
Locality in Structured Peer-to-Peer Networks

Ronaldo A. Ferreira Suresh Jagannathan Ananth Grama

Department of Computer Sciences – Purdue University

250 N. University Street

West Lafayette, IN, USA, 47907-2066

Emails: {rf, suresh, ayg}@cs.purdue.edu

Phone: +1 765 494 6010

Abstract

Distributed hash tables (DHTs), used in a number of structured peer-to-peer

(P2P) systems provide efficient mechanisms for resource placement and location. A

key distinguishing feature of current DHT systems, such as Chord, Pastry, CAN and

Tapestry, is the way they handle locality in the underlying network. Topology-based

node identifier assignment, proximity routing, and proximity neighbor selection are

examples of heuristics used to minimize message delays in the underlying network.

While these heuristics are sometimes effective, they all rely on a single global overlay

that may install the key of a popular object at a node far from most of the nodes

accessing it. Furthermore, a response to a lookup message does not contain any

locality information about the nodes holding a copy of the object. We address

these issues in Plethora, a novel two-level overlay P2P network. A local overlay in

Plethora acts as a locality-aware cache for the global overlay, grouping nodes close

together in the underlying network. Local overlays are constructed by exploiting

the organization of the Internet into Autonomous Systems (ASs). We present a

detailed experimental study that demonstrates performance gains in response time

of up to 60% compared to a single global Pastry overlay. We also present efficient

distributed algorithms for maintaining local overlays in the presence of node arrivals

and departures.

Key words: Peer-to-peer networks, DHT, query resolution, locality, caching,

Internet.

Preprint submitted to Elsevier Science



1 Introduction

The past few years have seen considerable activity in the area of peer-to-peer

(P2P) systems and applications. File-sharing systems, such as Napster [1]

and Gnutella [2], have gained immense popularity and attracted significant

research attention. As has been well-documented [3–6], these early systems

had major scalability issues – Napster for using a central server for queries,

and Gnutella for using an inefficient search protocol that floods the entire

network, or at least a significant part of it, in order to find an item of interest.

The scale of P2P networks with their large number of participating nodes

requires these networks to be highly scalable in terms of aggregate resource

requirement as well as end user performance. The latter requirement translates

to minimizing the number of hops a message must travel in order to satisfy a

query.

A number of researchers have addressed the problem of scalability in P2P

networks [7–10]. Structured P2P systems such as Chord [7], Pastry [8], and

Tapestry [9] provide a simple primitive for name resolution: given a key (e.g., a

file name), return the location (IP addresses) of the nodes that currently have

references to corresponding data objects (the files). To support this primitive,

these systems rely on a distributed hash table (DHT) abstraction, and typically

provide an upper bound of O(log n) on overlay hop-count, where n is the total

number of nodes in the network. This upper bound is achieved using a small

amount (O(log n)) of routing information per node. Other systems such as

CAN [11] support similar primitives, but have different upper bounds on hop-

count subject to varying constraints on per-node routing information.

While recent work has focused on minimizing the number of overlay hops,

the delay experienced by messages in the underlying network can also be a

major performance bottleneck. Since nodes and objects are identified by ran-

dom strings, lookup messages may travel around the world before reaching a

2



destination node that is in the same local network as the source node. To min-

imize the effects of randomization, several heuristics have been incorporated

into these systems. These include proximity routing, topology-based node ID

assignment, and proximity neighbor selection [12].

While these heuristics produce good results when compared to a standard

implementation, they nevertheless rely exclusively on a single global overlay.

Consequently, no guarantees can be provided that a popular object has its key

installed close to the majority of nodes that access it. Moreover, a response to

a lookup message does not contain any locality information about the nodes

holding a copy of the object. Thus, a node receiving a query response has no

information about which nodes are close or distant from it. In this paper, we

present the routing core of Plethora, a wide-area read-write distributed file

system currently under development at Purdue University [13]. In Plethora,

peers are expected to be semi-static and to have good Internet connectivity in

terms of bandwidth. The Plethora routing core is a two-level overlay: a global

overlay, which shares the same properties as other structured P2P systems;

and local overlays, which serve as locality-aware caches for the global over-

lay. The global overlay provides an information repository for operation and

maintenance of local overlays, directing nodes to local overlays to which they

belong. This two-level architecture has the advantage of localizing queries for

cached objects, reducing response time, and lookup message traffic in the un-

derlying network. Moreover, responses to objects cached in the local overlay

contain pointers to nodes that are close to the node issuing the query, thus

reducing congestion on the network.

The Plethora routing core’s two-tier organization is motivated by studies

which show that queries for multiple keys in P2P networks follow a Zipf-

like distribution [14] – a small number of objects are very popular and are

the targets of the majority of the queries. This difference in access frequencies

suggests that a well designed caching mechanism can significantly improve

3



the response time of the system. Another motivating factor is provided by

new applications being deployed on P2P networks, for example distributed

file systems like Oceanstore [15]. To provide high levels of availability, in P2P

distributed file systems, files are typically partitioned (erasure encoded) into

blocks and the blocks are spread over the network. If the blocks are stored

randomly in the network, without any notion of locality, the retrieval of data

becomes much more expensive, since several network accesses, possibly to dif-

ferent nodes, must be performed.

To organize nodes into local overlays, we rely on the organization of the Inter-

net into a collection of Autonomous Systems. An Autonomous System (AS)

is a group of networks controlled by a single administrative authority, and

in most cases restricted to a geographic region (with noted exceptions). An

autonomous system is identified by a unique 16-bit identifier. When a new

node joins the network, it first joins the global overlay and then uses its AS

number to find other nodes of its AS that are already members of a local

overlay. Each AS has a node in the global overlay, its rendezvous point [16],

which is responsible for maintaining information about nodes in the AS that

are present in the network.

In an ideal scenario, a local overlay contains nodes belonging to a single AS.

Since the number of nodes of a particular AS participating in the overlay

network may be small, we present an efficient distributed algorithm for merg-

ing local overlays. Two ASs are merged into the same local overlay if the

distances among their nodes are smaller than a prescribed threshold D. By al-

lowing nodes in multiple ASs to form a local overlay, the arrival of new nodes

may increase the size of a local overlay beyond a point where performance

improvements are not significant. To avoid this situation, we also present a

distributed algorithm for splitting local overlays. The algorithm for splitting

a local overlay guarantees that nodes in the same AS stay in the same local

overlay after a split operation with high probability.

4



Routing messages in a local overlay uses an algorithm similar to Pastry, with

nodes storing information about O(log m) other nodes, where m is the number

of nodes in the local overlay. The number of hops is, similarly, logarithmic in

the number of local nodes. This allows local overlays to be arbitrarily large.

We therefore also consider the problem of autonomous systems that span a

geographical area that is too large to be considered a local overlay. It is impor-

tant to note that the state information per node in our two-level architecture

is just a constant factor larger than the information stored by the current

systems; in other words, each node still stores O(log n) routing information.

Two parameters that impact the performance of our architecture are (i) the

accuracy of topological information, and (ii) the optimality of sizes of the

local overlays. There have been a number of other efforts aimed at accurately

mapping the Internet topology [17,18]. The results of these efforts can be used

to derive topological information. Due to its reliance on the existing Internet

infrastructure using ASs, our scheme is largely resilient to inaccuracies in

topological information. With respect to determining optimal sizes for local

overlays, the problem can be transformed into one of partitioning a weighted

graph, which is known to be NP-hard [19]. A number of heuristics (multilevel

and spectral methods) as well as distributed algorithms exist for this problem.

We demonstrate here that a weak heuristic based on greedy node aggregation

for merging ASs is sufficient for significant performance improvements. Our

main goal is to reduce the lookup latencies, we do not try to find the node with

the best connection that yields the best transfer time. However, by answering

a query with nodes in the same AS, we expect that our approach implicitly

returns such nodes in most of the cases.

1.1 Contributions

The main contributions of this paper are summarized below:

5



• We present a novel caching scheme that uses Internet topology information

to group nodes that are physically proximate into local overlays. Our caching

scheme can be used in conjunction with any DHT system, and does not rely

on the deployment of well positioned landmarks [20].

• We present an efficient distributed algorithm for splitting local overlays

that preserves locality in the two new local overlays created after a split

operation. We present an analysis of the probabilistic properties of this

algorithm.

• To ensure that local overlays do not become very small, we also develop an

efficient distributed algorithm for merging local overlays.

• We present a detailed simulation study that demonstrates the effectiveness

of our caching scheme. In our simulation, we use different workloads, both

synthetic and from real file traces, to characterize object sizes stored in the

network. To generate the underlying topology, we use real Internet data

collected by the Skitter project [21]. The simulation study shows that our

scheme can reduce response delays of the system by up to 50%, and can

reduce the number of messages transmitted in the underlying network by

up to 60% for different workloads and access patterns compared to a corre-

sponding Pastry network using the proximity neighbor selection heuristic.

