
Stabilizers: A Modular Checkpointing Abstraction for
Concurrent Functional Programs

Lukasz Ziarek Philip Schatz Suresh Jagannathan
Department of Computer Science

Purdue University
{lziarek,schatzp,suresh}@cs.purdue.edu

Abstract
Transient faults that arise in large-scale software systems can often
be repaired by re-executing the code in which they occur. Ascrib-
ing a meaningful semantics for safe re-execution in multi-threaded
code is not obvious, however. For a thread to correctly re-execute a
region of code, it must ensure that all other threads which have wit-
nessed its unwanted effects within that region are also reverted to a
meaningful earlier state. If not done properly, data inconsistencies
and other undesirable behavior may result. However, automatically
determining what constitutes a consistent global checkpoint is not
straightforward since thread interactions are a dynamic property of
the program.

In this paper, we present a safe and efficient checkpointing
mechanism for Concurrent ML (CML) that can be used to recover
from transient faults. We introduce a new linguistic abstraction
calledstabilizersthat permits the specification of per-thread mon-
itors and the restoration of globally consistent checkpoints. Safe
global states are computed through lightweight monitoringof com-
munication events among threads (e.g. message-passing operations
or updates to shared variables).

Our experimental results on several realistic, multithreaded,
server-style CML applications, including a web server and awin-
dowing toolkit, show that the overheads to use stabilizers are small,
and lead us to conclude that they are a viable mechanism for defin-
ing safe checkpoints in concurrent functional programs.

Keywords: Concurrent programming, error recovery, check-
pointing, transactions, Concurrent ML, exception handling.

1. Introduction
A transient fault is an exceptional condition that can be often reme-
died through re-execution of the code in which it is raised. Typ-
ically, these faults are caused by the temporary unavailability of
a resource. For example, a program that attempts to communicate
through a network may encounter timeout exceptions becauseof
high network load at the time the request was issued. Transient
faults may also arise because a resource is inherently unreliable;

2006 ACM International Conference on Functional Programming

consider a network protocol that does not guarantee packet delivery.
In large-scale systems comprised of many independently executing
components, failure of one component may lead to transient faults
in others even after the failure is detected [7]. For example, a client-
server application that enters an unrecoverable error state may need
to be rebooted; here, the server behaves as a temporarily unavail-
able resource to its clients who must re-issue requests sentduring
the period the server was being rebooted. Transient faults may also
occur because program invariants are violated. Serializability vio-
lations that occur in software transaction systems [17, 19,32] are
typically rectified by aborting the offending transaction and having
it re-execute.

A simple solution to transient fault recovery would be to cap-
ture the global state of the program before an action executes that
could trigger such a fault. If the fault occurs and raises an excep-
tion, the handler only needs to restore the previously savedprogram
state. Unfortunately, transient faults often occur in long-running
server applications that are inherently multi-threaded but which
must nonetheless exhibit good fault tolerance characteristics; cap-
turing global program state is costly in these environments. On the
other hand, simply re-executing a computation without taking prior
thread interactions into account can result in an inconsistent pro-
gram state and lead to further errors, such as serializability viola-
tions.

Suppose a communication event via message-passing occurs
between two threads and the sender subsequently re-executes this
code to recover from a transient fault. A spurious unhandledexecu-
tion of the (re)sent message may result because the receiverwould
have no knowledge that a re-execution of the sender has occurred.
Thus, it has no need to expect re-transmission of a previously ex-
ecuted message. In general, the problem of computing a sensible
checkpoint for a transient fault requires calculating the transitive
closure of dependencies manifest among threads and the section of
code which must be re-executed.

To alleviate the burden of defining and restoring safe and effi-
cient checkpoints in concurrent functional programs, we propose a
new language abstraction calledstabilizers. Stabilizers encapsulate
three operations. The first initiates monitoring of code forcom-
munication and thread creation events, and establishes thread-local
checkpoints when monitored code is evaluated. This thread-local
checkpoint can be viewed as a restoration point for any transient
fault encountered during the execution of the monitored region. The
second operation reverts control and state to a safe global check-
point when a transient fault is detected. The third operation allows
previously established checkpoints to be reclaimed.

The checkpoints defined by stabilizers are first-class and com-
posable: a monitored procedure can freely create and returnother
monitored procedures. Stabilizers can be arbitrarily nested, and

1 2006/6/9

work in the presence of a dynamically-varying number of threads
and non-deterministic selective communication. We demonstrate
the use of stabilizers for several large server applications written
in Concurrent ML.

Stabilizers provide a middle ground between the transparency
afforded by operating systems or compiler-injected checkpoints,
and the precision afforded by user-injected checkpoints. In our ap-
proach, thread-local state immediately preceding a non-local action
(e.g., thread communication, thread creation, etc.) is regarded as a
possible checkpoint for that thread. In addition, applications may
explicitly identify program points where local checkpoints should
be taken, and can associate program regions with these specified
points. When a rollback operation occurs, control reverts to one of
these saved checkpoints for each thread. Rollbacks are initiated to
recover from transient faults. The exact set of checkpointschosen is
determined by safety conditions that ensure that a globallyconsis-
tent state is preserved. Our approach guarantees that when athread
is rolled-back to a thread-local checkpoint stateC, other threads
with which it has communicated will be placed in states consistent
with C.

This paper makes three contributions:

1. The design and semantics ofstabilizers, a new modular lan-
guage abstraction for transient fault recovery in concurrent
functional programs. To the best of our knowledge, stabilizers
are the firstlanguage-centricdesign of a checkpointing facility
that provides global consistency and safety guarantees fortran-
sient fault recovery in programs with dynamic thread creation,
and selective communication [25].

2. A lightweight dynamic monitoring algorithm faithful to the se-
mantics that constructs efficient global checkpoints basedon the
context in which a restoration action is performed. Efficiency
is defined with respect to the amount of rollback required to
ensure that all threads resume execution after a checkpointis
restored to a consistent global state.

3. A detailed evaluation study for Concurrent ML that quantifies
the cost of using stabilizers on various open-source server-style
applications. Our results reveal that the cost of defining and
monitoring thread state is small, typically adding roughlyno
more than four to six percent overhead to overall execution
time. Memory overheads are equally modest.

The remainder of the paper is structured as follows. Section2
describes the stabilizer abstraction. Section 3 provides amotivating
example that highlights the issues associated with transient fault
recovery in a highly multi-threaded webserver, and how stabilizers
can be used to alleviate complexity and improve robustness.An op-
erational semantics is given in Section 4. A strategy for incremental
construction of checkpoint information is given in Section5. Imple-
mentation details are provided in Section 6. A detailed evaluation
on the costs and overheads of using stabilizers for transient fault re-
covery is given in Section 7, related work is presented in Section 8,
and conclusions are given in Section 9.

2. Programming Model
Stabilizers are expressed using three primitives with the following
signatures:

stable : (’a -> ’b) -> ’a -> ’b
stabilize : unit -> ’a
cut : unit -> unit

A stable sectionis a monitored section of code whose effects are
guaranteed to be reverted as a single unit. The primitivestable is
used to define stable sections. Given functionf the evaluation of
stable f yields a new functionf ’ identical tof except that inter-
esting communication, shared memory access, locks, and spawn

events are monitored and grouped. Thus, all actions within asta-
ble section are associated with the same checkpoint. This seman-
tics is in contrast to classical checkpointing schemes where there
is no manifest grouping between a checkpoint and a collection of
actions.

The second primitive,stabilize reverts execution to a dy-
namically calculated global state; this state will always correspond
to a program state that existed immediately prior to execution of
a stable section, communication event, or thread spawn point for
each thread. We qualify this claim by observing that external non-
revocable operations that occur within a stable section that needs to
be reverted (e.g., I/O, foreign function calls, etc.) must be handled
explicitly by the application prior to an invocation of astabilize
action. Note that similar to operations likeraise or exit that also
do not return, the result type ofstabilize is synthesized from the
context in which it occurs.

