
Analyzing Concurrency Bugs using Dual Slicing

Dasarath Weeratunge Xiangyu Zhang William N. Sumner and Suresh Jagannathan
Dept. of Computer Science, Purdue University

West Lafayette, IN 47907, USA
{dweeratu,xyzhang,wsumner,suresh}@cs.purdue.edu

ABSTRACT
Recently, there has been much interest in developing ana-
lyzes to detect concurrency bugs that arise because of data
races, atomicity violations, execution omission, etc. How-
ever, determining whether reported bugs are in fact real,
and understanding how these bugs lead to incorrect behav-
ior, remains a labor-intensive process. This paper proposes
a novel dynamic analysis that automatically produces the
causal path of a concurrent failure leading from the root
cause to the failure. Given two schedules, one inducing the
failure and the other not, our technique collects traces of
the two executions, and compares them to identify salient
differences. The causal relation between the differences is
disclosed by leveraging a novel slicing algorithm called dual
slicing that slices both executions alternatively and itera-
tively, producing a slice containing trace differences from
both runs. Our experiments show that dual slices tend to
be very small, often an order of magnitude or more smaller
than the corresponding dynamic slices; more importantly,
they enable precise analysis of real concurrency bugs for
large programs, with reasonable overhead.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids

General Terms
Algorithms, Reliability

Keywords
concurrency bugs, dual slicing, execution indexing

1. INTRODUCTION
Debugging concurrent software is a challenging exercise

because of non-determinism induced by scheduling decisions
and thread interactions. There has been much recent inter-
est on developing techniques to identify potential concur-
rency bugs such as data races [16, 26, 14, 17], atomicity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’10, July 12–16, 2010, Trento, Italy.
Copyright 2010 ACM 978-1-60558-823-0/10/07 ...$10.00.

violations [21, 7, 5, 24], or deadlocks [9]. Common to these
approaches is a means to check that important properties
sufficient to guarantee the absence of a concurrency bug
are maintained. For data race detection, this may entail
checking that accesses to the same shared variables are pro-
tected by the same set of locks. To ensure the absence of
an atomicity violation, an analysis must guarantee that ac-
cesses performed within an atomic section can be serialized
with accesses to the same data in other concurrently exe-
cuting atomic regions. Regardless of how these properties
are validated, the onus remains on the programmer to in-
terpret reported violations and to determine whether they
truly represent a bug, and if so, how the bug causally results
in a run time failure. Understanding causality is particularly
important because many bugs cannot simply be ascribed to
the lack of synchronization, but rather are a manifestation
of complex and often subtle protocol violations [12].

To make concurrency bug detection more useful, we ex-
plore the realization of a more general debugging and anal-
ysis framework. Given an execution known to manifest a
concurrency bug, we perform a postmortem dynamic anal-
ysis to localize the failure, i.e. our analysis identifies the
statement level causal path that leads to the failure. Our
approach is not biased towards any specific kind of concur-
rency error (e.g., data races, atomicity violations, execution
omission, etc.)

A significant challenge in defining such an analysis is en-
suring that we can deterministically reproduce the failure.
Fortunately, recent advances in the field [2, 13, 15, 17] have
shown that such a goal can be achieved cost-effectively by
systematically exploring a certain set of deterministic sched-
ule permutations. For instance, given a buggy program and
failure inducing input, chess [13] is able to identify a sched-
ule comprising a bounded sequence of preemptions that in-
duces the failure.

The above mentioned techniques can help construct failure-
inducing schedules. They are, however, by themselves in-
sufficient to explain how these schedules cause an observ-
able failure. Consider a concurrency bug we encountered
in MySQL described in detail in Section 5.1. The bug is
due to an atomicity violation, but most atomicity checkers
would find it difficult to detect because the atomic region
spans multiple methods, and is thus not easily identified.
Although the failure also involves a data race, shared vari-
ables are well-protected by locks, and the race only manifests
under a specific interleaving. Even though the bug report
explains how to produce the failure using thread preemp-
tion, the report also notes that it is very difficult to explain

the failure because it is hard to associate the schedule per-
turbation that induces the failure to the final crash. In fact,
after the failure-inducing preemption, the program continues
to execute 7 million instructions, corresponding to roughly
500K source code line instances. Our analysis facilitates
identifying the fault by producing a precise causal execution
path consisting of only 23 source line statement instances.

Informally, our technique works as follows. Given two
runs, one passing and the other failing as dictated by two
deterministic schedules, it produces a sequence of execution
points in both runs that are causally related and lead from
the program point representing the failure root cause to the
program point at which the failure is detected. The tech-
nique exploits the assumption that the two runs only differ
after the first schedule difference by computing their trace
differences. It then uses a novel dual slicing algorithm that
works on both runs alternatively and iteratively to causally
connect these trace differences to construct the causal path.

Contributions
• We propose a dynamic analysis to identify the root

causes of concurrency failures, given two schedules with
one inducing the failure, and the other not.

• We define a new trace comparison technique for con-
current executions. The technique collects traces of a
passing and failing run of a program. It then aligns
the two traces before they are compared. Trace align-
ment for large multi-threaded programs is challenging
in the presence of loops, recursion, and thread inter-
leavings. These features make simple solutions such as
using program counters to determine alignment inef-
fective. Instead, we leverage execution indexing [23] to
produce precise trace alignments.

• We devise a new dual slicing algorithm that produces
significantly smaller and more accurate slices compared
to traditional dynamic slicing techniques. Its improved
accuracy stems from its ability to exploit salient de-
pendence information from both passing and failing
runs. Consequently, it is able to generate highly pre-
cise causal paths for a number of different concurrent
failures including data races, atomicity violations (see
Section 4.1), and execution omission errors.

• We evaluate our technique on a set of large realistic
open-source multithreaded programs, and show our
technique is highly effective in precisely identifying the
cause of a concurrency failure.

2. MOTIVATION
To motivate our technique, consider the example shown

in Fig. 1. The code snippet is shown in (a), which consists
of two threads. The init() method executed by thread T2
is supposed to initialize x to 5 before the predicate at line
3 is executed, as shown in the passing run (b). However,
as the result of the data race between statements 3 and 8,
x may be initialized after it is used by the predicate. This
results in the false branch being taken, leading to the wrong
observable output in the failing run (c).

In order to construct a statement-level causal path of this
failure, a naive approach would be to apply dynamic slic-
ing [10]. Given a variable at an execution point, a dynamic

slice identifies the statement executions that contribute to
the variable’s value at this point through data and control
dependences. However, dynamic slicing falls short as a use-
ful technique for concurrent failure explanation. Figure (d)
represents the slice of the wrong output. Extracting a use-
ful explanation of the failure from this slice is not possible
because the slice fails to reveal whether the statements it
includes have a benign or visible effect on the fault. For ex-
ample, although the assignment at statement 2 is included
as part of the slice, it is not clear how this assignment con-
tributes to the failure; specifically, the presence of the assign-
ment does not explain why the predicate at line 3 remained
false even though the intended semantics was that it should
be true. In other words, the slice does not convey that it
was the absence of the initialization (and thus assignment
of x to 5 in statement 8) prior to the conditional test at line
3 that led to the failure. Hence, the root cause of the failure
is not present in the slice.