We also show that the overheads associated with splitting and merging local

overlays is very low.

The rest of the paper is organized as follows. Section 2 presents basic defini-

tions and background information necessary for the description of our algo-

rithms. Section 3 presents Plethora’s routing core architecture and algorithms

for merging and splitting local overlays. In Section 4, we present simulation

results. Related work is presented in Section 5 and conclusions are drawn in

Section 6.

6



2 Background

Current routing schemes in P2P networks, such as Chord [7], Pastry [8], and

Tapestry [9], work by correcting a certain number of bits at each routing step.

These schemes can be viewed as variants of hypercube (or dimension ordered)

routing [22]. The routing scheme of Plaxton [23] for accessing nearby copies

of objects in distributed systems is also related. In these systems, nodes and

objects share the same address space. Nodes have their addresses assigned ran-

domly and uniformly. This is generally achieved by computing a hash function

on their IP addresses. Objects are identified by computing a hash function on

their names. The uniform distribution of the identifiers (nodes and objects)

is desirable in order to provide load balance in the system; that is, all nodes

are expected to store roughly the same number of object keys. For the sake of

brevity, we restrict our discussion here to Pastry and refer interested readers

to the bibliography for other protocols.

In Pastry, objects and nodes are assigned random and uniformly distributed

identifiers of length 128 bits. An object is stored in the node that is numerically

closest to the object’s identifier. Each node maintains routing information

(overlay IDs and IP addresses) about a limited number of neighbors, with the

size of the routing table varying depending on a configuration parameter, b,

which indicates how many bits are resolved at each routing step. To route

a message, each intermediate node, along the message path, tries to forward

the message to a node whose node ID shares a prefix with the destination

identifier that is at least b bits longer than the current node’s shared prefix.

If the routing table does not have any entries for such a node, the message is

forwarded to a node that shares a prefix of the same length as the prefix shared

by the current node, but is numerically closer to the destination. In addition to

the routing table, each node maintains two other pieces of information: a leaf

set and a neighborhood set. The leaf set stores information about l nodes that

7



are numerically closest to the current node, with l/2 nodes having smaller IDs

than the current node, and l/2 having larger IDs. This information is stored to

provide reliable message routing, and is normally used when the routing table

does not have an entry for a node that shares a prefix longer than the current

node. The neighborhood set stores information about m nodes that are closest

in the underlying network to the current node. While this information is not

normally used for routing, it is useful in applications that exploit network

locality properties. Figure 1 illustrates an example of the state stored in a

particular Pastry node.

Pastry State Information

Leaf Set

Smaller Greater

31001 31021 32021 32031

31200 32101 32101 32110

Routing Table

0α 1α 2α –

30α 31α – 33α

– 321α 322α 323α

3200α – 3202α 3203α

–

Neighborhood Set

10223 03111 11330 23111

31001 32110 21333 22203

Fig. 1. Pastry state information stored at node with identifier 32012, and parameter
b equal to 2. The digits are in base 4, and α is an arbitrary suffix.

An arriving node needs to initialize its tables (routing table and leaf set) and

inform the other nodes of its arrival. A new node initializes its state tables by

contacting a node already present in the network, and asking it to route a join

message to its node ID. The nodes along the path from the contact node to

the node responsible for the new node’s ID send their state information to the

new node. The new node uses this information and may contact additional

nodes to complete its state tables.

The departure of a node x, either by voluntary termination or by failure,

triggers an update in its neighbors. The nodes that are close in the ID space

to the departing node must update their leaf sets. If x appears in the leaf set

of a node y, y can replace x by asking the leaf set of the node with highest

8



index on the same side of y’s leaf set that x was present. If x appears in the

routing table of a node w, this will be detected when w tries to use that entry.

When detecting the failure of x, node w can use its leaf set to forward the

message. To repair its routing table, node w can contact any node in the same

row of the missing entry, and ask for its routing table. For a more detailed

explanation of Pastry and its algorithms, we refer the reader to [8].

3 Plethora Routing Core

The Plethora routing core relies on a two-level overlay architecture [24–27]. A

global overlay serves as the main data repository, and several local overlays

serve as caches to improve access time to data items. When a node n needs

a data item, it first searches its local overlay. If the data item is cached in

its local overlay, a copy is immediately returned. Otherwise, the data item is

retrieved from the global overlay and automatically cached in n’s local overlay.

Figure 2 illustrates how data items are accessed in a two-level overlay.

1

2

4
3

2

3

4

1

Node n sends a message to t = h
′(d) requesting data

item d in local overlay.

If node t has a copy of data item d, steps 2 and 3 are
skipped. In step 2, node t sends a request to node
s = h(d) in global overlay requesting data item d.

Node s sends a copy of data item d to node t.

Node t caches a copy of data item d in local overlay
Ln and forwards a copy to node n.

Ln

n

s

t

Fig. 2. Data access in Plethora.

Local overlays contain nodes that are close to each other in the Internet. To

9



group nodes into local overlays, we rely on the organization of the Internet

into a collection of autonomous systems (ASs). More specifically, nodes that

are in the same AS should be in the same local overlay together with nodes

of neighboring autonomous systems. The global overlay can be implemented

using any DHT system. It is used as the main repository and helps direct

nodes to local overlays where they belong. Since we have described Pastry in

Section 2 and we adopt some of its underlying algorithms to support the local

overlay, we shall use it to define the global overlay as well. We introduce one

small modification: in addition to the IP addresses of neighboring nodes, we

also store their AS numbers as part of the state information stored at each

node. A node can determine its AS number from its IP address using a number

of possible alternatives. Whois servers are the simplest, however, since the data

stored in the servers is not kept up-to-date, more accurate tools can be used.

Mao et al. [28] presents an accurate AS-level traceroute tool for mapping IP

addresses to AS numbers. It is important to note that even if a whois server

is used, the server does not constitute a bottleneck in our scheme, since its

content can be conveniently replicated at peers. The server is accessed when a

new node first joins the overlay network, and the new node’s AS number can

be locally cached for future reference.

A node must build its Internet neighborhood information over time, that is, a

list of autonomous systems that can be present in its local overlay. An initial

list can be built from the routing information that the node receives when

joining the global overlay. The node can measure the delay to each member

of its routing table and leaf set. If the delay is less than a system parameter

D, it includes the AS of the probed node in its neighborhood list. This is a

nonintrusive way of acquiring neighborhood information. A more aggressive

way for a node n to build the same list is by using traceroute to some of the

nodes in n’s state tables, using the IP addresses of the intermediate hops to

find nearby ASs. Observe that we assume that the delay from a node in one AS

10



to any other node in some other AS is an acceptable indication of proximity.

This assumption may not be always true when we deal with ASs that span

large geographical areas – we address this issue specifically in Section 3.6.

To simplify the presentation of our algorithms, we initially assume that this

assertion is valid.

In each local overlay there is a node, the local overlay leader, which controls

the number of nodes in the local overlay. To avoid a complicated protocol

for leader selection, we assume the local overlay leader is the node with the

smallest identifier in the local overlay. We discuss later in this section how

a leader can be efficiently maintained in the local overlay. The local overlay

leader must issue a split message if the number of nodes grows above the

maximum allowed, and a merge message if the number of nodes drops below

the minimum allowed. The maximum and minimum number of nodes in a local

overlay are system parameters. To avoid having the leader maintain accurate

information about the peers in its local overlay, thereby having to support a

complicated protocol for node departures, we assume that the local overlay

leader periodically circulates a message in the network to discover the current

number of nodes. This is a reasonable approach, since the local overlay size

has an impact only on performance and not on the correctness of the protocol.

Every node in a local overlay maintains a pointer to its current leader. This

pointer is used to determine if the leader has departed or failed – in which

case a new leader is selected.

Even though the maximum number of nodes in a local overlay is governed by

a system parameter, we expect that this value can be arbitrarily large. We

therefore require efficient algorithms to route messages within a local over-

lay. A simplistic scheme, such as one that stores complete information at each

node, would not scale to a significant number of nodes. We use a modified ver-

sion of Pastry to achieve scalability and to provide guarantees on the number

of hops a message travels in the local overlay.

11



In the local overlay, nodes are also identified by random strings. One key

difference in the identification of local overlay nodes is that the number of bits

in a node’s identifier can change over time. The reason for this will become

clear when we present algorithms for merging and splitting local overlays.