Informally, a stabilize action reverts all effects performed within
a stable section much like an abort action reverts all effects within a
transaction. However, whereas a transaction enforces atomicity and
isolation until a commit occurs, stabilizers enforce theseproperties
only when a stabilize action occurs. Thus, the actions performed
within a stable section are immediately visible to the outside; when
a stabilize action occurs these effects along with their witnesses are
reverted.

The third primitive,cut, establishes a point beyond which sta-
bilization cannot occur. An error is raised if astabilize action
attempts to revert state beyond the point at which acut action oc-
curs. Cut points can be used to prevent the unrolling of irrevocable
actions within a program (e.g., I/O) or to bound the amount ofroll-
back that a stabilization action may trigger. A cut is a per-thread
delimiting action; a cut established in a particular threadhas no ef-
fect on other threads unless they perform stabilization actions that
require restoring this thread past the cut point because of previously
established dependencies.

Unlike classical checkpointing schemes [28] or exception han-
dling mechanisms, the result of invokingstabilize does not
guarantee that control reverts to the state corresponding to the
dynamically-closest stable section. The choice of where control re-
verts depends upon the actions undertaken by the thread within the
stable section in which thestabilize call was triggered.

Composability is an important design feature of stabilizers:
there is noa priori classification of the procedures that need to
be monitored, nor is there any restriction against nesting stable sec-
tions. Stabilizers separate the construction of monitoredcode re-
gions from the capture of state. It is only when a monitored pro-
cedure is applied that a potential thread-local restoration point is
established. The application of such a procedure may in turnresult
in the establishment of other independently constructed monitored
procedures. In addition, these procedures may themselves be ap-
plied and have program state saved appropriately; thus, state sav-
ing and restoration decisions are determined without prejudice to
the behavior of other monitored procedures.

2.1 Interaction of Stable Sections

When a stabilize action occurs, matching inter-thread events are
unrolled as pairs. If a send is unrolled, the matching receive must
also be reverted. If a thread spawns another thread within a stable
section that is being unrolled, this new thread (and all its actions)
must also be discarded. All threads which read from a shared
variable must be reverted if the thread that wrote the value is
unrolled to a state prior to the write. A program state isstablewith
respect to a statement if there is no thread executing in thisstate
affected by the statement (i.e., all threads are in a point within their
execution prior to the execution of the statement and its transitive
effects).

2 2006/6/9

S3S1

S2

t1 t2

(a)

S2

S3
S1

t2t1

(b)

Figure 1. Interaction between stable sections.

For example, consider threadt1 that enters a stable sectionS1

and initiates a communication event with threadt2 (see Fig. 1(a)).
Supposet1 subsequently enters another stable sectionS2, and again
establishes a communication with threadt2. Suppose further thatt2
receives these events within its own stable sectionS3. The program
states immediately prior toS1 and S2 represent feasible check-
points as determined by the programmer, depicted as white circles
in the example. If a rollback is initiated withinS2, then a consistent
global state would require thatt2 revert back to the state associated
with the start ofS3 since it has received a communication fromt1
initiated withinS2. However, discarding the actions withinS3 now
obligatest1 to resume execution at the start ofS1 since it initiated
a communication event withinS1 to t2 (executing withinS3). Such
situations can also arise without the presence of nested stable sec-
tions. Consider the example in Fig. 1(b). Once again, the program
is obligated to revertt1, since the stable sectionS3 spans commu-
nication events from bothS1 andS2.

3. Motivating Example
Swerve [20] (see Fig 2) is an open-source third-party Web server
wholly written in Concurrent ML. The server is composed of five
separate interacting modules. Communication between modules
and threads makes extensive use of CML message passing se-
mantics. Threads communicate over explicitly defined channels on
which they can either send or receive values. To motivate theuse
of stabilizers, we consider the interactions of three ofSwerve’s
modules: theListener, theFile Processor, and theTimeout
Manager. TheListener module receives incomingHTTP requests
and delegates file serving requirements to concurrently executing
processing threads. For each new connection, a new listeneris
spawned; thus, each connection has one main governing entity.
The File Processor module handles access to the underlying
file system. Each file that will be hosted is read by a file processor
thread that chunks the file and sends it via message-passing to the
thread delegated by the listener to host the file. Timeouts are pro-
cessed by theTimeout Manager through the use of timed events
on channels. Threads can poll these channels to check if there has
been a timeout. In the case of a timeout, the channel will holda flag
signaling time has expired, and is empty otherwise.

Timeouts are the most frequent transient fault present in the
server, and difficult to deal with naively. Indeed, the system’s au-
thor notes that handling timeouts in a modular way is “tricky” and
devotes an entire section of the user manual explaining the perva-
sive cross-module error handling in the implementation. Consider
the typical execution flow given in Fig 2. When a new request is
received, the listener spawns a new thread for this connection that
is responsible for hosting the requested page. This hostingthread

R e q u e s t R e s p o n s e
T

i m e o u tM a n a g e r FileP r o c e s s o r
L i s t e n e r

[2][1]

[3]

[5]

[4] [6]

Figure 2. Swerve module interactions for processing a request
(solid lines) and error handling control and data flow (dashed lines)
for timeouts. The number above the lines indicates the orderin
which communication actions occur.

first establishes a timeout quantum with the timeout manager(1)
and then notifies the file processor (2). If a file processing thread is
available to process the request, the hosting thread is notified that
the file can be chunked (2). The hosting thread passes to the file
processing thread the channel on which it will receive its timeout
notification (2). The file processing thread is now responsible to
check for explicit timeout notification (3).

Since a timeout can occur before a particular request startspro-
cessing a file (4) (i.e. within the hosting thread defined by the
Listener module) or during the processing of a file (5) (i.e. within
the File Processor), the resulting error handling code is cum-
bersome. Moreover, the detection of the timeout itself is handled
by a third module, theTimeout Manager. The result is a compli-
cated message passing procedure that spans multiple modules, each
of which must figure out how to deal with timeouts appropriately.
The unfortunate side effect of such code organization is that modu-
larity is compromised. The code now contains implicit interactions
that cannot be abstracted (6) (i.e. theFile Processor must ex-
plicitly notify the Listner of the timeout). TheSwerve design
illustrates the general problem of dealing with transient faults in a
complex concurrent system: how can we correctly handle faults that
span multiple modules without introducing explicit cross-module
dependencies to handle each such fault?

Fig. 3 shows the definition offileReader, aSwerve function
in the file processing module that sends a requested file to thehost-
ing thread by chunking the file contents into a series of smaller
packets. The file is opened byBinIOReader, a utility function in
the File Processing module. ThefileReader function must
check in every iteration of the file processing loop whether atime-
out has occurred by calling theTimeout.expired function due to
the restriction that CML threads cannot be explicitly interrupted.
If a timeout has occurred, the procedure is obligated to notify the
receiver (the hosting thread) through an explicit send on channel
consumer.

Stabilizers allow us to abstract this explicit notificationpro-
cess by wrapping the file processing logic ofsendFile in a sta-
ble section. Suppose a call tostabilize replaced the call to
CML.send(consumer, Timeout). This action would result in un-
rolling both the actions ofsendFile as well as the receiver, since
the receiver is in the midst of receiving file chunks.

