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Abstract Concurrent garbage collection algorithms are an emblematic challenge
in the area of concurrent program verification. In this paper, we address this prob-
lem by proposing a mechanized proof methodology based on the popular Rely-
Guarantee (RG) proof technique. We design a specific compiler intermediate rep-
resentation (IR) with strong type guarantees, dedicated support for abstract con-
current data structures, and high-level iterators on runtime internals. In addition,
we define an RG program logic supporting an incremental proof methodology
where annotations and invariants can be progressively enriched.
We formalize the IR, the proof system, and prove the soundness of the methodol-
ogy in the Coq proof assistant. Equipped with this IR, we prove a fully concurrent
garbage collector where mutators never have to wait for the collector.

1 Introduction

Modern programming languages like ML, Java, and C# rely on garbage collection (GC)
for the automatic reclamation of memory no longer used by the application. The GC is
considered to be one of the most subtle parts of modern runtime systems, carefully
engineered to minimize runtime overheads of the applications it supports. A family
of garbage collection algorithms, named on-the-fly garbage collectors [2], allows the
detection of garbage and its reclamation to occur concurrently with an application’s
threads. Such algorithms are notably difficult to implement, test, and prove, and con-
stitute a significant challenge for mechanized verification. Many on-the-fly algorithms
are inherently racy, and some algorithms never require application threads (called mu-
tators) to wait for the collector thread, which detects and frees unused memory. This
paper focuses on an emblematic algorithm in this landscape [5,3,4], where no locks are
required – i.e. it is lock-free.

This challenge has been identified and addressed in various settings [8,9,11,12].
This paper provides an independent proof, and it explores a different proof method in
the design space. First, the backbone of the formalization is a new compiler intermedi-
ate representation, named RtIR, which we use to implement the garbage collector. Our
experience implementing on-the-fly garbage collectors [20] indicates that the choice of
programming abstractions is of paramount importance in reasoning and optimizing this
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kind of algorithm. This concern necessitates a representation that makes the expres-
sion and proof of invariants tractable. Moreover, in this work, we strive to make our
proof well suited to the context of a larger project, described in [1,14], aiming at the
formal verification of a compiler for concurrent, managed languages. Our intermediate
representation has special support for the implementation of efficient runtime mecha-
nisms: (i) strong type guarantees, (ii) abstract concurrent data structures, (iii) high-level
iterators for reflective inspection of objects, used to implement low-level services, e.g.
ensuring the garbage collector visits every live object (iv) native support for threads,
and (v) native support for the root management of a concurrent garbage collector (each
thread must be able to iterate over the set of memory references it can access directly).

Another important characteristic of our approach is the dedicated rely-guarantee
program logic that accompanies our intermediate representation. While previous ap-
proaches [8,9,12] attack the proof by means of an abstract state transition system re-
quiring a monolithic global invariant to be established, we follow the well established
rely-guarantee [15] (RG) methodology. RG is a major technique for proving the correct-
ness of concurrent programs that provides explicit thread-modular reasoning. In this
setting, interferences between threads are described using binary relations: relies and
guarantees. Each thread is proved correct under the assumption it is interleaved with
threads fulfilling a rely relation. The effect of the thread itself on the shared memory
must respect its guarantee relation. This guarantee must also be coherent with respect
to the relies that the other threads assume. Being able to reason in a thread modular
way is key to realize a tractable correctness proof because it avoids the need to explic-
itly consider all possible interleavings. We prove the soundness of our RG logic, and
develop a set of tactics that reduce the proof effort required to discharge the invariants.

Finally, we report on an original incremental proof technique that we put in place
to carry out this massive endeavour. Starting from the full GC implementation, we pro-
gressively annotate the program in order to prove stronger and stronger invariants. At
each level, dedicated specification annotations and tactics allow us to refine and reuse
what has been proved at the previous levels.

Using the Coq proof assistant, we achieved the following formalizations: (i) the
syntax, semantics and the soundness of an RG program logic for our intermediate rep-
resentation, (ii) a number of tactics and structural lemmas to facilitate the so-called
stability proofs required by the RG methodology, (iii) a realistic implementation of Do-
mani et al.’s GC algorithm [5] in our intermediate representation and (iv) an RG proof
ensuring the correctness of the GC: the collector never frees references accessible by
the running threads. Our formal development is available online [7].

2 The RtIR Intermediate Representation

2.1 Syntax

Figure 1 shows the syntax of RtIR (RunTime IR). It provides two kinds of variables:
global or shared variables that can be accessed by all threads, and local variables used
for thread-local computations. Expressions (e) are built from constants and local vari-
ables with the usual arithmetic and boolean operators. Commands include standard in-



X,Y ∈ gvar x, y ∈ lvar t,m,C ∈ tid f ∈ fid rn ∈ list fid
cmd 3 c := skip | assume e | x = e

| c1 ; c2 | c1 ⊕ c2 | loop(c) | atomic c
| x = alloc(rn) | free(x) | isFree?(x)
| x = Y | X = e | x = y. f | x. f = e
| x.push(y) | x = y.empty?() | x = y.top() | x.pop() | X = y.copy()
| foreach (x in l) do c od | foreachField ( f of x) do c od
| foreachObject x do c od | foreachRoot (x of t) do c od

Figure 1: Simplified Syntax of RtIR. Proof annotations elided.

structions, such as skip, assume e, local variable update x = e, and classic combina-
tors: sequencing, non-deterministic choice (c1 ⊕ c2), and loops. The usual conditional
(if e then c1 else c2) can be defined as (assume e; c1) ⊕ (assume !e; c2), where we
write !e for the boolean negation of e. While loops and repeat-until loops can be encoded
similarly. RtIR also provides atomic blocks (atomic c). In our GC, we use atomic
blocks only to add ghost-code – code only used for the proof, not taking part in the
computation – and to model linearizable data structures. These atomic constructs can
be refined into low-level, fine-grained implementations using techniques like [14,26].

