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Abstract. One of the major costs of software development is associated
with testing and validation of successive versions of software systems.
An important problem encountered in testing and validation is memory
aliasing, which involves correlation of variables across program versions.
This is useful to ensure that existing invariants are preserved in newer
versions and to match program execution histories. Recent work in this
area has focused on trace-based techniques to better isolate affected re-
gions. A variation of this general approach considers memory operations
to generate more refined impact sets. The utility of such an approach
eventually relies on the ability to effectively recognize aliases.

In this paper, we address the general memory aliasing problem and
present a probabilistic trace-based technique for correlating memory lo-
cations across execution traces, and associated variables in program ver-
sions. Our approach is based on computing the log-odds ratio, which
defines the affinity of locations based on observed patterns. As part of
the aliasing process, the traces for initial test inputs are aligned without
considering aliasing. From the aligned traces, the log-odds ratio of the
memory locations is computed. Subsequently, aliasing is used for align-
ment of successive traces. Our technique can easily be extended to other
applications where detecting aliasing is necessary. As a case study, we
implement and use our approach in dynamic impact analysis for detect-
ing variations across program versions. Using detailed experiments on
real versions of software systems, we observe significant improvements in
detection of affected regions when aliasing occurs.

1 Introduction

Identifying memory aliasing involves correlating memory locations that exhibit
similar behavior across two versions of a program. Memory aliasing occurs in
many software engineering applications, including impact analysis [1, 15, 17], de-
tecting invariants [7] and correlating program properties to ensure that prop-
erties are preserved in the newer version or matching program execution histo-
ries [19]. Devising a scalable robust solution to this problem has proven to be
challenging. Zhang and Gupta [19] present a relative offset based matching ap-
proach to solving the problem of matching program execution histories. While
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their approach performs well in the presence of simple variable renaming, it is
not clear how their technique could be generalized to deal with more complex
program behavior. In this paper, we present a scalable and general solution to
the memory aliasing problem based on available execution traces.

Memory aliasing is the problem of identifying whether two pointers refer to
the same memory location. In this paper, we address the problem of memory
aliasing across program versions, i.e., given two sets X and Y of memory locations
corresponding to two different versions, identify whether x and y are aliases (re-
fer to the same memory location relatively), where x ∈ X and y ∈ Y. We present a
solution for the memory aliasing problem in the context of identifying variations
across program versions. We use test results on older versions to automatically
identify regions in newer versions that are affected by the changes that charac-
terize their differences. As a first step towards detecting and isolating variations
in program versions, we abstract a program as a sequence of memory reads and
writes. Test inputs are fed into two versions and traces of memory operations
are collected by instrumenting the binary executables. A trace is a sequence of
<Operation, Value> tuples, where Operation is either a read or write to memory
and Value is the value read from, or written into memory. The trace is analogous
to a string and the tuple analogous to an alphabet. Comparing two functions
that exist in two program versions is equivalent to comparing the subsequence
of the trace corresponding to the two functions under comparison.

Based on a user-defined cost function, the Levenstein [12] distance is calcu-
lated using dynamic programming and the gaps [2] in the comparison recorded.
(The Levenstein distance between two strings is defined as the shortest sequence
of edit operations that lead from one string to the other.) By repeating the pro-
cess for multiple test inputs, cumulative information on the gaps present in the
older version relative to the newer version is obtained. By projecting the tuples
back to the corresponding regions in the source, information on the affected
locations within an impacted function is obtained. If the Levenstein distance be-
tween the two functions is zero, then we regard the function in the newer version
as unaffected by changes in the older version.

Ignoring memory locations associated with each operation in the trace and
using only the operation type and associated value in calculating the Levenstein
distance presents a potential problem as shown in the following example:

void old() { void
new() {

for(i = 0; i < 100; i++) { for(i = 0; i < 100;i++) {
a = i; b[i] = i;

} }
} }

Using just operation types and associated values in traces, it is easy to con-
clude that the functions old and new are identical, since the Levenstein distance
associated with strings generated by traces on any test input is zero. However,
it is obvious by examination that the functions have clearly distinct behavior.
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In function old, values from 1...100 are written into a single memory location
whereas in function new, the same values are written into consecutive memory
locations.

