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Abstract

Memoization is a well-known optimization technique used to elim-
inate redundant calls for pure functions. If a call to a function f
with argument v yields result r, a subsequent call to f with v can be
immediately reduced to r without the need to re-evaluate f ’s body.

Understanding memoization in the presence of concurrency and
communication is significantly more challenging. For example, if
f communicates with other threads, it is not sufficient to simply
record its input/output behavior; we must also track inter-thread de-
pendencies induced by these communication actions. Subsequent
calls to f can be elided only if we can identify an interleaving of
actions from these call-sites that lead to states in which these de-
pendencies are satisfied. Similar issues arise if f spawns additional
threads.

In this paper, we consider the memoization problem for a
higher-order concurrent language whose threads may communicate
through synchronous message-based communication. To avoid the
need to perform unbounded state space search that may be neces-
sary to determine if all communication dependencies manifest in
an earlier call can be satisfied in a later one, we introduce a weaker
notion of memoization called partial memoization that gives im-
plementations the freedom to avoid performing some part, if not
all, of a previously memoized call.

To validate the effectiveness of our ideas, we consider the bene-
fits of memoization for reducing the overhead of recomputation for
streaming, server-based, and transactional applications executed on
a multi-core machine. We show that on a variety of workloads,
memoization can lead to substantial performance improvements
without incurring high memory costs.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Concurrent programming structures; D.1.3 [Con-
current Programming]: memoization; D.3.1 [Formal Definitions
and Theory]: Semantics

Keywords Concurrent programming, partial memoization, soft-
ware transactions, Concurrent ML, multicore systems.
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1. Introduction
Eliminating redundant computation is an important optimization
supported by many language implementations. One important in-
stance of this optimization class is memoization (Liu and Teitel-
baum 1995; Pugh and Teitelbaum 1989; Acar et al. 2003), a well-
known dynamic technique that can be utilized to avoid performing
a function application by recording the arguments and results of
previous calls. If a call is supplied an argument that has been pre-
viously cached, the execution of the function body can be elided,
with the corresponding result immediately returned instead.

When functions perform effectful computations, leveraging
memoization becomes significantly more challenging. Two calls
to a function f that performs some stateful computation need not
generate the same result if the contents of the state f uses to pro-
duce its result are different at the two call-sites.

Concurrency and communication introduce similar complica-
tions. If a thread calls a function f that communicates with func-
tions invoked in other threads, then memo information recorded
with f must include the outcome of these actions. If f is subse-
quently applied with a previously seen argument, and its commu-
nication actions at this call-site are the same as its effects at the
original application, re-evaluation of the pure computation in f ’s
body can be avoided. Because of thread interleavings, synchroniza-
tion, and non-determinism introduced by scheduling choices, mak-
ing such decisions is non-trivial.

Nonetheless, we believe memoization can be an important com-
ponent in a concurrent programming language runtime. Our be-
lief is enforced by the widespread emergence of multi-core plat-
forms, and renewed interest in streaming (Gordon et al. 2006),
speculative (Pickett and Verbrugge 2005) and transactional (Har-
ris and Fraser 2003; Adl-Tabatabai et al. 2006) abstractions to
program these architectures. For instance, optimistic concurrency
abstractions rely on efficient control and state restoration mech-
anisms. When a speculation fails because a previously available
computation resource becomes unavailable, or when a transaction
aborts due to a serializability violation and must be retried (Harris
et al. 2005), their effects must be undone. Failure represents wasted
work, both in terms of the operations performed whose effects must
now be erased, and in terms of overheads incurred to implement
state restoration; these overheads include logging costs, read and
write barriers, contention management, etc. One way to reduce this
overhead is to avoid subsequent re-execution of those function calls
previously executed by the failed computation whose results are un-
changed. The key issue is understanding when utilizing memoized
information is safe, given the possibility of concurrency, communi-
cation, and synchronization among threads.

In this paper, we consider the memoization problem for a
higher-order concurrent language in which threads communicate
through synchronous message-passing primitives (e.g. Concurrent



ML (Reppy 1999)). A synchronization event acknowledges the ex-
istence of an external action performed by another thread willing to
send or receive data. If such events occur within a function f whose
applications are memoized, then avoiding re-execution at a call-site
c is only possible if these actions are guaranteed to succeed at c. In
other words, using memo information requires discovery of inter-
leavings that satisfy the communication constraints imposed by a
previous call. If we can identify a global state in which these con-
straints are satisfied, the call to c can be avoided; if there exists no
such state, then the call must be performed. Because finding such
a state can be expensive (it may require an unbounded state space
search), we consider a weaker notion of memoization: by recording
the context in which a memoization constraint was generated, im-
plementations can always choose to simply resume execution of the
function at the program point associated with the constraint using
the saved context. In other words, rather than requiring global exe-
cution to reach a state in which all constraints in a memoized appli-
cation are satisfied, partial memoization gives implementations the
freedom to discharge some fraction of these constraints, performing
the rest of the application as normal. Although our description and
formalization is developed in the context of message-based com-
munication, the applicability of our solution naturally extends to
shared-memory communication as well given the simple encoding
of the latter in terms of the former (Reppy 1999).

Whenever a constraint built during memoization is discharged on
a subsequent application, there is a side-effect on the global state
that occurs. For example, consider a communication constraint
associated with a memoized version of a function f that expects
a thread T to receive data d on channel c. To use this information
at a subsequent call, we must identify the existence of T , and
having done so, must propagate d along c for T to consume. Thus,
whenever a constraint is satisfied, an effect that reflects the action
represented by that constraint is performed. We consider the set
of constraints built during memoization as forming an ordered log,
with each entry in the log representing a condition that must be
satisfied to utilize the memoized version, and an effect that must
be performed if the condition holds. The point of memoization for
our purposes is thus to avoid performing the pure computations that
execute between these effectful operations.

1.1 Contributions

Besides providing a formal characterization of these ideas, we also
present performance evaluation of two parallel benchmarks. We
consider the effect of memoization on improving performance of
multi-threaded CML applications executing on a multicore archi-
tectures. Our results indicate that memoization can lead to substan-
tial runtime performance improvement over a non-memoized ver-
sion of the same program, with only modest increases in memory
overhead (15% on average).

To the best of our knowledge, this is the first attempt to formalize
a memoization strategy for effectful higher-order concurrent lan-
guages, and to provide an empirical evaluation of its impact on im-
proving wall-clock performance for multi-threaded workloads.

The paper is organized as follows. The programming model
is defined in Section 2. Motivation for the problem is given in
Section 3. The formalization of our approach is given in Sections 4
and Section 5. A detailed description of our implementation and
results are given in Sections 6 and 7. We discuss previous work and
provide conclusions in Section 8.

2. Programming Model
Our programming model is a simple synchronous message-passing
dialect of ML similar to CML. Threads communicate using dynam-

ically created channels through which they produce and consume
values. Since communication is synchronous, a thread wishing to
communicate on a channel that has no ready recipient must block
until one exists, and all communication on channels is ordered. Our
formal treatment does not consider references, but there are no ad-
ditional complications that ensue in order to handle them; our im-
plementation supports all of Standard ML.