Thus, the failing run by itself does not contain enough in-
formation to localize the root cause, and construct a mean-
ingful causal path from the root to the failure point. To in-
corporate information missing from the failed run, we must
examine a passing execution as well to compose a high-
quality explanation. Specifically, in a concurrent setting,
as long as a failure can be reproduced, we can produce a
passing run from the same input using only schedule pertur-
bation; this approach is different from debugging sequential
program failures, where passing runs are significantly harder
to acquire. Armed with both a passing and failing run, our
technique first computes the trace differences. In Fig. 1 (b)
and (c), two types of differences are identified. Bullets repre-
sent value differences, meaning corresponding variables have
different values in the two respective runs. Triangles repre-
sent flow differences, meaning a statement execution occurs
in one run but not the other.

In the next step, we apply a novel slicing technique to
construct a failure causal path out of these trace differences.
The technique works alternatively and iteratively on both
the passing and the failing runs. The basic idea is to com-
pute positive information using the passing run and negative
information from the failing run. Positive information tells
us that in order to avoid the failure, the program should
have performed some operation(s). Negative information
tells that in order to avoid the bug, the program should not
have performed some operation(s). A failure explanation is
generated by fusing both pieces of information.

As shown in Fig. 1 (d), the algorithm starts from the
failure point 6 in the failing run, which is a flow difference.
Through control dependence, the value difference at line 3
is included. At this point, lines 1 and 2 are not included
as they are not trace differences, i.e. they do not contain a
faulty value. In order to understand why line 3 contains a
faulty value, the algorithm alternates to slice the passing run
from line 3. In this process, it identifies that x at line 3 in
the passing run is data dependent on line 8 while it exhibits
a data dependence on line 1 in the failing run. These two
lines are included in the slice although they are not trace
differences. Since line 3 receives its values from two different
otherwise benign definitions in the two respective runs, there
must be a data race between 3 and 8. The causal path
leading from the root to the failure is derived: “statement 3
should have received its value from statement 8 which should
have executed prior to 3 and after 1. The faulty value read

7

8

9

int x=0;

int y=3;

if (x>y)

 print (“pass”);

else

 print (“fail”);

T1 T2

●

6 print(..)

data race

(b) Passing

init () {

 x=5;

}

1

2

3

4

5

6 x=5;

T1
int x=0;

int y=3;

if (x>y)

else

 print (“f...”);
T2

(c) Failing

●
▲

▲

x=5; T2

T1

T1

int x=0;

int y=3;

if (x>y)

 print (“p...”); 3 if (x>y)

1 int x=0

(d) Failure slice

6 print(..)

3 if (x>y)3 if (x>y)

8 x=5

(d) Dual slice(a) Code

2 int y=3
1 x=0

dependence Correlation● ▲Value diff. Flow diff.

Figure 1: Motivating Example (I) – data race.

1

2

3

4

5

6

7

x=-1;

y=0;

if (race)

 x=1;

if (x<0)

 y=1;

output (y)

x=-1;

y=0;

if (race)

if (x<0)

 y=1;

output (y)

x=-1;

y=0;

if (race)

 x=1;

if (x<0)

output (y)

●

▲

●

▲

● ●

● ● 7 output(y)

(c) Failing(b) Passing(a) Code

4 x=1

6 y=1

5 if (x<0)
falsetrue

truefalse

y=0y=1

(f) Dual slice

7 output(y)

5 if (x<0)

3 if (race)3 if (race)

7 output(y)

6 y=1

5 if (x<0)

1 x=-1

7 output(y)

2 y=0

(e) Failure slice(d) Passing slice

Figure 2: Motivating Example (II) - execution omission.

at statement 3 leads to the final faulty output at 6.” Observe
that we use the information from the passing run to prune
benign states (line 2) and avoid spurious entries in the path.

Fig. 2 illustrates how dual slicing leverages information
gleaned from passing and failing runs iteratively to construct
a meaningful failure explanation. The code snippet in (a)
represents a thread containing predicate race that is not
properly protected against races. In the passing run (b),
race at line 3 evaluates to false so that the value of x is not
updated; this results in the predicate at line 5 evaluating
to true, ensuring y has the value of 1 at line 7. In the
failing run (c), a write to race from another thread between
the execution of statement 2 and 3 changes the thread’s
control-flow such that x acquires the value 1, causing the
branch outcome at statement 5 to yield false. Consequently,
y has the wrong value of 0 at line 7.

Fig. (e) represents the failure slice of y at line 7. It con-
tains only line 7 itself and line 2 due to the data dependence
on y. Note that line 7 is not control dependent on any other
statement. Such a slice clearly does not identify the root
cause of the failure. The reason is that the connection be-
tween the faulty value at 7 and the faulty predicate outcome
at line 5, i.e. the predicate at 5 should have taken the true
branch such that y would get the correct value 1 at 7, is not
captured.

With dual slicing (Fig. (f)), the algorithm starts with 7
in the failing run. Since 7 is not dependent on any trace
differences, the algorithm does not have enough information
to proceed further in the failing run, except that it discloses
that 7 has a wrong value. The algorithm thus switches to
slicing the passing run, and dependence edges 7 → 6 → 5
are added as shown in (f). At this point, we cannot go
further in the passing run as 5 does not depend on any trace
differences, again due to the omission of line 4; the value
difference at 5 triggers a switch back to slicing the failing run
for the second round. An intuitive interpretation is that by
slicing the passing run, we have new information about what

is faulty in the failing run. This time, slicing the failing run
from 5 adds edges 5 → 4 → 3 to the slice. The constructed
slice captures the fact that ”Statement 3 should not have
had the value of true since that would lead to the execution
of statement 4, which in turn produces the faulty value of
false at 5. As a consequence, 6 was not executed while it
should have been, leading to the final faulty output at 7.”The
mutual symbiosis between the failing and passing run is the
key to effectively handling execution omission [28] resulting
from concurrency bugs.

3. TRACE COMPARISON
Our technique consists of two phases: trace differencing

and dual slicing. Given two runs defined by a correct sched-
ule and a failure-inducing one, the first phase computes their
differences. As validated by systems like chess [13], in most
cases, a failure-inducing schedule can often be derived from
a passing one by injecting only a few preemptions. Such
preemptions lead to value and/or control differences, some
of which are harmful and eventually lead to the failure.