To alias memory locations across versions, we rely on a model [6] used to solve
a similar problem in computational biology while matching amino-acid (protein)
sequences. Here, one amino acid needs to be aliased with another amino acid
from which it potentially has mutated. The solution is based on computing the
probability of one amino acid aligning with another amino acid in valid (known)
alignments. In our approach, we execute the two versions on a test input and
align the traces with respect to the operation types and the associated values
(ignoring memory locations). The alignment of the memory locations for the
alignments of the strings obtained using the previous step is used in computing
the probability that a memory location can be aliased with any other location.
This process is performed for a few test inputs and a comprehensive map of the
probability that a memory location in the older version is aligned with any other
location in the newer version is obtained. From this map, the memory location
that has the highest probability is used as an alias. In subsequent alignment of
the traces, apart from computing the equality of the operation type and values
associated across versions, memory alias information computed earlier is used.

We implement our approach and evaluate its performance across a range
of open-source benchmarks. In these benchmarks, the majority (approximately
90%) of the memory locations in the older version are uniquely associated with
locations in the newer version. The remaining few memory locations correspond
to multiple locations and these are the locations for which our approach has
been found useful. When our technique is used in detecting variations between
program versions, we find a significant change in the size of the impacted regions
within an affected function. Furthermore, in some cases, we also find improved
precision in the impact sets computed.

2 Aliasing Technique: Log-Odds Ratio

We present our aliasing technique by initially discussing a related problem in
biology. Amino acid sequences of an organism’s protein mutate gradually from
one generation to another in the process of evolution. An important application
is to determine whether two sequences are homologous or have the same ancestor.
The general technique is to construct a substitution matrix where entry (i,j)
is equal to the probability of the amino acid i being altered into amino acid j
within a bounded time. There are two popular techniques to construct such a
matrix in the literature: PAM [6] and BLOSSOM [9]. In this paper, we build a
substitution matrix based on the technique used for PAM [6]. For our problem,
we need to determine the probability that the memory location i in one version
being the memory location j in another version.

We start with a discussion of the probabilistic technique used to correlate
memory locations. We initially present an abstract problem in strings and then
relate it to the problem of correlating memory locations that arise in software
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engineering and testing environments. We are given two sets of alphabets A and
B, where A

⋂
B = {}. Consider the following problem: “find a mapping from

alphabets in A to alphabets in B, for all alphabets in A, such that an alphabet
in A or B can have no more than a single mapping and for two strings x and
y composed of alphabets in A and B respectively, the Levenstein distance of the
strings x and sub(y,x) is minimum. Here, x is a string composed of alphabets from
A, y is a string composed of alphabets from B, sub(y,x) is the string obtained
by converting the string y by substituting each character in y by the alphabet
mapped into A.” For example, if we have A = {a, b, c}, B = {d, e, f}, x = abcb
and y = eddd, we find that a mapping from b to d, a to e and c to f results in
the smallest Levenstein distance of the strings x and sub(y,x). We are unaware
of a polynomial-time optimal solution to the above problem.

A relaxation of the above problem incorporates the presence of a history, i.e.,
there is a set of pairs of strings x and y, and alignment R(x, y) associated with
each pair. Any new pair of strings that form an input to the problem follows
the historical pattern. Given this scenario, a probabilistic approach to mapping
alphabets from A and B is given below. This technique has been applied in
generating PAM matrices for amino acid substitutions in computational biology.
For each pair of strings x and y in the history:

1. Calculate p(ai, bj) by dividing the number of times ai aligns opposite bj in
R(x,y) by the total number of aligned pairs.

2. Calculate p(ai) by dividing the the number of times ai appears in x by the
length of x. Similarly calculate p(bj).

3. The log-odds ratio LR(ai, bj) is defined as log( p(ai,bj)
p(ai)p(bj))
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Fig. 1. An example illustrating the computation of log-odds ratio

We present an illustrative example in Figure 1. A contains alphabets {a1, a2,
a3} and B contains alphabets {b1, b2, b3, b4}. Strings x and y are given and
are shown in the figure. The probability of occurrence of each alphabet and the
joint probability of two alphabets aligning is also shown. The log-odds ratio is
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calculated as specified by the formula p(ai,bj)
p(ai)p(bj)

and is specified in the table. We
observe that there is perfect aliasing (when p(ai, aj) = p(ai) = p(aj)) between a2
and b2. In contrast, there is no such aliasing between a1 and b4. However, since a1
aligns more frequently with b4, these two alphabets are aliased. Even though a3
aligns with two different alphabets once, we alias it with b1, since it occurs only
once in the string y. However, the history of pairs of alignments need to be taken
into consideration to specify the alias with high confidence. We give the details
below.