However, a cleaner solution presents itself. Suppose that we
modify the definition of theTimeout module to invokestabilize,
and wrap its operations within a stable section as shown in Fig. 4.
Now, there is no need for any thread to poll for the timeout event.
Since the hosting thread establishes a timeout quantum by commu-

3 2006/6/9

fun fileReader name abort consumer =
let fun sendFile() =

let fun loop strm =
if Timeout.expired abort
then CML.send(consumer, Timeout)
else let val chunk =

BinIO.inputN(strm, fileChunk)
in ... read a chunk of the file

... and send to receiver
loop strm)

end
in (case BinIOReader.openIt abort name

of NONE => ()
| SOME h => (loop (BinIOReader.get h);

BinIOReader.closeIt h)
end

fun fileReader name abort consumer =
let fun sendFile() =
let fun loop strm =

let val chunk =
BinIO.inputN(strm, fileChunk)

in ... read a chunk of the file
... and send to receiver
loop strm)

end
in stable fn() =>

(case BinIOReader.openIt abort name
of NONE =>()
| SOME h =>(loop (BinIOReader.get h);

BinIOReader.closeIt h)) ()
end

Figure 3. An excerpt of the TheFile Processing module inSwerve. The right-hand side shows the code modified to use stabilizers.
Italics mark areas in the original where the code is changed.

let fun expired (chan) = isSome (CML.poll chan)
fun trigger (chan) = CML.send(chan, timeout)
...

in ...; trigger(chan)
end

let fun trigger (chan) = stabilize()
..

in stable (fn() => ... ; trigger(chan)) ()
end

Figure 4. An excerpt of theTimeout Manager module inSwerve. The right-hand side shows the code modified to use stabilizers. The
expired function can be removed and a trigger now callsstabilize. Italics mark areas in the original where the code is changed.

fn () =>
let fun receiver() =
case CML.recv consumer

of info => (sendInfo info; ...)
| chunk => (sendBytes bytes; ...)
| timeout => error handling code
| done => ...

...
in ... ; loop receiver
end

stable fn () =>
let fun receiver() =

case CML.recv consumer
of info => (sendInfo info; ...)
| chunk => (sendBytes bytes; ...)
| done => ...

...
in ... ; loop receiver
end

Figure 5. An excerpt of theListener module inSwerve. The main processing of the hosting thread is wrapped in a stable section and
the timeout handling code can be removed. The right-hand side shows the code modified to use stabilizers. Italics mark areas in the original
where the code is changed.

nicating withTimeout and passes this information to the file pro-
cessor thread, anystabilize action performed by theTimeout
manager will unroll all actions related to processing this file. This
transformation therefore allows us to specify a timeout mechanism
without having to embed non-local timeout handling logic within
each thread that potentially could be affected. The hostingthread
itself is also simplified (as seen in Fig. 5); by wrapping its logic
within a stable section, we can remove all of its timeout error han-
dling code as well. A timeout is now handled completely through
the use of stabilizers localized within theTimeout module. This
improved modularization of concerns does not lead to reduced
functionality or robustness. Indeed, a stabilize action causes the
timed-out request to be transparently re-processed, or allows the
webserver to process a new request, depending on the desiredbe-
havoir. Thus, each module only has to manage its own components
and does not have to explicitly communicate with other modules in
the case of a timeout error.

4. Semantics
Our semantics is defined in terms of a core call-by-value functional
language with threading primitives (see Fig. 6). For perspicuity, we
first present an interpretation of stabilizers in which evaluation of
stable sections immediately results in the capture of a consistent
global checkpoint. Furthermore, we restrict the language to cap-
ture checkpoints only upon entry to stable sections, ratherthan at
any communication or thread creation action. This semantics re-
flects a simpler characterization of checkpointing than theinformal
description presented in Section 2. In Section 5, we refine this ap-
proach to construct checkpoints incrementally.

In the following, we use metavariablesv to range over values,
andδ to range over stable section or checkpoint identifiers. We also
useP for thread terms, ande for expressions. We use over-bar
to represent a finite ordered sequence, for instance,f represents
f1 f2 . . . fn. The termα.α denotes the prefix extension of the
sequenceα with a single elementα, α.α the suffix extension,αα′

denotes sequence concatenation,φ denotes empty sequences and

4 2006/6/9

SYNTAX :

P ::= P‖P | t[e]
δ

e ::= x | l | λ x.e
| mkCh() | send(e, e) | recv(e) | spawn(e)
| stable(e) | stable(e) | stabilize() | cut()

EVALUATION CONTEXTS:

E ::= • | E (e) | v(E) |

send(E , e) | send(l,E) |

recv(E) | stable(E) | stable(E)

E
t,P

δ
[e] ::= P‖t[E [e]]

δ

e → e′

E
t,P

δ
[e], ∆

LR
=⇒ E

t,P

δ
[e′], ∆

PROGRAM STATES:

P ∈ Process
t ∈ Tid
x ∈ Var
l ∈ Channel
δ ∈ StableId
v ∈ Val = unit | λ x.e | stable(λ x.e) | l

α, β ∈ Op = {LR,SP,COMM,SS,ST,ES,CUT}
Λ ∈ StableState= Process × StableMap

∆ ∈ StableMap = StableId
fin
→ StableState

LOCAL EVALUATION RULES:

λ x.e(v) → e[v/x]

mkCh() → l, l fresh

GLOBAL EVALUATION RULES:

t′fresh

E
t,P

δ
[spawn(e)], ∆

SP
=⇒ P‖t[E [unit]]

δ
‖t′[e]φ, ∆

t′fresh
P = P ′‖t[E [send(l, v)]]

δ
‖t′[E ′[recv(l)]]

δ′

P, ∆
COMM
=⇒ P ′‖t[E [unit]]

δ
‖t′[E ′[v]]

δ′
, ∆

E
t,P

δ
[cut()], ∆

CUT
=⇒ E

t,P

φ
[unit], φ

δ′ fresh ∀δ ∈ Dom(∆), δ′ ≥ δ

∆′ = ∆[δ′ 7→ (E t,P

δ
[stable(λ x.e)(v)], ∆)]

Λ = ∆′(δmin), δmin ≤ δ ∀δ ∈ Dom(∆′)

E
t,P

δ
[stable(λ x.e)(v)], ∆

SS
=⇒ E

t,P

δ′.δ
[stable(e[v/x])], ∆[δ′ 7→ Λ]

E
t,P

δ.δ
[stable(v)], ∆

ES
=⇒ E

t,P

δ
[v], ∆ − {δ}

∆(δ) = (P ′, ∆′)

E
t,P

δ.δ
[stabilize()], ∆

ST
=⇒ P ′, ∆′

Figure 6. A core call-by-value language for stabilizers.

sets, andα ≤ α′ holds if α is a prefix ofα′. We write | α | to
denote the length of sequenceα.

Our communication model is a message-passing system with
synchronous send and receive operations. We do not impose a
strict ordering of communication actions on channels; communica-
tion actions on the same channel are paired non-deterministically.
To model asynchronous sends, we simply spawn a thread to per-
form the send1. To this core language we add three new prim-
itives: stable and stabilize. When a stable function is ap-
plied, a global checkpoint is established, and its body, denoted as
stable(e), is evaluated in the context of this checkpoint. The sec-
ond primitive,stabilize, is used to initiate a rollback and the
third, cut, clears all current checkpoints. An attempt to restore to
a checkpoint which is no longer present results in a stuck state that
is tantamount to an error.

The syntax and semantics of the language are given in Fig. 6.
Expressions are variables, locations to represent channels, λ-
abstractions, function applications, thread creations, communica-
tion actions to send and receive messages on channels, or oper-
ations to define stable sections, and to stabilize global state to a
consistent checkpoint. We do not consider references in this core
language as they can be modeled in terms of operations on chan-
nels. We describe how to handle references efficiently in an imple-
mentation in Section 6.2.