Instruction alloc(rn) allocates a new object in the heap by extracting a fresh refer-
ence from the freelist – a pool of unused references – and initializing all of its fields in
the record name rn to their default value. Conversely, free puts a reference back into
the freelist. Instruction isFree? looks up the freelist to test whether a reference is in it.
We use these memory management primitives to implement the GC.

In RtIR, basic instructions related to shared-memory accesses are fine-grained, i.e.
they perform exactly one global operation (either read or write). These include loads
and stores to global variables and field loads and updates. This allows us, when con-
ducting the proofs, to consider each possible interleaving of memory operations arising
from different threads, while keeping the semantics reasonably simple. Apart from these
basic memory accesses, RtIR provides abstract concurrent queues which implement
the mark buffers of [5], accessible through standard operations y = x.top(), x.pop(),
x.push(y), x = y.empty?(). The use of these buffers, necessary for the implementa-
tion of the GC, will be made clear in Section 4. While we could implement these data
structures directly in RtIR, we argue that to carry out the proof of the GC, it is better
to reason about them at a higher level, and hence to assume that they behave atomi-
cally. Implementing these data structures in a correct and linearizable [13] fashion is
an orthogonal problem, that we address separately [26]. Mark buffers also provide an
operation X = y.copy(), to perform a deep copy, only used in ghost code.

A salient ingredient of RtIR is its native support for iterators, allowing to easily ex-
press many bookkeeping tasks of the GC. The iterator foreach (x in l) do c od, where
the variable x can be free in command c, iterates c through all elements x of the static
list l. Some more sophisticated bookkeeping tasks include the visiting of all the fields
of a given object, the marking of each of the roots – references bound to local variables
– of mutators, or the visiting of every object in the heap (performed during the sweeping
phase). In those cases, the lists of elements to be iterated upon is not known statically,
so we provide dedicated iterators. The iterator foreachField ( f of x) do c od iterates
c on all the fields f of the object stored in x. Command foreachRoot (r of t) do c od



iterates over the roots of mutator thread t, while foreachObject x do c od iterates
over all objects. We stress the fact that iterators have a fine-grained behavior: the body
command c executes in a small-step fashion.

2.2 Operational semantics

The operational semantics of RtIR is mostly standard. We provide two kinds of op-
erational semantics: (i) a big-step semantics, used to define the semantic validity of
Hoare-like tuples for basic instructions (see Section 3), as well as commands in atomic
blocks; (ii) a small-step interleaving semantics used to prove our final soundness re-
sults. We only present here the description of execution states, and refer the interested
reader to the Coq development [7] for the formal semantics.

Typing information The semantics of RtIR is enriched with typing information. Basic
types in typ include TNum for numeric constants, TRef for references to regular objects
(see below), and TRefSet for non-null references to abstract mark-buffers. Local vari-
ables, global variables, and field identifiers are declared to have exactly one of these
types, respectively accessible through functions lvar_typ, gvar_typ and fid_typ. RtIR
manipulates two kinds of values: numeric values in the Coq type Z and references in ref.
Types are mapped to values with the function value of type typ → Type.

typ , { TNum, TRef, TRefSet }
lvar , varId × typ
gvar , varId × typ
fid , fieldId × typ

Definition value (t:typ):Type :=
match t with
| TNum ⇒ Z
| TRef | TRefSet ⇒ ref end.

Execution states Local (resp. global) environments map local (resp. global) variables
to values of their declared type. Environments are hence dependent functions of type:

Definition lenv := ∀ x:lvar, value (lvar_typ x).
Definition genv := ∀ X:gvar, value (gvar_typ X).

A thread-local state is defined by a local environment and a command to execute. A
global state includes a global environment ge and a heap hp – a partial map from refer-
ences to objects. We consider two distinct kinds of objects: regular objects, mapping
fields to values, and abstract mark-buffers.

Definition thread_state := (cmd * lenv).
Record gstate := { ge: genv; freelist: ref → bool;

hp: ref → option object; roots: tid → ref → nat }.

Global states also include two components essential to the implementation of a GC:
roots and a freelist. The freelist is indeed a shared data structure, while roots are
considered to be thread-local – mutators are responsible for handling their own roots
with thread-local counters. Here, we model roots as part of the global state only to ease
proof annotations – our final theorem is an invariant of the program global state.

Finally, execution states include the states of all threads and a global state.

Definition state := ((tid → option thread_state) * gstate).



Well-typedness invariants A number of invariants are guaranteed by typing: (i) each
variable in the local or global environment contains a value of the appropriate type,
(ii) any reference of type TRef is either null, in the domain of the heap, or in the freelist,
and (iii) each abstract mark-buffer is accessible from a unique global variable, indexed
by a thread identifier. This mechanism enforces separation of mark-buffers by typing.

