
Flattening Tuples in an SSA Intermediate Representation

Lukasz Ziarek ∗

Purdue University, Department of Computer Science

Stephen Weeks †

Consultant

Suresh Jagannathan ‡

Purdue University, Department of Computer Science

December 6, 2004

Abstract. For functional programs, unboxing aggregate data structures such as
tuples removes memory indirections and frees dead components of the decoupled
structures. To explore the consequences of such optimizations in a whole-program
compiler, this paper presents a tuple flattening transformation and a framework that
allows the formal study and comparison of different flattening schemes.

We present our transformation over functional SSA, a simply-typed, monomor-
phic language and show that the transformation is type-safe. The flattening algo-
rithm defined by our transformation has been incorporated into MLton, a whole-
program, optimizing compiler for SML. Experimental results indicate that aggressive
tuple flattening can lead to substantial improvements in runtime performance, a
reduction in code size, and a decrease in total allocation without a significant increase
in compilation time.

Keywords: Compilation, Optimization, Unboxing, Flattening, Tuples, SSA

1. Introduction

Unboxing is a method exploited by optimizing compilers to remove
memory indirections and unnecessary data. Unboxing optimizations
improve run-time performance while preserving behavior as well as
type safety of programs. This paper presents a new SSA transformation
for flattening tuples in a whole-program compilation environment. Our
transformation differs from classic unboxing methods and deforesta-
tion algorithms, utilizing whole-program analysis to perform unbox-
ing on a simple first-order intermediate language. To our knowledge,
our transformation is the first to study the benefits of whole-program
compilation for unboxing.

The core of the flattening transformation revolves around passing
both boxed and unboxed representations where needed. An unboxed

∗ lziarek@cs.purdue.edu
† sweeks@sweeks.com
‡ suresh@cs.purdue.edu

c© 2009 Kluwer Academic Publishers. Printed in the Netherlands.

paper.tex; 11/01/2009; 14:02; p.1



2 Ziarek Weeks Jagannathan

representation is created by prefetching tuple elements, i.e., selecting
out the tuple’s structure. Where feasible, flattening a tuple releases the
association between the tuple’s constituent components, potentially en-
abling improved memory utilization through the elimination of useless
components and corresponding selects. Our optimization strategy relies
on a labeling of tuples, indicating which tuples should be flattened.
The correctness of a transformation induced by a labeling may require
that multiple representations of a tuple be preserved; to ensure this,
both boxed and unboxed representations are passed to all tuple use-
sites1. The degree to which flattening alleviates memory indirections
determines the efficiency of the optimization.

To motivate our approach, consider the following two versions of the
functions ’CoordinateAdd’:

fun CoordinateAdd(f, pair1, pair2) =

let val x1 = # 1 pair1
val x2 = # 1 pair2

in f(x1 + x2, pair1)

end

fun CoordinateAddT(f, p1x, p1y, p2x, p2y) =

let val x1 = p1x

val x2 = p2x

in f(x1 + x2, p1x, p1y)

end

Suppose pair1 and pair2 are pairs in a typical (x, y) coordinate
system and all possible candidates for f are known. Unboxing both
pairs, thereby passing the function CoordinateAdd four arguments and
the function f, eliminates the need for select statements of the form,
x1 = #1 pair1. If it can be determined that the function f’s arguments
can also be flattened, this transformation permits the compiler to pass
each of the four arguments, representing the decoupled elements of
pair1 and pair2, in registers instead of providing two heap allocated
objects, as seen in CoordinateAddT. When the pairs are flattened,
the association between x and y dissolves, allowing the y coordinate
of pair2 to be dropped through useless variable elimination [26, 17].
Breaking the correlation between x and y coordinates within the local
context of CoordinateAdd does not impact the behavior of the function
as long as it can be determined that for all possible values of f, the
argument pair1 can be flattened. Although this example is contrived,
it demonstrates that a logical data presentation (i.e., a grouping of
coordinates into pairs) is not necessarily an optimal run-time data
organization.

1 Unneeded representations can be removed by useless code elimination.

paper.tex; 11/01/2009; 14:02; p.2



Flattening Tuples in SSA 3

In general, all call sites of CoordinateAdd must be known to de-
termine all possible candidates for f. However, such a determination
about CoordinateAdd and f can be made only in the context of whole-
program compilation, or if CoordinateAdd and f do not escape a
function or module . If all candidates for f are not known, it may be
the case that our assumptions about pair1 uses are overly aggressive.
Therefore, a compiler would need a method to alter pair1’s repre-
sentation. Without full knowledge about f, pair1 cannot be flattened
uniformly, instead a method to switch between boxed and unboxed
representations is required. Alternatively, both representations can be
passed to contexts in which tuple use information is not present to ag-
gresively unbox. Our optimization, thus, benefits from whole program
compiliation in efficiency as un-needed tuple representations can be
eliminated.

In this paper we explore a tuple unboxing algorithm for whole-
program optimizing compilers. Our contributions are three-fold: 1) we
present a formal semantics for the tuple flattening program transforma-
tion, 2) we provide a detailed proof of type safety and correctness over a
simple intermediate language, and 3) we present a detailed study of the
algorithm in the MLton Standard ML compiler, showing the approach
is feasible even for large programs.

1.1. Related Work

There exist many transformations that optimize the memory usage of
a program [20, 21], unbox data [8], eliminate intermediate data struc-
tures instead of restructuring data representations [24], and split data-
structure via arity raising [10]. Because these transformations remove
overhead introduced by high-level abstractions, they have a potentially
large performance benefit. Our transformation is distinguished from
this family of optimizations, reducing overhead by eliminating memory
indirections and unnecessary data stored within tuples. Tuples are a
core element of functional language programs, serving to group and
organize heterogeneous data objects. As data flows between functions,
or even between different data structures, new intermediate tuples may
be created. This is especially true of functional programming languages
in which dataflow is expressed primarily through function invocation.
Whenever an intermediate tuple is allocated, a cost is incurred to al-
locate the structure; subsequent costs accrue whenever its constituent
elements are accessed.

Although potentially expensive, data boxing is an important com-
piler construct. Due to polymorphism the actual type of an object
may not be discernible at compile time in most functional programs.

paper.tex; 11/01/2009; 14:02; p.3



4 Ziarek Weeks Jagannathan

Therefore, data representation decisions often cannot be inferred from
the static type of an object. Compilers for ML-like languages typically
represent structured data in boxed form [13] to avoid representational
differences of data objects. Boxing enforces the invariant that all data
structures have a uniform representation. Unfortunately, the conse-
quence of boxing objects results in memory indirections to access data
structure elements.

To limit memory access penalties, modern compilers discern op-
portunities to unbox data. Run-time type inspection [11], tag-based
and type-directed unboxing [8], and coercion-based unboxing [14] are
modern unboxing methods utilized by compilers and runtime systems.
In run-time type inspection, the run-time representation of an object’s
type is stored within the program. Typing information is stored as
extra arguments to polymorphic functions as well as extra components
to structures defining abstract types. Types are inspected at run time
to determine the location and size of values with polymorphic types.
With tag-based unboxing, data structures are annotated with type in-
formation, effectively tagging the structure. Coercion-based unboxing
inserts coercions when types are specialized so that monomorphic code
utilizes unboxed representations while polymorphic code operates on
boxed representations.

Unboxing implementations are not limited to optimizing data rep-
resentations within functions, but are also applied to optimize data
flow between functions. For example, unboxing can improve closure
construction strategies through succinct data representations. TIL [19]
and Flint [15], two middle ends for modern ML compilers, utilize un-
boxing [4, 1] for efficient closure representations [18]. Deforestation is
a method for removing intermediate data structures [23]. Deforesta-
tion eliminates any unnecessary data structures passed between func-
tions, but does not impact data structures that are not intermediate
results [25, 2].

Type-directed unboxing [8, 7] relies on inducing data representa-
tions to fit their static type. Coercions are needed to handle cases of
polymorphism where an argument of polymorphic type may be applied
to actuals of different static types. Coercions locally change a tuple’s
representation from boxed to unboxed and vice-versa. They provide
the correct version of a tuple in any given program context. However,
coercions may introduce unnecessary overheads into a program. For
example, calls to recursive functions wrapped with coercions result in
an increase in size from linear to quadratic [9]. Any change of repre-
sentation through a coercion requires rebuilding a tuple or extracting
a tuple’s components locally. There is no guarantee that a particu-
lar tuple will not be coerced many times (e.g., coercions may occur

paper.tex; 11/01/2009; 14:02; p.4



Flattening Tuples in SSA 5

within a loop). In extreme cases, it is even possible for a tuple to
constantly change representations in the absence of loops. For example,
two mutually recursive functions can expect different representations
of a particular argument they share in common.

