Stabilizers: A Modular Checkpointing Abstraction for
Concurrent Functional Programs

Lukasz Ziarek

Philip Schatz

Suresh Jagannathan

Department of Computer Science
Purdue University
{1ziarek,schatzp, suresh}@cs.purdue.edu

Abstract

Transient faults that arise in large-scale software systeam often
be repaired by re-executing the code in which they occurriBsc
ing a meaningful semantics for safe re-execution in matgaded
code is not obvious, however. For a thread to correctly exete a
region of code, it must ensure that all other threads whiele kat-
nessed its unwanted effects within that region are alsotex¢o a
meaningful earlier state. If not done properly, data incsiescies
and other undesirable behavior may result. However, autoatly
determining what constitutes a consistent global checitpsinot
straightforward since thread interactions are a dynanopgmty of
the program.

In this paper, we present a safe and efficient checkpointing
mechanism for Concurrent ML (CML) that can be used to recover
from transient faults. We introduce a new linguistic alsticm
calledstabilizersthat permits the specification of per-thread mon-
itors and the restoration of globally consistent checkimisafe
global states are computed through lightweight monitoahgom-
munication events among threads (e.g. message-passirajiops
or updates to shared variables).

Our experimental results on several realistic, multittezh
server-style CML applications, including a web server andra
dowing toolkit, show that the overheads to use stabilizezsmall,
and lead us to conclude that they are a viable mechanism fior de
ing safe checkpoints in concurrent functional programs.

Keywords: Concurrent programming, error recovery, check-
pointing, transactions, Concurrent ML, exception hargllin

1. Introduction

A transient fault is an exceptional condition that can bemfeme-
died through re-execution of the code in which it is raisegh-T
ically, these faults are caused by the temporary unavétialoif

a resource. For example, a program that attempts to comatanic
through a network may encounter timeout exceptions becalse
high network load at the time the request was issued. Trainsie
faults may also arise because a resource is inherentlyiainles|

2006 ACM International Conference on Functional Prograngmi

consider a network protocol that does not guarantee paekeed;.
In large-scale systems comprised of many independentiyuéxe
components, failure of one component may lead to transauisf
in others even after the failure is detected [7]. For examptdient-
server application that enters an unrecoverable erra@ stay need
to be rebooted; here, the server behaves as a temporariilina
able resource to its clients who must re-issue requestsiseinig
the period the server was being rebooted. Transient fadisaiso
occur because program invariants are violated. Serializatio-
lations that occur in software transaction systems [17 32D are
typically rectified by aborting the offending transactiardaaving
it re-execute.

A simple solution to transient fault recovery would be to-cap
ture the global state of the program before an action exec¢hes
could trigger such a fault. If the fault occurs and raises xaep-
tion, the handler only needs to restore the previously sprx@gtam
state. Unfortunately, transient faults often occur in leagning
server applications that are inherently multi-threadet! veich
must nonetheless exhibit good fault tolerance charatitsjsap-
turing global program state is costly in these environmedtsthe
other hand, simply re-executing a computation withoutrtglgrior
thread interactions into account can result in an incomsigpro-
gram state and lead to further errors, such as serialigakitla-
tions.

Suppose a communication event via message-passing occurs

between two threads and the sender subsequently re-exahigte
code to recover from a transient fault. A spurious unhanejestu-
tion of the (re)sent message may result because the ree@wid
have no knowledge that a re-execution of the sender hasredcur
Thus, it has no need to expect re-transmission of a previasl
ecuted message. In general, the problem of computing abdensi
checkpoint for a transient fault requires calculating ttensitive
closure of dependencies manifest among threads and thersett
code which must be re-executed.

To alleviate the burden of defining and restoring safe and effi
cient checkpoints in concurrent functional programs, wappse a
new language abstraction callsthbilizers Stabilizers encapsulate
three operations. The first initiates monitoring of code dom-
munication and thread creation events, and establishesdHocal
checkpoints when monitored code is evaluated. This thiezal-
checkpoint can be viewed as a restoration point for any igahs
fault encountered during the execution of the monitorecred he
second operation reverts control and state to a safe gldieake
point when a transient fault is detected. The third openagiows
previously established checkpoints to be reclaimed.

The checkpoints defined by stabilizers are first-class antt co
posable: a monitored procedure can freely create and rethar
monitored procedures. Stabilizers can be arbitrarily esesand

2006/6/9

work in the presence of a dynamically-varying number of dldse
and non-deterministic selective communication. We dernates
the use of stabilizers for several large server applicatioritten
in Concurrent ML.

Stabilizers provide a middle ground between the transpsren
afforded by operating systems or compiler-injected cheirkp,
and the precision afforded by user-injected checkpointsur ap-
proach, thread-local state immediately preceding a noalkaction
(e.g., thread communication, thread creation, etc.) iand=g as a
possible checkpoint for that thread. In addition, appiarsd may
explicitly identify program points where local checkpairghould
be taken, and can associate program regions with theseisgeci
points. When a rollback operation occurs, control revertsrte of
these saved checkpoints for each thread. Rollbacks ar@téuitto
recover from transient faults. The exact set of checkpaintsen is
determined by safety conditions that ensure that a gloloalhsis-
tent state is preserved. Our approach guarantees that vthesead
is rolled-back to a thread-local checkpoint stateother threads
with which it has communicated will be placed in states cstesit
with C.

This paper makes three contributions:

1. The design and semantics sthbilizers a new modular lan-
guage abstraction for transient fault recovery in conaurre
functional programs. To the best of our knowledge, stadnitiz
are the firstanguage-centriclesign of a checkpointing facility
that provides global consistency and safety guarantedsafor
sient fault recovery in programs with dynamic thread coegti
and selective communication [25].

2. A lightweight dynamic monitoring algorithm faithful the se-
mantics that constructs efficient global checkpoints basetie
context in which a restoration action is performed. Efficien
is defined with respect to the amount of rollback required to
ensure that all threads resume execution after a checkjgoint
restored to a consistent global state.

3. A detailed evaluation study for Concurrent ML that quiesi
the cost of using stabilizers on various open-source setyés
applications. Our results reveal that the cost of defining an
monitoring thread state is small, typically adding roughty
more than four to six percent overhead to overall execution
time. Memory overheads are equally modest.

The remainder of the paper is structured as follows. Se&ion
describes the stabilizer abstraction. Section 3 providestaating
example that highlights the issues associated with trangelt
recovery in a highly multi-threaded webserver, and howiktalns
can be used to alleviate complexity and improve robustresep-
erational semantics is given in Section 4. A strategy forantental
construction of checkpoint information is given in Sectiotmple-
mentation details are provided in Section 6. A detailedatin
on the costs and overheads of using stabilizers for trarfsiat re-
covery is given in Section 7, related work is presented ini6e@,
and conclusions are given in Section 9.

2. Programming Model

Stabilizers are expressed using three primitives with tflewing
signatures:

stable (’a -> ’b) -> ’a ->"’b
stabilize : unit -> ’a
cut : unit -> unit

A stable sectioms a monitored section of code whose effects are
guaranteed to be reverted as a single unit. The primitbedle is
used to define stable sections. Given functidhe evaluation of
stable f yields a new functiorf’ identical tof except that inter-
esting communication, shared memory access, locks, angnspa

events are monitored and grouped. Thus, all actions wittstaa
ble section are associated with the same checkpoint. Thiarse
tics is in contrast to classical checkpointing schemes avtieere
is no manifest grouping between a checkpoint and a colleaifo
actions.