3 RtIR Proof System

On top of RtIR, we design a program logic, based on a variation of rely-guarantee (RG).
In a nutshell, RG [15] extends Hoare-logic to handle concurrency in a thread modular
fashion. In addition to the standard Hoare-tuples, side conditions ensure that program
annotations take into account the possible interferences of other threads. When thinking
about a particular thread’s code, we shall refer to the actions of the other concurrent
threads as its context. This context is formally encoded as a rely relation stating its
possible execution steps. Thus, each annotation in the code of a thread must be proved
to be stable w.r.t. its rely condition, meaning that its validity is not affected by possible
state changes induced by any number of rely steps. We follow a similar approach to
encode guarantees (cf. Section 1). In fact, throughout our development we only ever
need to define guarantees, and we synthesize the relies of other threads from guarantees.

High-level design choices of proof rules In our approach, we firstly annotate a pro-
gram, as is usually done on paper, and then prove the annotated program using syntax-
directed proof rules. We thus extend the syntax of commands to include annotations.
Syntax-directed proof rules were capital for proof automation.

The proof system decouples sequential and concurrent reasoning. Its first layer is a
Hoare-like system, with no use of relies or guarantees. A second layer handles interfer-
ence: proof obligations about relies, guarantees and stability checks of annotations.

Finally, to avoid polluting programs with routine annotations, typically the global
invariants, the first layer of the system assumes that such invariants hold, and the second
layer requires to separately prove their invariance as a stability check.

Annotations We use a shallow embedding into Coq, with annotations of type either
pred, gstate→lenv→Prop, or gpred, gstate→Prop when they deal with the global
state only. Typically, the global invariant of the GC is of type gpred. We also define the
usual logical connectives on pred and gpred with the expected meaning. Conjunction
is written A∧∧B and implication is written A−→B. Annotations of type gpred are automat-
ically cast into pred when needed.

The syntax presented in Section 2 is extended to take annotations into account.
While elementary commands that do not utilize the global state do not need to be ex-
tended, basic commands accessing memory (e.g. field loads and updates, global loads
and stores, and mark-buffer operations) have to take an extra argument of type pred, rep-
resenting the pre-condition of the command. This is also the case for loops, annotated
with a loop-invariant, and atomic blocks, whose body may affect the global state. The
semantics of RtIR completely ignores annotations which are only relevant for proofs.

In the sequel, we use the informal notation P@c for a command c annotated with P.



Sequential Layer We start by defining the following predicate, I � t: 〈P〉 c 〈Q〉 that
corresponds to the validity of a sequential Hoare tuple, with respect to the big-step
operational semantics of commands. This semantic judgment asserts that, for thread t, if
command c runs in a state satisfying precondition P, and if the execution terminates, the
final state must satisfy post-condition Q under the assumption that the global predicate
I is an invariant. Proving that I is indeed invariant is done separately.

First-layer logic judgments for commands are of the form I ` t: 〈P〉 c 〈Q〉. For
basic commands which do not require annotations and simple command composi-
tions (sequence, non-deterministic choice and loops), proof rules follow the traditional
weakest-precondition style. This can be seen in the following rules:

I ` t: 〈P〉 skip 〈P〉

I ` t: 〈P〉 c1 〈R〉

I ` t: 〈R〉 c2 〈Q〉

I ` t: 〈P〉 c1; c2 〈Q〉

I ` t: 〈P1〉 c1〈Q〉

I ` t: 〈P2〉 c2〈Q〉

I ` t: 〈P1 ∧∧ P2〉 c1 ⊕ c2 〈Q〉

On the other hand, commands that require annotations directly embed the semantic
judgment I � t: 〈P〉 c 〈Q〉 as a proof obligation. For instance:

I � t: 〈P〉 P@X = e 〈Q〉
I ` t: 〈P〉 P@X = e 〈Q〉

I � t: 〈P〉 c 〈Q〉
I ` t: 〈P〉 P@atomic c 〈Q〉

Interference Layer This layer takes into account threads interference with a given
command, handling the validity of guarantees and the stability of program annotations
w.r.t. the context. This can be seen in the definition of a valid RG tuple:

Record RGt (t:tid) (R:rg) (G:list rg) (I:gpred) (P Q:pred) (c:cmd) := {
RGt_hoare: I ` t: 〈P〉 c 〈Q〉
; RGt_stable: stable I P R ∧ stable I Q R ∧ AllStable I c R
; RGt_guarantee: AllRespectGuarantee t I c G }.

Here, the type rg, gstate→gstate→Prop defines relies and guarantees as binary
relations between global states. In our development, we build them from annotated
commands. For a command P@c, the associated rg is defined by running the (big-step)
operational semantics of c from a pre-state satisfying P to a post-state (in Section 5, we
explain how our proof methodology benefits from this definition).

Predicate stable defines the stability of a pred w.r.t. a rely, given some invariant:

Definition stable (I:gpred) (H:pred) (R:rg) : Prop := ∀ gs1 gs2 l,
I gs1 ∧ H gs1 l ∧ R gs1 gs2 ∧ I gs2 → H gs2 l.

The predicate AllStable builds the conjunction of the stability conditions for all asser-
tions syntactically appearing therein. We omit its formal definition here.

The validity of the guarantee of a command (predicate AllRespectGuarantee) fol-
lows the same principle, this time accumulating proof obligations that all elementary
effects of the command are reflected by an elementary guarantee in the list G.

Program RG specification The RG specification of a program p is defined as a record
considering guarantees G and pre- and post-conditions P and Q for all threads. Formally:

Record RGt_prog (G:tid → rg) (I:gpred) (P Q:tid → pred) (p:program) := {
RGp_t:∀ t ∈ (threads p), RGt t (Rely G t) (G t) I (P t) (Q t) (cmd t p)
; RGp_I:∀ t, stable TTrue I (G t) }.



