesses, we
assume there is no atomicity that must be enforced between
that pair.

The rules defining our analysis, presented in Fig. 6, are
divided into two sets. The first set computes the locks that
must be held at a program point. The second set derives the
instrumentation that must be injected according to derived
lock information. The computation is based on the atomic
pairs for a variable. The relevant definitions are presented in
the beginning. Function lc is a mapping from a label to a
set that may include NONE and triples 〈li, lj,α〉, referred to
as the lock constraint set. The triple signifies that an α lock
should be held, during the execution from li to lj , where α
is either a read lock or an exclusive lock. Having NONE in
the constraint set means that it is possible no lock is held at
this point (along some path). The remaining definitions are
for auxiliary functions used in the rules.

The rules are given by judgments of the form, P =⇒ C
where P is a predicate and C is either a lock constraint op-
eration or an instrumentation effect performed when P is
true. Rule (Init) specifies that the constraint set of a pro-
gram point l be a singleton holding the NONE lock, mean-
ing no lock is needed, as long as l is not on any path of any
atomic pair. Note that the NONE constraint may be further
propagated to other nodes through flow edges. Rule (Gen)
specifies that if node l is the head (the first access) of an
atomic pair with read or exclusive lock type, the lock con-
straint set for l must include the atomicity type of all pairs
that have l as the head, and must not include NONE. Intu-
itively, the rule requires that we hold some lock starting from
l defined by the properties of the atomic pair. Rule (Join)
describes the propagation of constraints along flow edges.
Specifically, lc(l) is computed from the lock constraint sets
of its predecessors. The notreachable(lp, l) set is computed
as the set of constraints of a predecessor lp such that the cor-
responding atomic pairs cannot witness l. Recall that a triple
〈li, lj,α〉 ∈ lc(lp)means that a α lock should be held as dic-
tated by an atomic pair from li to lj . Intuitively, if l is not on
any path from li to lj , the constraint should be invalid and ex-
cluded from the constraint set of l. The conflict(lp, l) set is
computed as the set of constraints of lp that conflict with the
program’s control-flow and hence should be excluded from
l’ lock constraint set. Given a constraint 〈li, lj ,α〉, li and lj
must be two consecutive accesses along an execution path.
Hence, if l entails paths along which a different access lk to

the variable must be encountered before lj , the atomicity of
the variable under consideration must have been profiled by
the pair li and lk instead of li and lj . Hence, all constraints
regarding li and lj should be excluded from lc(l). Finally,
if l has multiple predecessors, the entailment operation in
the consequent effectively defines a union of their lock con-
straint sets.
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?degrade(X,2)

acquire(X,2)

acquire(R,7)

?release(X,2);  
?release(R,7);  
acquire(X,9)

release(all)

Instrumentation

?release(R,2)

?release(R,2) A

B

Figure 7. Example for lock placement. Nodes are anno-
tated with their lc() set. Symbol X2

12 is a shorthand for
〈2, 12,EXCLUSIVE〉. Symbols R and N denote READ(x)
and NONE(x), respectively. Instrumentations on edges are
shown on the right. The shaded ones are optimized away.
The question mark before a release primitive is to test if the
lock is held. The degrade() primitive degrades a lock (from
exclusive to read).

Example. Consider the example in Fig. 7. The CFG is pre-
sented on the left. Variable x is accessed at nodes 2, 7, 9
and 12. Each node is annotated with its lock constraints.
According to rule (init), lc(1) = lc(3) = {N} (for
NONE ). Node 2 has the constraint set {X2

12, R
2
7} according

to rule (Gen). Note that there are two atomic pairs start-
ing with 2 in the profile; the notation X2

12 is an abbrevi-
ation for the lock constraint 〈2, 12,EXCLUSIVE〉. lc(4)
is the union of lc(2) and lc(3), dictated by rule (Join).
For node 5, noreachable = {R2

7} as 5 is not on any path
from 2 to 7, hence lc(5) = lc(4) − {R2

7}. For node 6,
conflict = {X2

12} because control-flow through node 6 im-
plies that an access to x at node 7 will be encountered be-
fore execution reaches node 12. Hence the constraint X2

12

must not have been observed along the path following 6
and should be excluded. Computation of the remaining con-
straints follows similarly.!