Execution comparison can be carried out on traces. In
general, traces maybe either lossy or lossless. Our tech-
nique relies on comparing lossless traces. Please refer to
[22] for a discussion on why lossy tracing is inadequate for
this purpose. In the context of comparing traces induced by
different schedules, the space requirement of lossless trac-
ing is significantly alleviated because we do not need to
record any dynamic information before the first schedule dif-
ference since the two executions are identical before that
point. Hence, the main challenge lies in solving the problem
of trace alignment. Due to schedule variance, the perturbed
execution often makes different function invocations, has dif-
ferent predicate outcomes leading to different control flows,
and computes different values for the same variables. If the
two traces are not precisely aligned, the computed differ-
ences may be due to misalignment, i.e., a trace difference
may not be a real difference but instead may be caused by

1

2

3

4

5

6

7

8

20

21

22

23

24

int cnt=2;

void main () {

 Queue reqs;

 spawn (t_configure());

 while (!reqs.isEmpty()) {

 spawn (t_request(reqs.pop()));

 }

}

void t_configure () {

 if (command==”change count”)

 cnt=readInt();

 …

}

void t_ request () {

 int A[100], B[100];

 int sum=0, j=0, t_cnt;

 t_cnt=cnt;

 while (j<t_cnt) {

 A[j]=readInt();

 sum=sum + A[j];

 B[j]=Integrate(B, j);

 j++;

 }

 if (t_cnt % 2 ==0)

 sum=sum+A[0];

 else

 sum=sum-A[0];

 output (sum);

}

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45
d
a
ta
 r
a
ce

Figure 3: A program with a data race. The pro-
gram creates a configuration thread t_configure()

and a number of computation threads t_request().
A computation thread computes the sum of an input
array and the integrals (array B) up to each element
in the array. Users can set the number of elements
to be considered during computation in the config-
uration thread. The race lies in lines 22 and 33. If,
by chance, line 33 is executed before line 22, t_cnt

receives the old value of cnt and leads to unexpected
output.

the comparison being carried out at inappropriate points.
For example, due to non-determinism, if the same request
is served by thread t in one run E but by t + 1 in the other
run E′ and trace alignment aligns t in E with t in E′, the
resulting trace differences are meaningless. Therefore, cor-
rectly aligning the two traces before they are compared is
critical.

To retain the high degree of precision required, execution
comparison is therefore performed on lossless traces [11] in
which dynamic information is recorded at each execution
step.

In this paper, we align two traces of concurrent executions
based on their execution structure, leveraging execution in-
dexing [23].

2 Background : Execution Indexing.
We use execution indexing [23] to identify the same ex-

ecution point in both passing and failing executions. The
idea is to construct a tree, called the index tree, that present
the hierarchical structure of an execution so that executions
can be aligned by simply aligning their trees.

Fig. 3 shows a sample program. The program is explained
in the caption. Fig. 4 present two executions of the program
and their index trees. In the two executions, the user sets
cnt=1 in the configuration thread. In the passing run, the
update is successful before the value cnt is copied to t_cnt

in the request thread, whereas in the failing run, the con-
figuration thread is preempted so that cnt is not copied to
t_cnt in time. Let us first focus on the passing execution on
the left. The nodes and edges represent the index tree for
the trace. The root node denotes the entire execution, which
is the body of the main function, represented by node main.
Informally, this node encapsulates the dynamic scope of the
main function. The main body comprises the executions
of statements 4 and 5, which are represented by the edges

leading from the main node to the trace entries representing
the statements. Observe statement executions 4 and 5 have
their own scopes; their immediate enclosing scope is main.
Intuitively, the tree captures the fact that execution of the
main function is composed of two sub-executions, one initi-
ated at statement 4 and the other at statement 5. Note that
a statement execution is not part of its own scope. Thus,
we introduce an edge between main and the trace entry 4
instead of between the internal node “4 spawn” and the en-
try. Similarly, the nesting structure of thread t_request

is represented by the subtree rooted at “6 spawn”. That
is, thread execution comprises the execution of statement
33, two instances of the while statement 34, the conditional
statement 40 and the output statement 44. Furthermore,
the first 34 instance and the conditional statement 40 have
substructures. The index tree of the failing run is similarly
computed and presented on the right. The orientation of
the tree is reversed to facilitate easy trace comparison.

Informally, the leaf nodes must be statement executions,
i.e. trace entries. An internal node represents a dynamic
scope identified by the trace entry that immediately precedes
the scope. An edge represents a nest-in relation.

Definition 1. Given an execution point, represented as
a trace entry s, the index of s, denoted as idx(s) is the tree
path leading from the root node to s.

For example, the index of statement instance 22 in the
passing run is of “(main) → (4 spawn) → (21 if) → (22)”.
The index precisely represents the nesting structure of 22.
Traces are aligned by aligning their index trees. More par-
ticularly, point x in E aligns with y in E′ iff idx(x) ≡ idx(y).
Since the index of statement instance 22 in the failing run
is the same as that in the passing run, the two 22s align. 2

As mentioned earlier, the challenge of trace comparison
in the presence of schedule perturbations is that order of
statement executions may change, leading to different val-
ues produced for the same execution point in the two runs.
Intuitively, trace alignment provides a canonical order of
statement executions so that comparison can be performed
between corresponding (i.e., aligned) execution points, even
though they may occur at completely different points in the
overall execution order. For instance, statement 22 in the
two runs are aligned even though they occur at different
places in the traces. Then, the comparison of the aligned
22s determines that statement instance 22 does not have
a faulty state in the failing run. In contrast, the second
instances of the while statement 34 in the two runs are
aligned according to the tree alignment. The loop predicate
takes a false value in the passing run and a true value in
the failing run. Note that the canonicalization induced by
the execution index tree does not mean we discard schedule
differences. Instead, schedule differences will be faithfully
reflected as state differences at aligned points. For instance,
it might appear that aligning the instances of 22 incorrectly
masks a schedule difference. In fact, the effect of the dif-
ferent schedules is captured by the different values of the
aligned instances of statement 33, one of which acquires its
value from 22 (in the passing run) and the other (in the
failing run) does not.

Next, we define trace differences based on execution in-
dexing. We assume the value of each execution instance is
also recorded as part of the trace entry. We use val(s) to

 if (com...)

 cnt=readInt();

 …

21

22

23

 t_cnt=cnt;

 while (j<t_cnt)

 A[j]=…

 sum=sum+…

 B[j]=…

 j=j+1

 while (j<t_cnt)

 if (t_cnt%2 ...)

 else

 sum=sum-...;

 output (sum);

33

34

35

36

37

38

34

40

42

43

44

spawn(t_conf…)

while (!reqs…)

 spawn(t_req…)

4

5

6

main

4 spawn

5 while 6 spawn

40 if

34 while

21 if

▲

●

●

●

Main thread Conf. thread Req. thread

●

●

▲

…

Nest-In relation

Value diff.

Flow diff.

Dynamic scope

Trace

 if (com...) 21

 t_cnt=cnt;

 while (j<t_cnt)

 A[j]=…

 sum=sum+…

 B[j]=…

 j=j+1

 while (j<t_cnt)

 A[j]=…

 sum=sum+…

 B[j]=…

 j=j+1

 while (j<t_cnt)

 if (t_cnt%2 ...)

 sum=sum+...;

 output (sum);

33

34

35

36

37

38

34

35

36

37

38

34

40

41

44

spawn(t_conf…)

while (!reqs…)

 spawn(t_req…)

4

5

6

 cnt=readInt();

 …

22

23

main

4 spawn

5 while6 spawn

40 if

34 while

21 if

34 while
2

Preemption

▲

●

▲
▲

▲

▲

●

●

●

▲

Trace

(a) Passing run (b) Failing run

Figure 4: In these two runs, one configuration thread and one request thread are spawned. In the failing
run, the user sets parameter cnt=1 in the configuration thread, but the thread is preempted by the request
thread before the user’s change is updated to the variable. As a result, t_cnt takes the stale cnt value in the
request thread.

represent the value of an execution point s. The value of
a statement is the value stored in the destination variable.
The value of a predicate is its boolean outcome. The value
of a method invocation is the return value.