One interesting version of type-directed unboxing is the method
presented by Minamide and Garrigue [9], an extension of Leroy’s [8]
type-directed unboxing. A key contribution of Minamide and Gar-
rigue’s work revolves around keeping a reference boxed version of every
function to provide assurances on the complexity of type-directed un-
boxing. This reference version is the original boxed version of the
function, from which their algorithm is able to generate any specialized
version with only one coercion. This approach guarantees that any
particular representation is attainable through two coercions, one coer-
cion to reach the reference function and one to specialize the function
arbitrarily, avoiding potentially unbounded coercion chains.

Our approach differs from previous work in three key aspects. We
eliminate duplicate selects on tuples by providing prefetched data. Sec-
ondly, our approach is coercion free, requiring no oscillations between
representations. Thirdly, we specialize return points of functions, al-
lowing us to specify different representations for different join points
without generating different function representations.

1.2. Approach

Our flattening algorithm consists of three steps: labeling, transforma-
tion, and useless variable elimination. We define a transformation over
an SSA intermediate language [6]. This decision allows us to avoid
complexities that arise from polymorphic types, higher-order functions,
etc., and permits us to achieve a measure of language independence.
The SSA input program is first labeled by a simple transformation to
labeled SSA. We define labeled SSA as the SSA language where all vari-
ables are annotated by the compiler with a label denoting whether or
not a tuple should be flattened. Tuple variables that are to be unboxed
will be labeled as F (flat). Tuple variables that are to remain boxed
and non-tuple variables will be labeled as N (non-flat).

The labeled SSA program is then transformed back to SSA form
through an application of our flattening transformation. The transfor-
mation phase of the flattening algorithm unboxes every tuple labeled
flat, thus providing both a boxed and unboxed representation where
necessary. If a tuple labeled flat is used in a flat manner, the unboxed
representation will be chosen avoiding the memory indirection. Notice
that a tuple labeled flat that is never used in a flat context will have
its unboxed representation eliminated through useless code elimination.

paper.tex; 11/01/2009; 14:02; p.5



6 Ziarek Weeks Jagannathan

Likewise, any unnecessary boxed representations can also be eliminated
through useless code elimination. Duplication of representations occurs
only if a tuple is utilized in contexts which utilize both a boxed and
unboxed representations.

Once a tuple is flattened, the association between the tuple and its
flattened components is lost. Later uses of a tuple cannot be trans-
formed without maintaining an association between a tuple and its
prefetched components. To maintain the correlation between boxed and
unboxed representations of a tuple, an unboxed representation is stored
in a compile-time tuple environment. A tuple environment contains a
simple one-to-one mapping between a tuple and a list of its flattened
elements. An n-tuple labeled F will be followed by n bindings, one
for each of its components. To accomplish this, n new variables are
introduced:

x = (a, b, c) →translation x1 = a, x2 = b, x3 = c, x = (x1, x2, x3) (1)

The association between x and {x1, x2, x3} is added to the tuple en-
vironment. The original definition of the tuple is left unmodified and
any use-site that expects a boxed tuple is free to utilize the original
representation.

Our transformation utilizes useless code elimination as its third and
final phase. Useless code elimination removes unnecessary tuple cre-
ations and tuple selects at any program point that requires only one
representation. We rely on useless code elimination to minimize the
number of duplicate representations needed throughout the program.

1.3. MLton

We evaluate the effectiveness of this flattening strategy in the context
of MLton (Cejtin et al.), a whole-program optimizing compiler for
SML. MLton compiles the full SML 97 language, including modules
and functors. MLton supplies a host environment in which we can
test our optimization and document any effects it may have on other
optimization techniques.

MLton’s approach to compilation can be summarized as whole-
program optimization using a simply-typed first-order intermediate lan-
guage. This approach is different from other functional language com-
pilers and imposes significant constraints on the compiler, but yields
many optimization opportunities not available with other approaches.
We utilize MLton’s compilation strategy to provide a flattening trans-
formation that can be defined over a simple first order language.

There are numerous issues that arise when translating SML into
a simply-typed IL. First, how does one represent SML modules and

paper.tex; 11/01/2009; 14:02; p.6



Flattening Tuples in SSA 7

functors in a simply-typed IL, since these typically require much more
complicated type systems? MLton’s answer: defunctorize the program
[3]. This transformation turns an SML program with modules into an
equivalent one without modules by duplicating each functor at every
application and eliminating structures by renaming variables. Second,
how does one represent SML’s polymorphic types and polymorphic
functions in a simply-typed IL? MLton’s answer: monomorphise the
program [22]. This transformation eliminates polymorphism from an
SML program by duplicating each polymorphic datatype and function
at every type at which it is instantiated. Third, how does one repre-
sent SML’s higher-order functions in a first-order IL? MLton’s answer:
defunctionalize the program [12]. This transformation replaces higher-
order functions with data structures to represent them and first-order
functions to apply them; the resulting IL is Static Single Assignment
form.

Because each of the above transformations requires matching a func-
tor, function definition, or type definition with all possible uses, MLton
must be a whole-program compiler. MLton’s whole-program compila-
tion strategy has a number of implications. Most importantly, MLton’s
use of defunctorization means that the placement of code in mod-
ules has no effect on performance. In fact, it has no effect on the
generated code whatsoever. Modules are purely for the benefit of the
programmer in structuring code. Also, because MLton duplicates func-
tors at each use, no run-time penalty is incurred for abstracting a
module into a functor. The benefits of monomorphisation are similar.
Thus, with MLton, a programmer does not suffer the time and space
penalties from an extra level of indirection in a list of doubles just
because the compiler needs a uniform representation of lists. In MLton,
whole-program control-flow analysis based on 0CFA [16] is employed
early in the compilation process, immediately after defunctorization
and monomorphisation, and well before any serious code motion or
representation decisions are undertaken. Information computed by the
analysis is used in the defunctionalization pass to introduce dispatches
at call sites to the appropriate closure.

2. Semantics

We define our transformation over functional SSA, a variant of classical
Static Single Assignment form. Functional SSA preserves the static
singe assignment property, but differs from classic SSA in that all
φ functions are eliminated [6]. Blocks in functional SSA correspond
to φ functions; they represent join points within the program. Using

paper.tex; 11/01/2009; 14:02; p.7



8 Ziarek Weeks Jagannathan

the correspondence between φ functions and parameters to procedures
whose call sites are known, all φ functions are replaced by multiple calls
to one block.

In functional SSA, a program is a list of functions operating over
values of either primitive or tuple type. One function in the program
is distinguished as main denoting where program execution begins. A
function is composed of a list of blocks followed by a transfer statement
that shifts control to one of the function’s blocks. Similarly a block is
a list of statements, the last of which is a transfer. All functions and
blocks are assumed to have unique identifiers. Statements are of the
form x : τ = e and range over assignments, tuple creation, selects,
and primitive operations. Primitive operations can constitute simple
arithmetic or more complex actions dealing with arrays, tuples, vectors,
and references.

Transfers represent a change of control, either locally through Goto’s
or interprocedurally through Call’s. We distinguish explicitly between
tail and non-tail calls in our grammar. Returns dispatch based on their
target block, providing each block with a set of return values. Because
we operate in a whole program compilation environment, all return
points are explicitly known. The freedom to flatten every block uniquely
in our transformation motivates this definition of return. Although
the syntax distinguishes between specific return points, functional SSA
passes the same arguments to each return. Our transformation relies on
explicitly knowing all return points to allow per return point specializa-
tion of tuple representations. A transformed program passes different
variables to each return target. The program’s execution completes
upon evaluation of a return with an empty call stack. We define a block
identifier halt which defines the variables to be returned on program
completion.