A program is defined as a collection of threads. Each thread
is uniquely identified, and is also associated with astable section

1 Asynchronous receives are not feasible without a mailbox abstraction.

identifier(denoted byδ) that indicates the stable section the thread
is currently executing within. Stable section identifiers are ordered
under a relation that allows us to compare them (e.g., they could be
thought of as integers incremented by a global counter). Thus, we
write t[e]δ if a thread with identifiert is executing expressione in
the context of stable sectionδ; since stable sections can be nested,
the notation generalizes to sequences of stable section identifiers
with sequence order reflecting nesting relationships. We omit dec-
orating a term with stable section identifiers when appropriate. Our
semantics is defined up to congruence of threads (P‖P′ ≡ P′‖P).
We writeP⊖{t[e]} to denote the set of threads that do not include
a thread with identifiert, andP⊕{t[e]} to denote the set of threads
that contain a thread executing expressione with identifiert.

We use evaluation contexts to specify order of evaluation within
a thread, and to prevent premature evaluation of the expression
encapsulated within aspawn expression. We define a thread context
E

t,P

δ
[e] to denote an expressione available for execution by thread

t ∈ P within contextE; the sequenceδ indicates the ordered
sequence of nested stable sections within which the expression
evaluates.

Local reductions within a thread are specified by an auxiliary
relation,e → e′ that evaluates expressione within some thread
to a new expressione′. The local evaluation rules are standard:
function application substitutes the value of the actual parameter
for the formal in the function body, and channel creation results in
the creation of a new location that acts as a container for message
transmission and receipt.

5 2006/6/9

Program evaluation is specified by a global reduction relation,
P, ∆,

α
=⇒ P ′, ∆′, that maps a program state to a new program

state. We tag each evaluation step with an action,α, that defines

the effects induced by evaluating the expression. We write
α

=⇒ ∗

to denote the reflexive, transitive closure of this relation. The ac-
tions of interest are those that involve communication events, or
manipulate stable sections. We use labelsLR to denote local reduc-
tion actions,SP to denote thread creation,COMM to denote thread
communication,SS to indicate the start of a stable section,ST to
indicate a stabilize operation,ES to denote the exit from a stable
section, andCUT to indicate a cut action. A program state con-
sists of a collection of evaluating threads (P) and a stable map (∆)
that defines a finite function associating stable section identifiers to
states. A program begins evaluation with an empty stable map.

There are six global evaluation rules. The first describes changes
to the global state when a thread to evaluate expressione is created;
the new thread evaluatese in a context without any stable identifier.
The second describes how a communication event synchronously
pairs a sender attempting to transmit a value along a specificchan-
nel in one thread with a receiver waiting on the same channel in an-
other thread. Evaluating acut simply discards all previous stored
checkpoints.

The remaining three, and most interesting, global evaluation
rules are ones involving stable sections. When a stable section is
newly entered, a new stable section identifier is generated;these
identifiers are related under a total order that allows the semantics
to express properties about lifetimes and scopes of such sections.
The newly created identifier is mapped to the current global state
and this mapping is recorded in the stable map. This state represents
a possible checkpoint. The actual checkpoint for this identifier is
computed as the state in the stable map that is mapped by the
least stable identifier. This identifier represents theoldestactive
checkpointed state. This state is either the state just checkpointed,
in the case when the stable map is empty, or represents some
earlier checkpoint state known to not have any dependencieswith
actions in other stable sections. In other words, if we consider
stable sections as forming a tree with branching occurring at thread
creation points, the checkpoint associated with any stablesection
represents the root of the tree at the point where control enters that
section.

When a stable section exits, the thread context is appropriately
updated to reflect that the state captured when this section was en-
tered no longer represents an interesting checkpoint; the stable sec-
tion identifier is removed from the resulting stable map. A stabilize
action simply reverts to the state captured by the outermoststable
section of this thread. While easily defined, the semantics is highly
conservative because there may be checkpoints that involveless
unrolling that the semantics does not identify. Consider the exam-
ple given in Fig. 7 where two threads execute calls to monitored
functionsf, h, g in that order. Becausef is monitored, a global
checkpoint is taken prior to its call. Now, suppose that the call to h
by Thread 2occurs before the call tof completes. Observe thath
communicates with functiong via a synchronous communication
action on channelc. Assuming no other threads in the program,h
cannot complete untilg accepts the communication. Thus, when
g is invoked, the earliest global checkpoint calculated by the sta-
ble section associated with the call is the checkpoint established
by thestable section associated withf, which happens to be the
checkpoint referenced by the stable section that monitorsh. In other
words, stabilize actions performed within eitherh or g would result
in the global state reverting back to the start off’s execution, even
thoughf completed successfully. This strategy, while correct, is
unnecessarily conservative as we describe in the next section.

Thread 1 Thread 2

let fun f() = ...
fun g() = ...

recv(c)
...

in stable g
(stable f ())

end

let fun h() =
...
send(c, v)
...

in stable h ()
end

Figure 7. The interaction of thread communication and stable sec-
tions.

The soundness of the semantics is defined by anerasureprop-
erty on stabilize actions. Consider the sequence of actionsα that
comprise a possible execution of a program. Suppose that there is a
stabilize operation that occurs inα. The effect of this operation
is to revert the current global program state to an earlier checkpoint.
However, given that program execution successfully continued af-
ter thestabilize call, it follows that there exists a sequence of
actions from the checkpoint state that yields the same stateas the
original, but which doesnot involve execution of thestabilize
operation. In other words,stabilize actions can never manufac-
ture new states, and thus have no effect on the final state of program
evaluation. We formalize this property in the following safety the-
orem.

Theorem[Safety.] Let

E
t,P
φ [e], ∆

α

=⇒ ∗ P ′, ∆′

ST.β

=⇒ ∗ P ′′‖t[v], ∆f

If α is non-empty, there exists an equivalent evaluation

E
t,P

φ [e], ∆
α′.β

=⇒ ∗ P ′′‖t[v], ∆f

such thatα′ ≤ α.

5. Incremental Construction
Although correct, our semantics is overly conservative because a
global checkpoint state is computed upon entry to every stable
section. Furthermore, communication events that establish inter-
thread dependencies are not considered in the checkpoint calcula-
tion. Thus, all threads, even those unaffected by effects that occur in
the interval between when the checkpoint is established andwhen
it is restored, are unrolled. A better alternative would restore thread
state based on the actions witnessed by threads within checkpoint
intervals. If a threadT observes actionα performed by threadT ′

andT is restored to a state that precedes the execution ofα, T ′

can be restored to itslatestlocal checkpoint state that precedes its
observance ofα. If T witnesses no actions of other threads, it is
unaffected by anystabilize calls those threads might make. This
strategy leads to an improved checkpoint algorithm by reducing the
severity of restoring a checkpoint, limiting the impact to only those
threads that witness global effects, and establishing their rollback
point to be as temporally close as possible to their current state.

Fig. 9 presents a refinement to the semantics that incrementally
constructs a dependency graph as part of program execution.This
new definition does not require stable section identifiers orstable
maps to define checkpoints. Instead, it captures the communication
actions performed by threads within a data structure. This structure
consists of a set of nodes representing interesting programpoints,
and edges that connect nodes that have shared dependencies.Nodes
are indexed by ordered node identifiers, and hold thread state. We
also define maps to associate threads with nodes, and their set of
active stable sections.

6 2006/6/9

Actions: SS,SS,SS,COMM

n4

n3

n1

n3

n1

n2n2 n1n1

n5

n2

t1 t2SS

(a) (b)

(c) (d)

t1 t2
C O M Mt1 t2SS t1 t2SS

Figure 8. An example of incremental checkpoint construction.

Informally, the actions of each thread in the graph are repre-
sented by a chain of nodes that define temporal ordering on thread-
local actions. Backedges are established to nodes representing sta-
ble sections; these nodes define possibleper-threadcheckpoints.
Sources of backedges are communication actions that occur within
a stable section, or the exit of a nested stable section. Edges also
connect nodes belonging to different threads to capture inter-thread
communication events.