The second primitivegtabilize reverts execution to a dy-
namically calculated global state; this state will alwagsrespond
to a program state that existed immediately prior to exeoudf
a stable section, communication event, or thread spawrt fmin
each thread. We qualify this claim by observing that extienoa-
revocable operations that occur within a stable sectiomibeds to
be reverted (e.g., /0O, foreign function calls, etc.) mustiandled
explicitly by the application prior to an invocation okaabilize
action. Note that similar to operations likeise or exit that also
do not return, the result type etabilize is synthesized from the
context in which it occurs.

Informally, a stabilize action reverts all effects perfaarwithin
a stable section much like an abort action reverts all effeithin a
transaction. However, whereas a transaction enforcesatgiand
isolation until a commit occurs, stabilizers enforce thesmerties
only when a stabilize action occurs. Thus, the actions pexdd
within a stable section are immediately visible to the aésivhen
a stabilize action occurs these effects along with thein@gses are
reverted.

The third primitive,cut, establishes a point beyond which sta-
bilization cannot occur. An error is raised ifsaabilize action
attempts to revert state beyond the point at whiclwaaction oc-
curs. Cut points can be used to prevent the unrolling of atable
actions within a program (e.g., I/O) or to bound the amoumbtH
back that a stabilization action may trigger. A cut is a peead
delimiting action; a cut established in a particular thrbad no ef-
fect on other threads unless they perform stabilizatioiastthat
require restoring this thread past the cut point becauseegfqusly
established dependencies.

Unlike classical checkpointing schemes [28] or exceptian-h
dling mechanisms, the result of invokingtabilize does not
guarantee that control reverts to the state correspondintet
dynamically-closest stable section. The choice of whergrobre-
verts depends upon the actions undertaken by the threauhwith
stable section in which thetabilize call was triggered.

Composability is an important design feature of stabilzer
there is noa priori classification of the procedures that need to
be monitored, nor is there any restriction against nestalge sec-
tions. Stabilizers separate the construction of monitawde re-
gions from the capture of state. It is only when a monitoreat pr
cedure is applied that a potential thread-local restangpioint is
established. The application of such a procedure may inregult
in the establishment of other independently constructeditmied
procedures. In addition, these procedures may themsetvep-b
plied and have program state saved appropriately; thus, séa-
ing and restoration decisions are determined without gdieguto
the behavior of other monitored procedures.

2.1 Interaction of Stable Sections

When a stabilize action occurs, matching inter-thread tsvare
unrolled as pairs. If a send is unrolled, the matching receiust
also be reverted. If a thread spawns another thread withialdes
section that is being unrolled, this new thread (and all étioas)
must also be discarded. All threads which read from a shared
variable must be reverted if the thread that wrote the vatue i
unrolled to a state prior to the write. A program statetablewith
respect to a statement if there is no thread executing insthie
affected by the statement (i.e., all threads are in a poititimtheir
execution prior to the execution of the statement and itssttae
effects).

2006/6/9

S3

g\
") :
@ ol AL
?
;Y
@ (0

Figure 1. Interaction between stable sections.

For example, consider threagd that enters a stable secti¢h
and initiates a communication event with threadsee Fig. 1(a)).
Supposé; subsequently enters another stable seciigmnd again
establishes a communication with threadSuppose further that
receives these events within its own stable sectigriThe program
states immediately prior t¢; and S» represent feasible check-
points as determined by the programmer, depicted as whitkesi
in the example. If a rollback is initiated withisk, then a consistent
global state would require that revert back to the state associated
with the start ofS3 since it has received a communication from
initiated within S2. However, discarding the actions withffy now
obligatest; to resume execution at the start®f since it initiated
a communication event withifi; to ¢2 (executing withinSs). Such
situations can also arise without the presence of nestbtbstac-
tions. Consider the example in Fig. 1(b). Once again, thgrar
is obligated to revert;, since the stable sectigty spans commu-
nication events from botf; and.S,.

3. Motivating Example

Swerve [20] (see Fig 2) is an open-source third-party Web server
wholly written in Concurrent ML. The server is composed oéfiv
separate interacting modules. Communication between le®du

Listener

\
/

NP N

14 6. i
Timeout / N File
Manager 0 . Processor
. B[\
A N/
t5] \

Figure 2. Swerve module interactions for processing a request
(solid lines) and error handling control and data flow (dddires)

for timeouts. The number above the lines indicates the arder
which communication actions occur.

first establishes a timeout quantum with the timeout manéber
and then notifies the file processor (2). If a file processinggth is
available to process the request, the hosting thread iatbthat

the file can be chunked (2). The hosting thread passes to ¢éhe fil
processing thread the channel on which it will receive itsetbut
notification (2). The file processing thread is now respdasib
check for explicit timeout natification (3).

Since a timeout can occur before a particular request giarts
cessing a file (4) (i.e. within the hosting thread defined by th
Listener module) or during the processing of a file (5) (i.e. within
theFile Processor), the resulting error handling code is cum-
bersome. Moreover, the detection of the timeout itself isdied
by a third module, th&imeout Manager. The result is a compli-
cated message passing procedure that spans multiple rmpeath
of which must figure out how to deal with timeouts appropfiate
The unfortunate side effect of such code organization isrtioaiu-
larity is compromised. The code now contains implicit iafgions
that cannot be abstracted (6) (i.e. thele Processor must ex-
plicitly notify the Listner of the timeout). TheSwerve design
illustrates the general problem of dealing with transienit in a

and threads makes extensive use of CML message passing seeomplex concurrent system: how can we correctly handlésfauht

mantics. Threads communicate over explicitly defined canon
which they can either send or receive values. To motivatasige
of stabilizers, we consider the interactions of threeSeérve'’s
modules: theListener, theFile Processor, and theTimeout
Manager. TheListener module receives incomingTTP requests
and delegates file serving requirements to concurrentlgugixe
processing threads. For each new connection, a new lisitener
spawned; thus, each connection has one main governing.entit
The File Processor module handles access to the underlying
file system. Each file that will be hosted is read by a file preaes
thread that chunks the file and sends it via message-passthg t
thread delegated by the listener to host the file. Timeowper-
cessed by th&imeout Manager through the use of timed events
on channels. Threads can poll these channels to check & Haer
been a timeout. In the case of a timeout, the channel will hdldg
signaling time has expired, and is empty otherwise.

Timeouts are the most frequent transient fault present én th
server, and difficult to deal with naively. Indeed, the sgsteau-
thor notes that handling timeouts in a modular way is “trickgd
devotes an entire section of the user manual explaining eheap
sive cross-module error handling in the implementatiomsder
the typical execution flow given in Fig 2. When a new request is
received, the listener spawns a new thread for this cororettiat
is responsible for hosting the requested page. This hostiregd

span multiple modules without introducing explicit croasdule
dependencies to handle each such fault?

Fig. 3 shows the definition afileReader, aSwerve function
in the file processing module that sends a requested file toaste
ing thread by chunking the file contents into a series of smnall
packets. The file is opened ByinIOReader, a utility function in
theFile Processing module. ThefileReader function must
check in every iteration of the file processing loop whethtéme-
out has occurred by calling tiiemeout . expired function due to
the restriction that CML threads cannot be explicitly intgted.

If a timeout has occurred, the procedure is obligated tdynttie
receiver (the hosting thread) through an explicit send cannobl
consumer.

Stabilizers allow us to abstract this explicit notificatipro-
cess by wrapping the file processing logicsefhdFile in a sta-
ble section. Suppose a call &xabilize replaced the call to
CML.send(consumer, Timeout). This action would resultin un-
rolling both the actions ofendFile as well as the receiver, since
the receiver is in the midst of receiving file chunks.

