
Relaxed Synchronization and Eager Scheduling
in MapReduce

Karthik Kambatla, Naresh Rapolu, Suresh Jagannathan, Ananth Grama
Department of Computer Science, Purdue University
{kkambatl, nrapolu, suresh, ayg}@cs.purdue.edu

Abstract

MapReduce has emerged as a commonly-used programming
model for large-scale distributed environments. While the underlying
programming model based on maps and reductions has been shown
to be effective in specific domains, significant questions relating to
performance and application scope remain unresolved. This paper
targets key questions of performance through relaxed semantics
of underlying map and reduce constructs in iterative MapReduce
applications. Specifically, it investigates the notion of partial syn-
chronizations combined with eager scheduling to overcome global
synchronization overheads associated with reduce operations. In
addition to presenting semantics for these constructs, the paper
describes their application on two illustrative problems — eigen-
spectra/pagerank computation on web graphs and clustering high-
dimensional datasets. The proposed constructs yield up to five-fold
performance improvements on real graphs and datasets, while adding
only minimal program complexity.

The following specific contributions are reported in the paper:
(i) partial synchronizations combined with eager scheduling are
capable of significant performance improvements, (ii) diverse classes
of iteratively-structured applications can be efficiently executed in
MapReduce on hundreds of distributed hosts, and (iii) a general
API for partial synchronizations and eager map scheduling holds
significant performance potential for other applications with irregular
data-access and computation profiles.

1. Introduction

Motivated by large amounts of data generated
by web-based applications, scientific experiments,
business transactions, etc., and the need to analyze
this data in effective, efficient, and scalable ways,
there has been significant recent activity in develop-
ing suitable programming models, runtime systems,
and development tools. The distributed nature of
data sources, coupled with rapid advances in net-
working and storage technologies naturally motivate
abstractions for supporting large-scale distributed
applications. The inherent heterogeneity, latencies,
and unreliability, of underlying platforms makes the
development of such systems challenging.

With a view to supporting large-scale distributed
applications in unreliable wide-area environments,
Dean and Ghemawat proposed a novel program-
ming model based on map and reduce operations,
called MapReduce [5]. A map, in a MapReduce
program takes as input a list of key-value pairs
and applies a programmer-specified function, in-
dependently, on each pair in the list. A reduce
operation takes as input a list indexed by a key,
of all corresponding values, and applies a reduction
function on the values. It outputs a list of key-
value pairs, where the keys are unique and values
are determined by the function applied on all of
the values associated with the key. The inherent
simplicity of this programming model, combined
with underlying system support for scheduling,
fault tolerance, and application development, make
MapReduce an attractive platform for diverse data-
intensive applications. Indeed, MapReduce has been
used effectively in a wide variety of data processing
applications. The large volumes of data processed
at Google, Yahoo, and Amazon, stand testimony to
the effectiveness and scalability of the MapReduce
paradigm. Hadoop1, an open source implementation
of MapReduce, is in wide deployment and use.
A majority of the applications currently executing

in the MapReduce framework have a data-parallel,
uniform access profile, which makes them ideally
suited to map and reduce abstractions. Recent
research interest, however, has focused on more un-
structured applications that do not lend themselves
naturally to data-parallel formulations. Common ex-
amples of these include sparse unstructured graph
operations (as encountered in diverse domains in-
cluding social networks, financial transactions, and

1. Hadoop, http://hadoop.apache.org

scientific datasets), discrete optimization and state-
space search techniques (in business process opti-
mization, planning), and discrete event modeling.
For these applications, there are two major unre-
solved questions: (i) can the existing MapReduce
framework effectively support such applications in a
scalable manner? and (ii) what enhancements to the
MapReduce framework would significantly enhance
its performance and scalability without compromis-
ing desirable attributes of programmability and fault
tolerance?
This paper primarily focuses on the second ques-