The second set of rules derives appropriate instrumenta-
tion from the lock constraints. The instrumentation is mainly
lock acquisition and release. We allow a lock to be acquired



DEFINITIONS
lc ∈ LockConstraint ::= Label −→ P((Label × Label × AtomicType)

⋃

{NONE}) edge(l, l′) : l → l′ is a flow edge
atomhead(l) = ∃l′, " > Z(l, l′) > NONE onpath(l, li, lj): l is on at least one path from li to lj .
access(l): the variable under consideration is accessed at l. mustonpath(l, li, lj): l must be on all paths from li to lj .
maxlock(S) = α iff ∀〈l, l′,α′〉 ∈ S, α ≥ α′ notreachable(lp, l) = {t | (t = 〈li, lj ,α〉) ∈ lc(lp) ∧

¬onpath(l, li, lj)}

conflict(lp, l) = {t | (t = 〈li, lj ,α〉) ∈ lc(lp) ∧ ∃lk ,= li, lj access(lk) ∧ mustonpath(lk, l, lj)}

LOCK CONSTRAINTS

∀ " > Z(li, lj) > NONE, ¬onpath(l, li, lj) =⇒ lc(l) = {NONE} (Init)
atomhead(l) =⇒ lc(l) ⊇ {〈l, li, Z(l, li)〉 | " > Z(l, li) > NONE} ∧

lc(l) ,⊃ {NONE} (Gen)
edge(lp, l) =⇒ lc(l) ⊇ lc(lp)− notreachable(lp, l)− conflict(lp, l) (Join)

INSTRUMENTATION

atomhead(l) ∧ α = maxlock(lc(l)) =⇒ instrument before l with “acquire(α(x), l)” (INAcquire)

edge(lp, l) ∧ ∆ = lc(lp)− lc(l) =⇒ for each 〈li, lj ,α〉 ∈ ∆ : (INRelease)
if (∃〈li, lk,α

′〉 ∈ lc(l), α > α′)
instrument lp → l with “?degrade(α(x), li)”

else instrument lp → l with “?release(α(x), li)”

Figure 6. Lock Placement. The analysis is parameterized on the variable x being considered.

multiple times but released only once. Both read or write
capabilities may be acquired for a lock. Rule (INAcquire)
specifies lock acquisition. Locks are only acquired at a node
l that is the start of at least one atomic pair. If there are multi-
ple constraints associated with l, the lock with the maximum
strength is acquired. Intuitively, if one constraint demands a
read lock and another one demands a write lock, a write lock
is acquired in case the path inducing the stronger constraint
is taken. The lock state is enhanced with label l to indicate
the acquisition point of the current lock. Rule (INRelease)
specifies the conditions under which an injected lock may be
released. Along a control flow edge from predecessor lp to
node l, the difference between constraint sets at lp and l de-
fines the locks that need to be released at l. Depending upon
whether there is a weaker lock retained by lc(l), the instru-
mentation mechanism degrades the lock or releases it. Note
that such operations are always guarded by a comparison to
test the origin of the lock being released/degraded.

Example (continued). Continuing with the example in
Fig. 7, observe that edge 1 → 2 is instrumented with the ac-
quisition of an exclusive lock according to rule (INAcquire).
Edge 4 → 6 is instrumented with a degradation opera-
tion that weakens the exclusive lock to a read lock, since
∆ = lc(4) − lc(6) = {X2

12}. Intuitively, if the execution
comes from path 2 → 4 → 6, the exclusive lock is not
needed under execution 4 → 6 even though the read lock is
still required.

If the path 2 → 4 → 6 → 7 is taken, an exclusive lock
for x is acquired at node 2; the lock is degraded to a read
lock prior to execution of node 6. The (re)-acquisition of the
read lock prior to executing node 7 trivially succeeds since

the lock is already held; the instrumentation that injects the
read lock here is required because the control-flow path that
reaches node 6 could have been 1 → 3 → 4 → 6. Along the
path from 2 to 12 passing 7, our instrumentation aggregates
the two atomic pairs 〈2, 7〉 and 〈7, 12〉 to a larger read atomic
region, preventing any intervening remote write along the
path.!

There are also rules that insert locks to protect single
accesses that are not in any atomic pairs, in order to provide
consistent protection. The rules are elided here.