In this context, deciding whether a function application can be
avoided based on previously recorded memo information depends
upon the value of its arguments, its communication actions, chan-
nels it creates, threads it spawns, and the return value it produces.
Thus, the memoized result of a call to a function f can be used at
a subsequent call if (a) the argument given matches the argument
previously supplied; (b) recipients for values sent by f on channels
in an earlier memoized call are still available on those channels;
(c) values consumed by f on channels in an earlier call are again
ready to be sent to other threads; (d) channels created in an earlier
call have the same actions performed on them, and (e) threads cre-
ated by f can be spawned with the same arguments supplied in the
memoized version. Ordering constraints on all sends and receives
performed by the procedure must also be enforced. A successful
application of a memoized call yields a new state in which the ef-
fects captured within the constraint log have been performed; thus,
the values sent by f are received by waiting recipients, senders on
channels from which f expects to receive values propagate these
values on those channels, and channels and threads that f is ex-
pected to create are created.

To avoid making a call, a send action performed within the
applied function, for example, will need to be paired with a receive
operation executed by some other thread. Unfortunately, there may
be no thread currently scheduled that is waiting to receive on this
channel. Consider an application that calls a memoized function
f which (a) creates a thread T that receives a value on channel
c, and (b) sends a value on c computed through values received
on other channels that is then consumed by T . To safely use the
memoized return value for f nonetheless still requires that T be
instantiated, and that communication events executed in the first
call can still be satisfied (e.g., the values f previously read on
other channels are still available on those channels). Ensuring these
actions can succeed may involve an exhaustive exploration of the
execution state space to derive a schedule that allows us to consider
the call in the context of a global state in which these conditions are
satisfied. Because such an exploration may be infeasible in practice,
our formulation also supports partial memoization. Rather than
requiring global execution to reach a state in which all constraints
in a memoized application are satisfied, partial memoization gives
implementations the freedom to discharge some fraction of these
constraints, performing the rest of the application as normal.

3. Motivation
As a motivating example, we consider how memoization can be
profitably utilized in a concurrent message-passing red-black tree
implementation. The data structure supports concurrent insertion,
deletion, and traversal operations.

A node in the tree is a tuple containing the node’s color, an integer
value, and links to its left and right children. Associated with every
node is a thread that reads from an input channel, and outputs the
node’s data on an output channel, effectively encoding a server.
Accessing and modifying a tree node’s data is thus accomplished
through a communication protocol with the node’s input and output
channels. Abstractly, a read corresponds to a receive operation
( recv ) from a node’s output channel, and a write to a send ( send )
on a node’s input channel.



When a node is initially created, we instantiate two new channels
( channel() ), and spawn a server. The function server , the
concrete representation of a node, chooses between accepting a
communication on the incoming channel cIn (corresponding to
a write operation) and sending a communication on the outgoing
channel cOut (corresponding to a read operation), synchronizes on
the communication, and then updates the server through a recursive
call.

datatype rbtree = N of {cOut: node chan, cIn: node chan}
and node = Node of {color: color, value: int,

left:rbtree, right:rbtree}
| EmptyNode

fun node(c:color, v:int,
l:rbtree, r:rbtree):rbtree =

let val (cOut, cIn) = (channel(), channel())
val node = Node{color=c,value=v,left=l,right=r}
fun server(node) =

sync(
choose([wrap(sendEvt(cOut, node),

(fn x => server(node)) ),
wrap(recvEvt(cIn),

(fn x => server(x)))]))
in spawn(fn () => server(node)); N{cOut=cOut, cIn=cIn})
end

For example, the procedure contains queries the tree to deter-
mine if a node containing its integer argument is present. It takes
as input the number being searched, and the root of the tree from
which to begin the traversal. The recvT operation reads the value
from each node, and based on this value check navigates the tree:

fun recvT(N{cOut, cIn}:rbtree) = recv(cOut)

fun contains (n:int, tree:rbtree):bool =

let fun check(n, tree) =

(case recvT(tree)

of Node {color,value,left,right} =>

(case Int.compare (value, n)

of EQUAL => true

| GREATER => check (n,left)

| LESSER => check (n,right))

| EmptyNode => false)

in check(n, tree)

end

Memoization can be leveraged to avoid redundant traversals of
the tree. Consider the red/black tree shown in Fig. 1. Triangles
represent abstracted portions of the tree, red nodes are unbolded,
and black nodes are marked as bold circles. Suppose we memoize
the call to contains which finds the node containing the value
79. Whenever a subsequent call to contains attempts to find the
node containing 79, the traversal can directly use the result of
the previous memoized call if both the structure of the tree along
the path to the node, and the values of the nodes on the path
remain the same. Both of these properties are reflected in the values
transmitted by node processes.

The path is depicted by shading relevant nodes in gray in Fig. 1.
More concretely, we can avoid the recomputation of the traversal
if communication with node processes remains unchanged. Infor-
mally, memo information associated with a function f can be lever-
aged to avoid subsequent applications of f if communication ac-
tions performed by the memoized call can be satisfied in these later
applications. Thus, to successfully leverage memo information for
a call to contains with input 79, we would need to ensure a subse-
quent call of the function with the same argument would be able to
receive the sequence of node values: (red, 48), (black, 76), (red, 85),
and (black, 79) in that order during a traversal. In Fig. 1 thread T1
can take advantage of memoization, while thread T2 subsequently
recolors the node containing 85.
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Figure 1. Memoization can be used to avoid redundant tree traver-
sals. In this example, two threads traverse a red-black tree. Each
node in the tree is represented as a process that outputs the current
value of the node, and inputs new values. The shaded path illus-
trates memoization potential.
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Figure 2. Even if the constraints stored in a memoized call can-
not be fully satisfied at a subsequent call, it may be possible to
discharge some fraction of these constraints, retaining some of the
optimization benefits memoization affords.

Because of the actions of T2, subsequent calls to contains
with argument 79 cannot avail of the information recorded during
evaluation of the initial memoized call. As a consequence of T2’s
update, a subsequent traversal by T1 would observe a change to the
tree. Note however, that even though the immediate parent of 79
has changed in color, the path leading up to node 85 has not (see
Fig. 2). By leveraging partial memoization on the earlier memoized
call to contains , a traversal attempting to locate node 79 can
avoid traversing this prefix, if not the entire path. Notice that if
the node with value 85 was later recolored, and assuming structural
equality of nodes is used to determine memoization feasibility, full
memoization would once again be possible.

As this example suggests, a key requirement for effectively utiliz-
ing memoized function applications is the ability to track commu-
nication (and other effectful) actions performed by previous instan-
tiations. Provided that the global state would permit these same ac-
tions (or some subset thereof) to succeed if a function is re-executed
with the same inputs, memoization can be employed to avoid re-
computing applications, or to reduce the amount of the application
that is executed. We note that although the example presented dealt
with memoization of a function that operates over base integer val-
ues, our solution detailed in the following sections considers mem-
oization in the context of any value that can appear on a channel,
including closures, vectors, and datatype instances.



4. Semantics
Our semantics is defined in terms of a core call-by-value functional
language with threading and communication primitives. Commu-
nication between threads is achieved using synchronous channels.

For perspicuity, we first present a simple multi-threaded language
with synchronous channel based communication. We then extend
this core language with memoization primitives, and subsequently
consider refinements of this semantics to support partial memo-
ization. Although the core language has no support for selective
communication, extending it to support choice is straight forward.
Memoization would simply record the result of the choice and re-
play would only be possible if the recorded choice was satisfiable.

In the following, we write α to denote a sequence of zero or more
elements, β.α to denote sequence concatenation, and /0 to denote
an empty sequence. Metavariables x and y range over variables,
t ranges over thread identifiers, l ranges over channels, v ranges
over values, and α,β denote tags that label individual actions in a
program’s execution. We use P to range over program states, E for
evaluation contexts, and e for expressions.