Obligation RGp_t requires that each thread’s command is proved valid. It is worth not-
ing that only guarantees need to be considered: for each thread, we build its rely from
other threads’ guarantees (Rely G t). This significantly reduces redundancies in speci-
fications. Second, obligation RGp_I requires that I is invariant. We encode this as a sta-
bility condition under the union of all threads’ guarantees, assuming the trivial invariant
TTrue, (fun _ _ ⇒ True). Indeed, as all threads’ code satisfy their guarantees, this is
enough to prove that the global invariant I is preserved by any number of program steps.

Reasoning about Iterators As expected, the case of iterators is more involved. We il-
lustrate their treatment on foreach. Though more technically involved, others iterators
are similar. Recall that foreach iterates on a list of data of type A, morally representing
a loop. Hence, its proof involves a loop invariant, predicated over the visited elements
of the list. Predicates annotating foreach are thus indexed by a list of visited elements.
And, as the loop body may include annotations about visited elements, we also index it
by a list of visited elements and a current element. Summing up, the syntax of foreach,
extended with annotations is P@foreach (x in l) do c odwhere annotation P has type
list A → pred, and c has type list A → A → cmd. The associated proof rule is:

∀ a seen, prefix (seen++[a]) l →

I ` t: 〈P seen〉 (c seen a) 〈P (seen++[a])〉

P l ∧∧ I −→ Q

I ` t: 〈P nil〉 P@foreach (x in l) do c od 〈Q〉

The first premise amounts to proving a valid tuple whose pre- and post-conditions
are adjusted to the list of already visited elements. The second premise requires pre-
condition P applied to the whole list of elements to entail the post-condition of the iter-
ator itself. We define a more general rule in Coq, to get an induction principle usable to
prove the soundness of the logic.

Soundness of the logic Soundness states that invariant I holds in every state reachable
from a well-formed initial state – which must satisfy I by construction – through the
small-step semantics mentionned in Section 2. Formally:

Hypothesis init_wf : ∀ tsi gsi, init_state p (tsi,gsi) →
RGt_prog G I P p Q (* program RG spec *)

∧ (∀ t c le, tsi(t) = Some(c, le) → P t gsi le) (* pre-conds. hold *)
∧ I gsi. (* I holds initially *)

Theorem soundness : ∀ ts gs, reachable init_state p (ts,gs) → I gs.

The proof of this theorem relies on an auxiliary proof system, proved equivalent
to the one presented earlier. The auxiliary system reuses the same basic components,
but proof rules now require to prove everything in situ: the invariant, the pre- and post-
conditions, the stability of annotations, and the validity of guarantees. For instance,
compare the rule for instruction X = e in the previous system (left) with the proof rule
of the auxiliary system (right):

I � t: 〈P〉 P@X = e 〈Q〉
I ` t: 〈P〉 P@X = e 〈Q〉

TTrue � t: 〈P ∧∧ I〉 P@X = e 〈Q ∧∧ I〉
stable TTrue (P ∧∧ I) G stable TTrue (Q ∧∧ I) G

RespectGuarantee t I G (P@X = e)

R, G, I ` t: 〈P〉 P@X = e 〈Q〉



This auxiliary system is very close to the classic RG [15,25]. Its verbosity makes it
easier to reason about the soundness proof.

The soundness proof itself consists in a subject-reduction lemma w.r.t. the following
property: in the current execution state, every possible thread currently running is in fact
running a piece of code that conforms to RGt (the pre-conditions map P is hence updated
at each step), and the global invariant I holds. Invariance of I follows from the fact that,
in each rule of the auxiliary system, the invariant is part of the pre- and post-conditions,
which are stable against any step of the rely and the guarantee of the stepping thread.

4 The Concurrent Garbage Collector

We now describe our implementation in RtIR of the concurrent GC, and its associ-
ated correctness theorem. The algorithm is based on [5], a variant of the well known
concurrent mark-and-sweep algorithm due to Doligez, Leroy and Gonthier [4,3].

Main Theorem Intuitively, we want to show that the collector thread never reclaims
memory that could potentially be used by mutators. To do this, we program the col-
lector and the mutators in RtIR, and prove that their parallel composition preserves an
invariant on global execution states, using the soundness theorem of our program logic.

The particularity of mutators is that they participate to the bookkeeping required for
the collection to be correct. In practice, bookkeeping code is injected in client code by
the compiler. Here, we consider a Most General Client (MGC) representing a collector
thread composed with an arbitrary number of mutators with identifiers in Mut, each
running relevant injected pieces of code.6

mutator , loop
(
update(x, f, v)
⊕ load(x, f) ⊕ alloc()
⊕ cooperate() ⊕ changeRoots()

)
mgc , collector ‖ mutator ‖ ... ‖ mutator

Recall that the special global variable freelist a pool of unused references. Hence,
upon allocation, a reference is fetched from the freelist. Symmetrically, to reclaim an
unused object, the collector puts back its reference into the freelist.

Our main invariant establishes that in a given state gs, any reference r reachable
from any mutator m is not in the freelist, and hence has not been collected.

Definition I_correct: gpred :=
fun gs ⇒ ∀ m r, In m Mut ∧ Reachable_from m gs r → ¬ in_freelist gs r.