Compute the log-odds ratio for all possible pairs of alphabets in A and B. Iter-
ate the process for each pair of strings in the history and obtain the cumulative
log-odds ratio. On completion, for every alphabet ai, find the alphabet bj in B
for which the log-odds ratio is the highest. Map the alphabet ai to bj , if bj is
not already mapped. Notice that LR(ai, bj) can become zero, in the absence of
even a single alignment between the alphabets. In practice, we observe many
such pairs and these pairs can be removed immediately from consideration.

In the context of memory aliasing, the problem can be now described as
follows: A and B correspond to the set of memory locations in the older version
and newer version, respectively. In other words, a memory location is simply
an alphabet in the appropriate set. Sequences x and y represent sequences of
memory locations operated in each of the versions. To obtain the history as
mentioned in the relaxed version of this problem, a learning process is executed.
In this process, the memory locations are totally ignored and the traces, obtained
by executing the versions on the same test input, are aligned using the tuple
<Operation, Value>. This alignment is performed using dynamic programming.
After obtaining the alignment of the trace, an alignment of the memory locations
(corresponding to the tuple) across the two versions is obtained. The log-odds
ratio for the locations is subsequently determined. On completion, we obtain
a probabilistic aliasing of the memory locations. We elaborate on this process
using the following example.

2.1 Example

We show two program fragments in Figure 2, one labeled old, and the other new.
There is one memory location (a) associated with function old (local variable
i is not considered). There are two memory locations (b[0],b[1]) associated
with function new. We denote the address of any variable v as mem(v).

Using the algorithm presented above, memory traces associated with the in-
vocation of these functions on the same test input (j = 5) are first obtained.
The memory trace thus generated is:

old: <mem(a),W,0>, <mem(a),W,1>, <mem(a),W,5>

new: <mem(b[0]),W,0>, <mem(b[1]),W,1>, <mem(b[0]),W,5>, <mem(b[1]),W,6>

Trace Element: <Location, Operation, Value>

Location: Memory location associated with the operation
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void old(int j){ void new(int j){
for(i = 0; i < 2; i++) { for(i = 0; i < 2; i++) {

a = i; b[i] = i;
} }
a = j; b[0] = j;

b[1] = j + 1;
} }

Fig. 2. Example of functions from two program versions

Op: Read(R),Write(W)
Value : 32 bit value

Initially, we ignore all memory locations and align the above strings. The gaps
are represented by a hyphen(-). We obtain the following alignment:

old: <W, 0>, <W, 1>, <W, 5>, -
new: <W, 0>, <W, 1>, <W, 5>, <W, 6>

We retrieve the corresponding memory locations and get the following align-
ment:

old: mem(a), mem(a), mem(a), -
new: mem(b[0]), mem(b[1]), mem(b[0]), mem(b[1])

The logs-odd ratio for the memory locations are obtained using the above
alignment. We get LR(a, b[0]) equals log(4/3) and LR(a, b[1]) equals log(2/3).
By performing the above operations on other test inputs, we can correlate the
memory locations of a and b[0] with high confidence. In subsequent trace align-
ments, we use the alias in the dynamic programming to ensure that the alphabets
under comparison are identical.

3 Case Study

We discuss an implementation for discovering variations across program versions.
Our analysis tool consists of two components – an instrumentation module and
a comparison module. Both components operate over program binaries. The
binaries, representing a program and its revision, are instrumented to record
read and write operations, and execute on the same test input. The effect of
the instrumentation yields memory traces on selective operations. These traces
are then compared using dynamic programming, and optimally aligned (with or
without memory aliasing) based on a user defined cost function. A block diagram
of this process is shown in Figure 3.