When a new node decides to join an existing local overlay, it must be informed

of the current identifier length by the contact node. It then generates a random

identifier of the informed length locally before asking the contact node to

introduce it into the local overlay. A new node is introduced into a local

overlay in the same way as in Pastry: a join message is sent by the contact

node and routed to the new node identifier. Nodes along the path send their

state information to the new node.

Since object identifiers are assigned random strings of fixed length in the global

overlay, 128 bits in the case of Pastry, and we want the objects to have the same

identifiers in both overlays, we only use the w least significant bits of the object

identifiers to decide which node will store a particular object’s key; w being

the number of bits currently used to identify nodes in the local overlay. The

node with the identifier numerically closest to the restricted object identifier

is the one responsible for storing the object’s key.

3.1 Routing in the Local Overlay

Routing in the local overlay proceeds as in the global overlay, with one sig-

nificant exception. Instead of resolving multiple bits at each hop during the

routing process, we resolve only one bit per hop. This is equivalent to having

b = 1 in Pastry. The routing table of a local overlay node, therefore, has only

one column. Row i of n’s routing table has a pointer to a node whose identifier

shares i bits with n’s identifier and differs at bit i + 1, with i varying from 0

to w − 1, where w is the current identifier length. The reason we have b = 1

in the local overlay is to simplify the operations of merging and splitting as

12



discussed in Sections 3.4 and 3.5. This is not a fundamental constraint – by

suitably modifying merge and split operations to multi-way split and merge

operations, higher values of b can be used. We also change the size of the

leaf set to 2 × k log M , where k is a constant greater than one, and M is the

maximum number of nodes in a local overlay. This latter choice is discussed in

Section 3.4. We assume nodes in the local overlays implement the proximity

neighbor selection heuristic to select their neighbors.

3.2 Node Arrivals

When a new node arrives, it needs to initialize its tables and also inform other

nodes of its arrival. A new node first joins the global overlay, and initializes

all its global overlay tables the same way as in Pastry. The AS number of the

nodes is the only additional information introduced. Upon joining the global

overlay, the new node must join a local overlay. To find which local overlay

it should join, it computes a hash function on its AS number, and uses the

resulting value to find a node in the global overlay that is responsible for

keeping information about that particular AS (the rendezvous point of the

AS).

Two situations may arise depending on the response of the rendezvous point.

In the simplest case, the autonomous system of the new node already has

some nodes in the network. In this case, the rendezvous point returns a list

of current nodes. The new node chooses one of the nodes as its contact in the

local overlay. The contact node introduces the new node in the local overlay

and sends to it a pointer to the local overlay leader. The rendezvous point

also stores the new node information in its AS directory. The AS directory

does not need to store all AS nodes present in the network; rather, it stores

a constant number of nodes that are used as contacts. The nodes in the local

overlay refresh this information periodically. We assume that the global overlay

13



replicates the contents of its nodes appropriately. If a rendezvous point leaves,

one of its neighbors becomes the new rendezvous point and has the required

information of the AS.

In the second case, the new node is the first node of its AS to join the network.

In this case, the new node stores information at its AS’s rendezvous point and

uses its neighborhood information to find a contact node in a local overlay

of some other AS. If the new node can find a contact node, it executes the

procedure described above to join the contact node’s local overlay. If the new

node cannot find any contact nodes because its neighborhood list is empty

or none of the ASs in the list have nodes currently in the network, the new

node starts a new local overlay. In a well populated network, the latter case

is unlikely, since the neighborhood list can be built with nodes already in the

global overlay.

3.3 Node Departures

Nodes in the overlay networks may leave or fail without notifying their neigh-

bors. Global overlay recovery is handled by the underlying DHT system. Node

departures in Pastry are handled lazily, that is, a node departure is detected

only when a node tries to contact the node that left to route a message or to

access a data item. When a node detects that one of its neighbors has left,

it must contact other nodes to restore its state information. The leaf set of

a node n can be restored by contacting a live node y in n’s leaf set. Node y

sends its leaf set to n, and n fixes its information using the appropriate node.

If n detects that a node x in its routing table is not responding, n can contact

a live node y in n’s routing table that is in the same row of x, and ask y to

send n its routing table.

As in Pastry, node departures in Plethora are handled lazily. A few adjust-

14



ments must be made to accommodate the differences in the routing table.

Since the routing table of a local overlay node has only one column, we can-

not use Pastry’s implementation without modification. If n detects that a node

x in its routing table is not responding, n computes the prefix that it shares

with x, and appends a random string to form an identifier. A special message

is routed to the computed identifier using alternate paths, via the node one

row above or via the leaf set. If there is a node in the network with the same

prefix shared by x and n, this node receives the routed message and replies to

it with the required information.

The departure of a node also triggers updates to the state stored in the nodes

other than the routing tables. When a node n detects that a node y has left

the local overlay, n must notify y’s rendezvous point in the global overlay of its

departure. One other update that may happen is when a node n detects that

the local overlay leader has left; a new local overlay leader must be chosen in

this case. We use a simple approach to choose the new leader – it is the node

with the smallest identifier in the local overlay. Once the leader’s departure

is detected, the node with the smallest identifier sends a broadcast message

informing the other nodes that it is the new leader. Observe that nodes keep

pointers to their successors and predecessors. Therefore, the node with the

smallest ID is easily determined, it is the node that is preceded and succeeded

by nodes with larger IDs.

3.4 Splitting Local Overlays

When the local overlay leader detects that the number of nodes currently

present in the local overlay exceeds the maximum allowed, it issues a split

message to the local overlay members. The split message is a simple message

that does not carry any information about the nodes in the local overlay, or

how the nodes will be partitioned. A node receiving a split message must

15



decide locally how the operation will be performed. One problem that may

occur during a split operation is that nodes of the same AS may end up in

different local overlays. This is a situation that we would like to avoid, since

local overlays may eventually degenerate and lose their primary purpose of

localizing queries. Therefore, a split operation in a local overlay must preserve

the following AS invariant:

Nodes of an autonomous system must always stay in the same local overlay

after a split operation.

The implementation of this invariant is a challenging problem in itself. We

want a distributed solution where the nodes should exchange as few messages

as possible to restore their state tables. To implement the split operation

efficiently, we extend the information stored in the routing tables of the nodes.

For each entry in a node’s routing table, we add a secondary neighbor. The

secondary neighbors are chosen to preserve this invariant. To implement the

invariant, we use a hash function H that maps an AS number to the set {0, 1}.

This set identifies the two overlays that are created after a split operation. A

node n applies H to its AS number and determines the local overlay it belongs

to after a split operation. The secondary neighbors in n’s routing table are

nodes whose hash function H maps to the same value as node n’s. Node n

can determine locally if a given node qualifies as a secondary neighbor, since

nodes exchange their AS numbers along with their IP addresses.

On receiving a split message, node n discards all pointers to nodes whose hash

values differ from its hash value. This operation is performed in the routing

table as well as in the leaf set. Figure 3 illustrates this operation. Observe that

for correct operation of the network, it is sufficient that the leaf set of a node

n contains at least one node in each direction whose hash function maps to

the same local overlay as n.

16



A

D
B

D

PN SN

B

A

F

H

E

GSN: Secondary Neighbor

PN: Primary Neighbor
C

H

F

C
E

G

D

CG

E

A

H

B

F

PN SN

PN SN

C

B

D

A

E

G

SN

C F

B

HD

A

PN

L1 L2

Fig. 3. Split operation. The bigger cloud contains nodes in the local overlay before

the split operation. The two smaller clouds (L1 and L2) represent the two local

overlays after the split operation. The circles of the same color represent nodes

whose autonomous systems hash to the same value. The tables are the routing

tables of nodes A and D before and after the split operation.

After a split operation, two overlays are created. One of the new local overlays

will contain the leader of the original overlay; this leader remains the leader

in the new overlay. In the other overlay, a new leader must be chosen. We use

the same approach described above – the node with the smallest identifier is

chosen as the new leader. This node must send a message to the nodes in its

overlay informing them that it is the new leader, and collecting information

about which ASs are present in the new local overlay.

A split operation may result in disconnected networks depending on the num-

ber of nodes in the leaf set. The reason why we set the leaf set size equal

to 2 × k log M is to guarantee that the new local overlays will be connected

with high probability (whp) 1 . The following lemma provides the connectivity

guarantee.

1 Probability equal to 1 − 1

nΩ(1) .

17



Lemma 1 After a split operation, the two new local overlays are connected

with high probability.

Proof: Let n be a node in the original overlay and h be the hash value, com-

puted with the function H, of its AS number. Without loss of generality,

assume that h is equal to 0. The probability of n being in a disconnected

overlay after a split operation is the probability that all nodes on one side

of its leaf set, assume nodes in the clockwise direction, have h equal to one.