We can now formulate our main theorem. It uses the predicate reachable_mgc stating
that a global state gs can be reached, from a predefined initial state, by the code of the
mgc shown above.

Theorem gc_sound: ∀ gs, reachable_mgc gs → I_correct gs.

6 We present a simplified pseudo-code of the MGC, with variable x, field f, and value v assumed
non-deterministically chosen from the thread environment. The actual definition in Coq is an
operational characterization of this thread system.



// collector ::=
while (true) do
atomic // ghost
stage[C] = CLEAR
phantom_flipped = 0
atomic // linearizable[4]
foreachObject o do
if !(isFree?(o)) then
o.color = WHITE

od
phantom_flipped = 1
handshake() // SYNCH1
handshake() // SYNCH2
stage[C] = TRACING
handshake() // ASYNCH
trace()
stage[C] = SWEEPING
sweep()
stage[C] = RESTING
od

Listing 1: Collector

// handshake() ::=
phantom_hdsk = 1
phase[C] = phase[C] + 1 mod 3
foreach (m in Mut) do
repeat skip
until phase[m]==phase[C]
od
phantom_hdsk = 0

Listing 2: Handshake

// tid m : cooperate ::=
if phase[m] != phase[C] then
if phase[C] == ASYNCH then
foreachRoot (r of m) do
markGrey(buffer[m], r)
od

phase[m] = phase[C]

Listing 3: Cooperate

// tid m : update(x,f,v) ::=
if (phase[m] != ASYNCH

stage[C] == TRACING) then
old = x.f
markGrey(buffer[m],old)
markGrey(buffer[m],v)
x.f = v

Listing 4: Write Barrier

// markGrey(buffer,x) ::=
if (x != NULL
&& x.color != BLACK) then
buffer.push(x)

Listing 5: MarkGrey

The initial state we consider is obtained by a startup phase of the runtime, that carefully
initializes intrinsic features of the runtime, and establishes key invariants.

Evidently, this theorem would be impossible to prove without the aid of other in-
termediate invariants. In the sequel we explain the important aspects of the implemen-
tation, and a few salient auxiliary invariants. Describing the algorithm and our code in
full details is out of the scope of this paper. We refer the reader to the explanations in [5]
and to the formal proof [7] for details.

High-level Principles of the Algorithm Our GC is of the mark and sweep family:
the heap is traversed, marking objects that are presumably alive, i.e. reachable from
mutators local variables, henceforth called roots. Once the marking procedure finishes,
the sweeping procedure reclaims objects detected as not reachable by putting them back
in the freelist.

The marking conventions to denote the reachability of objects follows the tricolor
convention [2]. Color WHITE is used for objects not yet visited. GREY is used for visited,
hence presumably live objects, whose children (through fields accesses) have not yet
been visited. BLACK is used for visited objects whose children have all been visited.
In our implementation, colors WHITE and BLACK are implemented with numerical con-
stants. We explain the encoding of GREY later. The heap traversal (marking) procedure
is called tracing, and completes once no GREY objects remain.

Extra care is required to cope with the concurrent execution of mutators: they could
modify the object graph at any point, and thus invalidate the properties of the coloring.
In particular, mutators are responsible for publishing their own roots by marking them
as GREY before tracing begins. This is the goal of the cooperate procedure. Similarly,
object field update should not break color-related reachability invariants during tracing.
This is the goal of the so-called write-barriers, implemented by the update procedure.
Finally, the right color should be assigned to newly allocated objects. For space reasons,
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Figure 2: Timeline of a collection cycle. All mutators are coalesced into the bottom line,
and the collector is shown in the top line. Dotted lines represent the GC start of a new
stage, and dashed lines represent the end of a phase change (handshake).

we elude the details of the alloc procedure that we have implemented, and refer to our
formalization [7] and the descriptions in [5] for the details.

All these subtle procedures, run by the collector and the mutators, are orchestrated
using the global variable stage[C], which encodes for the various stages of the collec-
tion cycle (including the tracing and sweeping), and the global variables phase[m] – one
for each mutator – and phase[C] – one for the collector – to coordinate mutators with
the collector. A diagrammatic representation of a collection cycle is shown in Figure 2,
gathering all previously mentioned ingredients. We will refer to it below in more detail.

RtIR Implementation and Main Invariants Let us now describe the implementation.
Code snippets in RtIR use a simplified syntax from the one we presented above for
space and readability reasons.

Stage and Phase Protocol. The code of the collector is presented in Listing 1. For the
moment, we concentrate only on the calls to the handshake() procedure (Listing 2), and
its counterpart cooperate() (Listing 3) executed by the mutators. A collection cycle is
structured using four stages: CLEAR, TRACING, SWEEPING and RESTING. The current stage
is written by the collector to a global variable stage[C]. This global variable allows
mutators to coordinate with the collector at a coarse level. At a finer level, a handshake
mechanism is required, and the status of each thread, the mutators and the collector,
is tracked with a phase variable, with values ranging over ASYNCH, SYNCH1 or SYNCH2.
Each phase is encoded with a dedicated integer between 0 and 2. Instead of presenting
a detailed description to justify these phases, let us point out that the original algorithm
of [4] used only two phases, which was later discovered to be incorrect. A new phase
was added to correct it in [3].