Our communication model is a message-passing system with
synchronous send and receive operations. We do not impose a
strict ordering of communications on channels; communication ac-
tions on the same channel by different threads are paired non-
deterministically. To model asynchronous sends, we simply spawn
a thread to perform the send. Spawning an expression (that evalu-
ates to a thunk) creates a new thread in which the application of the
thunk is performed.

4.1 Language

The syntax and semantics of the language are given in Fig. 3. Ex-
pressions are either variables, locations that represent channels, λ-
abstractions, function applications, thread creation operations, or
communication actions that send and receive messages on chan-
nels. We do not consider references in this core language as they
can be modeled in terms of operations on channels (Reppy 1999).

A thread context t[E[e]] denotes an expression e available for
execution by a thread with identifier t within context E. Evalua-
tion is specified via a relation ( 7−→ ) that maps a program state (P)
to another program state. Evaluation rules are applied up to com-
mutativity of parallel composition (‖). An evaluation step is marked
with a tag that indicates the action performed by that step. As short-
hand, we write P α7−→ P′ to represent the sequence of actions α that
transforms P to P′.

Application (rule APP) substitutes the argument value for free
occurrences of the parameter in the body of the abstraction, and
channel creation (rule CHANNEL) results in the creation of a new
location that acts as a container for message transmission and
reception. A spawn action (rule SPAWN), given an expression e
that evaluates to a thunk changes the global state to include a new
thread in which the thunk is applied. A communication event (rule
COMM) synchronously pairs a sender attempting to transmit a value
along a specific channel in one thread with a receiver waiting on the
same channel in another thread.

4.2 Partial Memoization

The core language presented above provides no facilities for mem-
oization of the functions it executes. To support memoization,
we must record, in addition to argument and return values, syn-
chronous communication actions, thread spawns, channel creation
etc. as part of the memoized state. These actions define a log of
constraints (C) that must be satisfied at subsequent applications

of a memoized function, and whose associated effects must be
discharged if the constraint is satisfied. To record constraints, we
augment our semantics to include a memo store (σ), a map that
given a function identifier and an argument value, returns the set
of constraints and result value that was previously recorded for a
call to that function with that argument. If the set of constraints re-
turned by the memo store is satisfied in the current state (and their
effects performed), then the return value can be used and the ap-
plication elided. The memo store contains only one function/value
pair for simplicity of the presentation. We can envision extending
the memo store to contain multiple memoized versions of a func-
tion based on its arguments or constraints. We utilize two thread
contexts t[e] and tC[e], the former to indicate that evaluation of
terms should be captured within the memo store, and the latter to
indicate that previously recorded constraints should be discharged.
We elaborate on their use below.

The definition of the language augmented with memoization sup-
port is given in Fig. 4. We now define evaluation using a new re-
lation (=⇒ ) defined over two global configurations. In one case, a
configuration consists of a program state (P) and a memo store (σ).
This configuration is used when evaluation does not leverage mem-
oized information. The second configuration is defined in terms of
a thread id and constraint sequence pair ((t,C)), a program state
(P), and a memo store (σ); transitions use this configuation when
discharging constraints recorded from a previous memoized appli-
cation.

In addition, a thread state is augmented to hold an additional
structure. The memo state (θ) records the function identifier (δ),
the argument (v) supplied to the call, the context (E) in which the
call is performed, and the sequence of constraints (C) that are built
during the evaluation of the application being memoized.

Constraints built during a memoized function application define
actions that must be satisfied at subsequent call-sites in order to
avoid complete re-evaluation of the function body. For a communi-
cation action, a constraint records the location being operated upon,
the value sent or received, the action performed (R for receive and S
for send), and the continuation immediately prior to the action be-
ing performed; the application resumes evaluation from this point if
the corresponding constraint could not be discharged. For a spawn
operation, the constraint records the action (Sp), the expression be-
ing spawned, and the continuation immediately prior to the spawn.
For a channel creation operation (Ch), the constraint records the lo-
cation of the channel and the continuation immediately prior to the
creation operation. Returns are also modeled as constraints (Rt,v)
where v is the return value of the application being memoized.

Consider an application of function f to value v that has been
memoized. Since subsequent calls to f with v may not be able to
discharge all constraints, we need to record the program points for
all communication actions within f that represent potential resump-
tion points from which normal evaluation of the function body pro-
ceeds; these continuations are recorded as part of any constraint
that can fail 1 (communication actions, and return constraints as
described below). But, since the calling contexts at these other call-
sites are different than the original, we must be careful to not in-
clude them within saved continuations recorded within these con-
straints. Thus, the contexts recorded as part of the saved constraint
during memoization only define the continuation of the action up to
the return point of the function; the memo state (θ) stores the eval-
uation context representing the caller’s continuation. This context
is restored once the application completes (see rule RET).

1 We also record continuations on non-failing constraints; while not strictly
necessary, doing so simplifies our correctness proofs.



SYNTAX:
P ::= P‖P | t[e]

e ∈ Exp ::= x | y | v | e(e) | spawn(e)
| mkCh() | send(e,e) | recv(e)

v ∈ Val ::= unit | λx.e | l

EVALUATION CONTEXTS:
E ::= [ ] | E(e) | v(E) | spawn(E) |

send(E,e) | send(l,E) | recv(E)

PROGRAM STATES:
P ∈ Process
t ∈ Tid

x,y ∈ Var
l ∈ Channel

α,β ∈ Tag = {App,Ch,Spn,Com}

(APP) (CHANNEL)

P‖t[E[λx.e(v)]]
App7−→ P‖t[E[e[v/x]]]

l fresh

P‖t[E[mkCh()]] Ch7−→ P‖t[E[l]]
(SPAWN) (COMM)

t′ fresh

P‖t[E[spawn(λx.e)]]
Spn7−→ P‖t[E[unit]]‖t′[e[unit/x]]

P = P′‖t[E[send(l,v)]]‖t′[E′[recv(l)]]

P Com7−→ P′‖t[E[unit]]‖t′[E′[v]]

Figure 3. A concurrent language with synchronous communication.

If function f calls function g , then actions performed by g must
be satisfiable in any call that attempts to leverage the memoized
version of f . Consider the following program fragment:

let fun f(...) = ...
let fun g(...) = ... send(c,v) ...
in ... end

in ... g(...) ... end

If we encounter an application of f after it has been memoized,
then g ’s communication action (i.e., the send of v on c ) must
be satisfiable at the point of the application to avoid performing
the call. We therefore associate a call stack of constraints (θ) with
each thread that defines the constraints seen thus far, requiring the
constraints computed for an inner application to be satisfiable for
any memoization of an outer one. The propagation of constraints
to the memo states of all active calls is given by the operation �
shown in Fig. 4.

Channels created within a memoized function must be recorded
in the constraint sequence for that function (rule CHANNEL). Con-
sider a function that creates a channel and subsequently initiates
communication on that channel. If a call to this function was mem-
oized, later applications that attempt to avail of memo information
must still ensure that the generative effect of creating the channel is
not omitted. Function evaluation now associates a label with func-
tion evaluation that is used to index the memo store (rule FUN).

If a new thread is spawned within a memoized application, a
spawn constraint is added to the memo state, and a new global
state is created that starts memoization of the actions performed
by the newly spawned thread (rule SPAWN). A communication
action performed by two functions currently being memoized are
also appropriately recorded in the corresponding memo state of the
threads that are executing these functions (rule COMM). When a
memoized application completes, its constraints are recorded in the
memo store (rule RET).