tion – namely, it seeks to extend MapReduce se-
mantics to support specific classes of unstructured
applications on large-scale distributed environments.
Recognizing that one of the key bottlenecks in
supporting such applications is the global synchro-
nization associated with the reduce operation, it
introduces notions of partial synchronization and
eager scheduling. The underlying insight is that
for an important class of applications, algorithms
exist that do not need global synchronization for
overall-correctness. (Please note that we use the
term overall-correctness as being distinct from se-
quential semantics. Overall correctness refers to an
accurate solution to a given problem.) For such ap-
plications, while global synchronizations optimize
serial operation counts, violating these synchro-
nizations merely increases operation counts without
impacting correctness of the algorithm. Common
examples of such algorithms include, computation
of eigenvectors (pageranks) through (asynchronous)
power methods, branch-and-bound based discrete
optimization with lazy bound updates, and other
heuristic state-space search algorithms. For such
algorithms, a global synchronization can be replaced
by a partial synchronization. However, this partial
synchronization must be combined with suitable
locality enhancing techniques so as to minimize
the adverse effect on operation counts. These lo-
cality enhancing techniques take the form of min-
cut graph partitioning and aggregation into maps
in graph analyses, periodic quality equalization in
branch-and-bound, and other such operations that
are well known in parallel and distributed process-
ing communities. Replacing global synchroniza-
tions with partial synchronizations also allows us
to schedule subsequent maps in an eager fash-

ion. This has the important effect of smoothing
load imbalances associated with typical applica-
tions. This paper combines partial synchronizations,
locality enhancement, and eager scheduling, along
with algorithmic asynchrony to deliver distributed
performance improvements of 100 to 500% (and be-
yond in several cases). The enhanced programming
semantics resulting in the significant performance
improvement do not impact programmability/ pro-
gram complexity.
We demonstrate all of our results on the wide-

area Google cluster in the context of Pagerank
and clustering (K-Means) implementations. The
applications are representative of a broad set of
application classes. They are selected because of
their relative simplicity as well as their ubiquitous
interaction pattern. Our extended semantics have a
much broader application scope, including common
data analyses kernels (PCA, dimensionality reduc-
tion, PDDP), graph applications (matching through
isorank, random walks), and more traditional HPC
workloads (iterative linear/non-linear solvers, parti-
cle methods).
The rest of the paper is organized as follows: in

Section 2, we provide a brief overview of MapRe-
duce, Hadoop, and motivate the problem;in Section
3, we outline our primary contributions and their
significance; in Section 4, we present extended
semantics and the corresponding API; in Section 5,
we discuss our implementations of Pagerank and K-
Means clustering and analyze performance gains of
our approach. We outline avenues for ongoing work
and conclusions in Sections 8 and 9.

2. Background and Motivation

The primary design motivation for the functional
MapReduce abstractions is to allow programmers to
express simple concurrent computations, while hid-
ing low-level details of scheduling, fault-tolerance,
and data distribution in a single library [5]. The
simplicity of the API makes programming rela-
tively easy. Programs are expressed as sequences
(iterations) of map and reduce operations with
intervening synchronizations. The synchronizations
are implicit in the reduce operation, since a reduce
must wait for all map outputs. Once a reduce
operation has terminated, the next set of maps

can be scheduled. Fault tolerance is achieved by
rescheduling maps that time out. A reduce op-
eration cannot be initiated until all maps have exe-
cuted. Maps generally correspond to fine-grained
tasks. This allows the scheduler to balance load.
There are no explicit primitives for localizing data
access. Such localization must be achieved by ag-
gregating fine-grained maps into coarser maps,
using traditional parallel processing techniques. It
is important to remember, however, that increasing
the granularity carries with it the potential downside
of increased makespan resulting from failures.
As may be expected, for many applications, the

dominant overhead in the program is associated
with the global reduction operations (and the in-
herent synchronizations). When executed in wide-
area distributed environments, these synchroniza-
tions often incur substantial latencies associated
with underlying network and storage infrastructure.
In contrast, partial synchronizations take over an
order of magnitude less time on conventional wide-
area testbeds. For this reason, fine-grained maps,
which are natural for programming data parallel
MapReduce applications do not always yield ex-
pected performance improvements and scalability.
The obvious question that follows from these