To illustrate functional SSA, consider the example SML program in
Figure 2 and its functional SSA representation in Figure 3. The main

function creates two vectors, calls DotProduct, extracts the second vec-
tor from the return value of DotProduct, and lastly calls DotProduct

again providing a new vector (4.5, 5.5, 6.5). The main function returns
the value returned by the second call to DotProduct. In functional SSA,
main is written as a three block function. Block b2 and halt represent
the return point for the calls to DotProduct. The function DotProduct

computes the dot product in IR3 where X and Y are vectors in real
space. Constituent components of the vectors X and Y (represented as
tuples in the function) are multiplied together and then summed. The
function returns the dot product ofX and Y , as well as the original vec-
tors. This function uses tuples X and Y in both flat and non-flat ways.
The functional SSA representation of DotProduct remains essentially

paper.tex; 11/01/2009; 14:02; p.8



Flattening Tuples in SSA 9

f, b, x ∈ Name

ι ∈ PrimType ::= int | bool | unit | ...
τ ∈ Type ::= ι | (τ1 ∗ ... ∗ τn) | τ1 → τ2
P ∈ Prog ::= Fn; call(main, unit) : τ
F ∈ Fun ::= f = λf (xn : τn) : τ.Bn; t

B ∈ Block ::= b = λb(xn : τn) : τ.Sn; t | halt
S ∈ Statement ::= x : τ = e

e ∈ Exp ::= x

| (xn)
| #i x
| Op(op, xn)

ti ∈ Transfer ::= call(f, (xn : τn), b) : τ
| call(f, (xn : τn)) : τ
| goto(b, (xn : τn)) : τ
| (if e then t1 : τ else t2 : τ):τ
| return (b1 ⇒ xn : τn | . . . | bm ⇒ xn : τn) : τ

Figure 1. Functional SSA Grammar

fun main() =

let fun DotProduct(X:(real * real * real), Y:(real * real * real)) =

let val x1 = #1 X

val x2 = #2 X

val x3 = #3 X

val y1 = #1 Y

val y2 = #2 Y

val y3 = #3 Y

in (x1 ∗ y1 + x2 ∗ y2 + x3 ∗ y3, X, Y )

end

val vec = #3 DotProduct((1.0,2.0,3.0), (4.0,5.0,6.0))

in DotProduct(vec, (4.5, 5.5, 6.5))

end

Figure 2. ML example

the same as the ML function, and consists of a single function call, and
one block. Notice the return in DotProduct distinguishes between its
two possible return points, b2 and halt.

2.1. Functional SSA Evaluation and Type Checking

The domains and evaluation of functional SSA programs is given in
Figure 4, Figure 5, and Figure 6. We write x1, ..., xn to denote a se-
quence of n elements, xn as a shorthand for a sequence of n elements,

paper.tex; 11/01/2009; 14:02; p.9



10 Ziarek Weeks Jagannathan

main = λf (x0).
b1 = λb().
x1 = 1.0

x2 = 2.0

x3 = 3.0

x4 = (x1, x2, x3)

x5 = 4.0

x6 = 5.0

x7 = 6.0

x8 = (x5, x6, x7)

call(DotProduct, (x4, x8), b2);

b2 = λb(x9).

x10 = #3 x9

x11 = 4.5

x12 = 5.5

x13 = 6.5

x14 = (x11, x12, x13)

call(DotProduct, (x10, x14));

goto(b1);

DotProduct = λf(X:(real*real*real), Y:(real*real*real)).

b3 = λb().
x′

1
= #1 X

x′
2
= #2 X

x′3 = #3 X

y1 = #1 Y

y2 = #2 Y

y3 = #3 Y

z1 = Op(*, x′
1
, y1)

z2 = Op(*, x′2, y2)

z3 = Op(*, x′
3
, y3)

a1 = Op(+, z1, z2, z3)

a2 = (a1, Y , X)

return(b2 => a2 | halt => a2);

goto(b3);

call(main, unit)

Figure 3. Functional SSA example

x as a sequence of zero or more elements, ǫ as the empty sequence,
and x; y as the concatenation of two sequences. We define a reduction
relation →E, which reduces a functional SSA program to a value. We
define ρ as an environment mapping variables to values and ρ⊥ as the
empty environment. We write ρ⊥ ⊢ Fn; call(main, unit) : τ →E v to
denote the evaluation of program P to value v. We also write ρ ⊢ e→E

paper.tex; 11/01/2009; 14:02; p.10



Flattening Tuples in SSA 11

v, if the expression e evaluates to the value v in the environment ρ and
ρ ⊢ S →B ρ′, if the evaluation of statement S results in environment
ρ′. Transfers operate over a stack of target block and environment pairs
for non-tail calls. We write ρ,Bs ⊢ t →T v, if the transfer t evaluates
with the stack Bs to yield value v. For convenience we will switch
between the names of blocks and their concrete representations. The
program transfer halt will return its value without transferring control
to another block, thus terminating the program.

We assume the program is annotated with types and all function
and block names are unique. To reason about type safety, we define a
typing relation in Figure 7 and Figure 8. The definition is standard;
we write Γ ⊢ e : τ , if expression e has type τ in the type environment
Γ. We also assume all primitive operations have types bound in Γ⊥,
the initial typing environment. Type checking begins by extending
the initial typing environment with function names mapped to their
types. Similarly we extend the typing environment when typechecking
a function with the blocks that compose the function. The transfer
that begins the functions (or blocks) evaluation is a local transfer. Any
transfers within the body of the function’s (or block’s) can transfer
out of the function. The function’s return type is defined by its return
transfers. Each transfer executes a transition of → type. The type of the
transfer is the return type of the function (or block) that it executes.
Notice that a return is equivalent to a goto and an if then else will also
either execute a call or a goto.

Lemma 1

1) if Γ ⊢ x : τ = e : τ then FV(e) ∈ Dom(Γ)

2) if Γ ⊢ t : τ then FV(t) ∈ Dom(Γ).

Proof: Simple induction on typing derivations.

Lemma 2

1) if ρ ⊢ x : τ = e→B ρ[x 7→ v] then FreeVars(e) ∈ Dom(ρ)

2) if ρ,Bs ⊢ t→t v then FreeVars(t) ∈ Dom(ρ).

Proof: Simple induction on evaluation derivations.

paper.tex; 11/01/2009; 14:02; p.11



12 Ziarek Weeks Jagannathan

π ∈ Term = Prog | Fun | Block | Statement | Exp | Transfer |Var

φe ∈ EvalTerm = Prog | Exp

ρ ∈ Env = Var → Value

Γ ∈ TypeEnv = Var → Type

v ∈ Value = 0 | 1 | ... | true | false | (v1, ..., vn) | unit
op ∈ PrimOp = + | − | ∗ | ref | deref | ...
Bs ∈ Stack = (Name × Env)∗

→E ∈ Eval = Env × EvalTerm → Value

→T ∈ EvalT = Prog × Env × Stack × Transfer → Value

→B ∈ Bind = Env × Statements → Env

ℵ ∈ PrimApp = Op × Values → Value

Figure 4. Functional SSA Evaluation Domain

(Statement)
ρ ⊢ e→E v

ρ ⊢ x : τ = e→B ρ[x 7→ v]
(2)

ρ0 = ρ

ρi−1 ⊢ si →B ρi i = 1, ..., n

ρ ⊢ sn →B ρn
(3)

(Exp)
ρ(x) = v

ρ ⊢ x→E v
(4)

ρ(xi) = vi i = 1, ..., n

ρ ⊢ (xn) →E (vn)
(5)

ρ(xi) = vi i = 1, ..., n
ℵ(op, vn) = v

ρ ⊢ Op(op;xn) →E v
(6)

ρ(y) = (vn) i = 1, ..., n

ρ ⊢ #i y →E vi

(7)

Figure 5. Functional SSA Evaluation

3. Transformation

3.1. Labeling

Our transformation supports any labeling, allowing compilers to modify
their flattening strategy to their specific needs. We use labels N and F ,

paper.tex; 11/01/2009; 14:02; p.12



Flattening Tuples in SSA 13

(Transfer)
b = λb(xn : τn) : τ ′.S; t ∈ P

ρ[xi 7→ ρ(yi)] ⊢ S →B ρ′ i = 1, ..., n
P, ρ′, Bs ⊢ t : τ →T v

P, ρ,Bs ⊢ goto(b, (yn)) : τ →T v
(8)

f = λf (xn : τn) : τ ′.B; t ∈ P

P, ρ⊥[xi 7→ ρ(yi)], (b, ρ);Bs ⊢ t : τ →T v i = 1, ..., n

P, ρ,Bs ⊢ call(f, (yn), b) : τ →T v
(9)

f = λf (xn : τn) : τ ′.B; t ∈ P

P, ρ⊥[xi 7→ ρ(yi)], Bs ⊢ t : τ →T v i = 1, ..., n

P, ρ,Bs ⊢ call(f, (yn)) : τ →T v
(10)

ρ ⊢ e→E true

P, ρ,Bs ⊢ t1 : τ →T v

P, ρ,Bs ⊢ (if e then t1 : τ else t2 : τ) : τ →T v
(11)

ρ ⊢ e→E false

P, ρ,Bs ⊢ t2 : τ →T v

P, ρ,Bs ⊢ (if e then t1 : τ else t2 : τ) : τ →T v
(12)

Bs = (b, ρ′);Bs′

ρ(xi) = vi i = 1, ..., n
P, ρ′, Bs′ ⊢ goto(b, (vn)) : τ ′ →T v

P, ρ,Bs ⊢ return(b⇒ x1 : τ1, ..., xn : τn | . . . ) : τ →T v
(13)