When a function f is applied to argument v, and there exists no
previous invocation of f to v recorded in the memo store, the func-
tion’s effects are tracked and recorded (rule APP). Until an appli-
cation of a function being memoized is complete, the constraints
induced by its evaluation are not immediately added to the memo
store. Instead, they are maintained as part of the memo state (θ)
associated with the thread in which the application occurs.

The most interesting rule is the one that deals with determining
how much of an application of a memoized function can be elided
(rule MEMO APP). If an application of function f with argument
v has been recorded in the memo store, then the application can

be potentially avoided; if not, its evaluation is memoized by rule
APP. If a memoized call is applied, we must examine the set of
associated constraints that can be discharged. To do so, we employ
an auxiliary relation ℑ defined in Fig. 5. Abstractly, ℑ checks the
global state to determine which communication, channel creation,
and spawn creation constraints (the possible effectful actions in our
language) can be satisfied, and returns a set of failed constraints,
representing those actions that could not be satisfied. The thread
context (tC[e]) is used signal the utilization of memo information.
The failed constraints are added to the original thread context.

Rule MEMO APP yields a new global configuration whose thread
id and constraint sequence ((t,C)) corresponds to the constraints
satisfiable in the current global state (defined as C′′) for thread t
as defined by ℑ. These constraints, when discharged, will leave
the thread performing the memoized call in a new state in which
the evaluation of the call is the expression associated with the first
failed constraint returned by ℑ. As we describe below in Sec 4.3,
there is always at least one such constraint, namely Rt , the return
constraint that holds the return value of the memoized call. We also
introduce a rule to allow the completion of memo information use
(rule END MEMO). The rule installs the continuation of the first
currently unsatisfied constraint; no further constraints are subse-
quently examined. In this formulation, the other failed constraints
are simply discarded; we present an extension of this semantics in
Section. 4.6 that make use of them.

4.3 Constraint Matching

The constraints built as a result of evaluating these rules are dis-
charged by the rules shown in Fig. 6. Each rule in Fig. 6 is defined
with respect to a thread id and constraint sequence. Thus, at any
given point in its execution, a thread is either building up memo
constraints (i.e., the thread is of the form t[e]) within an applica-
tion for subsequent calls to utilize, or attempting to discharge these
constraints (i.e., the thread is of the form tC[e]) for applications
indexed in the memo store.

The function ℑ leverages the evaluation rules defined in Fig. 6 by
examining the global state and determining which constraints can
be discharged, except for the return constraint. ℑ takes a constraint
set (C) and a program state (P) and returns a sequence of unmatch-
able constraints (C′). Send and receive constraints are matched with
threads blocked in the global program state on the opposite commu-
nication action. Once a thread has been matched with a constraint it
is no longer a candidate for future communication since its commu-
nication action is consumed by the constraint. This guarantees that



SYNTAX:

P ::= P‖P | 〈θ,t[e]〉 | 〈θ,tC[e]〉
v ∈ Val ::= unit | λδ x.e | l

E ∈ Context

CONSTRAINT ADDITION:

θ′ = {(δ,v,E,C.C)|(δ,v,E,C) ∈ θ}
θ,C � θ′

PROGRAM STATES:
δ ∈ MemoId
c ∈ FailableConstraint= ({R,S}×Loc×Val)+Rt
C ∈ Constraint = (FailableConstraint×Exp)+

((Sp×Exp)×Exp)+((Ch×Location)×Exp)
σ ∈ MemoStore = MemoId×Val → Constraint∗

θ ∈ MemoState = MemoId×Val×Context×Constraint∗

α,β ∈ Tag = {Ch,Spn,Com,Fun,App,Ret,MCom,
MCh,MSp,MemS,MemE,MemR,MemP}

(CHANNEL) (FUN)

θ,((Ch,l),E[mkCh()])� θ′ l fresh

P‖〈θ,t[E[mkCh()]]〉,σ Ch=⇒ P‖〈θ′,t[E[l]]〉,σ

δ fresh

P‖〈θ,t[E[λx.e]]〉,σ Fun=⇒ P‖〈θ,t[E[λδ x.e]]〉,σ

(SPAWN) (COMM)

t′ fresh θ,((Sp,λδ x.e(unit)),E[spawn(λδ x.e)])� θ′

tk = 〈θ′,t[E[unit]]〉
ts = 〈 /0,t′[λδ x.e(unit)]〉

P‖〈θ,t[E[spawn(λδ x.e)]]〉,σ
Spn
=⇒ P‖tk‖ts,σ

P = P′‖〈θ,t[E[send(l,v)]]〉‖〈θ′,t′[E′[recv(l)]]〉
θ,((S,l,v),E[send(l,v)])� θ′′ θ′,((R,l,v),E′[recv(l)])� θ′′′

ts = 〈θ′′,t[E[unit]]〉 tr = 〈θ′′′,t′[E′[v]]〉
P,σ Com=⇒ P′‖ts‖tr,σ

(RET) (APP)

θ = (δ,v,E,C)

P‖〈θ.θ,t[v′]〉,σ Ret=⇒
P‖〈θ,t[E[v′]]〉,σ[(δ,v) 7→C.(Rt,v′)]

(δ,v) 6∈ Dom(σ) θ = (δ,v,E, /0)

P‖〈θ,t[E[λδ x.e(v)]]〉,σ App
=⇒ P‖〈θ.θ,t[e[v/x]]〉,σ

(MEMO APP) (END MEMO)

(δ,v) ∈ Dom(σ) σ(δ,v) = C
ℑ(C,P) = C′ C = C′′.C′

P‖〈θ,t[E[λδ x.e(v)]]〉,σ MemS=⇒ (t,C′′),P‖〈θ,tc′ [E[λδ x.e(v)]]〉,σ
C = (c,e′)

(t, /0),P‖〈θ,tC.C[E[λδ x.e(v)]]〉,σ MemE=⇒ P‖〈θ,t[E[e′]]〉,σ

Figure 4. A concurrent language supporting memoization of synchronous communication and dynamic thread creation.

the candidate function will communicate at most once with each
thread in the global state. Although a thread may in fact be able
to communicate more than once with the candidate function, deter-
mining this requires arbitrary look ahead and is infeasible in prac-
tice. We discuss the implications of this restriction in Section 4.5.

Thus, a spawn constraint (rule MSPAWN) is always satisfied, and
leads to the creation of a new thread of control. Observe that the
application evaluated by the new thread is now a candidate for
memoization if the thunk was previously applied and its result is
recorded in the memo store.

A channel constraint of the form ((Ch,l), E[e]) (rule MCH) cre-
ates a new channel location l′, and replaces all occurrences of l
found in the remaining constraint sequence for this thread with
l′; the channel location may be embedded within send and receive
constraints, either as the target of the operation, or as the argument
value being sent or received. Thus, discharging a channel constraint
ensures that the effect of creating a new channel performed within
an earlier memoized call is preserved on subsequent applications.
The renaming operation ensures that later send and receive con-
straints refer to the new channel location. Both channel creation
and thread creation actions never fail – they modify the global state
with a new thread and channel, respectfully, but impose no pre-
conditions on the state in order for these actions to succeed.