However, a cleaner solution presents itself. Suppose tleat w
modify the definition of th& imeout module to invokestabilize,
and wrap its operations within a stable section as showngn4i
Now, there is no need for any thread to poll for the timeounéve
Since the hosting thread establishes a timeout quantumrbgnce

2006/6/9

fun fileReader name abort consumer =
let fun sendFile() =
let fun loop strm =
if Timeout.expired abort
then CML.send(consumer, Timeout)
else let val chunk =
BinIO0.inputN(strm, fileChunk)
in ... read achunk of the file
and send to receiver
loop strm)
end
in (case BinlOReader.openlt abort name
of NONE => ()
| SOME h=> (loop (BinlOReader.get h);
BinlOReader.closelt h)
end

fun fileReader name abort consumer =
let fun sendFile() =
let fun loop strm =
let val chunk =
BinIO.inputN(strm, fileChunk)

in ... read achunk of the file
and send to receiver
loop strm)
end

in stable fn() =>
(case BinIOReader.openIt abort name
of NONE =>()
| SOME h =>(loop (BinIOReader.get h);
BinIOReader.closeIt h)) ()
end

Italics mark areas in the original where the code is changed.

Figure 3. An excerpt of the Th&ile Processing module inSwerve. The right-hand side shows the code modified to use statsilize

let fun expired (chan) =isSome (CML.poll chan)
fun trigger (chan) = CML.send(chan, timeout)

in ...; trigger(chan)
end

let fun trigger (chan) = stabilize()

in stable (fn() => ... ; trigger(chan)) ()
end

Figure 4. An excerpt of theTimeout Manager module inSwerve. The right-hand side shows the code modified to use statslidéne)
expired function can be removed and a trigger now calisbilize.

Italics mark areas in the original where the code is changed

fn() =>
let fun receiver() =
case CML.recv consumer

of info => (sendInfo info; ...)
| chunk => (sendBytes bytes; ...)
| timeout => error handling code
| done = ...
in ... ; loop receiver
end

stable fn () =>
let fun receiver() =
case CML.recv consumer

of info => (sendInfo info; ...)
| chunk => (sendBytes bytes; ...)
| done => ...
in ... ; loop receiver

end

where the code is changed.

Figure 5. An excerpt of theL.istener module inSwerve. The main processing of the hosting thread is wrapped inkdestection and
the timeout handling code can be removed. The right-haredstidws the code modified to use stabilizers. Italics mawsarethe origina

nicating withTimeout and passes this information to the file pro-

cessor thread, anytabilize action performed by th&imeout
manager will unroll all actions related to processing tHis fThis
transformation therefore allows us to specify a timeoutmaeésm
without having to embed non-local timeout handling logi¢hin
each thread that potentially could be affected. The hostingad
itself is also simplified (as seen in Fig. 5); by wrapping igit
within a stable section, we can remove all of its timeout rehamn-

dling code as well. A timeout is now handled completely tigtou

the use of stabilizers localized within tif@meout module. This

improved modularization of concerns does not lead to rediuce

functionality or robustness. Indeed, a stabilize actionsea the
timed-out request to be transparently re-processed, awvslthe

webserver to process a new request, depending on the dbsired
havoir. Thus, each module only has to manage its own comp®nen

and does not have to explicitly communicate with other meslir
the case of a timeout error.

4. Semantics

Our semantics is defined in terms of a core call-by-valuetfanal
language with threading primitives (see Fig. 6). For pexsipy, we
first present an interpretation of stabilizers in which ga#ibn of
stable sections immediately results in the capture of aistamg
global checkpoint. Furthermore, we restrict the languageaip-
ture checkpoints only upon entry to stable sections, rethar at
any communication or thread creation action. This semsurée
flects a simpler characterization of checkpointing tharirtfemal
description presented in Section 2. In Section 5, we refirsea-
proach to construct checkpoints incrementally.

In the following, we use metavariablesto range over values,
andd to range over stable section or checkpoint identifiers. \& al
use P for thread terms, and for expressions. We use over-bar
to represent a finite ordered sequence, for instajficepresents
fife ... fn. The terma.@ denotes the prefix extension of the
sequence with a single elementy, @.« the suffix extensiorya’
denotes sequence concatenati¢rdenotes empty sequences and

2006/6/9

SYNTAX:

PROGRAM STATES:

P == P|P | tle]z P € Process
e == x| 1] Axe t € Tid
| mkCh() | send(e,e) | recv(e) | spawn(e) x € Var
| stable(e) | stable(e) | stabilize() | cut() 1 € Channel
6 € Stableld
EVALUATION CONTEXTS: v € Val = unit | Ax.e | stable(Ax.e) | 1
o a,B € Op = {LR,SRCOMM,SSST,ES,CUT}
Eu=e |dE](;) | V(E)d| 1B A € StableState= Process x StableMap
send(F,e) | send(1, F) | A € StableMap = Stableld 23 StableState
recv(E) | stable(E) | stable(F)
P LOCAL EVALUATION RULES:
Ex"le] n= Plt[E[e]l5
Ax.e(v) — el[v/x]
mkCh() — 1, 1 fresh
e— e
t,P LR t,P_s
EZ le], A = EZ e, A
GLOBAL EVALUATION RULES:
t'fresh § fresh V6 € Dom(A), § >4

Egt’P[spawn(e)]7 A= P||t[Eunit]]5]|t’[e]s, A

t'fresh
P = P'||t[E[send (1, v)]]5]|t'[E'[recv(1)]]

N
P, A B2 Pt [Elunit]5]|t (B [v]5, A

CuT
— Et’P

Egt’P[cut()], A i

[unit], ¢

A = A[§' — (E2F[stable(Ax.e)(v)], A)]
A=A (Omin), n <38 V&€ Dom(A)

%mi
EE’P[stable()\ x.e)(v)],A = E;/’I;[stable(e[v/x])]7 A[" — A

Eg’gp[stable(v)]7 A= Egt’P[VL A — {5}

A@) = (P, A"
E;’gp[stabilize()]7 AL poA

Figure 6. A core call-by-value language for stabilizers.

sets, andv < o holds if@ is a prefix ofa’. We write| @ | to
denote the length of sequenae

identifier (denoted byj) that indicates the stable section the thread
is currently executing within. Stable section identifiers ardered

Our communication model is a message-passing system with under a relation that allows us to compare them (e.qg., thelgdze
synchronous send and receive operations. We do not impose ahought of as integers incremented by a global counter)sTive

strict ordering of communication actions on channels; comica-
tion actions on the same channel are paired non-determaligt

write t[e]s if a thread with identifier is executing expressionin
the context of stable sectiah since stable sections can be nested,

To model asynchronous sends, we simply spawn a thread to per-the notation generalizes to sequences of stable sectiotifides

form the sendl To this core language we add three new prim-
itives: stable and stabilize. When a stable function is ap-
plied, a global checkpoint is established, and its bodyptishas
stable(e), is evaluated in the context of this checkpoint. The sec-
ond primitive, stabilize, IS used to initiate a rollback and the
third, cut, clears all current checkpoints. An attempt to restore to
a checkpoint which is no longer present results in a studk stat

is tantamount to an error.

The syntax and semantics of the language are given in Fig. 6.
Expressions are variables, locations to represent chanhel
abstractions, function applications, thread creationsarounica-
tion actions to send and receive messages on channels, er ope
ations to define stable sections, and to stabilize glob# $taa
consistent checkpoint. We do not consider references sncitrie

language as they can be modeled in terms of operations on chan

nels. We describe how to handle references efficiently imala-
mentation in Section 6.2.