P ∈ Prog P = Fn; call(main, unit) : τ
P, ρ⊥, ǫ ⊢ call(main, unit) : τ →T v

ρ⊥ ⊢ Fn; call(main, unit) : τ →E v
(14)

Figure 6. Functional SSA Evaluation (continued)

whereN denotes non-flat and F denotes flat, to annotate SSA variables.
A variable x that has been annotated with a labeling is referred to as a
labeled variable. We write L(x) to denote the label of x. For uniformity,
we mark every non-tuple variable with label non-flat. In SSA, a tuple
as well as its constituent component must be bound to variables. These
variables can have any arbitrary labeling. Therefore, to ensure that the
flat representation is available for a given tuple we emit new variables,
representing each of the tuples components, and label them flat. Any
tuple definition labeled non-flat is boxed and remains so for the entirety
of the program.

paper.tex; 11/01/2009; 14:02; p.13



14 Ziarek Weeks Jagannathan

Γ[xi 7→ τi] ⊢ S; t : τ i = 1, ..., n

Γ ⊢ (b = λb(xn : τn) : τ.S; t) : (τ1 ∗ ... ∗ τn) → τ
(15)

Γ[xi 7→ τi] ⊢ t : τ i = 1, ..., n
B = b1, ..., bn

bi = λb(xm : τm) : τi.S; t τ ′i = (τ1 ∗ ... ∗ τm) → τi i = 1, ..., n
Γ′ = Γ[bi 7→ τ ′i ] Γ′ ⊢ bk : τk i, k = 1, ..., n

Γ ⊢ (f = λf (xn : τn) : τ.B; t) : (τ1 ∗ ... ∗ τn) → τ
(16)

Γ ⊢ e : bool Γ ⊢ t1 : τ Γ ⊢ t2 : τ

Γ ⊢ (if e then t1 : τ else t2 : τ) : τ
(17)

Γ(bi) = (τ1 ∗ ... ∗ τn) → τ i = 1, ..., j
xn : τn = x1 : τ1, ..., xn : τn Γ(xi) = τi i = 1, ..., n

Γ ⊢ return(b1 ⇒ xn : τn | . . . | bj ⇒ xn : τn) : τ
(18)

Γ(xi) = τi i = 1, ..., n
Γ(b) = (τ1 ∗ ... ∗ τn) → τ

Γ ⊢ goto(b, (xn)) : τ
(19)

Γ(xi) = τi i = 1, ..., n
Γ(f) = (τ1 ∗ ... ∗ τn) → τ

Γ ⊢ call(f, (xn)) : τ
(20)

Γ(xi) = τi i = 1, ..., n
Γ(f) = (τ1 ∗ ... ∗ τn) → τ

Γ ⊢ call(f, (xn), b) : τ
(21)

fi = λf (xm : τm) : τi.Bj ; t τ ′i = (τ1 ∗ ... ∗ τm) → τi i = 1, ..., n
Γ′ = Γ⊥[fi 7→ τ ′i ] Γ′ ⊢ Fk : τk i = 1, ..., n k = 1, ..., n

Γ′ ⊢ call(main, unit) : τj i = 1, ..., n

Γ⊥ ⊢ Fn; call(main, unit) : τj
(22)

Figure 7. Functional SSA Typing Rules

During whole program compilation, all uses of a variable are known
and thus a consistent labeling can be assured. We constrain that a
dispatch statement in a return for some target block b to be labeled
exactly as the arguments for b. Since all return points are explicitly
known, each can have a unique labeling based on the formals the return

paper.tex; 11/01/2009; 14:02; p.14



Flattening Tuples in SSA 15

Γ(yi) = τi i = 1, ..., n
τ = (τ1 ∗ ... ∗ τn)

Γ ⊢ x : τ = (yn) : (τ1 ∗ ... ∗ τn)
(23)

Γ(y) = (τ1 ∗ ... ∗ τn) i = 1, ..., n
τ = τi

Γ ⊢ x : τ = #i y : τi
(24)

Γ(op) = (τ1 ∗ ... ∗ τn) → τ

Γ(yi) = τi i = 1, ..., n

Γ ⊢ x : τ = Op(op; yn) : τ
(25)

Si = (xi : τi = ei) i = 1, ..., n
Γ ⊢ S1 : τ1 . . .Γ[xi 7→ τi] ⊢ Sn : τn i = 1, ..., n − 1

Γ[xj 7→ τj] ⊢ t : τ j = 1, ..., n

Γ ⊢ Sn; t : τ
(26)

Figure 8. Functional SSA Typing Rules(continued)

L ∈ Labeling = Var → Label

δ ∈ TupleEnv = Var → TypedVars

→δ,⇀δ ∈ Fold = Labeling × TupleEnv × Terms

→ Labeling × TupleEnv

Figure 9. Tuple Environment Domain

point expects. All arguments to calls and gotos are labeled based on
what their target function or block expects (see Figure 10).

To store a correspondence between the nesting structure of the tuple
and the emitted variables we introduce a tuple environment δ. For
each nesting level of each tuple component we emit fresh variables and
create a mapping in the tuple environment. For example, an argu-
ment x with the following type, (int * int)*(int * int), would be
represented as δ[x →δ x1, x2; x1 →δ x11, x12; x2 →δ x21, x22] where
x1, x2, x11, x12, x21, x22 are fresh. The fresh variables x1 and x2 would
both be labeled as flat because they are of tuple type and the remaining
fresh variables x11, x12, x21, and x22 would be labeled non-flat because
they are of primitive type. In order to keep our rules simple, we present
the transformation in two phases: the first builds a tuple environment
and the second injects the fresh variables stored in the tuple environ-
ment. In the first phase, we build the tuple environment through the
relations →δ and ⇀ starting from the empty tuple environment δ⊥,

paper.tex; 11/01/2009; 14:02; p.15



16 Ziarek Weeks Jagannathan

f = λf (xn : τn) : τ ′.B; t
L ⊢ t

L(yi) = L(xi) i = 1, ..., n

L ⊢ call(f, (yn), b)
(27)

f = λf (xn : τn) : τ ′.B; t
L ⊢ t

L(yi) = L(xi) i = 1, ..., n

L ⊢ call(f, (yn))
(28)

b = λb(xn : τn) : τ ′.S; t
L(yi) = L(xi) i = 1, ..., n

L ⊢ goto(b, (yn))
(29)

L ⊢ goto(bi, (xn)) i = 1, ...,m

L ⊢ return(b1 ⇒ xn : τn | . . . | bm ⇒ xn : τn)
(30)

L ⊢ t1 L ⊢ t2

L ⊢ (if e then t1 else t2)
(31)

Figure 10. Labeling Constraints: types annotations omitted where unnecessary.

presented in Figure 9 and Figure 11. The tuple environment creation
generates freshly labeled variables.

We write x1, ..., xn fresh to denote the creation of n new labeled
variables corresponding to components of a tuple; the types of the
variables are defined by the types of the tuple’s components. The fresh
variable is labeled flat if it is of tuple type and non-flat otherwise.

Since many different possibilities exist for labeling a program, it is
difficult to uniquely determine or infer an optimal labeling. Experimen-
tal results indicate that it is necessary to adapt a labeling to a particular
compiler and application. Optimizations can affect which data should
be unboxed and which should remain boxed. Applications themselves
can also affect the utility of a labeling. For instance, user-declared tuples
of thousands of elements should probably not be flattened, regardless
of the efficiency of the transformation.

3.2. Flattening

Our flattening rules are defined by a transformation relation (see Fig-
ure 12) ⇁T operating over a tuple environment, a labeling L, and π, the
current term being transformed. Given a particular tuple environment
δ, we write π ⇁ ψ if the transformation of term π yields a sequence

paper.tex; 11/01/2009; 14:02; p.16



Flattening Tuples in SSA 17

L, δ ⊢ ǫ ⇀δ L, δ
(32)

L, δ ⊢ π →δ L
′, δ′

L′, δ′ ⊢ πs ⇀δ L
′′, δ′′

L, δ ⊢ π;πs ⇀δ L′′, δ′′
(33)

L(x) = F x1, ..., xn fresh

L[x1 7→ F ], δ ⊢ x1 : τ1 →δ L1, δ1
...

Ln−1[xn 7→ F ], δn−1 ⊢ xn : τn →δ Ln, δn i = 1, ..., n

L, δ ⊢ x : (τ1 ∗ ... ∗ τn) →δ Ln, δn[x 7→ xn : τn]
(34)

L(x) = F x1, ..., xn fresh

L[x1 7→ N ], δ ⊢ x1 : τ1 →δ L1, δ1
...