Graph reachability is used to ascertain a global checkpoint
when astabilize action is performed: when threadT performs a
stabilize call, all nodes reachable fromT ’s current node in the
graph are examined, and the context associated with theleastsuch
reachable node for each thread is used as the thread-local check-
point for that thread. If a thread is not affected (transitively) by the
actions of the thread performing the rollback, it is not reverted to
any earlier state. The collective set of such checkpoints constitutes
a global state.

The evaluation relationP, G
α
; P ′, G′ evaluates a processP

executing actionα with respect to a communication graphG to

yield a new processP ′ and new graphG′. As usual,
α
;

∗ denotes
the reflexive, transitive closure of this relation. Programs initially
begin evaluation with respect to an empty graph. The auxiliary
relationt[e], G ⇓ G′ models intra-thread actions within the graph.
It creates a new node to capture thread-local state, and setsthe
current node marker for the thread to this node. In addition,if the
action occurs within a stable section, a back-edge is established
from that node to this section. This backedge is used to identify a
potential rollback point. If a node has a backedge the restoration
point will be determined by traversing these backedge, thusit is
safe to not store thread contexts with such nodes (⊥ is stored in the
node in that case). New nodes added to the graph are created with
a node identifier guaranteed to be greater than any existing node.

When a stabilization action occurs, the set of nodes reachable
from the node representing the enclosing stable section is calcu-
lated. Significantly, this set should not include a node correspond-
ing to acut operation. The presence of such a node in the reach set
indicates an attempt to stabilize a computation beyond a cutpoint
and is erroneous. The new graph reflects the restoration;G/N is
the graphG with the subgraph rooted at nodesn ∈ N removed.

We define the following theorem that formalizes the intuition
that incremental checkpoint construction results in less rollback
than a global point-in-time checkpoint strategy:

Theorem[Efficiency] If

E
t,P
φ [e], ∆0

α.ST

=⇒ ∗ P ′, ∆′

and

E
t,P
φ [e], G0

α.ST
;

∗ P ′′, G′

thenP ′, ∆′

β

=⇒ ∗ P ′′, ∆′′.

5.1 Example

To illustrate the semantics, consider the sequence of actions shown
in Fig. 8 that is based on the example given in Fig. 7. The node
n1 represents the start of the stable section monitoring function
f (a). Next, a monitored instantiation ofh is created, and a new
node associated with this context is allocated in the graph (b).
Monitoring of functiong results in a new node to the first thread
with an edge from the previous node joining the two (see c). Lastly,
consider the exchange of a value on channelc by the two threads.
Nodes corresponding to the communication are created, along with
backedges to their respective stable section (d).

Recall the global checkpointing scheme would restore to a
global checkpoint created at the point the monitored version of
f was produced, regardless of where a stabilization action took
place. In contrast, a stabilize call occurring within the execution of
eitherg or h using this incremental scheme would restore the first
thread to the continuation stored in noden3 (corresponding to the
context immediately preceding the call tog), and would restore the
second thread to the continuation stored in noden2 (corresponding
to the context immediately preceding the call toh).

6. Implementation
Our implementation is incorporated within MLton [20], a whole-
program optimizing compiler for Standard ML. The main changes
to the underlying infrastructure were the insertion of readand
write barriers to track shared memory updates, and hooks to the
Concurrent ML [25] library to update the communication graph.
State restoration is thus a combination of restoring continuations
as well as reverting references. The implementation is roughly 3K
lines of code to support our data structures, checkpointing, and
restoration code, as well as roughly 200 lines of changes to CML.

6.1 Supporting First-Class Events

Because our implementation is an extension of the core CML li-
brary, it supports first-class events [25] as well as channel-based
communication. The handling of events is no different than our
treatment of messages. If a thread is blocked on an event withan
associated channel, we insert an edge from that thread’s current
node to the channel. We support CML’s selective communication
with no change to the basic algorithm. Since CML imposes a strict
ordering of communication events, each channel must be purged of
spurious or dead data after a stabilize action. CML utilizestrans-
action identifiers for each communication action, or in the case of
selective communication, a series of communication actions. CML
already implements clearing channels of spurious data whenasync
operation occurs on a selective communication. This is donelazily
by tagging the transaction identifier asconsumed. Communication
actions check and remove any data so tagged. We utilize this same
process for clearing channels during a stabilize action.

6.2 Handling References

We have thus far elided details on how to track shared memory ac-
cess to properly support state restoration actions in the presence of
references. Naively tracking each read and write separately would
be inefficient. There are two problems that must be addressed: (1)
unnecessary writes should not be logged; and (2) spurious depen-
dencies induced by reads should be avoided.

Notice that for a give stable section, it is enough to monitorthe
first write to a given memory location since each stable section is
unrolled as a single unit. For every write to locationl, we need to
only monitor the first read performend by another thread tol; if this

7 2006/6/9

SYNTAX AND EVALUATION CONTEXTS

P ::= P‖P | t[e]
δ

E
t,P

δ
[e] ::= P‖ t[E [e]]

δ

e → e′

E
t,P

δ
[e], G

LR
; E

t,P

δ
[e′], G

PROGRAM STATES

n ∈ Node = NodeId × (Process+ ⊥)
n 7→ n′

∈ Edge = Node × Node
δ ∈ StableID

η ∈ CurNode = Thread
fin
→ Node

σ ∈ StableSections= StableID
fin
→ Node

G ∈ Graph = P(Node) × P(Edge) × CurNode × StableSections

GLOBAL EVALUATION RULES

n = ADDNODE(t[E[e]]φ,N)
G′ = 〈N ∪ {n}, E ∪ {η(t) 7→ n}, η[t 7→ n], σ 〉

t[E[e]]φ, 〈N,E, η, σ 〉 ⇓ G′

t[E [spawn(e)]]
δ
, G ⇓ 〈N, E, η, σ 〉

t′ fresh n = ADDNODE(t′[e]φ,N)
G′ = 〈N ∪ {n}, E ∪ {η(t) 7→ n}, η[t′ 7→ n], σ 〉

E
t,P

δ
[spawn(e)], G

SP
; P‖t[E [unit]]

δ
‖t′[e]φ, G′

P = P ′‖t[E [send(l, v)]]
δ
‖t′[E ′[recv(l)]]

δ

t[E [send(l, v)]]
δ
, G ⇓ G′ t′[E [recv(l)]]

δ
, G′ ⇓ G′′

G′′ = 〈N,E, η, σ 〉
G′′′ = 〈N, E ∪ {η(t) 7→ η(t′), η(t′) 7→ η(t)}, η, σ 〉

P, G
COMM

; P ′‖t[E [unit]]
δ
‖t′[E ′[v]]

δ
, G′′′

t[E[cut()]]
δ
, G ⇓ G′

E
t,P

δ
[cut()], G

CUT
; E

t,P

δ
[unit], G′

n = σ(δ) n′ = ADDNODE(⊥,N)
G′ = 〈N ∪ {n′}, E ∪ {η(t) 7→ n′, n′ 7→ n}, η[t 7→ n′], σ 〉

t[E[e]]
δ.δ

, 〈N,E, η, σ 〉 ⇓ G′

G = 〈N,E, η, σ 〉 δ fresh
n = ADDNODE(t[E[stable(λ x.e)(v)]]

δ
,N)

G′ = 〈N,E ∪ {η(t) 7→ n}, η[t 7→ n], σ[δ 7→ n] 〉

E
t,P

δ
[stable(λ x.e)(v)], G

SS
; E

t,P

δ.δ
[stable(e[v/x])], G′

G = 〈N,E, η, σ 〉 G′ = 〈N,E, η, σ − {δ} 〉

E
t,P

δ.δ
[stable(v)], G

ES
; E

t,P

δ
[v], G′

G = 〈N,E, η, σ 〉 σ(δ) = n
τ = REACH(n,E) 〈 k, t[E[cut()]] 〉 6∈ τ

P ′ = {t[e] | 〈 i, t[e] 〉 ∈ τ s.t.i ≤ j ∀〈 j, t[e′] 〉 ∈ τ}
P ′′ = P ′ ⊕ (P ⊖ P ′) G′ = G/τ