observations is whether we can decrease the number
of global synchronizations, perhaps at the expense
of increased number of partial synchronizations
(we define a partial synchronization to imply a
synchronization/reduction only across a subset of
the maps). The resulting algorithm(s) may be sub-
optimal in terms of serial operation counts, but
may be (significantly) more efficient and scalable
in a MapReduce framework. A particularly relevant
class of algorithms where such tradeoffs are possi-
ble are iterative techniques applied to unstructured
problems (where the underlying data access patterns
are unstructured). This broad class of algorithms
underlies applications ranging from pagerank com-
putations on the web to sparse solvers in scientific
computing applications and data analyses operations
such as clustering, dimensionality reduction, and
graph matching. In many of these applications,
added complexity arises from the inherent load im-
balance associated with the maps. For example, in
the computation of pagerank, a hub node may have a
significantly higher degree (in- or out-) than spokes.

This leads to correspondingly more computation for
the hubs as compared to the spokes.
We seek to answer the following key questions

relating to the application scope and performance
of MapReduce (or the general paradigm of maps
and reduces) in the context of applications that
tolerate algorithmic asynchrony: (i) what are suit-
able abstractions (MapReduce extensions) for dis-
tributed asynchronous algorithms? (ii) for an appli-
cation class of interest, can the performance benefits
of localization, partial synchronization, and eager
scheduling of maps overcome the sub-optimality
in terms of serial operation counts, and (iii) can
this framework be used to deliver scalable and high
performance over wide-area distributed systems?
In answering these questions, we also investigate
whether the use of proposed MapReduce extensions
renders programs more complex, thereby increasing
development effort.

3. Technical Contributions

To alleviate the cost of global synchronization
and granularity, we propose and validate the follow-
ing solutions within the MapReduce framework:

• We provide support for global and partial
synchronizations. Partial synchronizations are
enforced only on a subset of maps. Global
synchronizations are identical to reduce opera-
tions, enforced on all the maps.

• Following partial synchronizations, subsequent
maps are scheduled in an eager fashion, i.e., as
soon as the partial synchronization operation
completes.

• We use partial synchronizations and eager
scheduling in combination with a coarser
grained, locality enhancing allocation of tasks
to maps.

• We validate the aforementioned techniques
on two representative problems – computing
pagerank on sparse unstructured (power-law
type) real web graphs and clustering high-
dimensional data using unsupervised clustering
algorithm (K-Means). These applications are
illustrative of a broader class of asynchrony-
tolerant algorithms. We show that while the
number of serial operations (and indeed the
sum of partial and global reductions) is much

higher, the reduction in number of global re-
ductions yields performance improvements of
up to 500% compared to traditional MapRe-
duce implementation on a 460-node cluster
provided by IBM-Google consortium as part
of the CluE NSF program.

To alleviate the overhead of global synchroniza-
tion, we propose a two level scheme — a local
reduce operation applies the specified reduction
function to only those key-value pairs emanating
from the preceding map(s) at the same host. A
global reduce operation, on the other hand, incurs
significant network and file system overheads. In our
Pagerank example, the rank of a node is determined
by the rank of its neighbors. In the traditional
MapReduce formulation, in every iteration, map
involves each node pushing its Pagerank to all its
outlinks and reduce accumulates all neighbors’
contributions to compute Pagerank for the corre-
sponding node. These iterations continue until the
Pageranks converge.
Consider an alternate formulation in which the

graph has been partitioned (typically through a
crawler – different hosts crawl different parts of
the web), and a map now corresponds to the
local-pagerank computation of all nodes within the
partition. For each of the internal nodes (nodes
that have no edges leaving the partition), a partial
reduction accurately computes the rank (assuming
the neighbors’ ranks were accurate to begin with).
On the other hand, boundary nodes (nodes that
have edges leading to other partitions) must have
a global reduction to account for remote neighbors.
It follows therefore that if the ranks of the bound-
ary nodes were accurate, ranks of internal nodes
can be computed simply through local iterations.
Thus follows a two-level scheme wherein partitions
(maps) iterate on local data to convergence and then
perform a global reduction.
It is easy to see that this two-level scheme

increases the serial operation count. Furthermore,
it increases the total number of synchronizations
(partial + global) compared to the traditional for-
mulation. However, and perhaps most importantly, it
reduces the number of global reductions. Since this
is the major overhead, the program has significantly
better performance and scalability.