Ln−1[xn 7→ N ], δn−1 ⊢ xn : τn →δ Ln, δn i = 1, ..., n

L, δ ⊢ x : (τ1 ∗ ... ∗ τn) = e→δ Ln, δn[x 7→ xn : τn]
(35)

L(x) = N

L, δ ⊢ x : τ →δ L, δ
(36)

L, δ ⊢ x : ι→δ L, δ
(37)

L(x) = N

L, δ ⊢ x : τ = e→δ L, δ
(38)

L, δ⊥ ⊢ Fn ⇀δ L
′, δ

L, δ⊥ ⊢ Fn; call(main, unit) →δ L′, δ
(39)

L, δ ⊢ xn : τn ⇀δ L
′, δ′

L′, δ′ ⊢ B ⇀δ L
′′, δ′′

L, δ ⊢ f = λf (xn : τn) : τ.B; t →δ L′′, δ′′
(40)

L, δ ⊢ xn : τn ⇀δ L
′, δ′

L′, δ′ ⊢ S ⇀δ L
′′, δ′′

L, δ ⊢ b = λb(xn : τn) : τ.S; t→δ L′′, δ′′
(41)

Figure 11. Building a Tuple Environment

paper.tex; 11/01/2009; 14:02; p.17



18 Ziarek Weeks Jagannathan

ψ ∈ Terms

⇀F ,⇁ ∈ Transform = Labeling × TupleEnv × Term → Terms

;F ∈ FoldSel = TupleEnv × Terms → Terms

;S ∈ Select = TupleEnv × Term → Terms

Figure 12. Functional SSA Transformation Rules Domain

δ, ǫ ⇀F ǫ
(42)

L, δ, π ⇁ ψ

L, δ, πs ⇀F ψ′

L, δ, π;πs ⇀F ψ;ψ′
(43)

P ∈ Prog P = Fn; call(main, unit) : τ
L, δ⊥ ⊢ P →δ L

′, δ

L′, δ, P ⇁ F ′
n, call(main, unit) : τ

L, δ⊥, Fn; call(main, unit) : τ ⇁ F ′
n; call(main, unit) : τ

(44)

Figure 13. Functional SSA Transformation Helper Functions

of terms ψ. To transform our program under ⇁ we introduce an aux-
iliary function ⇀F , shown in Figure 13, that performs a fold over ⇁.
The definitions of ⇁ and ⇀F are mutually recursive, but restricted as
follows: if π ⇁ π′ and πs is a subterm of π then ⇀F can be applied to
πs. Because only subterms will be evaluated with ⇀F , the recursion is
bounded. We define ψ as a short hand notion for a sequence of π terms.

δ, x1 : τ1 ;S ψ

δ, x2 : τ2, ..., xn : τn ;F ψ′

δ, xn : τn ;F ψ;ψ′
(45)

δ(x) = xn : τn
ψ = x1 : τ1 = #1 x, ..., xn : τn = #n x

δ, xn : τn ;F ψ′

δ, x : τ ;S ψ;ψ′
(46)

δ, x : ι ;S ǫ
(47)

Figure 14. Selecting out a Tuple’s Structure

paper.tex; 11/01/2009; 14:02; p.18



Flattening Tuples in SSA 19

(Prog)

L, δ, Fn ⇀F ψ

L, δ, Fn; call(main, unit) : τ ⇁ ψ; call(main, unit) : τ
(48)

(Fun)

L, δ, xn : τn ⇀F ψ

L, δ,B ⇀F ψ′

L, δ, t : τ ⇀F t′ : τ ′

L, δ, f = λf (xn : τn) : τ.B; t ⇁ f = λf (ψ) : τ ′.ψ′; t
(49)

(Block)

L, δ, xn : τn ⇀F ψ

L, δ, S ⇀F ψ′

L, δ, t : τ ⇀F t′ : τ ′

L, δ, b = λb(xn : τn) : τ.S; t ⇁ b = λb(ψ) : τ ′.ψ′; t
(50)

Figure 15. Functional SSA Transformation Rules - Program, Function, Block

(Argument)

L(x) = F

δ(x) = xn : τn
L, δ, xi : τi ⇁ ψi i = 1, ..., n

L, δ, x : τ ⇁ x : τ ;ψn

(51)

L(x) = N

L, δ, x : τ ⇁ x : τ
(52)

Figure 16. Functional SSA Transformation Rules - Argument

The rules for Prog, Fun, and Block in Figure 15 are similar. Each
rule progresses over a list of terms via ⇀F , building up ψ. The rule for
Prog operates on a list of functions, applying ⇁ to each function. The
rules for function and block are slightly more complex since both can
take arguments, but they are similar in structure to the rule for Prog.

The argument rule retrieves an argument mapped in the tuple en-
vironment (see Figure 16). Since all arguments labeled F (flat) will
contain appropriate mappings based on a labeling pass, it is enough
to retrieve fresh variables from the tuple environment. Any argument
labeled N(non-flat) does not contain a mapping and therefore cannot
be flattened. The mappings in the tuple environment represent all nest-

paper.tex; 11/01/2009; 14:02; p.19



20 Ziarek Weeks Jagannathan

(Assignment)

L(x) = N

L, δ, x : τ = y ⇁ x : τ = y
(53)

L(x) = F

δ, x : τ ;S ψ

L, δ, x : τ = y ⇁ x : τ = y;ψ
(54)

Figure 17. Functional SSA Transformation Rules - Assignment

(Tuple)

L(x) = F

δ, x : τ ;S ψ

L, δ, x : τ = (yn) ⇁ x : τ = (yn);ψ
(55)

L(x) = N

L, δ, x : τ = (yn) ⇁ x : τ = (yn)
(56)

Figure 18. Functional SSA Transformation Rules - Tuple

ing levels of the tuple, providing a complete flat representation of the
tuple.

There are two types of bindings that must to be considered. If the left
hand side is labeled flat the tuple’s structure is selected out. If the left
hand side is labeled non-flat, the statement is unchanged. The relation
;S, defined in Figure 14, provides a full flat representation. The rules
for tuples in Figure 18 and primitive operations in Figure 19 are similar
to the assignment rules. Primitive operations, shown in Figure 19, are
not transformed under ⇁. Instead, arguments to primitives are always
passed boxed. Primitives can potentially introduce new tuples into the
program. If a primitive introduces a new tuple, we flatten the tuple
based on its labeling.

As shown in Figure 20, the translation of terms of the form x :
τ = #i y, revolves around exposing one nesting level of a tuple. If
the target tuple y is labeled F (flat), we check the tuple environment
for y’s constituent components. Whenever there exists a select on a
flat tuple, our transformation eliminates the memory indirection with
a simple assignment statement, x : τ = yi, where yi corresponds to the
statement yi : τ = #i y that has been inserted by our transformation. If
x is also F , our transformation sets x : τ = yi and emits the appropriate
select statements for x. If y is non-flat, the select cannot be eliminated.

paper.tex; 11/01/2009; 14:02; p.20



Flattening Tuples in SSA 21

(Op)

L(x) = F

δ, x : τ ;S ψ

L, δ, x : τ = Op(op, yn) ⇁ x : τ = Op(op, yn);ψ
(57)

L(x) = N

L, δ, x : τ = Op(op, yn) ⇁ x : τ = Op(op, yn)
(58)

Figure 19. Functional SSA Transformation Rules - Primitive

(Select)

L(x) = F L(y) = F

δ(y) = (yn : τn)
δ, x : τ ;S ψ

L, δ, x : τ = #i y ⇁ x : τ = yi;ψ
(59)

L(x) = N L(y) = F

δ(y) = (yn : τn)

L, δ, x : τ = #i y ⇁ x : τ = yi

(60)

L(x) = F L(y) = N

δ, x : τ ;S ψ

L, δ, x : τ = #i y ⇁ x : τ = #i y;ψ
(61)

L(x) = N L(y) = N

L, δ, x : τ = #i y ⇁ x : τ = #i y
(62)

Figure 20. Functional SSA Transformation Rules - Select

(Goto)

L, δ, xn : τn ⇀F ψ

L, δ, b = λb(xn : τn) : τ.S; t ⇁ b = λb(ψ
′) : τ ′.ψ′′; t′

L, δ, goto(b, (xn : τn)) : τ ⇁ goto(b, (ψ)) : τ ′
(63)

(Call)

L, δ, xn : τn ⇀F ψ

L, δ, f = λf (xn : τn) : τ.B; t ⇁ f = λf (ψ′) : τ ′.ψ′′; t′

L, δ, call(f, (xn : τn), b) : τ ⇁ call(f, (ψ), b) : τ ′
(64)

Figure 21. Functional SSA Transformation Rules - Transfer

paper.tex; 11/01/2009; 14:02; p.21



22 Ziarek Weeks Jagannathan

(If Then Else)