Definition 2. Given an execution E and a reference ex-
ecution E′, an execution point s ∈ E is a trace difference if
one of the following three conditions is satisfied:

(1) idx(s) is not a valid index in E′;

(2) There is an execution point s′ in E′ such that idx(s) =
idx(s′), but val(s) 6= val(s′).

(3) There is an execution point s′ in E′ such that idx(s) =
idx(s′) but s and s′ have at least one use which is data
dependent on two definitions d and d′ where idx(d) 6=
idx(d′).

If condition (1) is satisfied, s is called a flow difference. If
(2) is satisfied, s is called a value difference. If (3) is satis-
fied it is called a def-use difference. Observe that conditions
(2) and (3) may be satisfied simultaneously.

According to the definition, an execution point s is a flow
difference if it is not aligned with any point in the reference
execution. If it does have an alignment but its alignment
has a different value, it is a value difference. Thus, if s is
a value difference, it implies s has an alignment. Finally, if
an execution point has an alignment, but some of the sub-
terms of the aligned statement are themselves not aligned,
the point is a def-use difference.

In Fig. 4, bullets represent value differences and triangles
represent flow differences. Statement 33 in the passing run
is a value difference because although t_cnt has value 1 at
this point, it has value 2 at its alignment in the failing run.
For the same reason, statement 33 in the failing run is also a
value difference. Also note that 33 in the passing run is data

dependent on statement 22 whereas it is data dependent on
1 in the failing run (see Fig. 3). This is a def-use difference.
Statement 43 in the passing run is a flow difference as it is
not aligned with any statement in the failing run. Similarly,
statement 41 in the failing run is a flow difference. The
second instances of statements 35, 36, 37 and 38 in the failing
run are also flow differences.

Observe that our trace differences are defined over state-
ment instances, meaning we can identify the specific instance
of a statement as a trace difference even though the state-
ment might be executed multiple times in an execution. We
discuss how to make use of these trace differences in the next
section.

4. DUAL SLICING
Trace differences alone cannot localize the root cause of

concurrency failures. To clearly understand a failure, it is
necessary to observe a minimum sequence of statement ex-
ecutions that are causally connected, leading from the root
cause to the failure. Trace differences often contain exces-
sive redundant information not related to the failure. For
example, the second instance of statement 37 in Fig. 4 that
assigns to B[j] in the failing run is a trace difference. But, it
has nothing to do with the observed wrong output at state-
ment instance 44. In our experiments, trace differences for
realistic concurrent program executions often subsume 100K
or more statements, even though the portion relevant to the
failure can be localized to a few tens of statements.

We propose to combine dynamic slicing with trace differ-
encing to identify the root cause of a concurrency failure, and
enable construction of the salient execution path from this
root to the failure point. Dynamic slicing [10] is a technique
that discloses dependences between execution instances and
is often used in debugging. A data dependence exists be-

tween two statement instances i and j if i writes a value to
a variable and that value is used at j, e.g. the first state-
ment instance 34 is data dependent on 33 in the passing run
in Fig. 4. A statement instance j is control dependent on a
predicate instance p if p directly decides the execution of j.
For instance, in the passing run, 43 is control dependent on
40. Given an execution point, its dynamic slice is the tran-
sitive closure of the value at that point along dependence
edges. Slicing overcomes the aforementioned limitations of
trace differencing. More specifically, trace differences can
be connected through dependence edges, which essentially
represent causality. Redundant information can be pruned
by slicing if the failure is not (transitively) dependent on
the information. On the other hand, trace differencing sub-
stantially improves the effectiveness of dynamic slicing. For
example, the slice of statement instance 44 in the failing
run includes the first instance of statement 36 because 44 is
data dependent on 41, which in turn is data dependent on
the second instance of 36 and then the first instance of 36.
Similarly, the first instances of 34, 35 and 38 are also in the
slice. Using trace differencing, we can easily identify these
statement instances as having benign effect, and do not need
to include them in the output of the analysis.

Slicing determines the parts of a program “relevant” to
some slicing criterion. In traditional slicing, relevance is
defined as any statement possibly affecting the values com-
puted by the criterion.. Like thin slicing [18], dual slicing
differs from classical slicing primarily in its more selective
notion of relevance. Given a trace difference, its dual slice
consists of other relevant trace differences. A trace differ-
ence d1 is relevant to another trace difference d2 if there
exist a chain of control and data dependencies from d1 to
d2 comprising only of trace differences. Hence, unlike a tra-
ditional slice, a dual slice does not provide an executable
program. For instance, the value difference of a traditional
slice necessarily includes the predicate on which it is con-
trol dependent. However, if the predicate is aligned in both
passing and failing runs, it itself is not a trace difference,
and does not need to be included in the dual slice.

A value difference could be the result of the particular
statement being data dependent on other value differences
or its uses being part of one or more def-use differences.
A flow difference could be the result of a particular state-
ment being control dependent on another flow difference or a
value difference. However, if we assume the two traces were
aligned at the beginning, all flow differences must eventually
be control dependent on a value difference. Lastly, a def-use
difference could be the result of either a flow difference or a
schedule perturbation. If the def-use difference is the result
of a flow difference, one or more of its defining statements
must be flow differences. However, if it is caused by a sched-
ule perturbation, it is not data or control dependent on any
other trace difference.

The algorithm is described in Algorithm 1. For brevity, it
assumes data and control dependences are already available.
The symbols used are defined in Table 1. The algorithm pro-
duces the dual slice of the failure point, represented by two
node sets Nf (Np) and two dependence edge sets Ef (Ep).
The subscript represents the failing (f) or passing (p) exe-
cution. A node is an execution point identified by its index,
e.g. d and t. A node representing a value difference is in
both Nf and Np.

In the algorithm, the slice node set in the failing run Nf

Input:

• Tf , Tp: the traces of the failing run and the passing run;

• DTYPEf/p(s): decides if s is a value difference

(VAL D), a flow difference (FLOW D); the subscripts
denote the run.

• DEPf/p(s): the set of execution instances that s depends
on, including data and control dependences.

Output: Nf/p, Ef/p: slice node sets and edge sets.

Note:
isVisitedInPass(s) and isVisitedInFail(s) decide if s has been
traversed in Tp and Tf .

f wl and p wl are worklists for the failing and the passing runs.

t and d are execution points identified by their index.

Table 1: Symbols used in Algorithm 1.