Assuming that the values 0 and 1 are equally possible, this probability is equal

to:

(

1

2

)k log m

=
1

mk

where m is the number of nodes in the original local overlay. The probability

of n being in a connected overlay is, therefore, 1 − 1
mk . Since n was chosen

arbitrarily, the result is valid for all n. �

While it might appear that simply having one neighbor in the leaf set is not

sufficient to guarantee connectedness, this is not the case, since we ensure that

nodes are always chosen in the same (clockwise) direction. The same analysis

can be used to show that, before the split operation, the routing table of a

node n has secondary pointers to nodes that share the same hash value of n,

w.h.p. Consider the ith row of n’s routing table, 0 ≤ i < w, w is the number of

bits in n’s identifier. Let m be the number of nodes in the local overlay, and

z be the number of nodes that can be chosen for row i in n’s routing table.

Since we assume node identifiers are uniformly distributed, the expected value

of z is equal to m

2(i+1) . Since we also assume that the values 0 and 1 are equally

possible as results of the function H, the probability that row i has a secondary

neighbor is equal to 1 −
(

1
2

)z

.

18



3.5 Merging Local Overlays

If the number of nodes in a local overlay L1 drops below the minimum allowed,

L1 must be merged with a nearby local overlay L2. If the number of nodes in

L1, m1, is much smaller than the number of nodes in L2, m2, simple insertions

of the nodes in L1 are performed in L2. However, if m1 differs from m2 by at

most a factor α, where α is a system parameter, we use an algorithm based

on the mechanism for merging two hypercubes [22]. L1 and L2 can be viewed

as two hypercubes of dimension d that can be merged to form a hypercube of

dimension d + 1. First, we select bit values for the overlays; for example, 0 for

L1 and 1 for L2. The bit values chosen are sent to the nodes as part of the

merge message. The nodes increase the length of their identifiers by adding

their overlay bit to their identifiers as the most significant bit. A new top row

is also added to the routing tables of the nodes. A node in the local overlay

L1 must fill the new row with a pointer to a node in the local overlay L2. The

same operation must be applied by the nodes in the local overlay L2 with new

pointers pointing to nodes in L1. Since the number of nodes in L1 and L2 is

bounded, the merge message sent in L1 can contain the nodes in L2, and the

merge message sent in L2 can contain the nodes in L1. Each node chooses the

new neighbor independently. Figure 4 illustrates the merge operation. Observe

that an efficient merge operation is necessary, even if the number of nodes in a

local overlay is small. If a complete reorganization of the nodes were necessary

in a merge operation, nodes would have to close all their current connections

and open new ones.

Another way of interpreting the merge operation is the merging of two binary

trees. Figure 5 illustrates this idea. The numbers in the edges represent the

identifier of the nodes at the leaves, for example, node F in L1 has identifier

equal to 01 before the merge operation and identifier equal to 001 after the

merge operation. Node A’s routing table has pointers to nodes F (node whose

19



A

B

SNPN

F

B

H

A

E

G C

D

F

C

B
PN: Primary Neighbor

SN: Secondary Neighbor

A

D
B

H

F

C
E

G

C

PN SN

C

D

E
PN SN

A

B

F

PN SN

D

E

L1 L2

Fig. 4. Merge operation. L1 and L2 are the two local overlays that will be merged.

The bigger cloud represents the local overlay after the merge operation. Observe

that one row was added to A’s routing table with a pointer to a node originally in

L2. The same thing happened in D’s routing table, but here a pointer to a node

originally in L1 was added.

identifier differs from A’s identifier in the first bit), and B (node whose identi-

fier differs from A’s identifier in the second bit, but shares the first bit). When

a merge operation is executed, node A just needs to add a pointer to any node

in the right side of the new tree. In this example, node A adds a pointer to

node C, node whose identifier (100) differ in the first bit of the new identifier

of A (000). The same idea is illustrated in the routing tables of node D.

A

F

B

10 0

10

1

A H F C G E D

−

D

C

E

10 0

10

1

B

L1 L2

10 0

10

1

A B H F C G E D

−

D

B

C

10 0

10

1

0 1

A

C

F

B E

Fig. 5. Merge operation. L1 and L2 are the two local overlays that will be merged.

The tree on the right side represents the local overlay after the merge operation.

20



3.6 Dealing with Large Autonomous Systems

As discussed in related work [25,27], an autonomous system constitutes a

reasonable unit of locality. Most of the current ASs in the Internet span a

limited geographical area. However, there are also ASs that span a very large

geographical area, such as big Internet service providers. To handle these sys-

tems, we can adapt our scheme in the following manner. When the first node

n of an AS joins the network, it installs its information and declares itself

a local landmark. When a node x from the same AS joins the network, it

measures its delay to node n, and to other landmarks of the AS. If there is a

landmark node y whose delay to node x is less than D, the maximum distance

allowed, node x joins the local overlay of node y. If there is no such node y,

node x declares itself a new landmark, generates a virtual AS number (larger

than the maximum AS number allowed in the Internet), and either creates its

own local overlay or joins the local overlay of an AS that is close to it. The

virtual AS number is used, in conjunction with the IP address and the real

AS number, to identify node x in the local overlay, and to determine the local

overlay in which node x will end up when a split operation is performed.

4 Experimental Results

In this section, we present simulation results for various performance aspects

of the Plethora routing core. Specifically, we demonstrate considerable perfor-

mance improvements (up to 50%) in response time, and show low overhead

associated with control algorithms for joining, splitting, and merging local

overlays. We also explore the impact of node arrivals and departures on the

performance of the Plethora routing core.

Our simulation testbed implements the routing schemes of the global and local

21



overlays, implements the algorithms for merging and splitting local overlays,

and emulates the underlying network. The topology of the underlying network

is generated using data from the Internet collected by the Skitter project at

CAIDA (Cooperative Association for Internet Data Analysis) [21]. Skitter

uses traceroute probes from several vantage points (we use data from all 24

vantage points) to collect router level topology data. The data contains link

delay information, and IP addresses of the routers. We map the IP addresses to

their ASs using BGP data collected by the Route Views project at University

of Oregon [29]. The resulting topology contains 218,416 routers, 692,271 links,

and 7,704 autonomous systems. The peers used in the simulation are attached

to routers via LANs. We randomly select 10,000 routers and connect a LAN

with 10 hosts to each one of them, for a total of 100,000 hosts. The delay

between two nodes in the same LAN that we introduce is fixed and equal

to 0.1ms, the smallest delay found in the trace. The shortest path between

two nodes in the underlying topology is computed hierarchically, like in the

Internet. First, the shortest path between the two nodes’ ASs is computed

in the AS graph, and then the shortest paths inside the ASs are computed.

The metric used in the shortest path computation inside an AS is the number

of links. This computation simulates the operation of the Internet routing

protocols BGP (inter-AS) and RIP (intra-AS). All experiments are performed

on a 32-processor Origin 2000 with 16GB of memory, running IRIX64.

The evaluation of our routing scheme requires appropriate dimensioning of the

storage available for caching at each node, and realistic workloads. The main

application target of the Plethora routing core is a distributed file system

that is currently under development. Instead of focusing on a specific file

system workload, for the sake of completeness, we use three different workloads

for file sizes: web proxy logs, fixed-sized files, and a synthetic distribution

based on recent measurement results on peer-to-peer file sizes [30]. The web

proxy logs are from eight consecutive days in February 2003 collected by the

22



NLANR project. 2 The trace contains references to 500,258 unique URLs,

with a mean file size of 5,144 bytes, median file size of 1,663 bytes, largest file

size of 15,002,466 bytes, and smallest file size of 17 bytes. The total storage

requirement of the files in the trace is 2.4GBytes. We use the same number of

files in the two other workloads. We describe the synthetic model along with

its simulation results in Section 4.3.

As described in the previous section, a query that cannot be satisfied by

the local overlay causes an access to the global overlay and the automatic

caching of the object in the local overlay of the node issuing the query. As

in PAST [31], we assume that objects are also cached in addition to keys.

Due to the storage requirements of our workload, and to guarantee that the

simulation would reach a steady state, the number of overlay nodes is set to

10,000. The cache size at each node varies depending on the workload. In the

case of proxy logs, each node has a cache of size 5MB (approximately 0.2%

of the trace requirement), which corresponds to approximately 1,000 files if

we consider the mean file size. While this cache size is small considering the

current storage capacity of hard disks, it is proportional to the workload used,

which is composed mainly of small files. When a file is transferred over the

network, it is broken in packets of size 1,420 bytes, which corresponds to the

payload size of TCP/IP packets transmitted in Ethernet LANs. In the case of

fixed-size files, the cache size at each node is varied to accommodate between

500 to 2,500 files. The impact of cache size on performance is discussed in

Section 4.2.