Removing redundant instrumentation. We can optimize
the instrumentation rules shown in Fig. 6. The basic idea
is that the release of a lock is redundant if we can be sure
the lock cannot be held at the point where the release was
injected. Assume the release is caused by a constraint c =
〈li, lj ,α〉 in ∆ along edge lp → l.

• If there is a constraint in lc(l) denoting a pair starting
at the same point li and the lock type is stronger than α.
The stronger lock must have been acquired at li but not
α. The release is redundant. This optimization allows us
to remove release A© in Fig. 7.

• Suppose there is a constraint in lc(l) that starts at lj , the
end of c, the release is not necessary as a new lock must
have been acquired at lj . The optimization allows us to
remove release B©; thus it has the effect of aggregating
two atomic pairs to a larger atomic region.

Similarly, acquisitions can be optimized. The idea is that
an acquisition at l is redundant if we are sure the same type
of lock must be held at l. We omit the details here.



8. Deadlock Resolution
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Figure 8. Example for lock hoisting. The goal is to reverse
the lock order of variables x and y. In (a), each node is anno-
tated with the lc set regarding variable y. In (b), modified lc
sets are presented, which entail the highlighted instrumenta-
tion.

The lock placement algorithm presented in Section 7 does
not consider undesirable interference among locks. In partic-
ular, deadlocks may form between the locks inserted by our
algorithm for different variables or between inserted locks
and locks already present in the program. In this section,
we explain how we identify and resolve such deadlocks.
We have to guarantee deadlock-free for all possible inputs
even though the profile is acquired from only a small sub-
set. Hence, we have to resolve all possible deadlocks at
compile time. We first construct a static lock-order graph
that identifies lock dependencies. Strongly connected com-
ponents in the graph indicate potential deadlocks at runtime.
We then break cycles by manipulating where lock insertion
takes place. To minimize impact on program structure, we
do not relocate program locks.

Constructing Lock Order Graph. In the lock order graph,
a node represents a lock, which could be an inserted lock or
a program lock. An edge is introduced from lock k1 to k2 if,
at some program point, k2 is acquired when k1 is held. The
locks held at a program point can be conservatively com-
puted through a standard dataflow analysis. The analysis is
analogous to a reaching definition analysis with lock acquisi-
tions considered as GEN() and the corresponding releases as
KILL(). The computation rule applies to both inserted locks
and program locks. The analysis is interprocedural and sum-
mary based. The summary of a function is the set of locks
that may be acquired in the function. Suppose a function
foo() is invoked at a program point l. Let the set of locks
that may be held at l be S. Edges are added to the lock order
graph from each lock in S to each lock in the summary of
foo(). Cycles in the graph indicate potential runtime dead-
locks.

Recall that our design distinguishes read and exclusive
locks for the same variable. In a lock order graph, the read
and exclusive locks of the same variable, however, are repre-

sented as the same node. Intuitively, the mutually exclusive
nature between a read and an exclusive lock of the same vari-
able could lead to a deadlock. For example, assume thread t1
holds a program lock k1 and acquires a read lock on variable
x, denoted as READ(x ), and t2 holds an exclusive lock of x,
denoted as EXCLUSIVE(x ) and acquires k1. A deadlock is
thus formed.

On the other hand, if a lock dependence edge is exclu-
sively due to a READ lock on a variable x acquired while a
READ lock on a different variable y is held, the edge can be
safely removed.

For example, assume k → READ(x) → READ(y) → k
is a cycle in the graph. It may correspond to the case that
thread t1 holds k and acquires READ(x), t2 holds READ(x)
and acquires READ(y), and t3 holds READ(y) and acquires
k. The non-exclusive nature of the read locks allows t1 and
t2 to proceed and eventually t3 to proceed. Thus, the edge
can be safely removed.

Lock Hoisting. Strongly connected components (SCC) in
the lock order graph indicate potential deadlocks. We need
to resolve these SCCs statically in order to avoid runtime
deadlocks. There are two possible solutions: (1) merge the
locks in a SCC to a single lock, or (2) reverse lock order
edges. Because lock merging is likely to be too conserva-
tive, we propose to reverse lock order edges. Reversing lock
edges is tantamount to hoisting lock acquisitions. For exam-
ple, if reversing an edge from k1 to k2 can break a cycle, this
implies we could hoist the acquisition of k2 to before the ac-
quisition of k1. Since we do not change the original program
semantics, only inserted locks are subject to hoisting.