L, δ, t1 : τ ⇀F t′1 : τ ′

L, δ, t2 : τ ⇀F t′2 : τ ′

ψ = (if e then t′1 : τ ′ else t′2 : τ ′) : τ ′

L, δ, (if e then t1 : τ else t2 : τ) : τ ⇁ ψ
(65)

(Return)

L, δ, xn : τn ⇀F ψi i = 1, ..., j
ψi = xm : τm τi = (τ1 ∗ ... ∗ τm) i = 1, ..., j
τ ′ = τl + ...+ τk τl 6= τk l, k ∈ 1, ..., j
ψ = return(b1 ⇒ ψ1 | . . . |bj ⇒ ψm) : τ ′

L, δ, return(b1 ⇒ xn : τn | . . . | bj ⇒ xn : τn) : τ ⇁ ψ
(66)

Figure 22. Functional SSA Transformation Rules - Transfer

The rules for transfer2 expressions (see Figure 21) must correctly
flatten any arguments based on the formals the transfer’s target ex-
pects. For instance, if we flatten a function f and produce a flattened
function f ′, a call to f must be translated into a call to f ′. Therefore, the
arguments the call supplies to f ′ must be translated based on what the
formals of f ′ expect. Since we constrained our labeling of the dispatch
statement to match the labeling of the target block, the arity of the
return values and formals will match. The transformation rules select
out all nesting levels of all tuples, providing the needed components for
all tuples passed out through a transfer.

Applying our transformation and utilizing a labeling that flattens
all tuples, we can translate the example program DotProduct as shown
in Figure 23. The application of the transformation ⇁ to DotProduct

successfully eliminates all selects. However, the number of parameters
passed to the function increases. Since both boxed and unboxed forms
of X and Y are utilized in DotProduct, the function takes eight ar-
guments. The specialization of the return to blocks b2 and halt both
blocks to take different representations of the returned tuples. There
is some duplication of data because an unboxed representation of the
original tuples passed to DotProduct is required to be passed to halt.

3.3. Correctness

Since functions can return potentially different representations of any
returned tuple, our existing type system is not adequate. To support

2 Because the transformation rules for tail and non-tail calls are identical besides
syntactical differences, only the rule for non-tail calls is provided.

paper.tex; 11/01/2009; 14:02; p.22



Flattening Tuples in SSA 23

main = λf (x0).
b1 = λb().
x1 = 1.0

x2 = 2.0

x3 = 3.0

x4 = (x1, x2, x3)

x5 = 4.0

x6 = 5.0

x7 = 6.0

x8 = (x5, x6, x7)
call(DotProduct, (x4, x1, x2, x3, x8, x5, x6, x7), b2);

b2 = λb(x91, x92, x93, x931, x932, x933).

x11 = 4.5

x12 = 5.5

x13 = 6.5

x14 = (x11, x12, x13)
call(DotProduct, (x93, x931, x932, x933, x14, x11, x12, x13));

goto(b1);

DotProduct = λf(X, x1, x2, x3, Y , y1, y2, y3).

b3 = λb().
z1 = Op(*, x1, y1)

z2 = Op(*, x2, y2)

z3 = Op(*, x3, y3)

a1 = Op(+, z1, z2, z3)

a2 = (a1, X, Y )

return(b2 => (a1, X, Y , y1, y2, y3) | halt => a2);

goto(b3);

call(main, unit)

Figure 23. Flattened Functional SSA example

τ ∈ Type ::= ι | (τ1 ∗ ... ∗ τn) | τ1 → τ2 | τ1 + τ2

Figure 24. Extended Typing Domain

multiple return types, we extend our type system with sum types and
add a new type checking rule for transformed programs which replaces
the old rule for return. We write τ1 + τ2 as the sum of types τ1 and τ2
(see Figure 24). The typechecking rule for return is fairly similar to
the rule defined for functional SSA, we check if the types of the formals
and actuals match for each target block. However, the type returned is
the sum of types of the actuals passed to each block.

paper.tex; 11/01/2009; 14:02; p.23



24 Ziarek Weeks Jagannathan

Γ(bi) = τi → τ ′i i = 1, ..., j
(bi ⇒ (x1i : τ1i, ..., xni : τni) τi = (τ1i ∗ ... ∗ τni)

τ = τl + ...+ τk τl 6= τk l, k ∈ 1, ..., j

Γ ⊢ return(. . . | bj ⇒ (xj1 : τj1, ..., xmj : τmj)) : τ
(67)

We now define type safety for the transformed program in Theorem
1.

Theorem 1: Type safety for a transformed program.
Given labeling L, and P ∈ Prog such that Γ⊥ ⊢ P : τ where
L, δ⊥, P ⇁ P ′ then Γ⊥ ⊢ P ′ : τ

We proceed with a proof by contradiction by examining statements
and transfers. Assume L, and P ∈ Prog such that Γ⊥ ⊢ P : τ where
L, δ⊥, P ⇁ P ′ and Γ⊥ ⊢ P ′ : τ ′. There are two possible cases, either a
statement or a transfer produced a new type.

Transfers - Lemma 1 guarantees that all free variables are bound
in the current typing environment. Based on the labeling constraints,
we know the labels of the actuals and formals will match. Therefore,
based the structure of δ and the transformation rules, the types of the
formals and actuals will match.

Statements - Statements that are not transformed remain type-safe.
Statements in which the left hand side is labeled F , will have their
structure selected out into fresh variables, based on δ. The labeling
constraints and structure of δ guarantee the types match between the
fresh variables and the selected components of the tuple. The structure
of δ preserves the correlation between the fresh variables and tuple
components. When selects are transformed, the structure of δ and the
labeling constraints guarantee the types match between the removed
selected and the fresh variable. We thus arrive at a contradiction since
no new types are introduced into the program. The structure of δ
preserves the matching between fresh variables and decoupled tuples
elements, and labeling constraints force the match between formals and
actuals for all transfers, thus τ must equal τ ′.

Theorem 2: Correctness of a transformed program.
Given labeling L, and P ∈ Prog such that, ρ⊥ ⊢ P : τ →E v where
L, δ⊥, P ⇁ P ′ then ρ⊥ ⊢ P ′ : τ →E v

The definition is standard: if a program evaluates to a value v, we
expect its transformed counterpart to also evaluate to v. Since our
transformation introduces only new temporary variables, all variables

paper.tex; 11/01/2009; 14:02; p.24



Flattening Tuples in SSA 25

present in program P will occur in the transformed program P ′ and will
have the same runtime value (namely the same binding in ρ). Notice
most statements are not transformed; instead new statements are added
to the program. We proceed by constructing a proof by contradiction.
Assume ρ⊥ ⊢ P : τ →E v where L, δ⊥, P ⇁ P ′ and ρ⊥ ⊢ P ′ : τ →E v′.
There are two possible cases: either a transformed statement or transfer
generated a different value. We examine each case.

Statements - The only statements that are transformed are select
statements of the form x : τ = #i y which are changed to assignments
(x : τ = yi) by rules 59 and 60. The variable yi is extracted from the ith

component of y bound in the tuple environment. By the structure of
δ, we know y must have been labeled flat. By Lemma 2, y’s definition
occurs prior in the program, thus y is bound in ρ. By rule 55 and
Lemma 2, all components of y are also bound in ρ, through application
of rules 45 and 46. Namely, the ith component of δ(y), yi, is bound to
the ith component of y resulting in x being bound to the same value in
P as well as P ′. The proof for all other statements holds trivially by
Lemma 2.

Transfers - By Lemma 2, all free variables in each transfer are bound
in ρ. Based on our labeling constraints which specify the matching
of labels between actuals and formals, thus guaranteeing appropriate
bindings in the tuple environment for each tuple argument, we are
able to flatten any argument of the transfer. Therefore, by Lemma 2
and the transformation rules for transfer the value of the formals and
actuals match. We thus arrive at a contradiction since no new values
are introduced into the program, only decoupled tuples elements, and
formals and actuals match on all transfers, v must equal v′.

4. Experimental Results

4.1. Labelings

Labelings provide the framework for the flattening algorithm; each
labeling corresponding to a flattening strategy. Benchmarks results
directly depend on a flattening strategy because a labeling determines
the number of flattened tuples constructed for a program. The average
data size, length, and nesting level of tuples labeled flat also affects
program performance. Since a variety of dynamic statistics based on a
labeling determine efficiency, it is difficult to ascertain a unique optimal
labeling strategy for all programs.

To illustrate the optimization potential and efficiency of tuple flat-
tening, we compare and contrast three strategies: (1) a bounded flat-
tening method, (2) an argument-only strategy, and (3) a flatten-all

paper.tex; 11/01/2009; 14:02; p.25



26 Ziarek Weeks Jagannathan

approach. These three strategies give a good overview of the effects of
tuple flattening. Results comparing the three strategies are presented
in Section 4.2.