As is well known, P2P networks are characterized by a dynamic population

in which nodes join and leave the network frequently. Even though our target

application is expected to have a semi-static population of nodes, the dynamic

nature of the network population is believed to be an important parameter in

2 http://www.ircache.nlanr.net/

23



P2P systems. Saroiu et al. [32] shows that in a Gnutella network most of the

peers stay in the network for short periods of time, while a few peers stay for

long periods of time. We use the following two scenarios in our simulation:

(1) Static: We randomly select 10,000 peers from the 100,000 hosts in the

network and these peers stay in the network throughout the simulation,

with no departure or arrival of new peers.

(2) Dynamic: We initially select 10,000 random peers from the 100,000 hosts

in the network, but have these peers leave the network. The peer session

lengths are drawn from a Zipf distribution with parameter 0.7, which

gives a good approximation for the results presented in [32]. We keep

the number of peers constant in the simulation, when a peer leaves the

network, another peer is selected among the hosts to join the network.

All peers enter the network with empty caches. If a peer has been part

of the network previously, its cache is emptied when it reenters the net-

work. This is a conservative approach and we use it as a lower bound for

measuring the impact of node dynamics in the network.

The main performance measurements that we investigate are the performance

gains in response delay for queries, and the decrease in number of packets in

the underlying network in the two-level overlay compared with a single Pastry

overlay using the proximity neighbor selection heuristic. Performance gain is

defined as: g = m1−m2

m1
, where m1 is the measurement (query delay or lookup

messages) in Pastry, and m2 is the measurement in the Plethora routing core.

The response delay is the delay for a node to receive a response to a query, it

does not include the delays to transfer the file. The source nodes of the queries

are chosen randomly and uniformly, and the objects are accessed according to

a Zipf-like distribution, the parameter of the Zipf distribution is varied and

its impact quantified.

For the global overlay the Pastry parameters are: bits resolved per hop b =

24



Overlay Nodes 10,000

Hosts 100,000

Distinct Objects 500,254

Max Local Overlay Sizes 300; 400; 500; 1,000; 2,000

Max Delay (D) 40ms; 50ms; 100ms; 200ms; 300ms

Zipf-parameter (α) 0.70; 0.75; 0.80; 0.85; 0.90
Table 1

Parameters of the simulation environment.

4, and leaf set size l = 32. These parameters are also used in the single

Pastry overlay. We measure the impact on performance gains of the cache

hit ratio, the maximum delay parameter D used to construct local overlays,

and the maximum number of nodes in a local overlay. The cache hit ratio is

the fraction of all queries that are satisfied by a local overlay. We simulate

both LRU (Least Recently Used) and GDS (Greedy Dual Size [33]) as the

local cache replacement policies. The results for both policies are similar, with

GDS producing results about 2% better than LRU overall; we report the

results for LRU below. Various parameters of our simulation environment are

summarized in Table 1.

4.1 Proxy Logs

We initially discuss a series of results obtained with proxy logs as the workload,

in Sections 4.2 and 4.3 we discuss specific results obtained with the two other

workloads. In Section 4.1.1, we present results for a static population of peers,

while the results for a dynamic population are discussed in Section 4.1.2.

4.1.1 Static Population

The cache hit ratio varies depending on the α value in the Zipf distribution

and the maximum number of nodes in a local overlay. Figure 6 illustrates the

cache hit ratios obtained with α = 0.70 and α = 0.90 and different maximum

local overlay sizes. The values in the tables correspond to the minimum and

25



Size
Delay

74.15%69.87%65.84%63.90%68.23%

50ms 200ms 300ms

64.05% 65.33% 68.47% 75.38%72.74%

65.53% 67.36% 70.15% 73.67%

76.25% 77.42% 81.72% 84.00%

79.31% 80.53% 84.00% 87.88%

300

400

500

2,000

76.58%

87.81%

92.23%

40ms 100ms

1,000

α = 0.70

Size
Delay

79.76%76.71%74.89%77.31%

50ms 200ms 300ms

72.36% 73.38% 75.66% 80.61%78.69%

73.39% 74.78% 76.83% 79.33%

81.85% 82.79% 85.89% 87.51%

84.04% 85.13% 87.63% 90.40%

300

400

500

2,000

81.45%

90.23%

93.61%

40ms 100ms

76.34%

1,000

α = 0.90

Fig. 6. Cache hit ratios for α = 0.70 and α = 0.90.

maximum ratios obtained for the parameters, other values of α produce cache

hit ratios in these intervals.

 0

 20

 40

 60

 80

 100

 120

 140

 0  300  400  500  1000  2000

N
um

be
r 

of
 L

oc
al

 O
ve

rla
ys

Maximum Local Overlay Size

D=40ms
D=50ms

D=100ms
D=200ms
D=300ms

Fig. 7. Number of local overlays.

The number of local overlays varies depending on the maximum number of

nodes allowed in a local overlay, the maximum delay (D) allowed among ASs,

and the underlying topology. Figure 7 shows the number of local overlays for

the topology created from the Skitter traces.

Figure 8 shows the performance improvements for the response delays. The

values correspond to D equal to 40ms, 100ms, 200ms, and 300ms. For D equal

to 40ms we observe the best results – roughly 50% improvement. Figure 8 also

shows an important result – for a large value of D the results are not only

worse than the smaller values of D, but as the maximum number of nodes

increases the performance also deteriorates. When D is equal to 300ms the

local overlays can include nodes spread in ASs that are far apart. This is

26



 0

 10

 20

 30

 40

 50

 60

 0  300  400  500  1000  2000

P
er

fo
rm

an
ce

 G
ai

n 
(%

)

Maximum Local Overlay Size

D=40 ms

Alpha=0.70
Alpha=0.75
Alpha=0.80
Alpha=0.85
Alpha=0.90

 0

 10

 20

 30

 40

 50

 60

 0  300  400  500  1000  2000

P
er

fo
rm

an
ce

 G
ai

n 
(%

)

Maximum Local Overlay Size

D=100 ms

Alpha=0.70
Alpha=0.75
Alpha=0.80
Alpha=0.85
Alpha=0.90

 0

 10

 20

 30

 40

 50

 60

 0  300  400  500  1000  2000

P
er

fo
rm

an
ce

 G
ai

n 
(%

)

Maximum Local Overlay Size

D=200 ms

Alpha=0.70
Alpha=0.75
Alpha=0.80
Alpha=0.85
Alpha=0.90

 0

 10

 20

 30

 40

 50

 60

 0  300  400  500  1000  2000

P
er

fo
rm

an
ce

 G
ai

n 
(%

)

Maximum Local Overlay Size

D=300 ms

Alpha=0.70
Alpha=0.75
Alpha=0.80
Alpha=0.85
Alpha=0.90

Fig. 8. Performance gains in response delay for D equal to 40, 100, 200, and 300

milliseconds in a static population of peers.

clearly not a desirable situation, since the local overlays just add additional

overhead and do not serve their intended purpose of localizing traffic.

We also quantify the number of packets sent in the underlying network when

we have a single overlay and compare it to the two-level overlay. Figure 9 shows

the results for D equal to 40ms, 100ms, 200ms, and 300ms. The performance

improvements in all configurations are in the range 30.8% to 50%, i.e., up to

50% fewer packets are sent in the underlying network.

The two-level overlay architecture of the Plethora routing core is useful only

if the additional overhead of maintaining local overlays is sufficiently small. In

Figures 10 and 11 we show the results of experiments that quantify this over-

head. In the first experiment, we quantify the overhead of the split operation.

In this case, all 10,000 nodes join the global overlay and the local overlays

simultaneously. As new nodes are added to the local overlays, split operations

27



 0

 10

 20

 30

 40

 50

 60

 0  300  400  500  1000  2000

P
er

fo
rm

an
ce

 G
ai

n 
(%

)

Maximum Local Overlay Size

D=40 ms

Alpha=0.70
Alpha=0.75
Alpha=0.80
Alpha=0.85
Alpha=0.90

 0

 10

 20

 30

 40

 50

 60

 0  300  400  500  1000  2000

P
er

fo
rm

an
ce

 G
ai

n 
(%

)

Maximum Local Overlay Size

D=100 ms

Alpha=0.70
Alpha=0.75
Alpha=0.80
Alpha=0.85
Alpha=0.90

 0

 10

 20

 30

 40

 50

 60

 0  300  400  500  1000  2000

P
er

fo
rm

an
ce

 G
ai

n 
(%

)

Maximum Local Overlay Size

D=200 ms

Alpha=0.70
Alpha=0.75
Alpha=0.80
Alpha=0.85
Alpha=0.90

 0

 10

 20

 30

 40

 50

 60

 0  300  400  500  1000  2000

P
er

fo
rm

an
ce

 G
ai

n 
(%

)

Maximum Local Overlay Size

D=300 ms

Alpha=0.70
Alpha=0.75
Alpha=0.80
Alpha=0.85
Alpha=0.90

Fig. 9. Performance gains in the number of packets in the underlying network for

D equal to 40ms, 100ms, 200ms, and 300ms in a static population of peers.

are required. We measure the total number of messages exchanged by nodes

in the global overlay and messages exchanged by nodes in the local overlays.