The challenge to reversing lock edges lies in the fact that
inserted locks are not lexically scoped. To reverse the lock
order from k1 to k2, hoisting the acquisition of k2 to right
before the acquisition of k1, often unnecessarily limits con-
currency, and is even problematic in many cases. In partic-
ular, the inserted lock k2 is supposed to protect atomicity
along a subset of paths P between a pair of accesses as dic-
tated by the profile. Ideally, hoisting k2 to before k1 should
be able to protect a superset of P , (call it P ′), such that orig-

inally along each path in P ′, k1 is acquired and then k2 is
acquired, but the lock order is reversed after hoisting. How-
ever, since the placement of k1 is not lexical, simply moving
the acquisition of k2 to right before that of k1 may result in
protecting a superset of P ′ that, while safe, may unneces-
sarily limit concurrency, or a subset of P , which minimizes
the impact on concurrency, but may violate the observations
defined by the profiled execution.

Consider the example in Fig. 8 (a). It shows the lock
placement of the given profile following the rules in Fig. 6.
The lock order is EXCLUSIVE(x) → READ(y). Assume
we want to reverse this order to resolve potential deadlocks.
Moving the acquisition at node 6 to node 2 is both inefficient
and problematic. If the execution follows the path 2, 4, 5,
7 and 8, lock READ(y) is unnecessarily held as the profile



only demands locking the path 6, 7 and 8. If the execution
follows the path 3, 4, 6, 7 and 8, the lock is not held while it
is needed.

Our solution is as follows. To ensure that we always
protect a superset of P , we do not relocate the acquisition
of k2. Instead, we add an extra acquisition of k2 before
the acquisition of k1. We call it the hoisted acquisition to
distinguish it from the original acquisition. The intuition is
that we only need to reverse the lock order along paths that
k1 is first held and then k2 is acquired. If a lock is already
held as a result of a hoisted acquisition, reacquiring the lock
on the original path is a benign action.

Note that the hoisted k2 lock should be released if the
control flow takes a path along which the original k2 acqui-
sition is not encountered. In order to systematically handle
hoisted lock releases, we leverage our instrumentation rules
in Fig. 6. In particular, we add lock k2 to the lc set for all
nodes that are on a path from the acquisition of k1 and the
original acquisition of k2, meaning that we add a new con-
straint such that k2 must be held along all paths from the
acquisition of k1 to the original acquisition of k2. Instumen-
tations can be derived from the lc sets following the instru-
mentation rules in Fig. 6. Note that we cannot simply add
an atomic pair between the acquisition of k1 and the acqui-
sition of k2 and let the rules to infer the lock constraint sets.
The reason is that the lock constraint rules consider conflicts
between atomic pairs (i.e., the conflict set in rule (Join)) so
that k2 may not be held along some paths between k1 and k2
acquisitions (as dictated by a conflict) even though we intro-
duce an atomic pair. As a result, the original acquisition of
k2 may not be a no-op and thus the lock order k1 → k2 may
not be reversed.

Consider the example in Fig. 8 (b). A read lock from 2 to
6, denoted asR2

6, is inserted to the lock constraint sets for the
path between the two original acquisitions, including nodes
2, 4 and 6. The hoisting and the new constraint set lead to the
highlighted instrumentations along edge 1 → 2 and 4 → 5.

The discussion about how to select dependence edges to
break cycles can be found in the accompanying technical
report [32].

9. Condition Variables and Shared Heap
Access

// thread 1
acquire(our_lock, ...)
...
cond_wait(C);

// thread 2
acquire(our_lock)
release(our_lock)
... //non-trivial
... //program path
cond_signal(C);

Figure 9. A deadlock involving a condition variable and a
lock added by our technique. Thread 1 blocks at the condi-
tion wait and thread 2 blocks at our lock.