A program is defined as a collection of threads. Each thread
is uniquely identified, and is also associated witktable section

1 Asynchronous receives are not feasible without a mailbatrabtion.

with sequence order reflecting nesting relationships. Wi det-
orating a term with stable section identifiers when appedpriOur
semantics is defined up to congruence of threas’(= P’||P).
We writeP © {t[e]} to denote the set of threads that do not include
athread with identifiet, andP @ {t[e]} to denote the set of threads
that contain a thread executing expressiomith identifiert.

We use evaluation contexts to specify order of evaluatighiwi
a thread, and to prevent premature evaluation of the express
encapsulated withingpawn expression. We define a thread context
Eg’P [e] to denote an expressieavailable for execution by thread

t € P within context E; the sequencé indicates the ordered
sequence of nested stable sections within which the express
evaluates.

Local reductions within a thread are specified by an auxiliar
relation,e — ¢’ that evaluates expressienwithin some thread
to a new expressior’. The local evaluation rules are standard:
function application substitutes the value of the actuabpeeter
for the formal in the function body, and channel creatioultssn
the creation of a new location that acts as a container fosages
transmission and receipt.

2006/6/9

Program evaluation is specified by a global reduction m@hati

P A, = P’ A, that maps a program state to a new program
state. We tag each evaluation step with an actigrthat defines

the effects induced by evaluating the expression. We wsite *

to denote the reflexive, transitive closure of this relatibhe ac-
tions of interest are those that involve communication &sjeor
manipulate stable sections. We use lah&l$o denote local reduc-
tion actions,spto denote thread creationopmMm to denote thread
communicationssto indicate the start of a stable secti@r, to
indicate a stabilize operatiois to denote the exit from a stable
section, andcuT to indicate a cut action. A program state con-
sists of a collection of evaluating thread?3)(and a stable mapY)
that defines a finite function associating stable sectiontifiers to
states. A program begins evaluation with an empty stable map

There are six global evaluation rules. The first describasgbs
to the global state when a thread to evaluate expressmaoreated;
the new thread evaluatesn a context without any stable identifier.
The second describes how a communication event synchrgnous
pairs a sender attempting to transmit a value along a spebidia-
nel in one thread with a receiver waiting on the same chanreahi
other thread. Evaluating @t simply discards all previous stored
checkpoints.

The remaining three, and most interesting, global evalnati
rules are ones involving stable sections. When a stablé&seist
newly entered, a new stable section identifier is generatese
identifiers are related under a total order that allows tineaswics
to express properties about lifetimes and scopes of sudiosec
The newly created identifier is mapped to the current glotaks
and this mapping is recorded in the stable map. This statesepts
a possible checkpoint. The actual checkpoint for this idientis

Thread 1 Thread 2
let fun f() = let fun h() =
fun g() =

recv(c) send(c, V)

in stable h ()
end

in stable
(stable f ())
end

Figure7. The interaction of thread communication and stable sec-
tions.

The soundness of the semantics is defined bgrasureprop-
erty on stabilize actions. Consider the sequence of actiotigt
comprise a possible execution of a program. Suppose thatitha
stabilize operation that occurs ii. The effect of this operation
is to revert the current global program state to an earlieckpoint.
However, given that program execution successfully comtinaf-
ter thestabilize call, it follows that there exists a sequence of
actions from the checkpoint state that yields the same atatke
original, but which doesot involve execution of thetabilize
operation. In other wordstabilize actions can never manufac-
ture new states, and thus have no effect on the final stategfam
evaluation. We formalize this property in the following sigfthe-
orem.

TheorenSafety.] Let

a ST.B
EpTle], A = * P A" = " P"|t[v], A

computed as the state in the stable map that is mapped by thelf @ is non-empty, there exists an equivalent evaluation

least stable identifier. This identifier represents thdest active
checkpointed state. This state is either the state juskpoatted,

in the case when the stable map is empty, or represents some

earlier checkpoint state known to not have any dependemdtas
actions in other stable sections. In other words, if we atersi
stable sections as forming a tree with branching occurrinigraad

creation points, the checkpoint associated with any stsédtion

represents the root of the tree at the point where contrefgeiat

section.

When a stable section exits, the thread context is apptefyia
updated to reflect that the state captured when this sectisrew
tered no longer represents an interesting checkpointtéidessec-
tion identifier is removed from the resulting stable map. &dltze
action simply reverts to the state captured by the outerstasie
section of this thread. While easily defined, the semansitsghly
conservative because there may be checkpoints that inledge
unrolling that the semantics does not identify. Considerekam-
ple given in Fig. 7 where two threads execute calls to moedor
functionsf, h, gin that order. Becauseis monitored, a global
checkpoint is taken prior to its call. Now, suppose that t#iéto h
by Thread 2occurs before the call t6 completes. Observe that
communicates with functiog via a synchronous communication
action on channet. Assuming no other threads in the program,
cannot complete untig accepts the communication. Thus, when
g is invoked, the earliest global checkpoint calculated ey dta-
ble section associated with the call is the checkpoint &stedal
by thestable section associated with which happens to be the
checkpoint referenced by the stable section that mortitdrsother
words, stabilize actions performed within eitlsor g would result
in the global state reverting back to the starttsfexecution, even
though £ completed successfully. This strategy, while correct, is
unnecessarily conservative as we describe in the nexbgecti

t,P _/E* 1
E; e, A = " PTlt[v], Ay

such thak’ < @.

5. Incremental Construction

Although correct, our semantics is overly conservativeabse a
global checkpoint state is computed upon entry to everylestab
section. Furthermore, communication events that estalnliter-
thread dependencies are not considered in the checkpdintaza
tion. Thus, all threads, even those unaffected by effeatsattcur in
the interval between when the checkpoint is establishedndrgh
itis restored, are unrolled. A better alternative wouldoesthread
state based on the actions witnessed by threads within phitk
intervals. If a thread” observes action performed by thread”
andT is restored to a state that precedes the executiom, Gf’
can be restored to itatestlocal checkpoint state that precedes its
observance ofv. If T withesses no actions of other threads, it is
unaffected by angtabilize calls those threads might make. This
strategy leads to an improved checkpoint algorithm by redpite
severity of restoring a checkpoint, limiting the impact tdyothose
threads that witness global effects, and establishing tbéback
point to be as temporally close as possible to their currate s

Fig. 9 presents a refinement to the semantics that increthenta
constructs a dependency graph as part of program execiitis.
new definition does not require stable section identifierstable
maps to define checkpoints. Instead, it captures the conuantiom
actions performed by threads within a data structure. Thistire
consists of a set of nodes representing interesting proganis,
and edges that connect nodes that have shared dependbiucies.
are indexed by ordered node identifiers, and hold thread. 3tés
also define maps to associate threads with nodes, and theif se
active stable sections.

2006/6/9

Actions: SS,SS,SS,COMM

t SS t2 t SS

©

(b)

SS t2 t1

Figure8. An example of incremental checkpoint construction.

COMM

() (d)

Informally, the actions of each thread in the graph are repre
sented by a chain of nodes that define temporal ordering eadhr
local actions. Backedges are established to nodes repirassta-
ble sections; these nodes define possji#ethreadcheckpoints.
Sources of backedges are communication actions that odgthinw
a stable section, or the exit of a nested stable section.salge
connect nodes belonging to different threads to captuee-thread
communication events.