The overhead associated with the split operation is very small – always less

than 5% for all parameters used.

To quantify the merge operation, we randomly select nodes to leave the net-

work. As the number of nodes drops below the minimum threshold (in these

experiments the minimum value is set to 20%, 30%, 40%, 50%, and 60% of the

maximum value), merge operations are performed. Figure 11 shows the result

for 20% and 60% of the maximum size. As we can observe from the figure the

merge operation is more expensive than the split operation. However, in all

cases the additional overheads are smaller than 20%, with the highest value

happening for a minimum size close (60%) to the maximum. The reason for

this worst case is that with a threshold of 60% of the maximum local over-

lay size, merge operations are executed very frequently when nodes depart.

28



Note that these fractional increases are with respect to the number of control

messages in the corresponding Pastry network. In stable operation, the num-

ber of control messages can be expected to be dominated by data messages.

Consequently, we expect the added overhead of our two-level overlay to be

negligible.

 0

 1

 2

 3

 4

 5

 6

 0  300  400  500  1000  2000

A
dd

iti
on

al
 M

es
sa

ge
s 

(%
)

Maximum Local Overlay Size

D=40ms
D=50ms

D=100ms
D=200ms
D=300ms

Fig. 10. Additional messages sent in the two-level overlay during the formation of

the network, including messages exchanged in the split operations, when compared

with a single overlay.

 0

 5

 10

 15

 20

 25

 0  300  400  500  1000  2000

A
dd

iti
on

al
 M

es
sa

ge
s 

(%
)

Maximum Local Overlay Size

Leave - 20%

D=40ms
D=50ms

D=100ms
D=200ms
D=300ms

 0

 5

 10

 15

 20

 25

 0  300  400  500  1000  2000

A
dd

iti
on

al
 M

es
sa

ge
s 

(%
)

Maximum Local Overlay Size

Leave - 60%

D=40ms
D=50ms

D=100ms
D=200ms
D=300ms

Fig. 11. Additional messages sent in the two-level overlay when nodes leave the

network, including messages exchanged in the merge operations. Left: minimum

local overlay size equal to 20% of the maximum local overlay size. Right: minimum

local overlay size equal to 60% of the maximum local overlay size.

29



4.1.2 Dynamic Population

The next parameter we investigate is the impact of node arrivals and depar-

tures in the overlay network. Figure 12 shows the time spent in the network

by peers that joined the network during the simulation. In this particular ex-

ample, 47,520 different peers participate in the network. More than 50% of

the peers stay in the network for less than 10% of the total simulated time,

only 5% of the peers stay for more than 60% of the total simulated time, and

only 0.5% stay for more than 80%. No peer stays in the network for more than

84% of the simulated time.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

F
ra

ct
io

n 
of

 N
od

es

Fraction of Simulated Time

Fig. 12. Time peers stay in the network.

Figures 13 and 14 show the performance gains in response delay and in the

number of packets in the underlying network when peers are allowed to leave

the network and new peers join. As we can see in the figures, the performance

decreases when compared with a static population of peers, as expected. Even

though there is a decrease in performance, the two-level overlay architecture

can still yield gains of up to 40% depending on the configuration parameters. In

a dynamic scenario, the parameter D (maximum delay between ASs) becomes

more critical than in a static scenario. As we can see in the figures, for large

values of D the performance gains drop to under 20%.

30



 0

 10

 20

 30

 40

 50

 60

 0  300  400  500  1000  2000

P
er

fo
rm

an
ce

 G
ai

n 
(%

)

Maximum Local Overlay Size

D=40 ms

Alpha=0.70
Alpha=0.75
Alpha=0.80
Alpha=0.85
Alpha=0.90

 0

 10

 20

 30

 40

 50

 60

 0  300  400  500  1000  2000

P
er

fo
rm

an
ce

 G
ai

n 
(%

)

Maximum Local Overlay Size

D=100 ms

Alpha=0.70
Alpha=0.75
Alpha=0.80
Alpha=0.85
Alpha=0.90

 0

 10

 20

 30

 40

 50

 60

 0  300  400  500  1000  2000

P
er

fo
rm

an
ce

 G
ai

n 
(%

)

Maximum Local Overlay Size

D=200 ms

Alpha=0.70
Alpha=0.75
Alpha=0.80
Alpha=0.85
Alpha=0.90

 0

 10

 20

 30

 40

 50

 60

 0  300  400  500  1000  2000

P
er

fo
rm

an
ce

 G
ai

n 
(%

)

Maximum Local Overlay Size

D=300 ms

Alpha=0.70
Alpha=0.75
Alpha=0.80
Alpha=0.85
Alpha=0.90

Fig. 13. Performance gains in response delay for D equal to 40ms, 100ms, 200ms,

and 300ms in a dynamic network.

4.2 Fixed-Size File Workload

We now evaluate the impact of different cache sizes on performance gains using

fixed-size files. Even though fixed-size files are not expected to be found in real

networks, we use this workload for two reasons: first, we want to measure the

impact of cache sizes on performance in a more controlled environment than

the proxy logs would allow, that is, the maximum number of files per node is

exactly the same for all peers independent of access patterns; second, a number

of peer-to-peer applications, like Oceanstore, use erasure-encoded data stored

in fixed-size blocks. In the experiments described below, file sizes are assumed

to be one packet unit. When a file is transferred only one packet is generated

in the underlying network. Cache sizes follow the same size unit.

Figure 15 shows the performance gains in response delay and number of pack-

ets for different cache sizes. The objects are accessed using a Zipf distribution

31



 0

 10

 20

 30

 40

 50

 60

 0  300  400  500  1000  2000

P
er

fo
rm

an
ce

 G
ai

n 
(%

)

Maximum Local Overlay Size

D=40 ms

Alpha=0.70
Alpha=0.75
Alpha=0.80
Alpha=0.85
Alpha=0.90

 0

 10

 20

 30

 40

 50

 60

 0  300  400  500  1000  2000

P
er

fo
rm

an
ce

 G
ai

n 
(%

)

Maximum Local Overlay Size

D=100 ms

Alpha=0.70
Alpha=0.75
Alpha=0.80
Alpha=0.85
Alpha=0.90

 0

 10

 20

 30

 40

 50

 60

 0  300  400  500  1000  2000

P
er

fo
rm

an
ce

 G
ai

n 
(%

)

Maximum Local Overlay Size

D=200 ms

Alpha=0.70
Alpha=0.75
Alpha=0.80
Alpha=0.85
Alpha=0.90

 0

 10

 20

 30

 40

 50

 60

 0  300  400  500  1000  2000

P
er

fo
rm

an
ce

 G
ai

n 
(%

)

Maximum Local Overlay Size

D=300 ms

Alpha=0.70
Alpha=0.75
Alpha=0.80
Alpha=0.85
Alpha=0.90

Fig. 14. Performance gains in the number of packets in the underlying network for

D equal to 40ms, 100ms, 200ms, and 300ms in a dynamic network.

 0

 10

 20

 30

 40

 50

 60

 0  500  1000  1500  2000  2500

R
es

po
ns

e 
D

el
ay

 -
 P

er
fo

rm
an

ce
 G

ai
n 

(%
)

Cache Size

D=40 ms

LO Size=300
LO Size=400
LO Size=500

LO Size=1,000
LO Size=2,000

 0

 10

 20

 30

 40

 50

 60

 0  500  1000  1500  2000  2500

N
um

be
r 

of
 P

ac
ke

ts
 -

 P
er

fo
rm

an
ce

 G
ai

n 
(%

)

Cache Size

D=40 ms

LO Size=300
LO Size=400
LO Size=500

LO Size=1,000
LO Size=2,000

Fig. 15. Performance gains in response delay (left) and number of packets (right)

for fixed-size objects and different cache sizes.

with parameter 0.9. As we can see, the performance gains increase significantly

when the cache size is increased from 200 to 500 units, but beyond this point,

the increase in performance is not as significant. This is expected, since small

caches (200 and 500) are enough to store the most popular objects. As the

cache size increases beyond these values, the additional cache space is used to

store objects that are not accessed frequently.