and the failing run worklist f wl are initialized with the fail-
ure point at line 1. The while loop in lines 3-27 describes
the main dual slicing process. It alternatively and iteratively
slices the failing run and then the passing run. Lines 4-23
correspond to slicing the failing run. At line 6, if a value
difference is encountered and it has not been encountered in
the construction of the passing run slice, it is added to the
passing run worklist p wl at line 7, and the passing slice node
set Np at line 8. The for-loop in lines 10-22 examines t’s de-
pendences. In lines 11-15, the algorithm adds a dependence
d to the slice and the work list, if d is a value difference or
a flow difference. Otherwise, the algorithm handles def-use
differences by adding the dependence d to the slice if the
dependence d′ corresponding to d in the passing run does
not align with d (lines 16-21). Observe that though d is
added to the slice it is not placed in the work list. Slicing
the passing run is symmetric to slicing the failing run and
elided for brevity.
Example. The dual slice of the example in Fig. 4 is pre-
sented in Fig. 5. During the analysis, the algorithm first
adds the index of 441, denoting the first instance of state-
ment 44 in the failing trace, to f wl. The index is then
popped from the worklist at line 5 of the algorithm. Since it
is a value difference, it is added to p wl and Np in lines 7 and
8. Next, the algorithm adds the dependence of 441, here 411

to the dual slice and f wl. Since 411 is not a value differ-
ence, the algorithm simply adds its control dependence 401

and the data dependence 362 to Nf and f wl. The index of
401 is added to p wl as well since it is a value difference. The
failure slicing loop terminates when 331 is reached because
331 is not dependent on any trace differences. At this point,
all the shaded nodes and their edges as shown in Fig. 5 have
been added to the dual slice, and the passing run worklist
contains the indices 441, 401, 342, and 331. The algorithm
switches to slicing the passing run with these criteria. After
the passing slicing loop terminates, all the executions repre-
sented by plain nodes and their edges are added. This time,
no new value differences are added to f wl and the main
computation loop terminates. The rectangular nodes repre-
sent either value differences or flow differences. The rounded
nodes are non trace differences added to the slice since they
define values used by def-use differences. For example, 221

and 11 are added to the slice since the values they define are
used by the def-use difference at 331.

Nf ← f wl ← {the failure point in Tf} ;1

Np ← p wl ← φ ;2

while f wl 6= φ and p wl 6= φ do3

while f wl 6= φ do4

t ← f wl.pop() ;5

if DTYPEf (t) ≡ VAL D and6

!isVisitedInPass(t) then

p wl ← p wl ∪ {t};7

Np ← Np ∪ {t} ;8

end9

foreach d ∈ DEPf (t) do10

if
DTYPEf (d) = VAL D or
DTYPEf (d) = FLOW D

then
11

Nf ← Nf ∪ {d} ;12

Ef ← Ef ∪ {t→ d} ;13

if !isVisitedInFail(d) then f wl ← f wl14

∪ {d}
else15

d′ ← The dependence in DEPp(t) that16

corresponds to d ;
if d 6= d′ then17

Nf ← Nf ∪ {d} ;18

Ef ← Ef ∪ {t→ d} ;19

end20

end21

end22

end23

while p wl 6= φ do24

Slicing Tp, adding nodes into f wl. It is25

symmetric to failure run slicing.
end26

end27

Algorithm 1: Dual Slicing

4.1 Identifying the Root Cause
Dual slicing is essential to fusing both positive and nega-

tive information to better understand failures. Observe that
in Fig. 5, the faulty slice indicates how a faulty value is being
generated at 441, but the faulty slice alone is not sufficient
to understand why this process is faulty. For example, by
studying the chain 441 → 411 → 401 in the failing run part
of the dual slice we can deduce that “401 having the true
branch outcome leads to sum being updated at 411, and hence
induces an observable wrong output”. By analyzing the ac-
companying positive chain 441 → 431 → 401 in the passing
run part of the slice, it can be concluded that “401 should
have had the false branch outcome, which would have led to
the subtraction of sum at 431, leading to the correct output
A[0]-A[0]=0”. Observe that information gathered from the
two runs are complementary.

The dual slicing algorithm terminates if it cannot make
progress in either run. In the presence of crashes, some
flow differences in the passing run may be caused by the
failing run being prematurely interrupted, not by different
branch outcomes. For example, if the two runs take the same
branch but the failing run crashes before it finishes executing
the branch by reaching the immediate postdominator, un-
executed instructions become flow differences in the passing
run. We define them as non-trace-differences (because they
would have been present in the trace without the crash, as
dictated by the fact that both runs are executing the same
branch).

Consider the example in Fig.5. The last trace difference
added to the slice is at 331 in both runs, which is a def-use
difference. The non trace differences 221 and 11 are added

sum=A[0]+A[1]+A[0]sum=A[0]-A[0]

t_cnt=2

441 output(sum)

411 sum=sum+...

401 if (t_cnt...)

362 sum=sum+F(A[j])

352 A[j]=...

342 while (j<t_cnt)

441 output(sum)

431 sum=sum-...

401 if (t_cnt...)

342 while (j<t_cnt)

331 t_cnt=cnt 331 t_cnt=cnt

t_cnt=1

false true

false true

221 cnt=readInt… 11 cnt=2
data race

Figure 5: The dual slice of the failure in Fig. 4. A
symbol si represents the ith instance of statement s

in the trace.

to the slice since they contribute to the def-use difference
at 331. Specifically, the use of cnt at 331 has two distinct
definitions in the two runs. In the passing run, the definition
of cnt at 221 is used. Instead, in the failing run the definition
at 11 is used.

Dual slices are particularly useful in debugging concur-
rency bugs because a correct concurrent execution can be
usually obtained easily. This is because concurrency bugs
are often the result of def-use differences that arise because
of schedule perturbations that expose data races or atomic-
ity violations.

Property 1. The root cause of a concurrency bug is a
def-use difference in which there exists a chain of data and
control dependencies between the difference and the failure
such that each trace difference in the chain is the result of
the dependence on its predecessor and if a statement on the
chain is control dependent on a trace difference this control
dependence is also part of the chain.

Theorem 1. The dual slice extracted from a failure point
includes the root cause of the failure.

lock (o) {

 p = alloc (…);

}

…

lock(o) {

 *p = init(…);

}

T2T1

1.

2.

3.

4.

5.

6.

lock (o) {

 if (p) {

 free (p);

 p = NULL;

 }

}

7.

8.

9.

10.

passing
failing

Figure 6: Atomicity violation.

While we have considered how dual slicing can be used to
find the root cause of concurrency bugs that arise due to data
races and execution omission, it can also be used to identify
atomicity violations as well (see Fig. 6). In the example,
note that all operations on p are protected by locks and
there is no data race. Statements 2 and 6 should be atomic.
Otherwise, the remote access 10 may interfere and lead to a
null pointer dereference. Assume the dual slice is computed
on 6. The dual slice terminates on 6 itself which is a value
difference. It is data dependent on 2 in the passing run and
on 10 in the failing run. Note that neither 2 nor 10 is a trace
difference. 6 and its immediate dependences clearly indicate

that 2 and 6 should be atomic and the interference from 10
causes the failure. Deadlock failures are similar.

4.2 Removing Redundancy in Dual Slices
In this section, we explore a more restrictive form of dual

slicing. In the previous section, we defined the dual slice as
those trace differences that are relevant to the failure. Re-
call that a value difference cannot be control dependent on a
trace difference and it can only be data dependent on other
trace differences. Hence, the data dependence directly con-
tributes to the value difference. However, flow differences
can be both control and data dependent on other trace dif-
ferences. Thus far, we have considered both these relation-
ships as being relevant. Assume that the data dependence
and the control dependence are part of independent depen-
dence chains. Note that without the control dependence,
the dependence chain with the data dependence has no ef-
fect on the failure. Hence it cannot lead to the root cause.
Thus, we can safely define data dependence chains that fall
through flow differences as being irrelevant to a failure.

Consider the dual slice in Fig. 5. In the failing half of
the slice, 362 is a flow difference. Observe that in order to
understand the failure, it is important to know that the ex-
ecution of 362 is decided by the faulty branch outcome at
342. In contrast, how the value in 362 is computed is not im-
portant. Hence, we should consider the control dependence
of 362 but not its data dependences. As a result, 352 can be
excluded from the slice. One can also interpret this intuition
as follows: since both 352 and 362 are not (transitively) data
dependent on any value differences (i.e., faulty values), the
computations of their values are not faulty. What is faulty
is the fact that they get executed. To preserve such informa-
tion, the control dependence from 362 to 342 is sufficient and
hence the dependence from 352 to 342 is redundant, which
justifies removing 352 from the slice.