Graph reachability is used to ascertain a global checkpoint
when astabilize action is performed: when thre&dperforms a
stabilize call, all nodes reachable froffi's current node in the
graph are examined, and the context associated witledstsuch
reachable node for each thread is used as the thread-loeei-ch
point for that thread. If a thread is not affected (transityy by the
actions of the thread performing the rollback, it is not rése to
any earlier state. The collective set of such checkpointstitoites
a global state.

The evaluation relatio®, G ~ P’, G’ evaluates a proces?
executing actiomy with respect to a communication gragh to

yield a new proces®’ and new graplG’. As usuaks* denotes
the reflexive, transitive closure of this relation. Progsaimitially
begin evaluation with respect to an empty graph. The auyilia
relationt[e], G | G’ models intra-thread actions within the graph.
It creates a new node to capture thread-local state, andfsets
current node marker for the thread to this node. In additifotie
action occurs within a stable section, a back-edge is ésiesol
from that node to this section. This backedge is used to iigemt
potential rollback point. If a node has a backedge the rattor
point will be determined by traversing these backedge, this
safe to not store thread contexts with such nodess (stored in the
node in that case). New nodes added to the graph are created wi
a node identifier guaranteed to be greater than any existidg.n
When a stabilization action occurs, the set of nodes redehab
from the node representing the enclosing stable sectioalcsic
lated. Significantly, this set should not include a node esgond-

B
thenP’' A" — * P" A",
51 Example

To illustrate the semantics, consider the sequence ofrectibown
in Fig. 8 that is based on the example given in Fig. 7. The node
n1 represents the start of the stable section monitoring fomct
£ (a). Next, a monitored instantiation afis created, and a new
node associated with this context is allocated in the grdph (
Monitoring of functiong results in a new node to the first thread
with an edge from the previous node joining the two (see c3tliza
consider the exchange of a value on charnky the two threads.
Nodes corresponding to the communication are createdy alih
backedges to their respective stable section (d).

Recall the global checkpointing scheme would restore to a
global checkpoint created at the point the monitored versib
f was produced, regardless of where a stabilization actiok to
place. In contrast, a stabilize call occurring within the@axtion of
eitherg or h using this incremental scheme would restore the first
thread to the continuation stored in nodg (corresponding to the
context immediately preceding the callgp and would restore the
second thread to the continuation stored in negécorresponding
to the context immediately preceding the calhjo

6. Implementation

Our implementation is incorporated within MLton [20], a wé&o
program optimizing compiler for Standard ML. The main chesg
to the underlying infrastructure were the insertion of readi
write barriers to track shared memory updates, and hookketo t
Concurrent ML [25] library to update the communication drap
State restoration is thus a combination of restoring coations
as well as reverting references. The implementation ishigugK
lines of code to support our data structures, checkpointmgl
restoration code, as well as roughly 200 lines of changedvth.C

6.1 Supporting First-Class Events

Because our implementation is an extension of the core CML li
brary, it supports first-class events [25] as well as chabaséd
communication. The handling of events is no different than o
treatment of messages. If a thread is blocked on an eventanith
associated channel, we insert an edge from that thread’sraur
node to the channel. We support CML’s selective commuraoati
with no change to the basic algorithm. Since CML imposesiet str
ordering of communication events, each channel must beedwofy
spurious or dead data after a stabilize action. CML utilizass-
action identifiers for each communication action, or in theecof
selective communication, a series of communication astiGML
already implements clearing channels of spurious data whenc
operation occurs on a selective communication. This is daxity
by tagging the transaction identifier esnsumedCommunication
actions check and remove any data so tagged. We utilizeahis s

ing to acut operation. The presence of such a node in the reach setprocess for clearing channels during a stabilize action.

indicates an attempt to stabilize a computation beyond paiut
and is erroneous. The new graph reflects the restorafiglN is
the graphG with the subgraph rooted at nodess N removed.

We define the following theorem that formalizes the intuitio
that incremental checkpoint construction results in ledkback
than a global point-in-time checkpoint strategy:

TheorenEfficiency] If

Et,P[A E'ST* ’ ’
& e], o — P ,A
and

Et,P[e]7 Go EgT*]D//7 Ve

¢

6.2 Handling References

We have thus far elided details on how to track shared menwry a
cess to properly support state restoration actions in thegpice of
references. Naively tracking each read and write sepgraaiild

be inefficient. There are two problems that must be addre¢sgd
unnecessary writes should not be logged; and (2) spurigosnde
dencies induced by reads should be avoided.

Notice that for a give stable section, it is enough to mortier
first write to a given memory location since each stable sads
unrolled as a single unit. For every write to locatignve need to
only monitor the first read performend by another threaklifahis

2006/6/9

SYNTAX AND EVALUATION CONTEXTS PROGRAM STATES

P == P|P | tle]z n € Node = Nodeld x (Process+ L)
Ef,P[e] w= P|t[Ele]ls n—n' € FEdge = Node x Node
0 5 € StablelD
e—¢ n € CurNode — Thread 2 Node
E5Ple], a R Et Ple1, @ o € StableSections= StableID 5 Node
G € Graph = P(Node) x P(Edge) x CurNode x StableSections

GLOBAL EVALUATION RULES

n = ADDNODE(t[E[e]]4, N)
G’ = (NU {n}. EU {n(t) = n]. nft = n. o)
t[E[e”th <N7E7777 > JG

t[E[spawn(e)]l5,G | (N,E,n,0)
t’ fresh m = ADDNODE(t'[e]s, N)
G'=(NU {n},EU {n(t) — n},nlt' —n],0)

E2" [spaun(e)], G 2 P|lt[Efunit]]z]t[e]s, G"

P = P'l|t[E[send(1, v)]J5||t'[E"[recv(1)]]5
t[E[send (1, v)]]é,GG 1G t [E[recv(N5, G 4 G”

(N,E,n,0)
n(t),nt") = nt)},n.0)

Pl|t[Elunit]5 |t [E [v]]5, G”

G" = (N,EU{n(t) —

P G COMM

t[E[cut()]]5,G | G
EXleut()], G ROT B fun

it], G’

REACH(n, E) =

{n} UREACH(n/,E — {n+— n'})

n=o0(5) n' = appoNopg(L,N)
G'=(NU {n} EU{n(t) = n',n" = n} nlt —n] o)
t[E[e]]5,§7 <N7 E7777 U) U’ G

G=(N,E,n,0) ¢ fresh
n = ADDNODE(t[E[stable (A x.e)(v)]]5, N)
G’ = (N.BU{n(t) = n}.nfe =~ nl al§)

E27 [stable(Ax.e)(v)], G 2 E [stable(elv/x))], G’

G:<N7E77770> G = <N E77770-_{6}>
- [stable(v)], felS EX"[], ¢

G=(NEnno) o()=

7 =REACH(n,E) (k,t[E[cut()]]) &

P = {tle] | <i7t[e]>€7'stz<jv J tle
P'=P@®(PoP) G/t

E;’EP [stabilize()],G N P”, G’

n
T

1 er}

vn'stn—n' €E

Figure9. Incremental Checkpoint Construction.

write is unrolled, the reading thread thread must be urddibeat
least before this read. To monitor writes, we create a velisbin
which we store reference/value pairs. For each refereniteilist,
its matching value corresponds to the value held in the eafsr
prior to the execution of the stable section; our currentlé@mgn-
tation does not track writes occuring outside a stable@ecihen
the program enters a stable section, we create an emptpndisti
for this section. When a write is encountereted within a rrooed
procedure, a write barrier is executed that checks if thereefce
being written is in the verion list maintained by the sectidthere
is no entry for the reference, one is created, and the cuvedué
of the reference is recorded. Otherwise, no action is requir

Until a nested stable section exits, it is possible for atcedita-
bilize to unroll to the start of this section. A nested satticreated
when a monitored procedure is defined within the dynamicecdnt
of another monitored procedure. Nested sections requinetaia
ing their own version lists. Version list information in g&sec-
tions must be propagated to the outer section upon exit. Henve
the propagation of information form nested sections toootes
is not trivial; if the outer section has monitored a part&auhemory
location that has also been updated by the inner one, we eely n
to store the outer section’s version, and the value preddsyehe
inner one can be discarded.