We concentrate now on the horizontal lines of Figure 2, showing the evolution of
phase[C], as well as the aggregated representation of all the phase[m] variables of
mutators. Each phase starts by the collector modifying the phase[C] variable (second
line of Listing 2). Mutators query it (first line of Listing 3), to acknowledge possi-
ble changes, in which case mutators respond by updating their own phase[m] variable
(the last line of Listing 3). When the collector acknowledges that all mutators have up-



1 // trace() ::=
2 all_empty = false
3 while (!all_empty) do
4 atomic // ghost code
5 foreach (m in Mut) do
6 phantom_buffer[m].copy(buffer[m])
7 od
8 all_empty = true
9 foreach (m in Mut) do

10 is_empty = buffer[m].isEmpty()
11 while (!is_empty) do
12 all_empty = false
13 x = buffer[m].top()
14 if (x.color == WHITE) then
15 buffer[C].push(x)
16 buffer[m].pop()
17 else buffer[m].pop()
18 is_empty = buffer[m].isEmpty()
19 od
20 od
21

22 while (!buffer[C].isEmpty()) do
23 all_empty = false
24 ob = buffer[C].top()
25 if (ob.color == WHITE) then
26 foreachField (f of ob) do
27 if (ob.f!=NULL
28 && ob.f.color==WHITE) then
29 buffer[C].push(ob.f)
30 od
31 ob.color = BLACK
32 buffer[C].pop()
33 od
34 od
35

36

37 // sweep() ::=
38 foreachObject o do
39 if (!isFree?(o) && o.color == WHITE) then
40 free(o)
41 od

Listing 6: Trace and Sweep (Collector)

dated phase[m], the phase transition is completed (dashed line in Figure 2). Importantly,
phase[C] and phase[m] are subject to race conditions. We also point out that threads do
never stop their execution while executing cooperate.

An important invariant relating the phases of the collector and the mutators is that
any mutator’s phase is at most one step behind the collector’s phase.

Definition I_phases : gpred := fun gs ⇒
∀ m, In m Mut → phase[C]gs = phase[m]gs ∨ phase[C]gs=(phase[m]gs+1) mod 3.

Buffers and GREY. Objects are marked GREY with the markGrey procedure (Listing 5)
when mutators publish their roots (Listing 3) and during the write barriers (Listing 4).
Each mutator owns a buffer[m] abstract data structure, in which it adds references to
be traced. Hence, buffer[m] serves as an interface between mutators and the collector
to mark objects as GREY. In other words, an object is considered GREY if it is present in
any buffer and its color field is WHITE. In this sense, GREY is a convention rather than
a constant like BLACK or WHITE.

Write barriers. Their code is shown in Listing 4. The barrier will conditionally either
directly update the field f (fast-path) or markGrey two objects (slow-path).7 Notice that
the slow-path of the write barrier is only executed when the collector is ready to start
tracing, and not after it starts sweeping (see Figure 2). The code of write barriers is
intrinsically racy since the client code itself might contain races at the field; moreover,
the accesses to the buffer data structures are not protected by synchronization between
mutators and the collector. Finally, we emphasize that the order in which the markGrey
operations are performed in the write barrier is critical to the GC correctness.

Trace This is the most challenging code to verify, and its verification by means of
program logics would be remarkably hard without some of the design choices of RtIR,
and our proof methodology.

7 The write barrier in [5] avoids marking old in some cases. We drop this optimization.



The trace procedure (Listing 6) traverses the object graph starting from GREY ob-
jects. More precisely, the collector visits each of the mutators buffer[m] in the foreach
loop at Line 9, transferring their contents into its own buffer[C]. If the collector sees
empty buffers for all mutators, tracing ends. Otherwise, it traverses the graph starting
from objects in buffer[C], and marking BLACK objects whose children have been seen.

Regarding the complexity of the code, we emphasize that it contains three nested
loops, a number of foreach constructs, and heavily uses the buffer abstract data struc-
tures. Moreover, it exhibits races in all threads (through write barriers and buffer oper-
ations) since it traverses the object graph, while mutators concurrently modify it.

An important invariant establishes that during the tracing phase, any WHITE object
that is alive must be reachable from a GREY object, signaling that it still has to be visited.
Since another invariant, I_black_to_white, states that any path from a BLACK object to
a WHITE object goes through a GREY object, this translates to the property that all objects
reachable from the roots are either BLACK, or reachable from a GREY one.

Definition I_trace_grey_reach_white : gpred := fun gs ⇒ ∀ m r,
stage[C]gs, CLEAR ∧ In m Mut ∧ phase[m]gs=ASYNCH ∧ Reachable_from m gs r→
Black gs r ∨ (∃ r0, Grey Mut gs r0 ∧ reachable gs r0 r).

When this code terminates, we are able to prove that: (i) there are no more GREY
objects, (ii) all objects reachable from the mutators roots are BLACK, and consequently
(iii) there are no WHITE objects reachable from any of the mutators roots.

Property (i), namely that all buffers are simultaneously empty at the end of tracing
(Listing 6, Line 35), is particularly difficult to prove, given the write barriers executed
concurrently by mutators. We prove that this property is established at Line 4 of the
last iteration of the enclosing while loop. We proceed as follows. We first prove that,
at Line 4, buffer[C] is always empty. As for mutators’ buffers, we use ghost vari-
ables phantom_buffer[m] to take their snapshot at Line 4. Mutators can only push on
their buffers, so, in a given iteration of the enclosing while loop, if a mutator buffer
is empty, so was its ghost counterpart during the same iteration. In the last iteration
of the while loop, all buffers are witnessed empty, one at a time. But this implies that
all phantom buckets are simultaneously empty at Line 8. This, in turn, implies that all
buffers are, this time simultaneously, empty at Line 4. This property remains true un-
til Line 35: it is both stable under mutators’ guarantees, and preserved by the while
loop. Indeed, if all buffers are empty (there are no GREY objects), the above invariant
I_trace_grey_reach_white implies that both the old and new objects that markGrey
could push on a buffer are in fact BLACK, and thus not pushed on any buffer (Listing 5).
As a consequence, no reference is pushed on the collector’s buffer (Line 17).