Condition variables: Our technique has so far not taken
condition variables into consideration. Statically resolv-
ing deadlocks involving condition variables is challenging
in general. Fig. 9 presents an abstraction of the cases we
have encountered. Thread 1 blocks at the condition wait
and thread 2 blocks at the added lock acquisition injected
by our analysis. In practice, such deadlocks may involve
other program locks and added locks. Statically resolving
the deadlock is hard because the condition signal in thread 2
is not even in the region protected by our lock and hence
a lock dependence graph can not be easily constructed. As-
suming a lock dependence exists between a lock acquisition
and any reachable condition signal would be too conserva-
tive in practice. Because of these complexities, we resort to
a runtime solution. The basic idea is to disable our locks
when program execution blocks on a condition variable, un-
til the condition is satisfied. In particular, we release all our
locks held by a thread when it blocks on a condition vari-
able. Due to transitive lock dependencies, we also release
our locks in other threads that transitively block on the con-
dition variable. In the presence of condition variables, we
refine our definition of pairwise atomicity appropriately: a
pairwise atomic region is a code region (not necessarily lexi-
cal) bracketed by two accesses to the same variable, without
any intervening access to that variable by another thread,
provided the region has no lock dependence with any thread

currently blocked on a condition variable.

Heap variables:Heap-allocated shared data also poses chal-
lenges for our technique. An ideal solution is to provide per-
object locking so that maximal concurrency can be achieved.
However, ensuring deadlock-freedom using per-object lock-
ing is difficult since static deadlock resolution often requires
object lock acquisitions to be hoisted; oftentimes, we can-
not guarantee that the object has even been allocated at this
hoist point. Furthermore, static deadlock resolution has dif-
ficulty disambiguating different instances of the same heap
type that will be protected by different locks at runtime.
A conservative solution results in solving bogus deadlocks.
We therefore currently use a conservative type-based lock-
ing strategy, which is trivially compatible with our deadlock
analysis described earlier. Note, however, that even though
we obtain locks on types, our profiler still tracks atomicity
properties independently for each heap instance of a type. In
other words, the type based abstraction does not affect the
quality of the profiled atomicity invariants. Due to the large
amount of shared heap types and some of them coming from
libraries, we expect programmers to annotate the heap types
of interest. In this paper, we focus on those for which bugs
have been reported.

10. Safety

There are two fundamental safety properties guaranteed by
our technique. First, the approach is execution safe: the in-
jected instrumentation does not introduce additional behav-



ior beyond what could be exhibited by the original pro-
gram. Second, the approach is atomicity safe and respects
the atomicity properties of the profiled execution: our instru-
mentation guarantees that the transformed program will not
permit non-atomic behavior within atomic regions found in
the profile. Proof details are provided in an accompanying
technical report [32].

We formalize these notions below. Let the original pro-
gram be P and the instrumented program be P ′.

THEOREM 1 (Execution Safety). For any input I , executing
P ′ on I produces the same result as executing P on I .

THEOREM 2 (Atomicity Safety). A pairwise atomic region

identified in P will be executed atomically by any execution
of P ′.

LEMMA 1. The lock placement algorithm in Fig. 6 respects
the atomicity constraints defined by the profile.

LEMMA 2. The deadlock resolution algorithm in Section 8

respects the atomicity constraints in the profile.

According to the deadlock resolution algorithm, dead-
locks are resolved by hoisting locks. A lock is hoisted by
adding entries to lc sets, leading to extra acquisitions of the
lock. After hoisting, the paths on which the lock is held are
a superset of the original paths. Hence, the atomicity con-
straints must be respected. The atomicity safety property can
be derived from these two lemmas.

11. Evaluation

Our system is implemented within LLVM. The profiler is
implemented as an instrumentation pass that runs indepen-
dently of the rest of the system. The lock placement and
deadlock resolution are implemented as two passes that take
the profile as input and insert deadlock free synchroniza-
tions. The overall implementation has 8K LOC in C. The
experiments are conducted on a Intel Xeon CPU 2x4 core
1.84GHz machine with 4GB RAM. We create 8 threads in
all executions.

program LOC func profile input
aget-0.4 960 20 get a 100k file
pbzip-2.094 2041 121 compress 100k file with 1k block size
mozilla nszip-1.8 2935 45 extract 100 files
apache-2.2.8 42k 1.7k 10k random reqs
spidermonkey 51k 1098 compute MD5 hash
mysql-4.0.12 122k 5.7k regression test suite and sysbench-oltp

benchmark

Table 2. Programs and profile inputs.