Gaps in the alignment help detect operations performed by the newer version
that are absent in the older version, and vice versa. Accumulating this informa-
tion over all test inputs provides the set of affected regions in the newer version.
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Regions in Affected functionsAffected functions

Dynamic Programming

Test Input 

Cost function

Old Binary

Instrumentation Instrumentation 

New Binary

Fig. 3. Block Diagram for detecting variations across two program versions

If there are no gaps present in such a comparison over all test inputs, the func-
tions are declared to be unaffected. Otherwise, the affected regions (in the form
of line numbers) in the newer version are identified.

3.1 Instrumentation Tool Using PIN

We use PIN [16], a dynamic binary instrumentation tool, for instrumentation
purposes. PIN supports a rich set of abstract operations that can be used to
analyze applications at the instruction level without detailed knowledge of the
underlying instruction set. Instrumentation code can be inserted at desired lo-
cations in the binary. For our current implementation, we track all heap related
operations ignoring other instructions, including reads or writes to the stack.

The instrumentation module takes as input the binary and the list of functions
in the binary that need to be instrumented. When the binary is executed on a
given test input with dynamic instrumentation, a list of tuples is generated. The
elements in the tuple include the type of operation (read or write), its 32 bit
value (read or written), the corresponding memory location, the line number
and the function in which the instruction was generated.

3.2 Comparison Tool Using Dynamic Programming

We provide a simple example for aligning two strings optimally. Given two strings
abacbd and aabcabcd, one of the longest common subsequences is abacd. Table 1
presents the dynamic programming table d that gives the edit distance between
the two strings. The cost at any box of the dynamic programming table d, di,j

is calculated as follows. If alphabets i and j are equal, then the cost di,j is the
minimum of di−1,j−1, di−1,j + 1 and di,j−1 + 1. Otherwise, the cost di,j is the
minimum of di−1,j + 1 and di,j−1 + 1. The alignment table is correspondingly
update to reflect whether the diagonal, left or top element is chosen in d. The edit
distance in this case is four assuming unit cost for insertions and deletions. After
filling up all the values in table d, a traversal from the end of the alignment table
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Table 1. Dynamic programming table d
representing the gap costs

a a b c a b c d
0 1 2 3 4 5 6 7 8

a 1 0 1 2 3 4 5 6 7
b 2 1 2 1 2 3 4 5 6
a 3 2 1 2 3 2 3 4 5
c 4 3 2 3 2 3 4 3 4
b 5 4 3 2 3 4 3 4 5
d 6 5 4 3 4 5 4 5 4

Table 2. Alignment table. �: left, t: top,
c: diagonal

a a b c a b c d
� � � � � � � � �

a t c � � � � � � �

b t t t c � � � � �

a t t c t t c � � �

c t t t t c t t c �

b t t t c t t c t t

d t t t t t t t t c

(the last row and last column) gives the alignment of the two strings. Table 2
presents the table that is used to calculate the optimal alignment for the pair
of strings. One possible alignment for the strings is as follows: a-b-a-cbd and
aabcabc-d. We refer the reader to [5] for a more elaborate discussion.

Our comparison module operates over a pair of traces generated by instru-
menting the binaries to be compared as they execute on the same input. To
provide an analogy, if the trace is viewed as a string, the equivalence of an al-
phabet in the string here is a tuple <Memory Location, Operation, Value>. We
use the dynamic programming technique to compute an alignment between the
pair of traces. The optimality of an alignment is dependent on the cost function
used which can be defined in many ways. In this paper, we consider a simple
notion of optimality. Gaps in an alignment have unit cost, while all other al-
phabets have zero cost. Thus an optimal alignment is one that has the smallest
number of gaps; observe that for any pair of strings, there maybe many such
optimal alignments.

Given memory traces of length m and n for two versions, the time complexity
of dynamic programming is O(mn). Thus, even traces of modest length (ap-
proximately 15K) can considerably slow down the comparison process. Indeed,
for some applications, there are a several million reads or write operations to
memory. To make our approach scalable, we employ a heuristic that performs
dynamic programming piece-wise on smaller substrings. The heuristic is based
on the observation that there is likely to be sufficient locality to apply dynamic
programming on the strings yielded by subtraces to yield a good, if not neces-
sarily optimal, alignment. Our heuristic works as follows:

1. Obtain a prefix of fixed length r from both traces.
2. Apply dynamic programming on the prefixes obtained.
3. Find the farthest location in each prefix respectively after which there is no

alignment between the prefixes.
4. Obtain a prefix of r starting from these locations respectively from each

trace and repeat the process from Step 2.