There are two communication constraint matching rules (MCom=⇒ ),
both of which may indeed fail. If the current constraint expects to

receive value v on channel l , and there exists a thread able to send
v on l , evaluation proceeds to a state in which the communication
succeeds (the receiving thread now evaluates in a context in which
the receipt of the value has occurred), and the constraint is removed
from the set of constraints that need to be matched (rule MRECV).
Note also that the sender records the fact that a communication with
a matching receive took place in the thread’s memo state, and the
receiver does likewise. Any memoization of the sender must con-
sider the receive action that synchronized with the send, and the
application in which the memoized call is being examined must
record the successful discharge of the receive action. In this way,
the semantics permits consideration of multiple nested memoiza-
tion actions.

If the current constraint expects to send a value v on channel l ,
and there exists a thread waiting on l , the constraint is also sat-
isfied (rule MSEND). A send operation can match with any wait-
ing receive action on that channel. The semantics of synchronous
communication allows us the freedom to consider pairings of sends
with receives other than the one it communicated with in the orig-
inal memoized execution. This is because a receive action places
no restriction on either the value it reads, or the specific sender that
provides the value. If there is no matching receiver, the constraint
fails.

Observe that there is no evaluation rule for the Rt constraint
that can consume it. This constraint contains the return value of
the memoized function (see rule RET). If all other constraints have



ℑ(((S,l,v),e).C,P‖〈θ,t[E[recv(l)]]〉) = ℑ(C,P)
ℑ(((R,l,v),e).C,P‖〈θ,t[E[send(l,v)]]〉) = ℑ(C,P)
ℑ((Rt,v),P) = (Rt,v)
ℑ(((Ch,l),e).C,P) = ℑ(C,P)
ℑ(((Sp,e′),e).C,P) = ℑ(C,P)
ℑ(C,P) = C, otherwise

Figure 5. The function ℑ yields the set of constraints C which are
not satisfiable in program state P.

let val (c1,c2) = (mkCh(),mkCh())
fun f () = (send(c1,v1); ...; recv(c2))
fun g () = (recv(c1); ...; recv(c2); g())
fun h () = (...; send(c2,v2); send(c2,v3); h());
fun i () = (recv(c2); i())

in spawn(g); spawn(h); spawn(i);
f(); ...;
send(c2, v4); ...;
f()

end

Figure 7. Determining if an application can fully leverage memo
information may require examining an arbitrary number of possible
thread interleavings.
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c2
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i ( )h ( )g ( )
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Figure 8. The communication pattern of the code in Fig 7. Circles
represent operations on channels. Gray circles are sends and white
circles are receives. Double arrows represent communications that
are captured as constraints during memoization.

been satisfied, it is this return value that replaces the call in the
current context (see the consequent of rule MEMO APP).

4.4 Example

The program fragment shown in Fig. 7 applies functions f, g, h
and i. The calls to g, h, and i are evaluated within separate threads
of control, while the applications of f takes place in the original
thread. These different threads communicate with one other over
shared channels c1 and c2. The communication pattern is depicted
in Fig. 8. Separate threads of control are shown as rectangles. Com-
munication actions are represented as circles; gray for send actions
and white for receives. The channel on which the communication
action takes place is annotated on the circle and the value which is
sent on the arrow. Double arrows represent communication actions
for which constraints are generated.

To determine whether the second call to f can be elided we
must examine the constraints that would be added to the thread
state of the threads in which these functions are applied. First,
spawn constraints would be added to the main thread for the threads
executing g, h, and i. Second, a send constraint followed by a
receive constraint, modeling the exchange of values v1 and either

let fun f() = (send(c,1); send(c,2))
fun g() = (recv(c);recv(c))

in spawn(g); f(); ...; spawn(g); f()
end

Figure 9. The second application of f can only be partially mem-
oized up to the second send since only the first receive made by g
is blocked in the global state.

v2 or v3 on channels c1 and c2 would be included as well.
For the sake of discussion, assume that the send of v2 by h was
consumed by g and the send of v3 was paired with the receive in
f when f() was originally executed.

Consider the memoizability constraints built during the first call
to f . The send constraint on f ’s application can be satisfied by
matching it with the corresponding receive constraint associated
with the application of g ; observe g() loops forever, consuming
values on channels c1 and c2 . The receive constraint associated
with f can be discharged if g receives the first send by h , and
f receives the second. A schedule that orders the execution of f
and g in this way, and additionally pairs i with a send operation
on c2 in the let -body would allow the second call to f to
fully leverage the memo information recorded in the first. Doing
so would enable eliding the pure computation in f (abstracted
by . . .) in its definition, performing only the effects defined by
the communication actions (i.e., the send of v1 on c1 , and the
receipt of v3 on c2 ).

4.5 Issues

As this example illustrates, utilizing memo information completely
may require forcing a schedule that pairs communication actions
in a specific way, making a solution that requires all constraints to
be satisfied infeasible in practice. Hence, rule MEMO APP allows
evaluation to continue within an application that has already been
memoized once a constraint cannot be matched. As a result, if
during the second call to f , i indeed received v3 from h , the
constraint associated with the recv operation in f would not
be satisfied, and the rules would obligate the call to block on the
recv , waiting for h or the main body to send a value on c2 .

Nonetheless, the semantics as currently defined does have limi-
tations. For example, the function ℑ does not examine future ac-
tions of threads and thus can only match a constraint with a thread
if that thread is able to match the constraint in the current state.
Hence, the rules do not allow leveraging memoization information
for function calls involved in a producer/consumer relation. Con-
sider the simple example given in Fig. 9. The second application
of f can take advantage of memoized information only for the first
send on channel c. This is because the global state in which con-
straints are checked only has the first recv made by g blocked on
the channel. The second recv only occurs if the first is successfully
paired with a corresponding send. Although in this simple example
the second recv is guaranteed to occur, consider if g contained a
branch which determined if g consumed a second value from the
channel c. In general, constraints can only be matched against the
current communication action of a thread.

Secondly, exploiting memoization may lead to starvation since
subsequent applications of the memoized call will be matched
based on the constraints supplied by the initial call. Consider the
example shown in Fig. 10. If the initial application of f pairs with
the send performed by g, subsequent calls to f that use this memo-
ized version will also pair with g since h produces different values.
This leads to starvation of h. Although this behavior is certainly le-
gal, one might reasonably expect a scheduler to interleave the sends
of g and h.



(MCH ) (MSPAWN)

C = ((Ch,l), ) l′ fresh
C′′ = C[l′/l] θ,C � θ′

(t,C.C),P‖〈θ,t
C′ [E[λδ x.e(v)]]〉,σ MCh=⇒

(t,C′′),P‖〈θ′,t
C′ [E[λδ x.e(v)]]〉,σ

C = ((Sp,e′), ) t′ fresh θ,C � θ′

(t,C.C),P‖〈θ,tC′ [E[λδ x.e(v)]]〉,σ MSp
=⇒ (t,C),P‖〈θ′,t

C′ [E[λδ x.e(v)]]〉‖〈 /0,t′[e′]〉,σ

(MRECV) (MSEND)

C = ((R,l,v), )
ts = 〈θ,t[E[send(l,v)]]〉 tr = 〈θ′,t′

C′
[E′[λδ x.e(v)]]〉

θ′,C � θ′′′ θ,((S,l,v),E[send(l,v)])� θ′′

ts′ = 〈θ′′,t[E[unit]]〉 tr′ = 〈θ′′′,t′
C′

[E′[λδ x.e(v)]]〉

(t′,C.C),P‖ts‖tr,σ
MCom=⇒ (t′,C),P‖ts′‖tr′ ,σ

C = ((S,l,v), )
ts = 〈θ′,t′

C′
[E[λδ x.e(v)]]〉 tr = 〈θ,t[E′[recv(l)]]〉

θ′,C � θ′′′ θ,((R,l,v),E′[recv(l)])� θ′′

ts′ = 〈θ′′′,t′
C′

[E[λδ x.e(v)]]〉 tr′ = 〈θ′′,t[E′[v]]〉

(t′,C.C),P‖ts‖tr,σ
MCom=⇒ (t′,C),P‖ts′‖tr′ ,σ

Figure 6. Constraint matching is defined by four rules. Communication constraints are matched with threads performing the opposite
communication action of the constraint.

let fun f() = recv(c)
fun g() = send(c,1);g()
fun h() = send(c,2);h()

in spawn(g); spawn(h); f(); ...; f()
end

Figure 10. Memoization of the function f can lead to the starva-
tion of either of g or h depending on which value the original ap-
plication of f consumed from channel c.