E
t,P

δ.δ
[stabilize()], G

ST
; P ′′, G′

REACH(n,E) = {n} ∪ REACH(n′,E − {n 7→ n′}) ∀n′ s.t.n 7→ n′ ∈ E

Figure 9. Incremental Checkpoint Construction.

write is unrolled, the reading thread thread must be unrolled to at
least before this read. To monitor writes, we create a version list in
which we store reference/value pairs. For each reference inthe list,
its matching value corresponds to the value held in the reference
prior to the execution of the stable section; our current implemen-
tation does not track writes occuring outside a stable section. When
the program enters a stable section, we create an empty version list
for this section. When a write is encountereted within a monitored
procedure, a write barrier is executed that checks if the reference
being written is in the verion list maintained by the section. If there
is no entry for the reference, one is created, and the currentvalue
of the reference is recorded. Otherwise, no action is required.

Until a nested stable section exits, it is possible for a callto sta-
bilize to unroll to the start of this section. A nested section is created
when a monitored procedure is defined within the dynamic context
of another monitored procedure. Nested sections require maintain-
ing their own version lists. Version list information in these sec-
tions must be propagated to the outer section upon exit. However,
the propagation of information form nested sections to outer ones
is not trivial; if the outer section has monitored a particular memory
location that has also been updated by the inner one, we only need
to store the outer section’s version, and the value preserved by the
inner one can be discarded.

Efficiently monitoring read dependencies requires us to adopt
a different methodology. We assume read operations occur much
more frequently that writes, and thus it would be impractical to
have barriers on all read operations to record dependency informa-
tion in the communication graph. However, we observe that for a
program to be correctly synchronized, all read and writes ona lo-
cation l must be protected by a lock. Therefore, it is sufficient to
monitor lock acquires/releases to infer shared memory dependen-
cies. By incorporating happens-before dependency edges onlock
operations, stabilize actions initiated by a writer to a shared loca-
tion can be effectively propagated to readers that mediate access to
that location via a common lock. A lock acquire is dependent on
the previous acquisition of the lock.

6.3 Graph Representation

The main challenge in the implementation was developing a com-
pact representation of the communication graph. We have imple-
mented a number of node/edge compaction algorithms allowing
for fast culling of redundant information. For instance, any two
nodes that share a backedge can be collapsed into a single node.
We also ensure that there is at most one edge between any pair of
nodes. Any addition to the graph affects at most two threads.We
use thread-local meta-data to find the most recent node for each

8 2006/6/9

Comm. Shared Graph Overheads (%)
Benchmark LOC incl. eXene Threads Channels Events Writes Reads Size(MB) Runtime Memory
Triangles 16501 205 79 187 88 88 .19 0.59 8.62
N-Body 16326 240 99 224 224 273 .29 0.81 12.19
Pretty 18400 801 340 950 602 840 .74 6.23 20.00
Swerve 9915 10532 231 902 9339 80293 5.43 2.85 4.08

Table 1. Benchmark characteristics, dynamic counts, and normalized overheads.

thread. The graph is thus never traversed in its entirety. The size of
the communication graph grows with the number of communica-
tion events, thread creation actions, lock acquires, and stable sec-
tions entered. However, we do not need to store the entire graph for
the duration of program execution. As the program executes,parts
of the graph will become unreachable. The graph is implemented
using weak references to allow unreachable portions to be safely
reclaimed by the garbage collector. As we describe below, memory
overheads are thus minimal.

A stabilize action has complexity linear in the number of
nodes and edges in the graph. Our implementation utilizes a com-
bination of depth-first search and bucket sorting to calculate the re-
sulting graph after a stabilize call in linear time. DFS identifies the
part of the graph which will be removed after the stabilize call and a
modified bucket sort actually performs the removal. Only sections
of the graph reachable from the stabilize call are traversed, resulting
in a fast restoration procedure.

7. Performance Results
To measure the cost of stabilizers with respect to various concur-
rent programming paradigms, we present a synthetic benchmark to
quantify pure memory and time overheads, and examine several
server-based open-source CML benchmarks to illustrate average
overheads in real programs. The benchmarks were run on a Intel
P4 2.4 GHz machine with one GByte of memory running Gentoo
Linux, compiled and executed using MLton release 20041109.

To measure the costs of our abstraction, our benchmarks are ex-
ecuted in three different ways: one in which the benchmark isex-
ecuted with no actions monitored, and no checkpoints constructed;
one in which the entire program is monitored, effectively wrapped
within a stable call, but in which no checkpoints are actually re-
stored; and one in which relevant sections of code are wrapped
within stable sections, exception handlers dealing with transient
faults are augmented to invokestabilize, and faults are dynami-
cally injected to trigger restoration.

7.1 Synthetic Benchmarks

Our synthetic benchmark spawns two threads, a source and a sink,
that communicate asynchronously. We measure the cost of our
abstraction with regard to an ever increasing load of asynchronous
communication events. This benchmark measures the overhead of
logging program state and communication dependencies withno
opportunity for amortizing these costs among other non-stabilizer
related operations. These numbers represent worst case overheads
for monitoring thread interactions.

The runtime overhead is presented in Fig. 10(a), and the total
allocation overhead is presented in Fig. 10(b). As expected, the cost
to simply maintain the graph grows linearly with the number of
asynchronous communications performed and runtime overheads
remain constant. There is a significant initial memory and runtime
cost because we pre-allocate hash tables used to index nodesin the
graph.

(A) (B)

Figure 10. Synthetic benchmark overheads.

7.2 Open-Source Benchmarks

Our other benchmarks include severaleXene [16] benchmarks,
Triangles andNbody, mostly display programs that create threads
to draw objects; andPretty, a pretty printing library written on
top ofeXene. TheeXene toolkit is a library for X Windows, imple-
menting the functionality ofxlib, written in CML and comprising
roughly 16K lines of Standard ML. Events from the X server and
control messages between widgets are distributed in streams (coded
as CML event values) through the window hierarchy.eXene man-
ages the X calls through a series of servers, dynamically spawned
for each connection and screen. The last benchmark we consider
is Swerve, a webserver written in CML whose major modules
communicate with one other using message-passing channel com-
munication; it makes no use ofeXene. All the benchmarks create
various CML threads to handle various events; communication
occurs mainly through a combination of message-passing on chan-
nels, with occasional updates to shared data.

For these benchmarks, stabilizers exhibit a runtime slow down
upto approximately 6% over a CML program in which monitoring
is not performed (see Table 1). For a highly-concurrent application
like Swerve, the overheads are even smaller, on the order of 3%.
The cost of using stabilizers is only dependent on the numberof
inter-thread actions and shared data dependencies that arelogged.
These overheads are well amortized over program execution.

Memory overheads to maintain the communication graph are
larger, although in absolute terms, they are quite small. Because we
capture continuations prior to executing communication events and
entering stable sections, part of the memory cost is influenced by
representation choices made by the underlying compiler. Nonethe-
less, benchmarks such asSwerve that create over 10K threads, and
employ non-trivial communication patterns, require only 5MB to
store the communication graph, a roughly 4% overhead over the
memory consumption of the original program.