Efficiently monitoring read dependencies requires us tqpado
a different methodology. We assume read operations occehmu
more frequently that writes, and thus it would be impradtica
have barriers on all read operations to record dependefayria-
tion in the communication graph. However, we observe thaafo
program to be correctly synchronized, all read and writea to+
cation! must be protected by a lock. Therefore, it is sufficient to
monitor lock acquires/releases to infer shared memory roigre
cies. By incorporating happens-before dependency edgésckn
operations, stabilize actions initiated by a writer to areddoca-
tion can be effectively propagated to readers that medatess to
that location via a common lock. A lock acquire is dependant o
the previous acquisition of the lock.

6.3 Graph Representation

The main challenge in the implementation was developingna:-co
pact representation of the communication graph. We havéeimp
mented a number of node/edge compaction algorithms algpwin
for fast culling of redundant information. For instancey awo
nodes that share a backedge can be collapsed into a singte nod
We also ensure that there is at most one edge between anyf pair o
nodes. Any addition to the graph affects at most two thredds.

use thread-local meta-data to find the most recent node fir ea

2006/6/9

Comm. Shared Graph Overheads (%)
Benchmark | LOC incl. eXene| Threads| Channels| Events | Writes | Reads| Size(MB) | Runtime | Memory
Triangles 16501 205 79 187 88 88 19 0.59 8.62
N-Body 16326 240 99 224 224 273 .29 0.81 12.19
Pretty 18400 801 340 950 602 840 74 6.23 20.00
Swerve 9915 10532 231 902 9339 | 80293 5.43 2.85 4.08

Table1. Benchmark characteristics, dynamic counts, and nornthbzerheads.

thread. The graph is thus never traversed in its entirety.site of

the communication graph grows with the number of communica-
tion events, thread creation actions, lock acquires, aaltlessec-
tions entered. However, we do not need to store the entiphdoa

the duration of program execution. As the program execpss

of the graph will become unreachable. The graph is impleatent
using weak references to allow unreachable portions to fadysa
reclaimed by the garbage collector. As we describe belownong
overheads are thus minimal.

A stabilize action has complexity linear in the number of
nodes and edges in the graph. Our implementation utilizesra ¢
bination of depth-first search and bucket sorting to cateutae re-
sulting graph after a stabilize call in linear time. DFS itiées the
part of the graph which will be removed after the stabilizkéarad a
modified bucket sort actually performs the removal. Onlytises
of the graph reachable from the stabilize call are traverssdlting
in a fast restoration procedure.

7. Performance Results

To measure the cost of stabilizers with respect to varionswwe
rent programming paradigms, we present a synthetic berghima

Time Overheads Memory Overheads

0
275 = 60

i
I

1754 =<

Normalized Runtime %
ITot:

P
orr
I

T T T T T T T T T T T T 1
250 500 750 1000 1250 1500 1750 25 500 750 1000 1250 1500 1750 2000

Asynchronous Communications Asynchronous Communicationa

(A) (B)

Figure 10. Synthetic benchmark overheads.

7.2 Open-SourceBenchmarks

Our other benchmarks include seveefllene [16] benchmarks,
Triangles andNbody, mostly display programs that create threads
to draw objects; an@retty, a pretty printing library written on
top of eXene. TheeXene toolkit is a library for X Windows, imple-
menting the functionality o£1ib, written in CML and comprising
roughly 16K lines of Standard ML. Events from the X server and
control messages between widgets are distributed in stréaoded

as CML event values) through the window hieraroéifene man-

quantify pure memory and time overheads, and examine devera ages the X calls through a series of servers, dynamicalhysge

server-based open-source CML benchmarks to illustrateagee

for each connection and screen. The last benchmark we @snsid

overheads in real programs. The benchmarks were run onla Inte is Swerve, a webserver written in CML whose major modules

P4 2.4 GHz machine with one GByte of memory running Gentoo
Linux, compiled and executed using MLton release 20041109.

To measure the costs of our abstraction, our benchmarks-are e
ecuted in three different ways: one in which the benchmagkkis
ecuted with no actions monitored, and no checkpoints coctstt;
one in which the entire program is monitored, effectivelyapped
within a stable call, but in which no checkpoints are actually re-
stored; and one in which relevant sections of code are wrhppe
within stable sections, exception handlers dealing wigtmgrent
faults are augmented to invokeabilize, and faults are dynami-
cally injected to trigger restoration.

7.1 Synthetic Benchmarks
Our synthetic benchmark spawns two threads, a source anét,a si

communicate with one other using message-passing chaomel ¢
munication; it makes no use eKene. All the benchmarks create
various CML threads to handle various events; communioatio
occurs mainly through a combination of message-passindain-c
nels, with occasional updates to shared data.

For these benchmarks, stabilizers exhibit a runtime slowndo
upto approximately 6% over a CML program in which monitoring
is not performed (see Table 1). For a highly-concurrentiagpbn
like Swerve, the overheads are even smaller, on the order of 3%.
The cost of using stabilizers is only dependent on the nuraber
inter-thread actions and shared data dependencies thiagged.
These overheads are well amortized over program execution.

Memory overheads to maintain the communication graph are
larger, although in absolute terms, they are quite smatiaBse we
capture continuations prior to executing communicaticenéy and

that communicate asynchronously. We measure the cost of ourentering stable sections, part of the memory cost is infleerxy

abstraction with regard to an ever increasing load of asymzius
communication events. This benchmark measures the owkdiea
logging program state and communication dependencies naith
opportunity for amortizing these costs among other nohilitar
related operations. These numbers represent worst cageeads
for monitoring thread interactions.

The runtime overhead is presented in Fig. 10(a), and thé tota
allocation overhead is presented in Fig. 10(b). As expetiedost
to simply maintain the graph grows linearly with the numbér o
asynchronous communications performed and runtime omdehe
remain constant. There is a significant initial memory andinue
cost because we pre-allocate hash tables used to index inaties
graph.

representation choices made by the underlying compilemehie-
less, benchmarks such &gerve that create over 10K threads, and
employ non-trivial communication patterns, require onME to
store the communication graph, a roughly 4% overhead ower th
memory consumption of the original program.

To measure the cost of calculating and restoring a globally
consistent checkpoint, we consider three experiments fifdtds
a simple unrolling ofSwerve (see Table. 2), in which a call to
stabilize is inserted during the processing of a varying number
of concurrent web requests. This measurement illustratesdadst
of restoring to a consistent global state that can poténtidfiect a
large number of threads. Although we expect large checkpdin
be rare, we note that restoration of such checkpoints istheless

2006/6/9

Graph Channels Threads| Runtime File Size Overheads Quantum Overheads

Reqgs| Size | Num | Cleared| Affected | (seconds) 3000]

20 1130 | 85 42 470 0.005 . 5 0]

40 | 2193 | 147 | 64 928 0.019 g £]

60 3231 | 207 84 1376 0.053 g osm | & 3001

80 4251 | 256 93 1792 0.094 o 8]

100 | 5027 | 296 95 2194 0.132 § 1w 5]

Table 2. Restoration of the entire webserver. T e ™ T s "
Channels Threads Runtime *) ®)

Benchmark| Num | Cleared| Total | Affected | (seconds) Figure12. Swerve benchmark overheads.
Swerve 38 4 896 8 .003
eXene 158 27 1023 236 .019

inject the loss of packets to theserver, stabilize the widget, and
wait for new interaction events. The loss of packets is ieigdy
Table 3. Instrumented recovery. simply dropping every tenth packet which is received frora th
X server. Ordinarily, ifeXene ever loses an X server packet, its
default behavior is to terminate execution since there isasy
mechanism available to restore the state of the widget tolzatly
consistent point. Using stabilizers, however, packet éosgptions
can be safely handled by the widget. By stabilizing the widge
return it to a state prior to the failed request. SubsequeEmiests
will redraw the widget as we would expect; thus, stabilizeamit
— the scroll bar widget to recover from a lost packet withouvpsive
modification to the underlyingXene implementation.