We use the example discussed above to explain the heuristic. Fix r to be three.
In the first step, prefixes aba and aab are extracted. Aligning these prefixes,
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we get -aba and aab-. In the next step, we extract acb from the first string
and cab from the second string. Aligning the prefixes, we get ac-b and -cab.
Subsequently, we extract d and cd and align them as -d and cd respectively.
The final alignment is -abac-b-d and aab-cabcd.

3.3 Extract from Bzip2

We present an extract from bzip2 to show that ignoring memory locations can
indeed lead to reduced precision in detecting variations across program versions.
The following piece of code is extracted from the function generateMTFValues
in bzip2, version 0.9.5d.

163 void generateMTFValues ( EState* s )
213 ll i = s->unseqToSeq[block[j] >> 8];
225 j++;
233 zPend--;
240 s->mtfFreq[BZ RUNA]++;
247 mtfv[wr] = j+1; wr++; s->mtfFreq[j+1]++;

The following piece of code is extracted from the same function in bzip2,
version 1.0.2

164 void generateMTFValues ( EState* s )
211 ll i = s->unseqToSeq[block[j]];
219 zPend--;
226 s->mtfFreq[BZ RUNA]++;
250 mtfv[wr] = j+1; wr++; s->mtfFreq[j+1]++;

In the learning process for aliasing, it was observed that memory location of
variable in line 225 in the older version is associated with lines 211,219,
226, 250. However none of the lines have a high log-odds ratio with line 225.
All of them have higher log-odds ratio with some other line in the older version
(lines 213, 233, 240, 247, respectively). By examining the source code of
both the versions, it is obvious that the loop associated with variable j has
been rewritten and a similar construct is not available in the newer version. By
ignoring memory locations, line 225 was aligning with other unrelated lines,
leading to imprecise alignments and therefore reduced precision in the impact
analysis. As our experimental results show, memory aliasing can reduce the
number of realignments that are observed in affected functions.

4 Evaluation

4.1 Experimental Setup

We provide a comparison of detecting variations across program versions with
and without memory aliasing using two versions of the following software pack-
ages: bzip2 [4], bunzip2 [4], gawk [8], htmldoc [13] and wget [18]. All of these
programs are written in C. The details on the versions used for the benchmarks,
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the lines of code, the number of functions and other parameters are given in
Table 3. We explain the significance of the other columns below. The test cases
used for the benchmarks are either randomly generated or are from standard
test suites available for them.

Table 3. Benchmark Information and Results (Time in seconds)

Old New LoC Total Longest Total Instr. Analysis Time Memory affected
Version Version (in K) Fns. Trace (103) Tests Time No Alias Alias (in MB) %

bzip2 0.9.5d 1.0.2 9 107 6099 107 2631 991 3121 351 25.4
bunzip2 0.9.5d 1.0.2 9 107 1839 101 1297 351 2637 89 26.6
gawk 3.1.3 3.1.4 41 522 3598 133 1390 450 368 670 41.7
htmldoc 1.8.23 1.8.24 65 246 1399 101 3451 970 996 84 48.4
wget 1.6 1.7 28 313 158 105 1025 263 232 16 44.4

We perform our tests on Linux 2.6.11.10 (Gentoo release 3.3.4-r1) system
running on a Intel(R) Pentium(R) 4 CPU 3.00GHz with 1GB memory. The
version of the PIN [16] tool used was a special release 1819 (2005-04-15) for
Gentoo Linux. The sources were compiled using GCC version 3.3.4.

4.2 Results

In our current implementation, a list of functions that need to be instrumented
and the pair of functions to be considered for comparison are also provided. The
number of memory reads and writes, the associated values yielded, the mem-
ory locations used, and the line in the source responsible for such an action is
presented as output of the instrumented program executed under PIN. By per-
forming this process for both versions, we have two traces of heap reads and
writes, and corresponding information that is provided as input to the com-
parison module. The instrumentation time given in Table 3 includes the time
taken to insert instrumentation code and time taken to execute the instrumented
version of the binary for all the test cases.