11.1 Effectiveness

We evaluate the effectiveness of bug suppression by ap-
plying our technique on real bugs found in production-
quality software. We have already previously discussed
the applications we have studied (shown in Table 1); Ta-
ble 2 presents the program characteristics and inputs used

for collecting profiles for these programs. Column [func]
presents the functions under our analysis. Column [profile
input] presents the workload used for collecting atom-
icity profile. These programs are well-studied standard
benchmarks for studying concurrency bugs [20]. In partic-
ular, spidermonkey is the JavaScript engine for Mozilla.
mozilla-nszip is the decompression component ofMozilla.

The real patches for these bugs are also available from
the bug reports or their CVS repositories. We compared the
patches with the synchronizations inserted by our technique
manually and confirm that our technique prevents these
bugs. We also ran the instrumented programs on the failure
inducing inputs with an implementation of the CHESS [23]
algorithm developed in our prior work [31], with the 1-
preemption setting. Bugs that were previously exposed no
longer occurred.

Note that even though our instrumentation mechanism is
based on profiles that extract pairwise atomicity, our tech-
nique can also prevent concurrency bugs that are classified
as data races or order violations. For example, the pbzip
bug was considered as an order violation. The bug occurs
because a read to a variable x in a thread T1 must always
happen before a re-definition of x in a different thread T2.
But, the program permits violation of such orderings, lead-
ing to a failure. Our technique observes atomicity between
the read and its preceding local read. As existing program
synchronizations preserve that the preceding read happens
before the remote write, by locking the two reads, the order
violation is suppressed.

ap_queue_info_set_idle(pool_t *pool)
{

node = apr_palloc(pool, sizeof(*node));
node->pool = pool;
for (;;) {

node->next = recycled_pools;
if (apr_atomic_casptr(&recycled_pools,

L: node, node->next) == node->next)
break;

}
...

}

Figure 10. Apache bug#44402: A bug that manifests under
a rare complicated interleaving with multiple preemptions.
The two reads to node->next in the conditional test should
be executed atomically to prevent a race condition.

Case Study. Next, we present a fragment from apache,
to further illustrate the benefit of our approach. Bug#44402
shown in Fig. 10 was observedwhile running the specweb99
static content workload. The server would crash typically af-
ter 10 minutes of starting the test with 500 active threads. 2

The bug took developers one week of investigation span-

2 https://issues.apache.org/bugzilla/show bug.cgi?id=44402



ning more than 1000 lines of discussion before they were
able to identify the faulty interleaving. The matter is further
complicated by the fact that the crash happens at places far
removed from the location where atomicity is violated and a
failure may manifest at different places at different times.

In the code shown in Fig. 10, worker threads in the web
server, call the function ap queue info set idle () to
deposit a memory pool which is no longer in use in the
list of recycled pools. Under normal conditions, the list
recycled pools is a linear list. However, if three different
threads interleave within this function simultaneously (a rare
but possible occurrence), the list can be modified to be cir-
cular with just one pool after four different preemptions. We
refer the reader to the bug report for details. Consequently,
all workers which should otherwise be using distinct mem-
ory pools for handling requests end up using the same mem-
ory pool, eventually leading to a server crash. Due to the
higher number of threads and multiple preemptions required
(in addition to the atomicity violation) and the fact that the
crash manifests elsewhere in the server (necessitating testing
the full server to expose the failure), it is difficult to both re-
produce and understand this bug. However, by only looking
at correct executions where the two reads to node->next at
line L are atomic, and thus enforcing this property, the bug
can be prevented easily. This is, in fact, the patch that was
eventually provided by the developers.

11.2 Performance Overhead

Next, we present experimental results that highlight quanti-
tative aspects on the cost of the analysis and implementation
on these benchmarks. Columns 2-4 in Table 3 present the
profiling results. Column [shared vars/ unprotected]
presents the shared variables identified, and those that are
not consistently protected by at least one lock. Columns 3
and 4 present the read and exclusive atomic pairs identified
by the profiler and the average number of (static) statements
that lie in between a pair (i.e. the numbers in parentheses).
As these programs are mostly event-driven, executing the
programs with various events (or event combinations) are
equivalent to running the programs multiple times. Hence,
we construct the profile inputs as follows: we combine and
duplicate test inputs in a regression suite into a larger input
consisting of all events from individual tests. We randomly
insert sleep() calls at synchronization points to increase
our schedule coverage. Observe that the number of shared
variables that are not consistently protected is non-trivial.
Our claim is that the statements enclosed by atomic pairs
with respect to these variables are vulnerable to concurrency
bugs. Also observe that the average number of such state-
ments in an atomic pair is not large.