4.6 Schedule Aware Partial Memoization

To address the limitations in the previous section, we define
two new symmetric rules to pause and resume memoization (see
Fig. 11). Pausing memoization (rule PAUSE MEMO) is similar to
the rule END MEMO in Fig. 4 except the failed constraints are
not discarded and the thread context is not given an expression
to evaluate. Instead the thread retains its log of currently unsat-
isfied constraints which prevents its further evaluation. This ef-
fectively pauses the evaluation of this thread but allows regular
threads to continue normal evaluation. Notice we only pause a
thread utilizing memo information once it has correctly discharged
its constraints. We could envision an alternative definition which
pauses non-deterministically on any constraint and moves the non-
discharged constraints back to the thread context which holds un-
satisfied constraints. For the sake of simplicity we opted for greedy
semantics which favors the utilization of memoization.

We can resume the paused thread, enabling it discharge other
constraints using the rule RESUME MEMO, which begins constraint
discharge anew for a paused thread. Thus, if a thread context has a
set of constraints that were not previously satisfied and evaluation
is not utilizing memo information, we can once again apply our
ℑ function. Note that the use of memo information can be ended
at any time (rule END MEMO can be applied instead of PAUSE
MEMO). We can, therefore, change a thread in a paused state into
a bona fide thread by first applying RESUME MEMO. If ℑ does
not indicate we can discharge any additional constraints, we simple
apply the rule END MEMO.

We also extend our evaluation rules to allow constraints to be
matched against other constraints (rule MCOM). This is accom-
plished by matching constraints between two paused threads. Of
course, it is possible that two threads, both of which were paused
on a constraint that was not satisfiable may nonetheless satisfy one
another. This happens when one thread is paused on a send con-

straint and another on a receive constraint both of which match on
the channel and value. In this case, the constraints on both sender
and receiver can be safely discharged. This allows calls which at-
tempt to use previously memoized constraints to match against con-
straints extant in other calls that also attempt to exploit memoized
state.

5. Soundness
We can relate the states produced by memoized evaluation to the
states constructed by the non-memoizing evaluator. To do so, we
first define a transformation function T that transforms process
states (and terms) defined under memo evaluation to process states
(and terms) defined under non-memoized evaluation (see Fig. 12).
Since memo evaluation stores evaluation contexts in θ they must
be extracted and restored. This is done in the opposite order that
they were pushed onto the stack θ since the top represents the
most recent call. Functions currently in the process of utilizing
memo information must be resumed from the expression captured
in the first non-discharged constraint. Similarly threads which are
currently paused must also be resumed.

Our safety theorem ensures memoization does not yield states
which could not be realized under non-memoized evaluation:

Theorem[Safety] If

P‖〈θ,t[E[λδ x.e(v)]]〉,σ MemS.β1.MemE.β2=⇒ P′‖〈θ′,t[E[v′]]〉,σ′

then there exists α1, . . . ,αn ∈ {App,Ch,Spn,Com} s.t.

T (P‖〈θ,t[E[λδ x.e(v)]]〉) α17−→ . . .
αn7−→ T (P′‖〈θ′,t[E[v′]]〉)

2

The proof 2 is by induction on the length of β1.MemE.β2. Each
of the elements comprising β1.MemE.β2 corresponds to an ac-
tion necessary to discharge previously recorded memoization con-
straints. We can show that every β step taken under memoization
corresponds to some number of pure steps, and zero or one side-
effecting steps under non-memoized evaluation: zero steps for re-
turns and memo actions (e.g. MEMS, MEME, MEMP, and MEMR),
and one step for core evaluation, and effectful actions (e.g., MCH,
MSPAWN, MRECV, MSEND, and MCOM). Since a function which

2 see http://www.cs.purdue.edu/homes/lziarek/memoproof.pdf
for full details.



(PAUSE MEMO)

(t, /0),P,σ MemP=⇒ P,σ
(RESUME MEMO) (MCOM)

ℑ(C,P) = C′ C = C′′.C′

P‖〈θ,tC[E[λδ x.e(v)]]〉,σ MemR=⇒ (t,C′′),P‖〈θ,tC′ [E[λδ x.e(v)]]〉,σ

C = ((S,l,v), ) C′ = ((R,l,v), )
ts = 〈θ,tC.C[λδ x.e(v)]〉 tr = 〈θ′,t′

C′.C′
[λδ1

x.e′ (v′)]〉
θ,C � θ′′ θ′,C′ � θ′′′

ts′ = 〈θ′′,tC[λδ x.e(v)]〉 tr′ = 〈θ′′′,t′
C′

[λδ1
x.e′ (v′)]〉

P‖ts‖tr,σ
MCom=⇒ P‖ts′‖tr′ ,σ

Figure 11. Schedule Aware Partial Memoization.

T ((t,C),P‖〈θ,tC′ [E[λδ x.e(v)]]〉) = T (P‖〈θ,tC.C′ [E[λδ x.e(v)]]〉)
T ((P1‖P2)) = T (P1)‖T (P2)
T (〈θ,t[e]〉) = t[T (En[. . .E1[e]])] θi = (δi,vi,Ei,Ci) ∈ θ

T (〈θ,t( ,e′).C[e]〉) = t[T (En[. . .E1[e′]])] θi = (δi,vi,Ei,Ci) ∈ θ

T (λδ x.e) = λx.e
T (e1 (e2)) = T (e1)(T (e2))

T (spawn(e)) = spawn(T (e))
T (send(e1,e2)) = send(T (e1),T (e2))

T (recv(e)) = recv(T (e))
e otherwise

Figure 12. T defines an erasure property on program states. The first four rules remove memo information and restore evaluation contexts.

is utilizing memoized information does not execute pure code (rule
APP under 7−→ ), it may correspond to a number of APP transitions
under 7−→ .

6. Implementation

Our implementation is incorporated within Multi-MLton, an exten-
sion of MLton (MLton), a whole-program optimizing compiler for
Standard ML, that provides support for parallel thread execution.
The main extensions to Multi-MLton to support partial memoiza-
tion involve insertion of read and write barriers to track accesses
and updates of references, barriers to monitor function arguments
and return values, and hooks to the Concurrent ML library to mon-
itor channel based communication.

6.1 Multi-MLton

To support parallel execution, we modified the MLton compiler to
support parallel threads. A POSIX pthread executes on each pro-
cessor. Each pthread manages a lightweight Multi-MLton thread
queue. Each pthread switches between lightweight MLton threads
on its queue when it is preempted. Pthreads are spawned and man-
aged by Multi-MLton’s runtime. Currently, our implementation
does not support migration of Multi-MLton threads to different
thread queues.