Finally, to measure the sensitivity of stabilization to kqation-
specific parameters, we compare our stabilizer-enablesioveof
Swerve to the stock configuration by varying two program at-
tributes: file size and quantum. Since stabilizers elingnhé need
for polling during file processing, we suspect our runtimstso
would improve as file sizes increased. Our tests were run tn bo
Figure 11. An eXene scroll bar widget spawns several indepen- versions ofSwerve; for a given file size, 20 requests are processed.
dent threads, including a control thread that communicetiés The results (see Fig. 12(a)) indicate that for large filess{ppward
othereXene components. of 256KB) our implementation is slightly more efficient thére
original implementation. Our slow down for small file sizes the
. o order of 10KB) is proportional to our earlier benchmark tesu
quite fast. The graph size is presented as the total numhrerdafs. Since our g)rap‘?\ a%orithm requires monitoring various camm

Cf:]annells can betaffectedl by an :Jnro!:lgg in two dn‘feyeT Wz nication events, lowering the time quantum allocated th ¢aead
channel may contain a value sent on It by a communicatingithre may adversely affect performance, since the overhead foitore
but which has not been consumed by a receiver, or a channel may:

£ two threads which h ful h deal ing the graph consumes a greater fraction of a thread’s ctampu
connect two threéads which have successiully exchangedia.va tion per quantum. Our tests compared the two versiorssiefve,
the first case we must clear the channel of the value if theathre

. ; . keeping file size constant at 10KB, but varying the allocapean-
which placed the value on the channel is unrolled; in therlate ; L 2 .
case no direct processing on the channel is required. Thedn wm. (see Fig 12(B)). Surprisingly, the results indicawt 8tablizer

) overheads become significant only when the quantum is lassih
shows the total number of affected channels and those whisth m ms. As a point of comparison, CMLs default quanta is 20ms.

cleared.

7.3 Injecting Stabilizers 8. Related Work

To quantify the cost of using stabilizers in practice, weeaxied Being able to checkpoint and rollback parts or the entirégnoex-
Swerve and eXene and replaced some of their error handling ecution has been the focus of notable research in the datfiti@ls
mechanisms with stabilizers (see Table 3). Beerve, the im- as well as parallel and distributed computing communities P2,
plementation details were given in Section 3. Our benchmak- 24]. Checkpoints have been used to provide fault toleraodeg-
ually injects a timeout every ten requests, stabilizes tlognam, lived applications, for example in scientific computing [23 but
and re-requests the page. have been typically regarded as heavyweight entities tetooct

For eXene, we augment a scrollbar widget used by the pretty and maintain.
printer. IneXene the state of a widget is defined by the state of its Existing checkpoint approaches can be classified into frad
communicating threads, and no state is stored in shared Tata categories: (a) schemes that require applications to geottieir

scroll bar widget is composed of three threads which comoatei own specialized checkpoint and recovery mechanisms [4(b%];
over a set of channels. The widget's processing is split betviwo schemes in which the compiler determines where checkpoarts
helper threads and one main controller thread. Any errodleaby be safely inserted [3]; (c) techniques that require opegatystem
the controller thread must be communicated to the helpeaty or hardware monitoring of thread state [8, 21, 24]; and (abaly
and vice versa. The interactions of the scroll bar widgetthadest implementations that capture and restore state [11]. Glodcting

of eXene is depicted in Fig. 11. The dotted box represents a stable functionality provided by an application or a library redien the
section encompassing the processing of the widget. We fignua programmer to define meaningful checkpoints. For many multi

10 2006/6/9

threaded applications, determining these points is noiakte-
cause it requires reasoning about global, rather thandHozal,
invariants. Compiler and operating-system injected cpeirks are
transparent to the programmer. However, transparency $ama
notable cost: checkpoints may not be semantically meauiiragyf
efficient to construct.

Recent work in the programming languages community has ex-

plored abstractions and mechanisms closely related tdizeab
and their implementation for maintaining consistent statelis-
tributed environments [14], detecting deadlocks [9], aratgfully
dealing with unexpected termination of communicating $aiska
concurrent environment [15]. For example, kill-safe tlrahstrac-
tions [15] provide a mechanism to allow cooperating thraadsp-
erate even in the presence of abnormal termination. Stakslican

be used for a similar goal, although the means by which thé go

is achieved is quite different. Stabilizers rely on unrglithread
dependencies of affected threads to ensure consisterteadhef
employing specific runtime mechanisms to reclaim resources

In addition to stabilizers, functional language implenagtiains
have utilized continuations for similar tasks. For examptémach

and Appel [29] describe a debugging mechanism for SML/Nt tha

utilized captured continuations to checkpoint the targegmam at
given time intervals. This work was later extended [30] tppart

multithreading, and was used to log non-deterministicatirevents
to provide replay abilities.

Another possibility for fault recovery is micro-reboot [&fine-
grained technique for surgically recovering faulty apglion com-
ponents which relies critically on the separation of datovery
and application recovery. Micro-reboot allows for a systenoe
restarted without ever being shut down by rebooting sepa@n-
ponents. Unlike checkpointing schemes, which attemptgtore a
program to a consistent state within the running applicatiicro-
reboot quickly restarts an application component, butélbrique
itself is oblivious to program semantics.

The ability to revert to a prior point within a concurrent exe
tion is essential to transaction systems [1, 16, 23]; oatsictheir
role for database concurrency control, such approachesncan
prove parallel program performance by profitably explajtapec-

ulative execution [26, 31]. Harrist al. proposes a transactional

memory system [18] for Haskell that introduces@try primi-

tive to allow a transactional execution to safely abort ardrd>
executed if desired resources are unavailable. Howevierwbrk

does not propose to track or revert effectful thread intevas
within a transaction. In fact, such interactions are exyicejected
by the Haskell type-system. There has also been recenegttier
providing transactional infrastructure for ML [27], and éxplor-
ing the interaction between transactional semantics astddiass
synchronous operations [12]. Our work shares obvious aiitids
with all these efforts.

9. Conclusionsand Future Work

Stabilizers are a novel on-the-fly checkpointing abstoedir con-
current functional programs. Unlike other checkpointicbemes,
stabilizers are not only able to identify the smallest stilude

threads which must be unrolled, but also provide usefultgafe

guarantees. As a language abstraction, stabilizers carsduta
simplify program structure especially with respect to eran-
dling, debugging, and consistency management. Our reiswlits
cate that stabilizers can be implemented with small ovettzesl
thus serve as an effective and promising checkpointing adigin
for high-level concurrent programs.