Indeed optimizations such as these have been ex-
plored in the context of traditional HPC platforms as
well with some success. However, the difference in
overhead between a partial and global synchroniza-
tion in relation to the intervening useful computation
is not as large for HPC platforms. Consequently, the
performance improvement is significantly amplified
on distributed platforms. It also follows thereby
that performance improvements from MapReduce
deployments on wide-area platforms, as compared
to single processor executions are not expected to be
significant unless the problem is scaled significantly
to amortize overheads. However, MapReduce for-
mulations are motivated primarily by the distributed
nature of underlying data and sources, as opposed
to the need for parallel speedup. For this reason,
performance comparisons must be with respect to
traditional MapReduce formulations, as opposed to
speedup and efficiency measures more often used in
the parallel programming community. This is further
reinforced by the fact that in cloud computing
environments, it is difficult to even estimate the
resources available to a program.
While most of our development efforts and all of

our validation results are in the context of pagerank
and k-means, concepts of partial reductions com-
bined with locality enhancing techniques and eager
map scheduling have wider applicability. In general,
our semantic extensions apply to this wider class of
applications that admit asynchronous algorithms –
algorithms for which relaxed synchronization im-
pacts only performance, and not correctness.

4. Proposed Semantic Extensions

In this section, we present our proposed semantics
and API for iterative MapReduce to alleviate syn-
chronization overheads, while preserving desirable
attributes of programmability.

4.1. Semantics for Iterative MapReduce

Figure 1 describes the formal syntax of our pro-
posed language. For our purposes, lists form an in-
teresting value in the language. MapReduce operates
on lists and not on its elements. Any operation on
an element of the list must be defined in terms of
an abstraction, so that our MapReduce constructs

v ε V alue (1)
p ε Processors = {P1, ..., Pm} (2)
Σ ε LocalStore = {Σ1, ..., Σm} (3)

Λ ε GlobalStore = {Λ} (4)
σ ε Σ = L → Z (5)
λ ε Λ = L → Z (6)

f ε Fn : : = λx.e (7)
l ε List : : = [v1, ..., vn] (8)

e ε P : : = f (9)
| Apply(I , < e, fm, fr, l >) (10)

Fig. 1. Iterative Relaxed MapReduce: Syntax

l, σ =⇒ σ(l) (LOCAL-LOOKUP) l, λ =⇒ λ(l) (GLOBAL-LOOKUP)

Apply(I , < e, fm, fr, l >) =⇒g I e fm fr l (APPLY-ITER)

while (condg) G condl fm fr lg, λ =⇒g lg
′, λ′

I condg fm fr lg, λ =⇒g lg
′, λ′

(ITER-MAPRED)

ch lg, λ, σ ≡ l̄l, λ, σ′

while cond map (L fm fr) l̄l, σ =⇒l l̄l
′

, σ′ agg l̄l
′

, σ, λ ≡ lg
′, σ, λ′ fold fr lg

′, λ =⇒g lg
′′, λ′

G cond fm fr lg, λ, σ =⇒g lg
′′, λ′, σ′

(MAPRED-GLOBAL)

map fm ll, σ =⇒l ll
′′, σ′′ fold fr ll

′′, σ =⇒l ll
′, σ′

L fm fr ll, σ =⇒l ll
′, σ′

(MAPRED-LOCAL)

ch lg ≡ l̄l ≡ {ll | ll ⊂ lg & ∩ll, llεl̄l
ll = φ}; ∀li, σi[li '→ λ(l)] (CHUNKIFY)

agg l̄l ≡ lg ≡ ∪llεl̄l
ll; ∀li, λ[l '→ li] (AGGREGATE)

Fig. 2. Iterative Relaxed MapReduce: Semantics

can evaluate them on the elements to compute new
lists. We define L, G, and I as the local, global,
and iterative versions of MapReduce; one invoked
from another. These operators evaluate on a tuple
<condition, map function, reduce function, list>.
Programs in the language are defined as applications
of our iterative MapReduce applied to functions and
an input list.