When no aliasing is employed, the operation values and types are compared
and aligned. We use a block size of 50 based on the heuristic given in the previous
section for a piece-wise alignment of the traces. Furthermore, related memory
locations are aligned and the log-odds ratio computed as mentioned earlier in the
paper. The comprehensive log-odds ratio is computed by totalling the individual
ratios. It is appropriate to note here that memory locations in any two different
runs of the same program may be different. Therefore, to ensure consistency,
we associate the memory location with the line number in the source. Notice
that this approximation may lead to a loss of precision in the presence of two
or more memory locations in the same line. Determining a better technique to
ensure consistency across test runs is part of our ongoing research. The idea
behind the current approximation of memory locations to line numbers is that
even though the locations may be different across two runs of the same program,
the line numbers are still consistent. More importantly, such an approach can
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be deployed across program versions as the line numbers need not correlate. On
performing the entire process as mentioned above for each test case, we obtain
the regions (in the form of line numbers) in the newer version that differ from
the older version.

In Figure 4, we present a histogram, which shows the distribution of the mem-
ory locations with respect to the number of mappings for each of the benchmarks.
We expect that the majority of the locations have unique correspondence, since
generally newer versions do not deviate widely from the existing version. Our
intuitions are confirmed by the results shown in the figure. Most memory lo-
cations (approximately 90%) in the older version have unique correspondence
(perfect mapping) with memory locations in the newer version. The remaining
locations have multiple mappings and these are the locations that can reduce the
effectiveness of impact analysis. We observe that among these memory locations,
most of them correspond to two or three other memory locations in the newer
version. In the case of gawk [8], we observe as many as 20 different locations in
the newer version that can be mapped to one memory location. However such
occurrences are rare. Such increased correspondence signifies that the memory
location cannot be aliased with any other memory location and the observed
alignments are accidental. Our extract from bzip2 [4] in the previous section
corroborates this observation.

When aliasing is used in our comparison tool, we ensure that the memory lo-
cations associated with each memory operation are compared and two tuples are
aligned if and only if the operation value and type are equal and the associated
memory locations are aliases. In Figure 5, we present the results of the improve-
ment using this approach. The figure shows the distribution of functions with
respect to the change (in percentage) of the number of lines within an impacted
function when aliasing is used, as opposed to no aliasing. We observe that there
is a significant change in the number of lines affected, even though only a few
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Fig. 5. Change in size of impacted regions when aliasing detection is used

memory locations had multiple mappings (from Figure 4). Approximately 50-
60% of the functions do not change as a result of using aliasing. In some cases,
for example in htmldoc [13], we observe that even though the uniquely mapped
memory locations is the least over all the benchmarks, there is, nonetheless, no
change in the affected regions.

In Table 3, we provide the specifics of our benchmarks and the results ob-
tained using our technique. The number of lines of code varies from 9K to 65K
with the number of functions varying from 100 to 500, approximately. The length
of the trace represents the number of reads and writes to the heap in thousands
of instructions. The longest trace observed is approximately 6 million for bzip2.
The average memory used, while significant, is not problematic. This is expected
for many dynamic analysis scenarios because precise information on heap oper-
ations is being gathered. No significant difference in memory utilization was
observed when aliasing was used and is therefore not shown as a separate col-
umn in the table. The percentage of affected regions is also provided in the table.
The affected percentage reveals that a sizeable fraction of the newer version of
a benchmark program is impacted by changes to the older.

The time taken for our technique is composed of the instrumentation time of
the binary and execution time of comparison module. There are two reasons for
the inefficiency of the instrumentation process. The first is the use of a dynamic
binary instrumentation tool as opposed to static instrumentation. Therefore for
each test case, we insert appropriate instrumentation code. We believe the time
taken for this can be significantly reduced using alternative instrumentation
strategies. The current impact analysis tool currently tracks all heap related op-
erations. This can also play an important role in increasing the instrumentation
time. The length of the trace and instrumentation time are directly correlated.
For example, wget has a shorter trace and thus significantly smaller instrumenta-
tion time compared to bzip2. One way to reduce the number of heap operations
tracked is to discard operations found in regions already known to have been
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affected from previous test runs. The difference in the analysis time of the two
approaches is not significant except for bzip2 and bunzip2, where we observe
that the approach using aliasing requires more time. Note that in the aliasing
approach, since memory locations are compared for every alphabet mapping, the
increased time can be attributed to the number of memory locations occurring
in the benchmark. Since we expect that our approach will be generally used off-
line, we believe the improved precision resulting from taking aliasing information
into account outweighs the added costs for performing location comparisons.