As a baseline reference strategy, we utilize argument-only. In ML
all functions take one argument, a tuple of the arguments passed to
that function. The argument-only strategy unboxes this tuple, thereby
allowing functions to have more than one argument. This is a basic
compiler optimization for ML, which leaves all explicitly defined tu-
ples boxed. The corresponding labeling strategy marks all variables in
functional SSA as non-flat.

The bounded flattening methodology flattens tuples only if they will
be used mostly in a flat context (determined by heuristics). Locally,
we flatten tuples up to three nesting levels if they are the target of
select statements. However, for tuples passed between functions, the
bounded scheme flattens only those tuples created explicitly in bind-
ings. These are user-defined tuples and often the targets of selects. The
corresponding labeling strategy labels all variables of tuple type local
within blocks and variables of tuple type that are explicitly created as
flat. All other variables are labeled as non-flat.

The flatten-all approach is the converse of the argument-only strat-
egy. All tuples will be aggressively unboxed to the extent their use-sites
will allow. At every definition of a tuple, the unboxed version is gener-
ated. Useless code elimination removes any representations which are
not used. The only boxed tuples that will remain in the program are
tuples supplied as arguments to primitives. The result of this strategy
is a program that contains as few boxed tuples as possible. The corre-
sponding labeling strategy marks all tuple variables as flat. All other
variables as marked non-flat.

4.2. Results

The results presented illustrate general trends seen across the MLton
benchmark suite3 and were obtained from running the MLton compiler
on an Intel p4 2.4 Ghz computer with 1 gigabyte of memory running
Gentoo Linux. The MLton benchmarking script runs and compares
various versions of the compiler for each benchmark. Benchmarks are
executed ten times and the average of each measurement is reported.

The first graph (see Figure 25) compares the runtime ratios of
both the flatten-all and the bounded flattener normalized against the
argument-only strategy. The first, light gray column represents the
flatten-all methodology and the second, dark gray column the bounded

3 The MLton benchmark suite contains about forty benchmarks with a selection
of floating point, high order, and regular benchmarks (see www.mlton.org).

paper.tex; 11/01/2009; 14:02; p.26



Flattening Tuples in SSA 27

Figure 25. Run Time Ratios - normalized vs Argument-Only

flattener. We observe significant speed ups in almost all cases using the
bounded and the flatten-all method when compared to argument-only.
The cases that showed a degradation of performance (i.e., a run-time
ratio greater than 1) for flatten-all, suffered from incurred flattening
overheads which included data duplication, increased register pressure,
and large stack growth. Since the MLton compiler unboxes floating
point numbers, we did not unbox any tuple whose constituent compo-
nents were of type real to limit stack growth. As a result, floating point
benchmarks, such as barnes-hut, did not benefit from the flattening
pass.

In the floating point benchmarks most tuples were not flattened
due to the heuristic restriction limiting flattening to non-floating point
tuples. The larger amount of non-flat tuples within a program, the
greater the data duplication since useless code elimination cannot re-
move one of the two representations. We also noticed a larger than
expected performance gain in programs that contained little to no user-
defined tuples, such as Psdes-rand. In these test cases, the flattening
algorithm unboxed intermediate tuples introduced into the program
via other optimization passes and calling conventions. In such cases,
almost all tuples were eliminated by our transformation. In programs
that contian few user-defined tuples, the majority of the benefit of our
optimization results from the elimination of compiler introduced tuples.
In general, both the bounded and the flatten-all strategies performed
very well on both higher order and regular benchmarks compared to
argument-only.

Static program size was not significantly affected by our flattening
algorithm. In fact, in many cases program size shrunk after the applica-
tion of the source level transformation. The graph shown in Figure 26

paper.tex; 11/01/2009; 14:02; p.27



28 Ziarek Weeks Jagannathan

Figure 26. Program Size Ratios - normalized vs Argument-Only

depicts a selection of benchmarks and their growth in size for each
flattening strategy. Some programs, like MD5, were significantly reduced
in size. This large reduction is not an anomaly, and occurs because
redundant selects and exposed useless variables are eliminated during
the third phase of our flattening transformation. Whenever a tuple is
flattened, useless code elimination is able to remove components of the
tuple which are not utilized by the program. Across forty benchmarks,
the average size of the program shrunk by five percent when compared
to a argument-only strategy. The difference between the bounded and
the flatten-all scheme was negligible. Compile time ratio differences
between the bounded and the flatten-all implementation were negligible
and are omitted.

Total allocation in bytes varied greatly between the flatten-all and
argument-only schemes. The Figure 27 shows total allocation ratios of
flatten-all and bounded normalized vs argument-only. In some cases,
MD5 and Checksum, total allocation was reduced by a ratio of one hun-
dred. Decreases in total allocation occur because function arguments
are passed in registers, useless tuples are eliminated, and uncoupled,
useless tuple elements are eliminated through useless code elimination.
Increases in total allocation can occur when both boxed and unboxed
representations are heavily utilized within a program, resulting in a
duplication of data because both representations are stored. In general,
flatten-all experienced a decrease in total allocation. Increases were rare
and usually occurred only in programs utilizing floating point numbers
or in cases where useless code elimination was unable to remove one
of the tuple’s representations. Besides floating point benchmarks, in
which case flatten-all had a higher allocation, flatten-all was similar to
bounded.

paper.tex; 11/01/2009; 14:02; p.28



Flattening Tuples in SSA 29

Figure 27. Total Allocation Ratios - normalized vs Argument-Only

4.3. Discussion

Consider the benchmark Psdes-rand presented in the appendix. Fig-
ure 28 and Figure 29 are functional SSA excerpts from the main loop in
Psdes-rand depicting the program before and after the transformation
respectively. As the two figures show, all selects are eliminated from
the program by our transformation. The selects that are eliminated,
were passed through the main loops of Psdes-rand as arguments. By
prefetching elements of tuples, we are able to hoist these selects thereby
avoiding their repetition within the bodies of the loops. Useless code
elimination removes the now unneeded boxed representations, allowing
us to transform blocks, such as L 46 and L 42 in Figure 28, into cor-
responding blocks, L 46 and L 88 in Figure 29. The blocks L 46 and
L 88 take no heap allocated arguments. This greatly reduces the total
allocation of the program, since all tuples are eliminated completely
and their utilized elements are free to be passed in registers. Since data
duplication was not a problem, stack growth was bounded by the size
of the flattened tuple.

It is clear that flatten-all is a large win over argument-only. How-
ever, when compared to the bounded flattening strategy, most bench-
marks were equivalent. Some performed better and most floating point
benchmarks performed worse. If floating points were left boxed, we
suspect that the differences between flatten-all and bounded on floating
point benchmarks would be negligible. We surmise that more sophis-
ticated labeling strategies and labeling schemes will perform better
than flatten-all. For instance, instead of completely unboxing tuples,
we could envision a labeling strategy that labels all tuple components.
This would allow certain components to remain boxed by introducing

paper.tex; 11/01/2009; 14:02; p.29



30 Ziarek Weeks Jagannathan

L 46 (x 114)

x 117 = #2 x 114

x 116 = #1 x 114

Array update (x 75, x 76, x 116)

x 115 = Int32 add (x 76, global 1)

loop 10 (x 117, x 115)

L 42 (x 118)

x 120 = #2 x 118

x 119 = Int32 add (x 72, global 1)

loop 9 (x 120, x 119)

L 40 (x 121)

x 124 = #2 x 121

x 123 = #1 x 121

Array update (x 69, x 70, x 123)

x 122 = Int32 add (x 70, global 1)

loop 8 (x 124, x 122)

L 36 (x 125)

x 127 = #2 x 125

x 126 = Int32 add (x 66, global 1)

loop 7 (x 127, x 126)

Figure 28. Psdes-rand: pre-flattening

L 46 (x 146, x 145)

Array update (x 75, x 76, x 146)

x 115 = Int32 add (x 76, global 1)

loop 10 (x 145, x 115)

L 88 (x 148, x 147)

x 119 = Int32 add (x 72, global 1)

loop 9 (x 147, x 119)

L 40 (x 150, x 149)

Array update (x 69, x 70, x 150)

x 122 = Int32 add (x 70, global 1)

loop 8 (x 149, x 122)

L 87 (x 152, x 151)

x 126 = Int32 add (x 66, global 1)

loop 7 (x 151, x 126)

Figure 29. Psdes-rand: post-flattening

a singleton tuple. Another option is to add more label types so that
more information can be stored about a particular tuple and its uses.