32



The performance gains in number of packets (right figure) is much lower than

the ones observed with proxy logs. The reason is that all objects have unit

size, and, therefore, use a single packet in the underlying network. This result

can be interpreted as a saving in the number of links that are used in the

transfers. As the file sizes increase, as is the case for proxy logs, the observed

gains also increase. We will revisit this point in the next section when we

perform experiments with large files.

4.3 Synthetic Workload

Gummadi et al. [30] presents an extensive study on measurements from a peer-

to-peer network. Among the findings reported is how object sizes and accesses

to objects are performed in a peer-to-peer system. According to the study, the

file size distribution can be divided in the following thresholds: less than 10MB,

10MB to 100MB, and over 100MB. For these three intervals, the paper shows

that the majority of the requests (approximately 90%) are for objects smaller

than 10MB. We emulate these results by generating a synthetic distribution

according to the thresholds they describe in Figure 4 of [30]. Figure 16 shows

the cumulative distribution function of the number of requests generated as a

function of object size that we use in our experiment. The object sizes vary

from 100K to 1GB and most of the accesses are concentrated in the interval 1M

to 10MB. According to [30], this interval contains audio files, which correspond

to the majority of files shared in current peer-to-peer networks. The mean file

size in the generated trace is slightly over 75MB and the median is 4.5MB.

Figure 17 shows the performance improvements when the objects and the

accesses are drawn from the distribution in Figure 16. For this experiment, we

set the cache size in each node to 4.5GB, which corresponds to roughly 1,000

objects if we consider the median file size. The improvements in response delay

are a little lower than the ones we observed in the experiments with the other

33



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.1 1 10 100 1000

R
eq

ue
st

s 
(%

) 
- 

C
D

F

Object Size (MB)

Fig. 16. Synthetic distribution of requests generated as a function of object sizes.

workloads. This can be explained by the reduction in the cache hit ratio that

we observe when large files are stored in the cache. When a large file is brought

to the cache of a local overlay node, several small files have to be evicted from

its cache. One interesting result we observe is that, even though the cache

hit ratio is reduced, the improvements in number of packets in the underlying

network are higher than the ones observed with the other workloads. This

is mainly due to the sizes of the files, since the files are much larger, when

we reduce the number of links for a transfer, the reduction in the number of

packets in the network is more pronounced.

 0

 10

 20

 30

 40

 50

 60

 0  300  400  500  1000  2000

R
es

po
ns

e 
D

el
ay

 -
 P

er
fo

rm
an

ce
 G

ai
n 

(%
)

Maximum Local Overlay Size

Synthetic Workload

D=40ms
D=50ms

D=100ms
D=200ms
D=300ms

 0

 10

 20

 30

 40

 50

 60

 0  300  400  500  1000  2000

N
um

be
r 

of
 P

ac
ke

ts
 -

 P
er

fo
rm

an
ce

 G
ai

n 
(%

)

Maximum Local Overlay Size

Synthetic Workload

D=40ms
D=50ms

D=100ms
D=200ms
D=300ms

Fig. 17. Performance gains in response delay and number of packets for D equal to

40ms, 100ms, 200ms, and 300ms and a synthetic workload.

34



5 Related Work

Three major approaches have been proposed for topology-aware overlay con-

struction in DHT networks: proximity routing, topology-based node ID assign-

ment, and proximity neighbor selection [12].

In proximity routing, each node determines the next hop for a message tak-

ing into consideration not only the node that makes more progress in the

resolution of the virtual identifier, but also the proximity of its neighbors in

the underlying network. This technique has been used with some success [34].

The key idea is to select, among all neighbors, the node that is closest in

the underlying network or one that balances the proximity with progress in

the resolution of the virtual ID. The problem with this approach is that the

number of overlay hops may increase considerably.

In topology-based node ID assignment, the overlay node IDs are chosen based

on the location of the nodes in the underlying network. The idea here is

that nodes that are close in the underlying network are assigned overlay IDs

that are numerically close. Ratnasamy et al. [20] demonstrates the use of

this technique in CAN. In this particular example, before joining the network,

nodes measure their distances to a set of landmarks and use the measurements

to position themselves in the multi-dimensional address space of CAN. Even

though this technique is able to achieve considerable reduction in routing

delays, it also presents a few problems. By biasing identifier assignments, it

potentially destroys the uniform distribution of nodes in the ID space.

In proximity neighbor selection, the topology of the underlying network is

explored during the construction and maintenance of the routing table. For

a given routing table entry, the idea is to choose, among all the nodes that

qualify for that entry, the one that is closest in the underlying network to the

current node. This heuristic is suitable for prefix-based protocols like Tapestry

35



and Pastry. In these systems, the first rows of the routing table have many

options for each entry, with latter rows having exponentially fewer options.

As a consequence, the total delay during the routing process is dominated by

the last hop. Castro et al. [35] presents a detailed study of proximity neighbor

selection in Pastry. They show that the heuristic results in small relative delay

penalties, without compromising the load balance of the system. Relative delay

penalty is defined as the ratio of the delay experienced by a Pastry message

to the delay from its source and destination nodes in the underlying network.

We use this approach in the routing tables of the local overlay nodes.

The use of a two-level architecture to improve overlay performance is not new.

Brocade [25] uses a secondary overlay network of supernodes. The supernodes

are nodes with good capacity and network connectivity and are assumed to

be close to network access points such as routers. Nodes inside an AS use

the supernodes to access objects in the global overlay. Our approach differs

from Brocade in several important respects. In Brocade, a normal node (not

a supernode) participates in the overlay via supernodes. A normal node first

needs to contact a supernode and to ask it to route its messages. Supernodes

have to keep information about all overlay nodes inside their ASs. The Bro-

cade organization is basically an overlay of servers that have several clients

connected to them. There is no deterministic distributed way for a normal

node to find a supernode. It is assumed that the supernodes are able to snoop

the underlying network and detect overlay traffic, or that the supernodes have

well known DNS names.

Xu et al. [27] also proposes a two level overlay, consisting of one auxiliary over-

lay, called expressway, composed of supernodes, as in Brocade, and a global

overlay. The global overlay is used to find nodes in the same AS or nodes

that are physically close, as in our scheme. Nodes in the expressway exchange

routing information, much in the same way as routers exchange BGP reports

in the Internet. Our scheme resembles this approach in the way a node finds

36



information about other nodes that are physically close to it by using the

global overlay as a rendezvous point. A key difference is that the auxiliary

network in [27] is intended to speed up the communication of nodes far apart

in the Internet. Our auxiliary network (local overlay) is intended to speed up

the communication among nodes that are close to each other, taking advan-

tage of possible common interests, and reducing traffic in the global network.

Furthermore, the expressway requires significant work to be performed by the

supernodes. The supernodes try to emulate, in the overlay network, the BGP

routing protocol of the Internet, by running a distance-vector routing protocol

to summarize routes.

A number of measurement-based protocols [16,36], which use estimate of delay

between overlay nodes, have been proposed to build overlay networks with low

stretch. The main motivation of these protocols are application-level multicast.

Narada [16] creates an overlay topology that minimizes the latency between

nodes, but requires nodes to probe every other node. It has poor scalability,

since nodes must probe all other nodes. Nice [36] addresses the scalability

problem by creating a hierarchy of node clusters. Nodes are grouped in clusters

based on their proximity in the underlying network. Both Narada and Nice try

to build near optimal multicast trees, however, they do not provide protocols

for placing and locating objects.

6 Concluding Remarks

In this paper, we present Plethora, a two-level overlay architecture whose goal

is to enhance locality in DHT systems. We show significant performance im-

provements with respect to state-of-the-art structured peer-to-peer systems.

Specifically, we demonstrate performance gains of up to 60% for realistic net-

work and workload scenarios. We also demonstrate low overheads associated

with various control operations and resource requirements for Plethora.

37



Acknowledgements

This research has been partially funded by National Science Foundation grants

CCF-0444285, DMR-0427540, CCF-0325227, STI-5011078, and CNS-0509387.

The first author has been partially funded by CNPq and UFMS, Brazil.

References

[1] Napster. URL http://www.napster.com/.

[2] Gnutella. URL http://gnutella.wego.com/.

[3] E. Cohen, S. Shenker, Replication Strategies in Unstructured Peer-to-

Peer Networks, in: Proceedings of The 2002 ACM SIGCOMM Conference

on Applications, Technologies, Architectures, and Protocols for Computer

Communication, Pittsburgh, PA, 2002.

[4] S. Sen, J. Wang, Analyzing Peer-to-Peer Traffic Across Large Networks, ACM

Transactions on Networking 12 (2) (2004) 219–232.