To measure the cost of calculating and restoring a globally
consistent checkpoint, we consider three experiments. Thefirst is
a simple unrolling ofSwerve (see Table. 2), in which a call to
stabilize is inserted during the processing of a varying number
of concurrent web requests. This measurement illustrates the cost
of restoring to a consistent global state that can potentially affect a
large number of threads. Although we expect large checkpoints to
be rare, we note that restoration of such checkpoints is nonetheless

9 2006/6/9

Graph Channels Threads Runtime
Reqs Size Num Cleared Affected (seconds)
20 1130 85 42 470 0.005
40 2193 147 64 928 0.019
60 3231 207 84 1376 0.053
80 4251 256 93 1792 0.094
100 5027 296 95 2194 0.132

Table 2. Restoration of the entire webserver.

Channels Threads Runtime
Benchmark Num Cleared Total Affected (seconds)
Swerve 38 4 896 8 .003
eXene 158 27 1023 236 .019

Table 3. Instrumented recovery.S c r o l l
Widget C o r e e X e n e

Figure 11. An eXene scroll bar widget spawns several indepen-
dent threads, including a control thread that communicateswith
othereXene components.

quite fast. The graph size is presented as the total number ofnodes.
Channels can be affected by an unrolling in two different ways: a
channel may contain a value sent on it by a communicating thread
but which has not been consumed by a receiver, or a channel may
connect two threads which have successfully exchanged a value. In
the first case we must clear the channel of the value if the thread
which placed the value on the channel is unrolled; in the later
case no direct processing on the channel is required. The table also
shows the total number of affected channels and those which must
cleared.

7.3 Injecting Stabilizers

To quantify the cost of using stabilizers in practice, we extended
Swerve and eXene and replaced some of their error handling
mechanisms with stabilizers (see Table 3). ForSwerve, the im-
plementation details were given in Section 3. Our benchmarkman-
ually injects a timeout every ten requests, stabilizes the program,
and re-requests the page.

For eXene, we augment a scrollbar widget used by the pretty
printer. IneXene the state of a widget is defined by the state of its
communicating threads, and no state is stored in shared data. The
scroll bar widget is composed of three threads which communicate
over a set of channels. The widget’s processing is split between two
helper threads and one main controller thread. Any error handled by
the controller thread must be communicated to the helper threads
and vice versa. The interactions of the scroll bar widget andthe rest
of eXene is depicted in Fig. 11. The dotted box represents a stable
section encompassing the processing of the widget. We manually

(A) (B)

Figure 12. Swerve benchmark overheads.

inject the loss of packets to theX server, stabilize the widget, and
wait for new interaction events. The loss of packets is injected by
simply dropping every tenth packet which is received from the
X server. Ordinarily, ifeXene ever loses an X server packet, its
default behavior is to terminate execution since there is noeasy
mechanism available to restore the state of the widget to a globally
consistent point. Using stabilizers, however, packet lossexceptions
can be safely handled by the widget. By stabilizing the widget, we
return it to a state prior to the failed request. Subsequent requests
will redraw the widget as we would expect; thus, stabilizerspermit
the scroll bar widget to recover from a lost packet without pervasive
modification to the underlyingeXene implementation.

Finally, to measure the sensitivity of stabilization to application-
specific parameters, we compare our stabilizer-enabled version of
Swerve to the stock configuration by varying two program at-
tributes: file size and quantum. Since stabilizers eliminate the need
for polling during file processing, we suspect our runtime costs
would improve as file sizes increased. Our tests were run on both
versions ofSwerve; for a given file size, 20 requests are processed.
The results (see Fig. 12(a)) indicate that for large file sizes (upward
of 256KB) our implementation is slightly more efficient thanthe
original implementation. Our slow down for small file sizes (on the
order of 10KB) is proportional to our earlier benchmark results.

Since our graph algorithm requires monitoring various commu-
nication events, lowering the time quantum allocated to each thread
may adversely affect performance, since the overhead for monitor-
ing the graph consumes a greater fraction of a thread’s computa-
tion per quantum. Our tests compared the two versions ofSwerve,
keeping file size constant at 10KB, but varying the allocatedquan-
tum. (see Fig 12(B)). Surprisingly, the results indicate that stablizer
overheads become significant only when the quantum is less than 5
ms. As a point of comparison, CML’s default quanta is 20ms.

8. Related Work
Being able to checkpoint and rollback parts or the entirety of an ex-
ecution has been the focus of notable research in the database [10]
as well as parallel and distributed computing communities [13, 22,
24]. Checkpoints have been used to provide fault tolerance for long-
lived applications, for example in scientific computing [28, 2] but
have been typically regarded as heavyweight entities to construct
and maintain.

Existing checkpoint approaches can be classified into four broad
categories: (a) schemes that require applications to provide their
own specialized checkpoint and recovery mechanisms [4, 5];(b)
schemes in which the compiler determines where checkpointscan
be safely inserted [3]; (c) techniques that require operating system
or hardware monitoring of thread state [8, 21, 24]; and (d) library
implementations that capture and restore state [11]. Checkpointing
functionality provided by an application or a library relies on the
programmer to define meaningful checkpoints. For many multi-

10 2006/6/9

threaded applications, determining these points is non-trivial be-
cause it requires reasoning about global, rather than thread-local,
invariants. Compiler and operating-system injected checkpoints are
transparent to the programmer. However, transparency comes at a
notable cost: checkpoints may not be semantically meaningful or
efficient to construct.

Recent work in the programming languages community has ex-
plored abstractions and mechanisms closely related to stabilizers
and their implementation for maintaining consistent statein dis-
tributed environments [14], detecting deadlocks [9], and gracefully
dealing with unexpected termination of communicating tasks in a
concurrent environment [15]. For example, kill-safe thread abstrac-
tions [15] provide a mechanism to allow cooperating threadsto op-
erate even in the presence of abnormal termination. Stabilizers can
be used for a similar goal, although the means by which this goal
is achieved is quite different. Stabilizers rely on unrolling thread
dependencies of affected threads to ensure consistency instead of
employing specific runtime mechanisms to reclaim resources.

In addition to stabilizers, functional language implementations
have utilized continuations for similar tasks. For example, Tolmach
and Appel [29] describe a debugging mechanism for SML/NJ that
utilized captured continuations to checkpoint the target program at
given time intervals. This work was later extended [30] to support
multithreading, and was used to log non-deterministic thread events
to provide replay abilities.

Another possibility for fault recovery is micro-reboot [7], a fine-
grained technique for surgically recovering faulty application com-
ponents which relies critically on the separation of data recovery
and application recovery. Micro-reboot allows for a systemto be
restarted without ever being shut down by rebooting separate com-
ponents. Unlike checkpointing schemes, which attempt to restore a
program to a consistent state within the running application, micro-
reboot quickly restarts an application component, but the technique
itself is oblivious to program semantics.

The ability to revert to a prior point within a concurrent execu-
tion is essential to transaction systems [1, 16, 23]; outside of their
role for database concurrency control, such approaches canim-
prove parallel program performance by profitably exploiting spec-
ulative execution [26, 31]. Harriset al. proposes a transactional
memory system [18] for Haskell that introduces aretry primi-
tive to allow a transactional execution to safely abort and be re-
executed if desired resources are unavailable. However, this work
does not propose to track or revert effectful thread interactions
within a transaction. In fact, such interactions are explicitly rejected
by the Haskell type-system. There has also been recent interest in
providing transactional infrastructure for ML [27], and inexplor-
ing the interaction between transactional semantics and first-class
synchronous operations [12]. Our work shares obvious similarities
with all these efforts.

9. Conclusions and Future Work
Stabilizers are a novel on-the-fly checkpointing abstraction for con-
current functional programs. Unlike other checkpointing schemes,
stabilizers are not only able to identify the smallest subset of
threads which must be unrolled, but also provide useful safety
guarantees. As a language abstraction, stabilizers can be used to
simplify program structure especially with respect to error han-
dling, debugging, and consistency management. Our resultsindi-
cate that stabilizers can be implemented with small overhead and
thus serve as an effective and promising checkpointing abstraction
for high-level concurrent programs.