5 Related Work

Our approach is motivated by similar techniques employed for problems in bioin-
formatics. PAM [6] and BLOSSOM [9] are two commonly used substitution ma-
trices for detecting amino acid substitution. Amino acids can mutate with time
and it is necessary that two different amino acids be aliased to give a better
sequence alignment. Analogously, we have multiple versions (the newer version
can be considered as the mutation of the older version) and to align these newer
versions, it is necessary that the memory locations in the two versions be aliased.
We address this problem in the paper and use the log-odds ratio to alias memory
locations. We also show by way of experiments on many open source systems
that the memory aliasing approach employed here enhances the precision of the
impact analysis.

Zhang and Gupta [19] present a novel method for matching dynamic execution
histories across program versions for detecting bugs and pirated software. They
use an offset-based aliasing technique to correlate stack locations across the two
programs. While this is applicable in many cases, it is not clear whether this
approach is generalizable. In this paper, we abstract the problem of memory
aliasing into one of finding longest common subsequence of two strings composed
of different alphabets. We also present a probabilistic solution to this problem.

There has been much prior work in impact analysis for improving testing
efficiency in the presence of program changes [1, 15, 17]. In these approaches,
functions that follow a modified function in some execution path are added
to the impact set. We share obvious similarities with these efforts, but differ
both in the mechanisms used to identify impacted functions, and the ability to
identify localized regions of change within these functions. Furthermore, since
our technique operates over binary executables, we are not reliant on program
analysis of input sources or programmer annotations.

Our approach can also be extended to correlate variables across program ver-
sions to check whether the invariants are preserved across these versions. Ernst
et. al. provide a technique for automatically detecting invariants within a single
program version [7]. However, it is not clear how invariants across program ver-
sions can be correlated, in the presence of variable renaming, deletions, additions,
and general changes in the program’s data- and control-flow . By proposing a
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new formulation for generating the initial history of alignments and applying the
log-odds ratio, we believe variables can be correlated even under these circum-
stances.

Pointer analysis is a well studied problem and a number of techniques in
the literature is discussed by Hind and Pioli [11]. “A pointer alias analysis at-
tempts to determine when two pointer expressions refer to the same storage
location” [10]. However, many of the techniques discussed in the literature is
for alias analysis within a single program. In this paper, we address an entirely
different problem of ‘must’ aliasing [14] of pointers across two program versions.
The technique presented in the paper provides a solution based on statistical
correlation.

Dynamic programming, more specifically longest common subsequence (LCS),
is used in many applications. One such application in software engineering is de-
scribed in [3]. The foundation of their approach that for similar bugs, the call
stack also shares similarities. Therefore, by pruning unnecessary information
from the call stack, and comparing the resulting string representation with an
existing signature, a score can be computed to the match using a longest com-
mon subsequence algorithm. The similarity between their approach and ours is
restricted to the underlying technique and its applicability in a software engi-
neering context, but does not extend to impact analysis or variation detection
across program revisions.

6 Conclusions

This paper describes a technique for identifying memory aliases across program
versions. Our approach works by collecting traces of program executions, in
which each element of the trace contains an operation, value, and a memory
location; trace results applied to the same test input on the versions being com-
pared are aligned without considering the memory locations used by the pro-
gram. By computing the log-odds ratio between memory locations based on the
above alignments on a few test inputs, we obtain an aliasing of the locations
across versions. To validate our approach, we compare program versions based
on traces with and without aliasing detection on a number of open-source pro-
grams. Experimental results show that our technique improves the precision of
identifying impacted regions significantly. Our approach can be easily extended
to other applications where memory aliasing is required. For example, as part
of ongoing work, we are investigating the use of this approach for correlating
variables across program versions to test preservation of invariants and program
matching. Another avenue for future work is to evaluate the applicability of our
approach to more heap-centric languages such as Java.
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