[5] S. Saroiu, K. P. Gummadi, S. D. Gribble, A Measurement Study of Peer-

to-Peer File Sharing Systems, in: Proceedings of Multimedia Computing and

Networking 2002 (MMCN ’02), San Jose, CA, USA, 2002.

[6] T. Hong, Performance, in: Peer-to-Peer: Harnessing the Power of Disruptive

Technologies, O’Reilly, 2001.

[7] I. Stoica, R. Morris, D. Karger, F. Kaashoek, H. Balakrishnan, Chord: A

Scalable Peer-to-Peer Lookup Service for Internet Applications, in: Proceedings

of The 2001 ACM SIGCOMM Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communication, San Diego, CA,

2001, pp. 149–160.

[8] A. Rowstron, P. Druschel, Pastry: Scalable, Decentralized Object Location and

Routing for Large-Scale Peer-to-Peer Systems, in: Proceedings of The 2001

38



ACM SIGCOMM Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communication, San Diego, CA, 2001, pp. 247–254.

[9] B. Y. Zhao, J. Kubiatowicz, A. D. Joseph, Tapestry: An Infrastructure for Fault-

Tolerant Wide-Area Location and Routing, Tech. Rep. UCB/CSD-0101141, UC

Berkeley, Computer Science Division (April 2001).

[10] D. Malkhi, M. Naor, et al., Viceroy: A Scalable and Dynamic Emulation of

the Butterfly, in: Proceedings of the 21st ACM Symposium on Principles of

Distributed Computing (PODC), Monterey, CA, 2002, pp. 183–192.

[11] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A Scalable Content-

Addressable Network, in: Proceedings of The 2001 ACM SIGCOMM Conference

on Applications, Technologies, Architectures, and Protocols for Computer

Communication, San Diego, CA, 2001, pp. 247–254.

[12] S. Ratnasamy, S. Shenker, I. Stoica, Routing Algorithms for DHTs: Some Open

Questions, in: Proceedings of The 1st International Workshop on Peer-to-Peer

Systems (IPTPS’02), Boston, MA, 2002, pp. 45–52.

[13] R. Ferreira, A. Grama, S. Jagannathan, Plethora: A Wide-Area Read-Write

Object Repository. URL http://www.cs.purdue.edu/homes/rf/plethora/.

[14] K. Sripanidkulchia, The Popularity of Gnutella Queries and its Implication on

Scalability (February 2001.).

URL http://www.cs.cmu.edu/ kunwadee/research/p2p/gnutella.html

[15] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,

R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, B. Zhao,

OceanStore: An Architecture for Global-Scale Persistent Storage, in:

Proceedings of the Ninth international Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS 2000), Cambridge,

MA, 2000, pp. 190–201.

[16] Y. Chu, S. G. Rao, H. Zhang, A Case for End System Multicast, in: Proceedings

of the 2000 ACM SIGMETRICS International Conference on Measurement and

Modeling of Computer Systems, Santa Clara, CA, 2000, pp. 1–12.

39



[17] P. Francis, S. Jamin, V. Paxson, L. Zhang, D. F. Gryniewicz, Y. Jin, An

Architecture for a Global Internet Host Distance Estimation Service, in:

Proceedings of IEEE INFOCOM 1999, New York, NY, 1999, pp. 210–217.

[18] T. E. Ng, H. Zhang, Predicting Internet Network Distance with Coordinates-

Based Approaches, in: Proceedings of IEEE INFOCOM 2002, New York, NY,

2002.

[19] M. R. Garey, D. S. Johnson, Computers and Intractability – A Guide to the

Theory of NP-Completeness, W. H. Freeman and Company, 1979.

[20] S. Ratnasamy, M. Handley, R. Karp, S. Shenker, Topologically-Aware Overlay

Construction and Server Selection, in: Proceedings of IEEE INFOCOM 2002,

New York, NY, 2002.

[21] Skitter Project. URL http://www.caida.org/tools/measurement/skitter/.

[22] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays,

Trees, Hypercubes, Morgan Kaufmann, 1992.

[23] C. G. Plaxton, R. Rajaraman, A. W. Richa, Accessing Nearby Copies of

Replicated Objects in a Distributed Environment, Theory of Computing

Systems 32 (1999) 241–280.

[24] R. A. Ferreira, A. Grama, S. Jagannathan, An IP Address Based Caching

Scheme for Peer-to-Peer Networks, in: Proceedings of IEEE Globecom 2003,

San Francisco, CA, 2003, pp. 3845–3850.

[25] B. Zhao, Y. Duan, L. Huang, A. Joseph, J. Kubiatowicz, Brocade: Landmark

Routing on Overlay Networks, in: Proceedings of The 1st International

Workshop on Peer-to-Peer Systems (IPTPS), Cambridge, MA, 2002, pp. 34–44.

[26] A. Agrawal, H. Casanova, Clustering Hosts in P2P and Global Computing

Platforms, in: Proceedings of Third International Workshop on Global and Peer-

to-Peer Computing, Tokyo, Japan, 2003, pp. 367–373.

[27] Z. Xu, M. Mahalingam, M. Karlsson, Turning Heterogeneity into an Advantage

in Overlay Routing, in: Proceedings of IEEE INFOCOM 2003, San Francisco,

CA, 2003.

40



[28] Z. M. Mao, J. Rexford, J. Wang, R. H. Katz, Towards an Accurate AS-Level

Traceroute Tool, in: Proceedings of the 2003 ACM SIGCOMM Conference

on Applications, Technologies, Architectures, and Protocols for Computer

Communication, Karlsruhe, Germany, 2003, pp. 365–378.

[29] University of Oregon Route Views Project.

URL http://antc.uoregon.edu/route-views/

[30] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, J. Zahorjan,

Measurement, Modeling and Analysis of a Peer-to-Peer File Sharing Workload,

in: Proceedings of The 19th ACM Symposium of Operating Systems Principles

(SOSP), New York, NY, USA, 2003, pp. 314–329.

[31] A. Rowstron, P. Druschel, Storage Management and Caching in PAST, a Large-

Scale, Persistent Peer-to-Peer Storage Utility, in: Proceedings of The 18th ACM

Symposium on Operating Systems Principles (SOSP), Lake Louise, Canada,

2001, pp. 188–201.

[32] S. D. G. S. Saroiu, K. P. Gummadi, Measuring and Analyzing the

Characteristics of Napster and Gnutella Hosts, Multimedia Systems Journal

9 (2) (2003) 170–184.

[33] P. Cao, S. Irani, Cost-Aware WWW Proxy Caching Algorithms, in: Proceedings

of The USENIX Symposium on Internet Technologies and Systems (USITS),

Monterey, CA, 1997, pp. 193–206.

[34] F. Dabek, M. Kaashoek, D. Karger, R. Morris, I. Stoica, Wide-Area Cooperative

Storage with CFS, in: Proceedings of The 18th ACM Symposium on Operating

Systems Principles (SOSP), Lake Louise, Canada, 2001, pp. 202–215.

[35] M. Castro, P. Druschel, Y. Hu, A. Rowstron, Exploiting Network Proximity in

Peer-to-Peer Overlay Networks (Technical Report MSR-TR-2002-82, 2002).

[36] S. Banerjee, B. Bhattacharjee, C. Kommareddy, Scalable Application Layer

Multicast, in: Proceedings of The 2002 ACM SIGCOMM Conference

on Applications, Technologies, Architectures, and Protocols for Computer

Communication, Pittsburgh, PA, 2002, pp. 205–217.

41



Biographies

Ronaldo A. Ferreira

Ronaldo A. Ferreira received his B.Sc. degree in computer science from the

Federal University of Mato Grosso do Sul-Brazil in 1992 and his M.Sc. de-

gree in computer science from the University of Campinas-Brazil in 1998. He

worked as a lecturer at the Federal University of Mato Grosso do Sul from

1995 to 2000, when he joined the Ph.D. program in the Computer Science

Department at Purdue University, where he is currently a Ph.D. candidate.

His research interests are in networking and distributed systems.

Suresh Jagannathan

Suresh Jagannathan is currently an associate professor at Purdue University.

Prior to joining Purdue, he was a senior research scientist at the NEC Re-

search Laboratories, Princeton. His interests span programming languages,

concurrent and distributed systems. He holds a Ph.D. from MIT.

Ananth Grama

Ananth Grama received his Ph.D. from the University of Minnesota in 1996.

He is currently an Associate Professor of Computer Sciences and a University

Faculty Scholar at Purdue University. His research interests span the areas of

parallel and distributed computing architectures, algorithms, and applications.

On these topics, he has authored several papers and co-authored a text book

‘Introduction to Parallel Computing’ with Anshul Gupta, George Karypis and

Vipin Kumar. He is a member of American Association for Advancement of

Sciences.

42