/* the same as Algorithm 1. lines 1-9*/;9

foreach d ∈ DEPf (t) do10

if
DTYPEf (d) = VAL D
∨ DTYPEf (d) = FLOW D

[1]

and
11

((DTYPEf (t) ≡ VAL D ∧ t
dd
−−→ d

[2]

) or

(DTYPEf (t) ≡ FLOW D ∧ t
cd
−→ d

[3]

) or

(DTYPEf (t) ≡ FLOW D ∧ t
dd
−−→ d ∧

VAL({d}) −VAL(CDf (t)) 6= φ

[4]

))

then

Nf ← Nf ∪ {d} ;12

Ef ← Ef ∪ {t→ d} ;13

if !isVisitedInFail(d) then f wl ← f wl ∪14

{d}
end15

end16

/* the same as Algorithm 1. lines 17-21*/17

Algorithm 2: Optimized Dual Slicing. Edge
cd
−→

denotes control dependence and
dd
−→ denotes data

dependence. Method VAL(s) returns the set of
value differences reachable from s. Method CD(s)
returns the control dependence of s.

Based on the above observation, we propose an optimized
dual slicing algorithm, shown in Algorithm 2. The difference

from Algorithm 1 lies in the loop (lines 10-16) that adds a
trace difference t’s dependences into the slice and the work-
list. More particularly, the conditions at line 11 controlling
the traversal are different. Condition [1] makes sure the de-
pendence d is a trace difference, otherwise it is not traversed.
It further controls traversal based on trace difference type
and dependence type. Condition [2] specifies that d will be
added and traversed if t is a value difference and t is data
dependent on d. Condition [3] specifies that if t is a flow dif-
ference, its control dependence is added and traversed (data
dependences are usually not interesting). Condition [4] spec-
ifies an exception: a flow difference’s data dependence d may
be traversed if d can transitively reach a value difference
that can not be reached through the control dependence of
t. This means there is a faulty value contributing to t only
through d, thus requiring further examination of this depen-
dence. Though condition [4] is not necessary for capturing
the root cause, the value differences captured by it help un-
derstand the different ways in which the root cause identified
by traversing the control dependence in [3] may be affect-
ing the failure. The same optimization is conducted in the
passing part of Algorithm 1 except that condition [4] is not
considered because in the passing run, all values are correct,
thus making data dependences of a flow difference in the
passing run uninteresting.

Property 2. A pruned dual slice (as defined by Algo-
rithm 2) includes the root cause.

Example. In the failing part of the slice in Fig. 5, we do

not traverse along 362
dd
−→ 352 as mentioned earlier. In con-

trast, we traverse along 411
dd
−→ 362 because VAL({362}) −

VAL({401}) = {331, 342} − {331, 401} = {342}, meaning
the value of 411 is affected by a faulty value 342 exclusively

through the dependence 411
dd
−→ 362, hence requiring the

edge to be traversed.
Note that such selective traversal is not applicable for

traditional dynamic slicing as it leverages information from
trace differencing.

5. EXPERIMENTS AND RESULTS
Our system is implemented using gcc and valgrind. Index-

ing is implemented in gcc in order to support large multi-
threaded programs. The modified gcc compiler instruments
a given program to construct and maintain the index tree.
Tracing is implemented in valgrind. Trace differencing and
dual slicing are implemented in C.

We have collected a pool of 14 real bugs of different types
from various sources as shown in Table 2. These bugs are
from MySQL (668K LOC), Apache (253K LOC), Pbzip2
(2.9K LOC), and Mozilla-extracts (61K and 3K LOC); their
bug report ids are presented in column ID. Note that the
bugs were collected using full program version for all the
benchmarks other than Mozilla, which was reproduced on
isolated components1 Many of the bugs shown here have
not been previously studied in any detail in the literature.
In this paper, we used the inputs from the reports and re-
produced the bugs according to the preemptions mentioned
in the reports. Passing runs are acquired by suppressing the

1Unfortunately, reproducing the bugs on the full Mozilla ver-
sion requires supporting multiple languages. Our methodol-
ogy is consistent with other efforts [25].

Table 2: Bugs and Tracing.
bug ID type Ttracing/ thds trace size

Tslice (P/F)(MB)
apache-1 21285 atom 320s/89s 2 1240/1227
apache-2 44402 atom 139s/2742ms 5 326/289
apache-3 45605 race 105s/948ms 2 176/59
apache-4 25520 atom 95s/636ms 2 86/86
mozilla-1 133773 race 74s/1476ms 2 497/477
mozilla-2 342577 race 25s/1353ms 2 290/290
mysql-1 12212 race 218s/623ms 2 110/61
mysql-2 12228 atom 225s/1640ms 2 342/328
mysql-3 12845 atom 133s/589ms 2 83/70
mysql-4 12848 atom 269s/416ms 2 52/62
mysql-5 42419 race 614s/89s 2 567/1297
mysql-6 21587 atom 280s/1637ms 2 72/60
mysql-7 17404 atom 166s/1764ms 3 266/229
pbzip2* - race 38s/494ms 2 392/389

race= data race, atom=atomicity violation, *the bug appeared in

version 0.9.4

Table 3: Slicing
bug dyn. slice dual slice breakdown fun

full bfs full opt bfs (P/F/vdiff)
a-1 78k 74 33 9 9 6, 8, 5 5
a-2 20k 695 443 116 106 103, 104, 91 19
a-3 893 113 968 113 41 86, 53, 26 11
a-4 15k (201)** 99 21 21 20, 21, 20 2
mzl-1 119 3 7 3 2 2, 3, 2 2
mzl-2 346 183 1k 48 34 32, 34, 18 5
m-1 14k 4 7 3 3 2, 2, 1 3
m-2 18k 619 105 43 32 29, 29, 15 5
m-3 5k 101 66 23 19 12, 17, 6 11
m-4 10k 70 75 19 19 17, 13, 11 3
m-5 165k * 14k 549 121 233, 376, 60 19
m-6 15k 1276 5k 72 60 34, 56, 18 13
m-7 37k 99 131 46 28 28, 42, 24 6
pbz 13 4 7 3 3 2, 2, 1 3

* execution omission leads to root cause vicinity not being reachable.

** another execution omission case: the root cause vicinity can not be

reached by slicing trace differences in the failing run, i.e., not reach-

able through faulty dependencies. Interestingly, it can be reached in

the dynamic slice through a dependence path that does not contribute

to the failure.

preemptions that lead to the bug. In the future, we envi-
sion our technique can be integrated with failure inducing
schedule generators [13, 15, 2].

Table 2 also shows the cost of our technique including
tracing and dual slicing time. The machine used for mea-
surements is an Intel core 2 duo 2.2GHz with 4GB RAM.
The number of threads involved in the slice is presented in
column thds. The aggregate trace size for all threads in the
slice is reported in the last column. The required space for
each traced instruction is roughly 20 bytes without compres-
sion. As mentioned earlier, we start tracing only when the
two executions start to diverge, thus avoiding the need to
collect the full execution traces. Space costs are less than 1.3
GB across all runs. Tracing and slicing times are all within
11 mins.