There are several important directions we expect to punsue i

the future. While the use ofut can delimit the extent to which
control is reverted as a result okaabilize call, a more general
and robust approach would be to integrate a rational conagiens

11

semantics [6] for stabilizers in the presence of stateferagons.
We also plan to explore richer ways to describe the intevadie-
tween stable sections and their restoration, for examplerdyid-
ing a facility to have threads restore program state in oéxer
cuting threads, and to investigate the interaction of Biaos with
other transaction-based concurrency control mechanisms.

References

[1] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari. Efficien
Optimistic Concurrency Control Using Loosely Synchrodize
Clocks. SIGMOD Record (ACM Special Interest Group on
Management of DataP4(2):23—-34, June 1995.

[2] Saurabh Agarwal, Rahul Garg, Meeta S. Gupta, and JoseoEeiM.
Adaptive Incremental Checkpointing for Massively Patefigstems.
In ICS '04: Proceedings of the 18th annual international coafiee
on Supercomputingoages 277-286, New York, NY, USA, 2004.
ACM Press.

[3] Micah Beck, James S. Plank, and Gerry Kingsley. ComyAlssisted
Checkpointing. Technical report, University of Tennessa®xville,
TN, USA, 1994.

[4] Greg Bronevetsky, Daniel Marques, Keshav Pingali, aadlP
Stodghill. Automated Application-Level Checkpointing BIPI
Programs. IriPPoPP '03: Proceedings of the ninth ACM SIGPLAN
symposium on Principles and practice of parallel programgni
pages 84-94, New York, NY, USA, 2003. ACM Press.

[5] Greg Bronevetsky, Daniel Marques, Keshav Pingali, Pereved, and
Martin Schulz. Application-Level Checkpointing for Shdriglemory
Programs. INPASPLOS-XI: Proceedings of the 11th international
conference on Architectural support for programming laages and
operating systempages 235-247, New York, NY, USA, 2004. ACM
Press.

R. Bruni, H. Melgratti, and U. Montanari. Theoretical ifalations
for Compensations in Flow Composition LanguagesP@PL '05:
Proceedings of the 32nd ACM SIGPLAN-SIGACT sysposium on
Principles of programming languagepages 209-220, New York,
NY, USA, 2005. ACM Press.

[7] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox
Microreboot - A Technique for Cheap Recovery. Gih Symposium
on Operating Systems Design and Implementat®en Francisco,
California, 2004.

[8] Yuqun Chen, James S. Plank, and Kai Li. CLIP: A Checkpomt
Tool for Message-Passing Parallel ProgramsSupercomputing '97:
Proceedings of the 1997 ACM/IEEE conference on Supercamgput
pages 1-11, New York, NY, USA, 1997. ACM Press.

[9] Jan Christiansen and Frank Huch. Searching for Deadlodkile
Debugging Concurrent Haskell Programs.I@#P '04: Proceedings
of the ninth ACM SIGPLAN international conference on Fuorei
programming pages 28-39, New York, NY, USA, 2004. ACM Press.

[10] Panos K. Chrysanthis and Krithi Ramamritham. ACTA: the
SAGA continues. IrDatabase Transaction Models for Advanced
Applications pages 349-397. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1992.

[11] William R. Dieter and James E. Lumpp Jr. A User-level Cite
pointing Library for POSIX Threads Programs. FTCS '99: Pro-
ceedings of the Twenty-Ninth Annual International Symposbn
Fault-Tolerant Computingpage 224, Washington, DC, USA, 1999.
IEEE Computer Society.

[12] Kevin Donnelly and Matthew Fluet. Transactional ewenin ICFP
'06: Proceedings of the Eleventh ACM SIGPLAN International
Conference on Functional Programmirdew York, NY, USA, 2006.
ACM Press.

[13] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang,nd
David B. Johnson. A Survey of Rollback-Recovery Protocals i
Message-Passing SystemACM Comput. Sury.34(3):375-408,
2002.

[14] John Field and Carlos A. Varela. Transactors: a Programg
Model for Maintaining Globally Consistent Distributed &tan
Unreliable Environments. IPOPL '05: Proceedings of the 32nd

[6

—

2006/6/9

ACM SIGPLAN-SIGACT sysposium on Principles of programming
languagespages 195-208, New York, NY, USA, 2005. ACM Press.

[15] Matthew Flatt and Robert Bruce Findler. Kill-safe Shnenization
Abstractions. IrPLDI '04: Proceedings of the ACM SIGPLAN 2004
conference on Programming language design and implenientat
pages 47-58, New York, NY, USA, 2004. ACM Press.

[16] Jim Gray and Andreas Reutellransaction ProcessingMorgan-
Kaufmann, 1993.

[17] Tim Harris and Keir Fraser. Language support for lighight trans-
actions. InProceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applicatiayes
388-402. ACM Press, 2003.

[18] Tim Harris, Simon Marlow, Simon Peyton Jones, and Mazairi
Herlihy. Composable Memory Transactions. A@M Conference
on Principles and Practice of Parallel Programming005.

[19] Maurice Herlihy, Victor Luchangco, Mark Moir, and Wadm N.
Scherer, Ill. Software transactional memory for dynanied
data structures. IACM Conference on Principles of Distributed
Computing pages 92-101, 2003.

[20] http://www.mlton.org.

[21] D. Hulse. On Page-Based Optimistic Process Checkipgintin
IWOOOS '95: Proceedings of the 4th International Workshap o
Object-Orientation in Operating Systenmage 24, Washington, DC,
USA, 1995. IEEE Computer Society.

[22] Mangesh Kasbekar and Chita Das. Selective Checkpgirdaind
Rollback in Multithreaded Distributed Systems.2i°? International
Conference on Distributed Computing SysteR@91.

[23] H. T. Kung and John T. Robinson. On Optimistic Methods fo
Concurrency ControlTODS 6(2):213-226, 1981.

[24] Kai Li, Jeffrey Naughton, and James Plank. Real-timexc@orent
Checkpoint for Parallel Programs. ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programmingages 79-88,
1990.

[25] John ReppyConcurrent Programming in MLCambridge University
Press, 1999.

[26] Martin Rinard. Effective Fine-Grained Synchronizatifor Auto-
matically Parallelized Programs Using Optimistic Synctization
Primitives. ACM Transactions on Computer Systeri&(4):337-371,
November 1999.

[27] Michael F. Ringenburg and Dan Grossman. Atomcaml:-filass
atomicity via rollback. INCFP '05: Proceedings of the Tenth ACM
SIGPLAN International Conference on Functional Programgni
pages 92-104, New York, NY, USA, 2005. ACM Press.

[28] Asser N. Tantawi and Manfred Ruschitzka. Performannalgsis of
Checkpointing StrategieACM Trans. Comput. Sysg(2):123-144,
1984.

[29] Andrew P. Tolmach and Andrew W. Appel. Debugging StadddL
Without Reverse Engineering. =P '90: Proceedings of the 1990
ACM conference on LISP and functional programmipages 1-12,
New York, NY, USA, 1990. ACM Press.

[30] Andrew P. Tolmach and Andrew W. Appel. Debuggable Corency
Extensions for Standard ML. IRADD '91: Proceedings of the 1991
ACM/ONR workshop on Parallel and distributed debuggipgges
120-131, New York, NY, USA, 1991. ACM Press.

[31] Adam Welc, Suresh Jagannathan, and Antony Hoskinge feadires
for java. InProceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applictayes
439-453. ACM Press, 2005.

[32] Adam Welc, Suresh Jagannathan, and Antony L. Hoskinmgndac-
tional Monitors for Concurrent Objects. European Conference on
Object-Oriented Programmingages 519-542, 2004.

12

2006/6/9