Sweep The sweep phase (Listing 6) recycles all the objects that remain WHITE after
TRACING. This is the only place where instruction free is ever used. Note that this
code is also non-blocking. A key property, whose proof we have sketched above, is that
during sweeping, no GREY objects remains. Formally,

Definition I_sweep_no_grey : gpred := fun gs ⇒
(stage[C]gs = SWEEPING ∨ stage[C]gs = RESTING) → ∀ r, ¬ Grey Mut gs r.

This invariant, with I_trace_grey_reach_white above, implies that no WHITE object is
reachable from any thread-local variable.
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Figure 3: Main Invariants of the GC. Numbers are timestamps in the incremental proof
methodology. Dependencies are shown with boxes (inter-dependency) and arrows.

5 Proof methodology

Mechanizing such a sizable proof raises methodological concerns. While the proof sys-
tem of Section 3 separates proof concerns between sequential reasoning and stability
checks, we deal here with the intrinsic complexity of the proof and its scalability.

First, stating upfront the right set of invariants, guarantees, and assertions is unreal-
istic for such a proof. To tackle this issue, we group invariants related to distinct aspects,
e.g. the phase protocol or coloring invariants. To reflect this structure in our proof, and
avoid constant refactoring of proof scripts, we design an incremental workflow.

Second, we must deal with the quantity of proof obligations. For the GC code, proof
obligation RGp_I involves 18 invariants, which must be proved stable under 17 guaran-
tees, thus requiring 306 stability proof obligations. On top of this, proof obligation
RGt_stable adds more than 60 annotated lines of code, each bearing several predicates,
that must be proved stable under significant subsets of the 17 guarantees. This becomes
quickly intractable without a disciplined methodology and automation.

5.1 Workflow

Figure 3 shows the major invariants of the GC, organized in groups. In each boxed
group, invariants are inter-dependent, while arrows indicate a dependency of the target
group on the source group.

RG proofs are thread-modular, but RG does not solve the interdependency prob-
lem: invariants, guarantees and code annotations are all eventually connected to form
the end-result. To maximize proof reuse, we use a simple mechanism: invariants I and
guarantees G are indexed by a natural number – morally a timestamp of their introduc-
tion into the development (Figure 3). When introducing a new increment to an invariant,
all invariants with a lower timestamp are not modified. Nor are their proofs, resulting in
an incremental, non-destructive methodology. More concretely, at each level:

1. we enrich the invariant, refine the guarantees and code annotations;
2. we prove the new stability proof obligations, for which we can reuse prior stability

proofs, and we use automation to discharge as many obligations as possible;
3. we adapt sequential Hoare proofs, and prove that enriched guarantees are still valid.



This workflow proved robust during our development, allowing for an incremental
and manageable proof effort. We detail below the first two items of this methodology.

5.2 Incremental proofs

Let us focus on obligation RGp_I from Section 3, which requires establishing the in-
variant stability under all threads’ guarantees. Let us fix a thread and index both the
invariant and guarantee by n. The obligation is thus (stable TTrue (I n) (G n)). Let
us now see how we establish (stable TTrue (I n+1) (G n+1)) by using the already
proved (stable TTrue (I n) (G n)) obligation.

Monotonicity of I and G. We build (I n+1) as a conjunction of prior established in-
variant (I n), and the increment at the current level: (I n+1) , (I n) ∧∧ (Ic n+1).
Hence, we have that ∀n, (I n+1) −→ (I n).

Recall that in our proof system, guarantees are expressed through the effect of a
command, under certain hypotheses on the pre-state. At each level, the command will
not change – it is effectively executed by the code. Levels are rather used to refine
the hypotheses on the pre-state. Therefore, guarantees are monotonic in the sense that
∀n, (G n+1) ⊆ (G n): they are made more precise as the level index increases.

Reuse of Proof of Prior Invariants. We start by proving that prior invariant (I n) is
stable under refined guarantee (G n+1), i.e. (stable TTrue (I n) (G n+1)). To do so,
we reuse our previous proofs at level n and conclude with the following lemma using
guarantee monotonicity – below, we abuse notations and use _ as a valid Coq identifier.

Lemma stable_refineG: ∀ _ I G1 G2, G2 ⊆ G1 ∧ stable _ I G1 → stable _ I G2.

New Invariant Stability. It remains to prove the stability of increment (Ic n+1) un-
der refined guarantee (G n+1). In simple cases, (stable TTrue (Ic n+1) (G n+1)) is
provable independently from prior invariants. In this case, we combine the stabilities of
(Ic n+1) and (I n) into the one of (I n+1) with lemma stable_and:

Lemma stable_and: ∀ _ I1 I2 G,
stable _ I1 G ∧ stable _ I2 G → stable _ (I1 ∧∧ I2) G.

However, the situation is often more involved, requiring prior invariants to prove the
stability of (Ic n+1). Formally, we have (stable (I n) (Ic n+1) (G n+1)). We can
then combine the stability of (I n) and (Ic n+1) under (G n+1) using this lemma:

Lemma stable_with: ∀ _ I1 I2 G,
stable _ I1 G ∧ stable I1 I2 G → stable _ (I1 ∧∧ I2) G.