In a whole-program compilation environment tuple unboxing is able
to avoid many of the problems cited by Leroy. Since our approach is
completely coercion free, no costs accrue from changing representations
since both are always available where needed. Compared to runtime

paper.tex; 11/01/2009; 14:02; p.30



Flattening Tuples in SSA 31

type inspection, no typing information is necessary at run time to per-
form our unboxing technique. All unboxing is handled statically by the
transformation. In contrast, our transformation may cause increased
register pressure, larger stack frames, and duplication of data. These
costs are not unique to our transformation, as other transformations
also retain multiple representations.

Although a function may never require the boxed version of a tu-
ple, the overhead of passing a large number of arguments can offset
the removal of any memory indirections select statements introduce,
especially if the elements of the tuple are large. Nested tuples can also
greatly increase stack size, since a tuple can have an arbitrary structure.
A tuple containing a complex nesting structure, if flattened completely,
may cause exponential stack growth. This is especially true if both
representations at each nesting level of the tuple are not eliminated by
the useless code elimination pass. Although this occurs infrequently, it
is nonetheless an unfortunate side-effect of passing two representations.
Passing duplicate data can result in large stack frames since both point-
ers to heap allocated objects and their unboxed versions are passed.
Large stack frames not only are slow to construct, but contribute to a
higher rate of register spills.

References, arrays, and potentially other primitive operations may
cause an implementation to lose track of tuples. If we store a tuple in a
reference cell (or any mutable object), we can no longer guarantee its
mapping in the tuple environment. Our transformation is conservative
in such cases, treating tuples extracted from mutable datastructures
as new tuples. Although SSA handles all potential naming problems,
duplicate work is done if this tuple is known. In the presence of must
alias information [5], these duplications can be removed.

5. Conclusion

We provided a definition of a tuple flattening optimization which can be
incorporated into functional SSA-based compilers. Our transformation
rules provide a framework in which different flattening mechanisms
(labelings) can be studied and compared formally. Our optimization is
insensitive to the depth of tuple nestings. The optimization potential
for tuple flattening is significant; for certain benchmarks, improvements
range up to to 90% over optimized counterparts that do not exploit
flattening transformations. Our results indicate that flattening is a
reasonable and efficient optimization that can benefit any language
that utilizes tuple structures.

paper.tex; 11/01/2009; 14:02; p.31



32 Ziarek Weeks Jagannathan

References

1. Cejtin, H., S. Jagannathan, and S. Weeks: 2000, ‘Flow-Directed Closure
Conversion for Typed Languages’.

2. Davis, M. K.: 1987, ‘Deforestation: Transformation of functional program to
eliminate intermediate trees’.

3. Elsman, M.: 1999, ‘Program Modules, Seperate Compilation, and Intermodule
Optimization’.

4. Hall, C. V., S. L. Peyton Jones, and P. M. Sansom: 1994, ‘Unboxing using
Specialisation’.

5. Jagannathan, S., P. Thiemann, S. Weeks, and A. Wright: 1998, ‘Single and
loving it: must-alias analysis for higher-order languages’.

6. Kelsey, R. A.: 1993, ‘A correspondence between continuation passing style and
static single assignment form’.

7. Leroy, X.: 1992, ‘Unboxed objects and polymorphic typing’.
8. Leroy, X.: 1997, ‘The effectiveness of type-based unboxing’.
9. Minamide, Y. and J. Garrigue: 1998, ‘On the runtime complexity of type-

directed unboxing’.
10. Mogensen, T. A.: 2000, ‘Glossary for Partial Evaluation and Related Topics’.
11. Morrissett, G.: 1995, ‘Compiling with types’.
12. Reynolds, J. C.: 1972, ‘Definitional Interpreters for Higher-Order Programming

Languages’. Reprinted in Higher-Order and Symbolic Computation 11(4):363–
397, 1998.

13. Shao, Z.: 1994, ‘Compiling Standard ML for Efficient Execution on Modern
Machines’.

14. Shao, Z. and A. W. Appel: 1995, ‘A type-based compiler for standard ML’.
15. Shao, Z. and A. W. Appel: 2000, ‘Efficient and safe-for-space closure conver-

sion’.
16. Shivers, O.: 1988, ‘Control flow analysis in scheme’.
17. Shivers, O.: 1991, ‘Control-Flow Analysis of Higher-Order Languages or

Taming Lambda’. Technical Report CMU-CS-91-145.
18. Steckler, P. A. and M. Wand: 1997, ‘Lightweight closure conversion’.
19. Tarditi, D., G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee: 2004,

‘TIL: a type-directed, optimizing compiler for ML’.
20. Tofte, M.: 1998, ‘A brief introduction to regions’.
21. Tofte, M., L. Birkedal, M. Elsman, and N. Hallenberg: 2004, ‘A Retrospective

on Region-Based Memory Management’.
22. Tolmach, A. and D. P. Oliva: 1998, ‘From ML to Ada: Strongly-typed language

interoperability via source translation’.
23. Wadler, P.: 1984, ‘Listlessness is better than laziness: Lazy evaluation and

garbage collection at compile-time’.
24. Wadler, P.: 1985, ‘Listlessness is better than laziness II: composing listless

functions’.
25. Wadler, P.: 1989, ‘Deforestation: Transforming programs to eliminate trees’.

Special issue on ESOP’88, the Second European Symposium on Programming,
Nancy, France, March 21-24, 1988.

26. Wand, M. and I. Siveroni: 1999, ‘Constraint systems for useless variable
elimination’.

paper.tex; 11/01/2009; 14:02; p.32



Flattening Tuples in SSA 33

Appendix

π ∈ Term = Prog | Fun | Block | Statement | Exp | Transfer |Var

φe ∈ EvalTerm = Prog | Exp

ρ ∈ Env = Var → Value

Γ ∈ TypeEnv = Name → Type

v ∈ Value = 0 | 1 | ... | true | false | (v1, ..., vn) | unit
op ∈ PrimOp = + | − | ∗ | ref | deref | ...
Bs ∈ Stack = (Name × Env)∗

→E ∈ Eval = Prog × Env × EvalTerm → Value

→T ∈ EvalT = Env × Stack ×Term → Value

→B ∈ Bind = Env × Statements → Env

ℵ ∈ PrimApp = Op × Values → Value

L ∈ Labeling = Var → Label

δ ∈ TupleEnv = Labeling × Var → Labeling × TypedVars

→δ ∈ Fold = Labeling × TupleEnv × Terms

→ Labeling × TupleEnv

⇀δ ∈ Fold = Labeling × TupleEnv × Terms

→ Labeling × TupleEnv

ψ ∈ Terms

⇁ ∈ Transform = Labeling × TupleEnv × Term → Terms

⇀F ∈ Transform = Labeling × TupleEnv × Term → Terms

;F ∈ FoldSel = TupleEnv × Terms → Terms

;S ∈ Select = TupleEnv × Term → Terms

Figure 30. Complete domain listing

paper.tex; 11/01/2009; 14:02; p.33



34 Ziarek Weeks Jagannathan

fun once () =

let

fun natFold (start, stop, ac, f) =

let

fun loop (i, ac) =

if i = stop then ac

else loop (i + 1, f (i, ac))

in loop (start, ac)

end

val niter: int = 4

open Word32

fun make (l: word list) =

let val a = Array.fromList l

in fn i => Array.sub (a, i)

end

val c1 = make [0wxbaa96887, 0wx1e17d32c, 0wx03bdcd3c, 0wx0f33d1b2]

val c2 = make [0wx4b0f3b58, 0wxe874f0c3, 0wx6955c5a6, 0wx55a7ca46]

val half: Word.word = 0w16

fun reverse w = orb (>> (w, half), << (w, half))

fun psdes (lword: word, irword: word): word * word =

natFold

(0, niter, (lword, irword), fn (i, (lword, irword)) =>

let

val ia = xorb (irword, c1 i)

val itmpl = andb (ia, 0wxffff)

val itmph = >> (ia, half)

val ib = itmpl * itmpl + notb (itmph * itmph)

in (irword, xorb (lword, itmpl * itmph + xorb (c2 i, reverse ib)))

end)

val zero: word = 0wx13

val lword: word ref = ref 0w13

val irword: word ref = ref 0w14

val needTo = ref true

fun word () =

if !needTo

then

let

val (l, i) = psdes (!lword, !irword)

val = lword := l

val = irword := i

val = needTo := false

in l

end

else (needTo := true; !irword)

fun loop (i, w) =

if i = 0

then

if w = 0wx132B1B67 then ()

else raise Fail "bug"

else loop (Int.- (i, 1), w + word())

in loop (150000000, 0w0)

end

structure Main =

struct

fun doit n =

if n = 0 then ()

else (once ()

; doit (n - 1))

end

val = Main.doit 2

Figure 31. Psdes-rand: MLton benchmark

paper.tex; 11/01/2009; 14:02; p.34