The underlying garbage collector also supports parallel alloca-
tion. Associated with every processor is a private memory region
used by threads it executes; allocation within this region requires
no global synchronization. These regions are dynamic and grow-
able. All pthreads must synchronize when garbage collection is
triggered. Data shared by threads found on different processors are
copied to a shared memory region that requires synchronization to
access.

6.2 Parallel CML and hooks

Our parallel implementation of CML is based on Reppy’s parallel
model of CML (Reppy and Xiao 2008). We utilize low level locks
implemented with compare and swap to provide guarded access
to channels. Whenever a thread wishes to perform an action on a
channel, it must first acquire the lock associated with the channel.
Since a given thread may only utilize one channel at a time, there
is no possibility of deadlock.

The underlying CML library was also modified to make mem-
oization efficient. The bulk of the changes were hooks to monitor
channel communication and spawns, additional channel queues to
support constraint matching on synchronous operations, and to log
successful communication (including selective communication and
complex composed events).

The constraint matching engine required a modification to the
channel structure. Each channel is augmented with two additional
queues to hold send and receive constraints. When a constraint is
being tested for satisfiability, the opposite queue is first checked
(e.g. a send constraint would check the receive constraint queue). If
no match is found, the regular queues are checked for satisfiability.
If the constraint cannot be satisfied immediately it is added to the
appropriate queue.

6.3 Supporting Memoization

Any SML function can be annotated as a candidate for memoiza-
tion. For such annotated functions, its arguments and return values
at different call-sites, the communication it performs, and infor-
mation about the threads it spawns are recorded in a memo table.
Memoization information is logged through hooks to the CML run-
time and stored by the underlying client code. In addition, to sup-
port partial memoization, the continuations of logged communica-
tion events are also saved.



Our memoization implementation extended CML channels to
be aware of memoization constraints. Each channel structure con-
tained a queue of constraints waiting to be solved on the channel.
Because it will not be readily apparent if a memoized version of a
CML function can be utilized at a call site, we delay a function ap-
plication to see if its constraints can be matched; these constraints
must be satisfied in the order in which they were generated.

Constraint matching can certainly fail on a receive constraint. A
receive constraint obligates a receive operation to read a specific
value from a channel. Since channel communication is blocking, a
receive constraint that is being matched can choose from all values
whose senders are currently blocked on the channel. This does not
violate the semantics of CML since the values blocked on a channel
cannot be dependent on one another; in other words, a schedule
must exist where the matched communication occurs prior to the
first value blocked on the channel.

Unlike a receive constraint, a send constraint can only fail if there
are (a) no matching receive constraints on the sending channel that
expect the value being sent, or (b) no receive operations on that
same channel. A CML receive operation (not receive constraint) is
ambivalent to the value it removes from a channel; thus, any receive
on a matching channel will satisfy a send constraint.

If no receives or sends are enqueued on a constraint’s target chan-
nel, a memoized execution of the function will block. Therefore,
failure to fully discharge constraints by stalling memoization on
a presumed unsatisfiable constraint does not compromise global
progress. This observation is critical to keeping memoization over-
heads low. Our memoization technique relies on efficient equality
tests, and approximate equality on reals and functions; the latter is
modeled as closure equality.

Memoization data is discarded during garbage collection. This
prevents unnecessary build up of memoization meta-data during
execution. As a heuristic, we also enforce an upper bound for
the amount of memo data stored for each function, and the space
that each memo entry can take. A function that generates a set of
constraints whose size exceeds the memo entry space bound is not
memoized. For each memoized function, we store a list of memo
meta-data. When the length of the list reaches the upper limit but
new memo data is acquired upon an application of the function to
previously unseen arguments, one entry from the list is removed at
random.

6.4 Benchmarks

We examined three benchmarks to measure the effectiveness of
partial memoization in a parallel setting. The first benchmark is a
streaming algorithm for approximating a k-clustering of points on
a geometric plane. The second is a port of the STMBench7 bench-
mark (Guerraoui et al. 2007). STMBench7 utilizes channel based
communication instead of shared memory and bears resemblance
to the red-black tree program presented in Section 3. The third is
Swerve (Ziarek et al. 2006), a highly-tuned webserver written in
CML.

Similar to most streaming algorithms (Matthew Mccutchen and
Khuller 2008), a k-clustering application defines a number of
worker threads connected in a pipeline fashion. Each worker main-
tains a cluster of points that sit on a geometric plane. A stream
generator creates a randomized data stream of points. A point is
passed to the first worker in the pipeline. The worker computes a
convex hull of its cluster to determine if a smaller cluster could be
constructed from the newly received point. If the new point results
in a smaller cluster, the outlier point from the original cluster is
passed to the next worker thread. On the other hand, if the received
point does not alter the configuration of the cluster, it is passed on

to the next worker thread. The result defines an approximation of
n clusters (where n is the number of workers) of size k (points that
compose the cluster).

STMBench7 (Guerraoui et al. 2007), is a comprehensive, tunable
multi-threaded benchmark designed to compare different STM im-
plementations and designs. Based on the well-known 007 database
benchmark (Carey et al. 1993), STMBench7 simulates data storage
and access patterns of CAD/CAM applications that operate over
complex geometric structures. At its core, STMBench7 builds a
tree of assemblies whose leaves contain bags of components; these
components have a highly connected graph of atomic parts and de-
sign documents. Indices allow components, parts, and documents
to be accessed via their properties and IDs. Traversals of this graph
can begin from the assembly root or any index and sometimes ma-
nipulate multiple pieces of data.

STMBench7 was originally written in Java. Our port, besides
translating the assembly tree to use a CML-based server abstrac-
tion (as discussed in Section 3), also involved building an STM im-
plementation to support atomic sections, loosely based on the tech-
niques described in (Saha et al. 2006; Adl-Tabatabai et al. 2006).
All nodes in the complex assembly structure and atomic parts graph
are represented as servers with one receiving channel and handles
to all other adjacent nodes. Handles to other nodes are simply the
channels themselves. Each server thread waits for a message to
be received, performs the requested computation, and then asyn-
chronously sends the subsequent part of the traversal to the next
node. A transaction can thus be implemented as a series of commu-
nications with various server nodes.

Swerve is a web server written entirely in CML. It consists of
a collection of modules that communicate using CML’s message-
passing operations. There are three critical modules of interest: (a)
a listener that processes incoming requests; (b) a file processor that
handles access to the underlying file system; and, (c) a timeout
manager that regulates the amount of time allocated to serve a
request. There is a dedicated listener for every distinct client, and
each request received by a listener is delegated to a server thread
responsible for managing that request. Requested files are broken
into chunks and packaged as messages sent back to the client.

7. Results
Our benchmarks were executed on a 16-way AMD Opteron 865
server with 8 processors, each containing two symmetric cores,
and 32 GB of total memory, with each CPU having its own lo-
cal memory of 4 GB. Access to non-local memory is mediated
by a hyper-transport layer that coordinates memory requests be-
tween processors. To measure the effectiveness of our memoization
technique, we executed two configurations (one memoized, and the
other non-memoized) of our k-clustering algorithm, STMBench7,
and Swerve, and measured overheads and performance by averag-
ing results over ten executions. Non-memoized executions utilized
a clean version of Multi-MLton without memoization hooks and
barriers.