Table 3 shows the results of dual slicing and compares it
with a traditional dynamic slicing strategy. The second and
third columns show the sizes of dynamic slices. Significantly,
information gleaned from the dynamic slices extracted from
the failing run was not sufficient to identify the root cause
of the failure for any of the benchmarks. To reason about
why a value is wrong in the failing run, without benefit of
examining the passing run, a developer would need to in-
spect bfs number of statements before entering the vicinity
of the root cause. We say the vicinity of the root cause is
reached if only one of the memory accesses involved in a
data race, atomicity violation, or deadlock is reached. We

assume the traversal proceeds by a breadth-first search from
the failure, a common practice in evaluating effectiveness of
slicing [18]. The columns under dual slice show the data
for dual slices, including the full dual slice, computed by
Algorithm 1, the optimized dual slice (column opt), com-
puted by Algorithm 2, and the statements needed to be
inspected in the optimized slices (column bfs). The break-
down (P/F/vdiff) column shows how many statements in
the optimized dual slices belong to the passing run, the fail-
ing run, and are value differences. Column fun shows how
many source code functions span a bfs exploration.

In [22] we provide further results on trace differences ob-
served during these experiments.

Our results reveal that dynamic slices are substantial in
large programs. Note that these executions are not loop
intensive, and thus the slices mainly contain executions of
unique statements. Even getting to the vicinity of the root
cause is non-trivial, e.g., 1276 statements need to be in-
spected in mysql-6. Not surprisingly, dual slices are much
smaller than dynamic slices on almost all benchmarks, in
many cases, requiring an order of magnitude fewer state-
ments to be inspected. Note also that the optimized algo-
rithm is very effective in pruning redundancy in large dual
slices. For example, mysql-5 is an omission case in which a
substantial piece of code is executed in only the passing run
but not the failing one; slicing the failing run does not lead to
the root cause. The original dual slicing algorithm includes
a large portion of the omitted execution into the slice be-
cause they are transitively involved in computing the crite-
rion value. However, such information is redundant in iden-
tifying the failure point. Our optimized algorithm reduces
the slice from 165K to 549 source line statements without
degrading the accuracy. Column (fun) reveals that dual
slices are effective in capturing complex causal relations, in-
cluding those that span multiple function boundaries.

5.1 Case Study
Consider the following bug from the MySQL 5.0 (bug m-3):

1. CREATE TABLE a1 (id INTEGER NOT NULL\

PRIMARY KEY AUTO_INCREMENT);

CREATE TABLE a2 SELECT id FROM a1;

2. DROP TABLE a1;

In MySQL, each client connection is handled by a sepa-
rate thread. In this example, the above two CREATE TABLE

queries are executed by one thread, T1, to create tables a1

and a2, and the DROP TABLE query that drops a1 is per-
formed by another thread, T2. In most interleavings of T1
and T2, the program behaves normally: it either creates
the tables and then drops a1 or reports errors such as drop-
ping a non-existent table or creating a new table from a
non-existent table. However, as described in the bug re-
port2, if control is transferred from T1 to T2 at a specific
program point where T1 is in the middle of creating a2,
MySQL crashes. Even though the bug report describes how
to reproduce the bug, it also states that it is very difficult
to understand how the preemption leads to the failure.

Our technique computes a slice with only 23 source line
instances. The dual slice and the traces for the two runs
are shown in Fig. 7. The source code locations are also
presented on the left. Note that these statement instances
cross multiple functions and source code files.

2http://bugs.mysql.com/bug.php?id=12845

sql_class.cc:97 some_tables_deleted=…=0

… info=mi_open(…))

/*thd is the current thread*/

table→in_use=thd;

if (!table→in_use)

…

else if (table→in_use !=thd)

 table→in_use→some_table_deleted=1

… if (!thd→some_tables_deleted)

 table→file→close();

 info=0; /*inside close()*/

MYISAM_SHARE * share=info→s;

table→in_use=0;

ha_myisam.cc:229

sql_base.cc:906

sql_base.cc:2508

sql_base.cc:2514

sql_base.cc:2517

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

lock.cc:137

sql_base.cc:453

ha_myisam.cc:249

mi_locking.cc:35

T1

T1

T2

some_tables_deleted=…=0

… info=mi_open(…))

/*thd is the current thread*/

table→in_use=thd;

… if (!thd→some_tables_deleted)

MYISAM_SHARE * share=info→s;

table→in_use=0;

if (!table→in_use)

(1)

(2)

(3)

(7)

(10)

(11)

(4)

●

▲

▲

●

▲
▲

●

●

failing passing

T1

T2

preemption

Figure 7: Case Study

In the failing run, steps (1) and (2) correspond to the
initializations in T1. Step (3) occurs after T1 creates a2

and is about to initialize a2 with a1; it sets the in_use

flag of a1 to express its intention. Then, T1 is preempted
by T2 after step (3) and then step (4) is executed, which
tests the flag in_use. Steps (5) and (6) are executed due
to this faulty branch outcome at (4). Step (5) tests if T2
is the one that sets in_use and it fails. Subsequently, T2
in step (6) sets the flag some_table_deleted to indicate it
wants to delete a table and yields the control back to T1.
T1 proceeds. At step (7), T1 tests if another thread has
expressed its intention to remove a table. If so, T1 closes
the table at step (8) and resets the info pointer at step (9),
which results in the segmentation fault at (10) when it tries
to use info to finish constructing a2.

In contrast, in the passing run, T2 executes after T1 fin-
ishes so that (4) is executed after T1 resets in_use at step
(11) at the end of its execution, denoting it finishes using
a1. Note that in the T1 execution, the fall-through path is
taken at (7) and hence info is not null at (10).

Our dual slice precisely identifies the causal path of the
failure. Translated to text, the generated slice can be read
to mean “in_use should not have had the value of thd (as
manifested in the failing run) but rather the value of 0 (as
defined in the passing run) at (4); the false branch of (4)
should not have been taken, leading to the executions of (5)
and (6); some_tables_deleted should not have the value 1,
and hence info should not be 0, leading to the final failure”.
Although not shown in the figure, accesses to in_use are
protected with a common lock such that the root cause is an
atomicity violation in the scenario of creating a table. Note
that, the positive information from the passing run clearly
pinpoints the root cause on in_use, which is not feasible
otherwise.

Although the violation can be identified, the fault is hard
to identify. Setting pointer info to null causes the crash,
but the code for closing a table and cleaning up the pointer
is not buggy. In many scenarios, step (4) receiving its value
from step (3) (as part of the root violation in the failing
run) is legal as it is part of the synchronization protocol.
The goal of the complex protocol is to achieve high concur-

rency by not requiring queries to be executed atomically.
The bug lies in a hole in the protocol that fails to consider
this specific interleaving. Five of the bugs studied exhibit
similar characteristics: they have intentional races and/or
atomicity violations that by themselves do not contribute to
the failure.

For a case study that involves execution omission, please
refer to [22].