There are several important directions we expect to pursue in
the future. While the use ofcut can delimit the extent to which
control is reverted as a result of astabilize call, a more general
and robust approach would be to integrate a rational compensation

semantics [6] for stabilizers in the presence of stateful operations.
We also plan to explore richer ways to describe the interaction be-
tween stable sections and their restoration, for example byprovid-
ing a facility to have threads restore program state in otherexe-
cuting threads, and to investigate the interaction of stabilizers with
other transaction-based concurrency control mechanisms.

References
[1] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari. Efficient

Optimistic Concurrency Control Using Loosely Synchronized
Clocks. SIGMOD Record (ACM Special Interest Group on
Management of Data), 24(2):23–34, June 1995.

[2] Saurabh Agarwal, Rahul Garg, Meeta S. Gupta, and Jose E. Moreira.
Adaptive Incremental Checkpointing for Massively Parallel Systems.
In ICS ’04: Proceedings of the 18th annual international conference
on Supercomputing, pages 277–286, New York, NY, USA, 2004.
ACM Press.

[3] Micah Beck, James S. Plank, and Gerry Kingsley. Compiler-Assisted
Checkpointing. Technical report, University of Tennessee, Knoxville,
TN, USA, 1994.

[4] Greg Bronevetsky, Daniel Marques, Keshav Pingali, and Paul
Stodghill. Automated Application-Level Checkpointing ofMPI
Programs. InPPoPP ’03: Proceedings of the ninth ACM SIGPLAN
symposium on Principles and practice of parallel programming,
pages 84–94, New York, NY, USA, 2003. ACM Press.

[5] Greg Bronevetsky, Daniel Marques, Keshav Pingali, Peter Szwed, and
Martin Schulz. Application-Level Checkpointing for Shared Memory
Programs. InASPLOS-XI: Proceedings of the 11th international
conference on Architectural support for programming languages and
operating systems, pages 235–247, New York, NY, USA, 2004. ACM
Press.

[6] R. Bruni, H. Melgratti, and U. Montanari. Theoretical Foundations
for Compensations in Flow Composition Languages. InPOPL ’05:
Proceedings of the 32nd ACM SIGPLAN-SIGACT sysposium on
Principles of programming languages, pages 209–220, New York,
NY, USA, 2005. ACM Press.

[7] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox.
Microreboot - A Technique for Cheap Recovery. In6th Symposium
on Operating Systems Design and Implementation, San Francisco,
California, 2004.

[8] Yuqun Chen, James S. Plank, and Kai Li. CLIP: A Checkpointing
Tool for Message-Passing Parallel Programs. InSupercomputing ’97:
Proceedings of the 1997 ACM/IEEE conference on Supercomputing,
pages 1–11, New York, NY, USA, 1997. ACM Press.

[9] Jan Christiansen and Frank Huch. Searching for Deadlocks while
Debugging Concurrent Haskell Programs. InICFP ’04: Proceedings
of the ninth ACM SIGPLAN international conference on Functional
programming, pages 28–39, New York, NY, USA, 2004. ACM Press.

[10] Panos K. Chrysanthis and Krithi Ramamritham. ACTA: the
SAGA continues. InDatabase Transaction Models for Advanced
Applications, pages 349–397. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1992.

[11] William R. Dieter and James E. Lumpp Jr. A User-level Check-
pointing Library for POSIX Threads Programs. InFTCS ’99: Pro-
ceedings of the Twenty-Ninth Annual International Symposium on
Fault-Tolerant Computing, page 224, Washington, DC, USA, 1999.
IEEE Computer Society.

[12] Kevin Donnelly and Matthew Fluet. Transactional events. In ICFP
’06: Proceedings of the Eleventh ACM SIGPLAN International
Conference on Functional Programming, New York, NY, USA, 2006.
ACM Press.

[13] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and
David B. Johnson. A Survey of Rollback-Recovery Protocols in
Message-Passing Systems.ACM Comput. Surv., 34(3):375–408,
2002.

[14] John Field and Carlos A. Varela. Transactors: a Programming
Model for Maintaining Globally Consistent Distributed State in
Unreliable Environments. InPOPL ’05: Proceedings of the 32nd

11 2006/6/9

ACM SIGPLAN-SIGACT sysposium on Principles of programming
languages, pages 195–208, New York, NY, USA, 2005. ACM Press.

[15] Matthew Flatt and Robert Bruce Findler. Kill-safe Synchronization
Abstractions. InPLDI ’04: Proceedings of the ACM SIGPLAN 2004
conference on Programming language design and implementation,
pages 47–58, New York, NY, USA, 2004. ACM Press.

[16] Jim Gray and Andreas Reuter.Transaction Processing. Morgan-
Kaufmann, 1993.

[17] Tim Harris and Keir Fraser. Language support for lightweight trans-
actions. InProceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applications, pages
388–402. ACM Press, 2003.

[18] Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice
Herlihy. Composable Memory Transactions. InACM Conference
on Principles and Practice of Parallel Programming, 2005.

[19] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N.
Scherer, III. Software transactional memory for dynamic-sized
data structures. InACM Conference on Principles of Distributed
Computing, pages 92–101, 2003.

[20] http://www.mlton.org.
[21] D. Hulse. On Page-Based Optimistic Process Checkpointing. In

IWOOOS ’95: Proceedings of the 4th International Workshop on
Object-Orientation in Operating Systems, page 24, Washington, DC,
USA, 1995. IEEE Computer Society.

[22] Mangesh Kasbekar and Chita Das. Selective Checkpointing and
Rollback in Multithreaded Distributed Systems. In21st International
Conference on Distributed Computing Systems, 2001.

[23] H. T. Kung and John T. Robinson. On Optimistic Methods for
Concurrency Control.TODS, 6(2):213–226, 1981.

[24] Kai Li, Jeffrey Naughton, and James Plank. Real-time Concurrent
Checkpoint for Parallel Programs. InACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pages 79–88,
1990.

[25] John Reppy.Concurrent Programming in ML. Cambridge University
Press, 1999.

[26] Martin Rinard. Effective Fine-Grained Synchronization for Auto-
matically Parallelized Programs Using Optimistic Synchronization
Primitives.ACM Transactions on Computer Systems, 17(4):337–371,
November 1999.

[27] Michael F. Ringenburg and Dan Grossman. Atomcaml: first-class
atomicity via rollback. InICFP ’05: Proceedings of the Tenth ACM
SIGPLAN International Conference on Functional Programming,
pages 92–104, New York, NY, USA, 2005. ACM Press.

[28] Asser N. Tantawi and Manfred Ruschitzka. Performance Analysis of
Checkpointing Strategies.ACM Trans. Comput. Syst., 2(2):123–144,
1984.

[29] Andrew P. Tolmach and Andrew W. Appel. Debugging Standard ML
Without Reverse Engineering. InLFP ’90: Proceedings of the 1990
ACM conference on LISP and functional programming, pages 1–12,
New York, NY, USA, 1990. ACM Press.

[30] Andrew P. Tolmach and Andrew W. Appel. Debuggable Concurrency
Extensions for Standard ML. InPADD ’91: Proceedings of the 1991
ACM/ONR workshop on Parallel and distributed debugging, pages
120–131, New York, NY, USA, 1991. ACM Press.

[31] Adam Welc, Suresh Jagannathan, and Antony Hosking. Safe futures
for java. InProceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applications, pages
439–453. ACM Press, 2005.

[32] Adam Welc, Suresh Jagannathan, and Antony L. Hosking. Transac-
tional Monitors for Concurrent Objects. InEuropean Conference on
Object-Oriented Programming, pages 519–542, 2004.

12 2006/6/9