The k-clustering algorithm utilizes memoization to avoid redun-
dant computations based on previously witnessed points as well
as redundant computations of clusters. For STMBench7 the non-
memoized configuration uses our STM implementation without any
memoization where as the memoized configuration implements
partial memoization of aborted transactions. Swerve uses memo-
ization to avoid reading and processing previously requested files
from disk.

For k-clustering, we computed 16 clusters of size 60 out of a
stream of 10K randomly generated points. This resulted in the
creation of 16 workers threads, one stream generating thread, and a



sink thread which aggregates the computation results. STMBench7
was executed on a graph in which there were approximately 280k
complex assemblies and 140k assemblies whose bags referenced
one of 100 components; by default, each component contained
a parts graph of 100 nodes. STMBench7 creates a number of
threads proportional to the number of nodes in the underlying
data structure; this is roughly 400K threads for our configuration.
Our experiments on Swerve were executed using the default server
configuration and were exercised using HTTPerf, a well known tool
for measuring webserver performance.

The benchmarks represent three very different programming
models – pipeline stream-based parallelism (k-clustering), dy-
namically established communication links (Swerve), and soft-
ware transactions (STM-Bench7), and leverage different executions
models – k-clustering makes use of long-lived worker-threads while
STMBench7 utilizes many lightweight server threads. Swerve uti-
lizes both lightweight server threads in conjunction with long-lived
worker threads. Each run of the benchmarks have execution times
that range between 1 and 3 minutes.

For k-clustering we varied the number of repeated points gener-
ated by the stream. Configurations in which there is a high degree
of repeated points offer the best performance gain (see Fig. 13(b)).
For example, an input in which 50% of the input points are repeated
yields roughly 50% performance gain. However, we also observe
roughly 17% performance improvement even when all points are
randomized. This is because the cluster’s convex hull shrinks as the
points which comprise the cluster become geometrically compact.
Thus, as the convex hull of the cluster shrinks, the likelihood of a
random point being contained within the convex hull of the cluster
is reduced. Memoization can take advantage of this phenomenon
by avoiding recomputation of the convex hull as soon as it can be
determined that the input point resides outside the current cluster.
Although we do not envision workloads that have high degrees of
repeatability, memoization nonetheless leads to a 30% performance
gain on a workload in which only 10% of the inputs are repeated.

In STMbench7, the utility of memoization is closely correlated to
the number and frequency of aborted transactions. Our tests varied
the read-only/read-write ratio (see Fig. 13(a)) within transactions.
Only transactions that modify values can cause aborts. Thus, an
execution where all transactions are read-only cannot be acceler-
ated, but one in which transactions can frequently abort (because
of conflicts due to concurrent writes) offer potential opportunities
for memoization. Thus, the cost to support memoization is seen
when there are 100% read-only transactions; in this case, the over-
head is roughly 11%. These overheads arise because of the cost to
capture memo information (storing arguments, continuations, etc)
and the cost associated with trying to utilize the memo information
(discharging constraints).

Notice that as the number of transactions which perform modifi-
cations to the underlying data-structure increases so do memoiza-
tion gains. For example, when the percentage of read-only transac-
tions is 60%, we see an 18% improvement in runtime performance
compared to a non-memoizing implementation for STMBench7.

We expected to see roughly a linear trend correlated to the in-
crease in transactions which perform an update. However, we no-
ticed that performance degrades about 10% from a read/write ratio
of 20 to a read/write ratio of zero. This phenomenon occurs be-
cause memoized transactions are more likely to complete on their
first try when there are fewer modifications to the structure. Since
a non-memoized transaction requires longer to complete, it has a
greater chance of aborting when there are frequent updates. This
difference becomes muted as the number of changes to the data
structure increase.

In Swerve, we observe an increase in performance correlated to
the size of the file being requested by HTTPerf (see Fig. 13(c)); per-
formance gains are capped at roughly 80% for file sizes greater than
8 MB. For each requested file, we build constraints corresponding
to the file chunks read from disk. As long as no errors are encoun-
tered, the Swerve file processor sends the file chunks to be pro-
cessed into HTTP packets by another module. After each chunk
has been read from disk the file processor polls other modules for
timeouts and other error conditions. If an error is encountered, sub-
sequent file processing is stopped and the request is terminated.
Partial memoization is particularly well suited for Swerve’s file
processing semantics because control is reverted to the error han-
dling mechanism precisely at the point an error is detected. This
corresponds to a failed constraint.

For all benchmarks, memory overheads are proportional to cache
sizes and averaged roughly 15% for caches of size eight. The cache
size defines the number of different memoized calls for a function
maintined; thus a cache size of eight means that every memoized
function records effects for eight different arguments.

8. Related Work

Memoization, or function caching (Liu and Teitelbaum 1995; Pugh
1988; Heydon et al. 2000; Swadi et al. 2006), is a well under-
stood method to reduce the overheads of redundant function exe-
cution. Memoization of functions in a concurrent setting is signif-
icantly more difficult and usually highly constrained (Pickett and
Verbrugge 2005). We are unaware of any existing techniques or
implementations that apply memoization to the problem of reduc-
ing transaction overheads in languages that support selective com-
munication and dynamic thread creation. Our approach also bears
resemblance to the procedure summary construction for concurrent
programs (Qadeer et al. 2004). However, these approaches tend to
be based on a static analysis (e.g., the cited reference leverages pro-
cedure summaries to improve the efficiency of model checking) and
thus are obligated to make use of memoization greedily. Because
our motivation is quite different, our approach can consider lazy al-
ternatives, ones that leverage synchronization points to stall memo
information use, resulting in potentially improved runtime benefit.

Recently software transactions (Harris and Fraser 2003; Saha
et al. 2006) have emerged as a new method to safely control concur-
rent execution. There has also been work on applying these tech-
niques to a functional programming setting (Harris et al. 2005; Rin-
genburg and Grossman 2005). These proposals usually rely on an
optimistic concurrency control model that checks for serializabil-
ity violations prior to committing the transaction, aborting when
a violation is detected. Our benchmark results suggest that partial
memoization can help reduce the overheads of aborting optimistic
transactions.

Self adjusting mechanisms (Acar et al. 2008; Ley-Wild et al.
2008) leverage memoization along with change propagation to au-
tomatically alter a program’s execution to a change of inputs given
an existing execution run. Memoization is used to identify parts
of the program which have not changed from the previous execu-
tion while change propagation is harnessed to install changed val-
ues where memoization cannot be applied. There has also been re-
cent work on using change propagation in a parallel setting (Ham-
mer et al. 2007). The programming model assumes fork/join par-
allelism, and is therefore not suitable for the kinds of contexts we
consider. We believe our memoization technique is synergistic with
current self-adjusting techniques and can be leveraged along with
self-adjusting computation to create self-adjusting programs which
utilize message passing.



(a) (b) (c)

Figure 13. Normalized runtime % speedup for k-clustering, STMBench7, and Swerve benchmarks of memoized evaluation compared to
non-memoized execution.

Our technique also shares some similarity with transactional
events (Donnelly and Fluet 2006; Effinger-Dean et al. 2008). Trans-
actional events explore a state space of possible communications
finding matching communications to ensure atomicity of a col-
lection of actions. To do so transactional events require arbitrary
lookahead in evaluation to determine if a complex composed event
can commit. Partial memoization also explores potential matching
communication actions to satisfy memoization constraints. How-
ever, partial memoization avoids the need for arbitrary lookahead –
failure to discharge memoization constraints simply causes execu-
tion to proceed as normal.
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