6. RELATED WORK
There has been extensive investigation of race detection [16,

26, 14, 17] and atomicity violation detection [21, 7, 5, 24].
When a race or atomicity violation is reported, however, it
remains the programmer’s responsibility to decide if the can-
didate is a false positive and, more importantly, to reason
about how true positives lead to failures. As shown in this
paper, the explanation of how a race induces a failure may
oftentimes entail a complex causal chain of effects, not easily
derived by mere identification of the race.

There has also been recent progress in devising techniques
that can generate deterministic failure-inducing schedules [13,
17, 15, 3, 2]. These techniques systematically explore a
bounded space of schedules with various search strategies.
Our work is complementary to these techniques insofar as
it can derive a meaningful explanation as to why a schedule
lead to a failure.

In [27], a technique is proposed to compare a failing exe-
cution and a similar run to explain a failure. Such techniques
rely on online memory state comparison and minimization
during execution. As a result, they are often able to produce
very concise failure causal chains. However, because the ap-
proach relies on mutating a passing run to a failing run by
changing memory state, using the mutation as an indicator
of failure relevance, it is unclear how it could be adapted to
work in the presence of multiple threads.

There has also been work on slicing concurrent programs
[8] and concurrent executions [19]. Our technique is more
related to slicing execution. Existing solutions focus on the
failing run. Without the passing run, they have to specu-
late what could have happened in a different run by con-
sidering write-after-read and write-after-write dependences,
which are often numerous, resulting in slices larger than dy-

namic slices, which are already substantial as shown by our
experimental results. Furthermore, these techniques are not
robust in the presence of execution omission errors.

Recently, thin slicing [18] was proposed to selectively tra-
verse dependences to produce very thin slices. Inspired by
their observation, we leverage two runs and use trace dif-
ferences to guide selective traversal to produce concise and
precise failure explanations.

Solutions have been proposed for execution omission in the
context of dynamic slicing [6, 28]. These solutions produce
slices larger than dynamic slices. For example, in [28], a
large number of re-executions are needed to reason about
omitted dependences.

Cooperative Crug Isolation (CCI)[20], is a low-overhead
instrumentation technique to isolate the root causes of con-
currency bugs (or crugs). CCI inserts instrumentation that
records occurrences of specific thread interleavings at run-
time. This technique is complementary to our contributions,
which provides a causal explanation for why a concurrency
error occurs by comparing the behavior of passing and fail-
ing runs.

In [4] authors use a model checker to derive counter ex-
amples that violate the specification of a program. The dif-
ferences between executions are presented in terms of pred-
icates rather than specific changes to variable values. In
our approach instead of using a model checker to generate
counter examples we use observed erroneous executions and
compare them against corresponding correct executions.

7. CONCLUSION
We have proposed a new dynamic analysis that identifies

the root cause of different kinds of concurrency bugs. It
does so by producing a causal path leading from the root
cause to the failure point. Provided with two schedules,
one corresponding to a correct run, and the other a failure,
the technique collects traces for the two runs. It aligns the
two traces and then identifies trace differences. Our dual
slicing algorithm is applied to causally connect these trace
differences. We show that the technique produces small yet
high quality slices for real bugs in large software.

8. ACKNOWLEDGMENT
We would like to thank the reviewers for their substantial

efforts. This research is supported, in part, by the National
Science Foundation (NSF) under grants 0847900, 0845870,
0701832 and 0811631. Any opinions, findings, and conclu-
sions or recommendations in this paper are those of the au-
thors and do not necessarily reflect the views of NSF.

9. REFERENCES
[1] Thomas Ball and James R. Larus. Efficient Path

Profiling. In MICRO’96, pages 46–57.

[2] F. Chen, T. F. Serbanuta, and G. Rosu. JPredictor: A
Predictive Runtime Analysis Tool for Java. In
ICSE’08.

[3] J. D. Choi and A. Zeller. Isolating Failure-Inducing
Thread Schedules. In ISSTA’02.

[4] S. Chaki, A. Groce and O. Strichman. Explaining
abstract counterexamples. In FSE’04.

[5] C. Flanagan and S. N Freund. Atomizer: A Dynamic
Atomicity Checker for Multithreaded Programs. In
POPL’04.

[6] T. Gyimothy, A. Beszedes, and I. Forgacs. An efficient
relevant slicing method for debugging. In FSE’99.

[7] C. Hammer, J. Dolby, M. Vaziri, and F. Tip. Dynamic
Detection of Atomic-Set-Serializability Violations. In
ICSE’08.

[8] J. Hatcliff, J. C. Corbett, M. B. Dwyer, S. Sokolowski,
and H. Zheng. A Formal Study of Slicing for
Multi-Threaded Programs with JVM Concurrency
Primitives. In SAS’99.

[9] P. Joshi, C. S. Park, K. Sen, M. Naik. A Randomized
Dynamic Program Analysis Technique for Detecting
Real Deadlocks. In PLDI’09.

[10] B. Korel and J. Laski. Dynamic Program Slicing.
Information Processing Letters, 1988.

[11] J. R. Larus. Whole Program Paths. In PLDI’99.

[12] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from
Mistakes: A Comprehensive Study on Real-World
Concurrency Bug Characteristics. In ASPLOS’08.

[13] M. Musuvathi and S. Qadeer. Fair Stateless Model
Checking. In PLDI’08.

[14] R. O’Callahan and J.-D. Choi. Hybrid Dynamic Data
Race Detection. In PPoPP’03.

[15] S. Park, S. Lu, and Y. Zhou. CTrigger: Exposing
Atomicity Violation Bugs from their Hiding Places. In
ASPLOS, 2009.

[16] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A Dynamic Data Race Detector
for Multithreaded Programs. ACM Trans. Comp. Sys.,
1997.

[17] K. Sen. Race Directed Random Testing of Concurrent
Programs. In PLDI’08.

[18] M. Sridharan, S. J. Fink, and R. Bodik. Thin Slicing.
In PLDI’07.

[19] S. Tallam, C. Tian, and R. Gupta. Dynamic Slicing of
Multithreaded Programs for Race Detection. In
ICSM’08.

[20] A. Thakur, R. Sen, B. Liblit and S. Lu. Cooperative
Crug Isolation. In WODA’09.

[21] L. Wang and S. D. Stoller. Accurate and Efficient
Runtime Detection of Atomicity Errors in Concurrent
Programs. In PPoPP’06.

[22] D. Weeratunge, X. Zhang, W. N. Sumner and
S. Jagannathan. Analyzing Concurrency Bugs using
Dual Slicing. Dept. of Computer Science, Tech. Rep.
CSD TR 10-004, Purdue University, May 2010.

[23] B. Xin, N. Sumner, and X. Zhang. Efficient Program
Execution Indexing. In PLDI’08.

[24] M. Xu, R. Bodik, and M. D. Hill. A Serializability
Violation Detector for Shared-Memory Server
Programs. In PLDI’05.

[25] J. Yu and S. Narayanasamy. A case for an interleaving
constrained shared-memory multi-processor. In
ISCA’09.

[26] Y. Yu, T. Rodeheffer, and W. Chen. Racetrack:
Efficient Detection of Data Race Conditions via
Adaptive Tracking. In SOSP’05.

[27] A. Zeller. Isolating Cause-Effect Chains from
Computer Programs. In FSE’02.

[28] X. Zhang, S. Tallam, N. Gupta, and R. Gupta.
Towards Locating Execution Omission Errors. In
PLDI’07.