Columns under label [inserted locks] in Table 3
present the results of static lock placement. Column [lock]
presents the number of inserted locks. Columns [R acq],
[X acq], and [degrade] denote the numbers of read lock
acquisitions, exclusive lock acquisitions and lock degrada-

tions, respectively. For each of these columns, we present
the numbers before and after deadlock resolution. Columns
under label [program locks] present the statistics of ex-
isting program locks for reference. We make the following
observations.

• The number of injected locks is comparable to that of
program locks. The number of injected synchronization
primitives before deadlock resolution is also comparable
to the number of existing synchronizations. There are two
reasons for this: one is that our technique induces fine-
grained guidance of executions based on profiled data
– such guidance is controlled by lock acquires and re-
leases; secondly, path-sensitive locking injects releases at
many points, corresponding to different atomicity prop-
erties manifest along different paths. But, note that lock
releases for the same variable are usually along different
paths so that they are not typically encountered multiple
times along one path during an execution.

• Deadlock resolution increases the number of injected
synchronizations substantially. This is due to the conser-
vative nature of the analysis.

• Comparing the numbers of the unprotected variables and
profiled atomic pairs with the numbers before deadlock
resolution, we observe that we do not need to insert locks
to protect all unprotected variables because some are not
marked as atomic. Some atomic pairs are aggregated to
larger atomic regions. Some acquisitions are optimized
away, which explains why the number of inserted syn-
chronizations is smaller than the number of atomic pairs.

Table 4 presents runtime characteristics. We execute the
instrumented programs on realistic workloads. The sec-
ond column describes the workloads. The third column
presents the total number of executed instructions. Col-
umn [speedup] presents the speedup of running the orig-
inal program on 8 cores over 1 core. This provides a
measure of the available concurrency in these workloads.
Note that these numbers are collected without any involve-
ment of our system. Column [P acq] presents the dynamic
count of the number of program lock acquisitions. The next
two columns show the ratio of instrumented locks with re-
spect to this number. The last column shows overall run-
time overhead. Observe that the overhead is low despite
the large number of injected synchronizations, indicating
our instrumentation rarely cause severe blocking. This is
because we are locking on observed atomic pairs, whose ex-
ecutions are mostly atomic, and consequently likely to not
be a source of contention. The overhead of our technique is
sometimes related to the available concurrency in the work-
load. If available concurrency is low, the overhead of our
technique is masked further. For example, we use two work-
loads for mysql. The first one is a standard workload called
sysbench. The second is a reduced version of the tpcc
workload, another standard workload. The tpcc workload is



program
shared var/ atomic pair program locks inserted locks
unprotected R X

lock acq rel lock
R acq X acq degrade rel

(stmt) (stmt) (before/after) (b/a) (b/a) (b/a)
aget 5/ 3 0 (-) 7 (2) 1 2 2 3 0/ 9 4/ 4 0/ 0 4/ 12
pbzip 18/ 17 60 (12) 16 (6) 3 24 26 15 28/ 35 13/ 28 2/ 0 76/ 104

mozilla nszip-1.8 2/ 2 3 (1) 7 (9) 1 1 5 2 0/ 0 4/ 3 0/ 0 9/ 8
apache 15/ 13 11 (5) 28 (10) 9 21 29 13 6/ 13 17/ 20 1/ 1 52/ 65

spidermonkey 16/ 9 13 (37) 26 (11) 9 36 36 8 10/ 7 18/ 39 5/ 2 36/ 108
mysql 66/ 20 91 (61) 181 (7) 36 222 300 15 71/ 39 99/ 431 7/ 5 249/ 959

Table 3. Profiling and lock placement results.

program workload instr. (109) speedup P acq R acq/ P acq X acq/ P acq overhead
aget get a 648M file 0.045 2.58 147.4k 0 1.0 0%
pbzip compress 1.8G file 798.9 5.33 14.9k 2.0 1.28 1.4%

mozilla nszip-1.8 extract 400k files 179.7 3.76 399k 0 2 0.0%
apache 2 million random reqs 158.5 4.2 14.2m 1.48 2.04 13.3%

spidermonkey
constraint solver 308.22 1.06 422m 0.0 0.0 2.1%
null script 24.1 4.6 18m 0.11 0.44 17.3%

mysql
sysbench-oltp with 10k rows 258.5 4.34 7.76m 1.29 0.57 13.9%
reduced tpcc 185.8 1.74 4.22m 1.48 0.61 2.0%

Table 4. Runtime overhead (8 threads). In the P acq column, units m and k mean million and thousand, resp.

much more I/O bound. Consequently, the overhead of our
technique is much lower. A similar workload configuration
is used for spidermonkey. In contrast, note that both pbzip
and mozilla-nszip get substantial speedup with very low
overhead.