5.3 Proof Scalability

To tackle the blowup of stability checks alluded to earlier, we built a toolkit of structural
stability lemmas, and develop some tactic-based partial automation. This allowed us to
discharge automatically 186 obligations among the 306 obligations induced by RGp_I.
The remaining obligations are also partially reduced by the automation.



Structural lemmas. Structural lemmas serve three purposes. First, they are critical to
enable the incremental methodology delineated above. Second, they allow for complex
stability proof obligations to be simplified: both annotations, invariants, and interfer-
ences can be structurally split up. Thus, intrinsically complex arguments are isolated
from trivial ones, that are automatically discharged. Finally, to reuse as much proofs as
possible, we rely on a custom notion of stability under extra-hypotheses:

Definition stable_hyps (I: gpred) (H P: pred) (R: rg): Prop := ∀ gs1 gs2 l,
I gs1 ∧ H gs1 l ∧ P gs1 l ∧ R gs1 gs2 ∧ I gs2 ∧ H gs2 l → P gs2 l.

Typically, this notion allows to leverage stability results from previous levels, notably
through the following lemmas:

Lemma stable_weakI: ∀ I1 I2 P G, I2 ⊆ I1 → stable I1 P G → stable I2 P G.
Lemma stable_weakH : ∀ I (H P: pred) R,
stable I H R → stable_hyps I H P R → stable I (H ∧∧ P) R.

By decomposing annotations and relaxing interferences, we can factor out the proof of
stability of annotations that reappear in the code.

Automation. We developed a set of tactics that simplify stability goals into elementary
ones before attempting to solve them. This leads to clearer goals and more tractable
proof contexts. The tactics combine our structural lemmas with two additional ideas:
systematic inversion on guarantee actions – defined operationally using commands –
and rewriting in predicates.

6 Related Work

Concurrent GC. The literature on garbage collection is vast. We refer the reader to [16]
for a comprehensive and up-to-date presentation of garbage collection techniques. We
use [5] as a starting point. It is a state-of-the-art non-blocking concurrent GC based on
the earlier DLG algorithm [4,3]. Many of the invariants we prove are inspired by those
of [3].

Mechanized GC proofs. Many prior efforts tackle the verification of sequential GCs [18,11].
Unfortunately, the addition of concurrency renders these approaches inadequate. Inso-
far our work could be subsequently integrated into a verified run-time, it is possible
to reuse some methodological aspects of [19], such as the structuring in a multi-layer
refinement of the garbage collection specification.

The first mechanized proof of a concurrent GC was presented by Gonthier [9]. Un-
like ours, Gonthier’s proof rests on an abstract encoding of the algorithm. Our develop-
ment sidesteps this additional modelling step by proving the implementation in RtIR.
A similar remark can be made of the approaches in [10,8], which formalize GCs in the
PVS and Isabelle/HOL provers respectively.

Liang et al. [17] provide a proof of a mostly-concurrent GC based on the RGSim
methodology. While the meta-theory of the logic is mechanized, the proof of the GC
itself is not.



Mechanized concurrent program logics. In [21] an RG logic for a simple imperative
concurrent language is formalized and proved sound in Isabelle/HOL. In contrast, our
program logic is customized for runtime system implementations, and therefore sup-
ports local and global environments, references, iterators, etc. Also, the proof rules
of [21] mix sequential reasoning with side conditions about stability and guarantee
checks. We decouple these aspects and avoid redundancies by extracting relies from the
guarantees of the context.

Other approaches to the mechanized verification of concurrent code are [6,24,17,23]
to mention but a few. These works are mostly concerned with concurrent data structure
correctness, whereas we are concerned with the implementation of a runtime system.

7 Conclusion

This paper presents the mechanized proof of an emblematic challenge in program veri-
fication: an on-the-fly concurrent garbage collector. Overcoming this challenge requires
a number of methodological advances. We follow a programming language-based ap-
proach: a well-chosen intermediate representation, a companion program logic, and a
dedicated proof workflow. RtIR strikes a balance between low-level features for the ex-
pression of efficient concurrent code, and high-level features which remove the burden
of dealing with low-level details in the proofs. Our program logic is inspired by Rely-
Guarantee, a milestone in concurrency proof techniques, but one that has heretofore not
been used for the mechanized verification of garbage collectors. Our incremental proof
workflow, combined with specific and efficient tool support via Coq tactics, is efficient
and flexible enough for such a verification challenge.

There are two major avenues for future work. The first is pragmatic, and concerns
the embedding of our work in a verified compiler tool chain. Using our theorem about
the most-general client, we can build a refinement proof between an IR with implicit
memory management and RtIR. We then need to have a fully executable version of the
GC. This would require cleaning up ghost code, coding iterators as low-level macros,
and implementing abstract concurrent data structures natively supported by RtIR. The
two first tasks are essentially administrative. The third task is more challenging, requir-
ing us to formally prove an atomicity refinement result for linearizable, fine-grained
data-structures. To that end, we have developed the meta-theory in [26].

The second is methodological. Our proof is the first GC proof to be mechanized
using Rely-Guarantee, but it does not take advantage of other tools like Separation
Logic [22]. Methods combining RG and Separation Logic exist [25]. It remains to be
seen how (or if) these techniques could improve our current proof.
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