12. Related Work

Concurrent with our work, [18] also attempts to automat-
ically repair concurrency bugs by inserting locks around
inferred atomic regions. However, unlike our approach,
which attempts to prevent bugs whose existence may not
even be known, their technique attempts to repair existing
ones. Their technique uses CTrigger [25] to identify atomic
pairs related to the observed failure; our technique identifies
atomic pairs by mining the pool of passing test cases. As
a result, we face the challenge of enforcing a much larger
number of atomic pairs, with the corresponding potential
benefit of preventing unobserved bugs. To reduce overhead,
our locking instrumentation uses both read locks as well as
exclusive locks, whereas exclusive locks suffice in their im-
plementation. Furthermore, the two techniques also differ
in the way they handle deadlock. We guarantee deadlock
freedom through static analysis.

In [7, 35], hardware-based techniques are proposed to
ensure dependence integrity. Violations incur rollback and
cause a different schedule to be explored. In [10], schedules
are memoized with respect to inputs so that if the same input
is encountered, the same schedule is reused. LOOM [33]
allows user to put in explicit annotations to repair races.
Like [10], it provides no safety guarantees, and deadlocks
can be introduced.

CoreDet [2] guarantees deterministic outputs by allow-
ing threads to run concurrently when they are not commu-
nicating. It tracks ownership and employs a deterministic
commit protocol. In [6] authors present a language and a
type system that support nondeterministic computation with
a deterministic-by-default guarantee where nondeterminism

must be explicitly requested via special parallel construct(s).
None of these techniques attempt to suppress bugs or guide
schedulers to enforce correct executions. Isolator [27] guar-
antees isolation in well-behaved threads of a program that
obey a locking discipline even in the presence of ill-behaved
threads that disobey the locking discipline.

In [9, 21], locking is statically inferred from atomic
region annotations so that atomicity can be guaranteed.
Atomic regions are lexically scoped. Locksmith [26] stat-
ically associates locks with object abstractions and at run
time, abstract locks are safely instantiated to different con-
crete locks under various contexts. Atomic set serializabil-
ity [29] introduces the notion of data centric synchronization
in which users annotate a set of data fields that should have
similar consistency properties. Synchronizations are auto-
matically inferred to ensure serializability of operations on
atomic sets in a method body. In [11], the authors describe
a technique for infering locks from atomic section annota-
tions. It is path-sensitive and uses read/write, multi-granular
locks and also attempts to release locks as early as possi-
ble. Similarly, in [14], locks are allocated automatically in
a multi-threaded program annotated with atomic sections.
Their algorithm works in the presence of pointers and pro-
cedures, and sets up the lock allocation problem as a 0-1
ILP which minimizes the conflict cost between atomic sec-
tions while simultaneously minimizing the number of locks.
Unlike these approaches which rely on static analysis and
programming abstractions, our approach infers properties
from correct profiled executions to inject suitable locking
instrumentation. Our work could benefit from lock coarsen-
ing techniques such as [12] to further improve performance
and eliminate potential deadlocks.

There has been extensive investigation on detection of
various kinds of concurrency bugs, such as data races [3,
5, 24, 28] , atomicity violations [15, 16, 30, 34], order viola-
tions [20], and deadlocks [1, 17]. There has also been recent
progress in devising techniques that can generate determin-



istic failure-inducing schedules [4, 23, 25]. These techniques
systematically explore a bounded space of schedules, and are
complementary to our work.

13. Conclusion

This paper proposes a novel technique to suppress Heisen-
bugs by inferring fine-grained atomicity properties from cor-
rect profiled executions. We describe a deadlock-free path-
sensitive locking scheme to force program execution to ad-
here to these properties. Experimental evaluation on real
world workloads demonstrates that it can be used to suc-
cessfully suppress subtle atomicity and order violation con-
currency bugs with low overhead.
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