To capture salient behavior of the system, we as-

sume a set of hosts and a set of associated stores. We
define look up functions, σ (local) and λ (global).
We also define two different evaluation rules for
MapReduce — =⇒ g for the evaluation rules
that change the global state, and =⇒l to describe
the evaluations that change the local state. Figure 2
describes these semantics. A typical program in the
language is an application of IterMapReduce(I) to
a tuple consisting of a termination condition, map

and reduce functions and the list of data. The
computation rules[Apply-Iter] evaluate to running
global IterMapReduce.
I, the iterative MapReduce takes cond, map, re-

duce and a list to operate on. The cond function
operates on the global heap until the termination
condition is met. Iterative MapReduce calls global
MapReduce iteratively until this condition is met.
[Mapred-Global] describes the behavior of global

MapReduce. This operation uses another condition
to determine the termination of the local MapRe-
duce and operates on data local to the MapReduce
it gets associated with. The main feature is to have
a mechanism for synchronization across the local
and global stores. This is achieved by our Chunkify
and Aggregate functions. Chunkify(ch) partitions the
global list into sequence of multiple lists each made
available to the local MapReduce and copies these
chunks to the respective local stores. Aggregate
takes care of aggregating the data from the mul-
tiple local MapReduce computations and copies the
changes to global store. During the evaluation of
global MapReduce, we first Chunkify the data. We
then have the required values in the local store. We
subsequently apply the standard map, to a curried
version of local MapReduce — (L fm fr) — and
the local list, iteratively until it terminates. Only the
local store is modified during this stage. At the end
of these iterations, we need to synchronize globally,
requiring us to copy data back to the global store,
this task performed by the Aggregate function.
[Mapred-Local] controls the behavior of local

MapReduce. This is very close in structure to the
original MapReduce model, with the main differ-
ence being that it operates locally, with no global
store changes, as explained in the semantics.
The semantics use while, map, and fold con-

structs (bold faced in the semantics), which carry
their usual functional definitions. From a systems
perspective, map/fold functions process the data
given to them in parallel, and collect the output.
In addition to the inputs to the regular MapRe-

duce, our iterative version requires a termination
condition. Such a termination condition has to be
thought of even for iterating over traditional MapRe-
duce. Also, our iterative MapReduce reduces to
traditional MapReduce if the local condition is set
to one iteration. Our semantics do not increase

programming complexity.

4.2. API

The rigorous semantics described above ad-
vocate a source-to-source translator for iterative
MapReduce with relaxed synchronization and eager
scheduling. We formulated a simple-to-implement
API to validate our claims, as discussed below —
In the traditional MapReduce API, the user pro-

vides map and reduce functions along with the
functions to split and format the input data. In addi-
tion to these, for iterative MapReduce applications,
the user must provide functions for termination of
global and local MapReduce iterations, and func-
tions to convert data into the formats required by the
local map, reduce functions. The Chunkify and
Aggregate functions discussed in the semantics
are built using these conversion functions.
To provide more flexibility to the programmer

and to allow better exploitation of application-
specific optimizations, we propose four new func-
tions — gmap, greduce, lmap and lreduce (two
different sets of map and reduce for the local
and global versions of the operations). Global map
uses thread pool(s) to schedule lmap and lreduce to
exploit available parallelism. Functions Emit() and
EmitIntermediate() support data-flow in traditional
MapReduce. We introduce their local equivalents
— EmitLocal() and EmitLocalIntermediate(). Ag-
gregate iterates over the data emitted by EmitLocal()
and sends it to the global reduce through the Emit-
Intermediate() function. This API forms the basis
for our pagerank and K-Means implementations.

5. Evaluation

We validate the performance benefits of our pro-
posed semantics on two commonly used applica-
tions — pagerank (more generally, computing the
eigenspectra of a matrix) and k-means clustering.
We compare native MapReduce implementations of
these applications with their modified implementa-
tions that exploit relaxed synchronization and eager
scheduling. We perform our experiments on a live
testbed – the 460 node cluster provided by IBM-
Google consortium as part of the CluE (Cluster
Exploratory) NSF program. Table 1 describes the

TABLE 1. Measurement testbed, Software

Clue Cluster Intel(R) Xeon(TM) CPU 2.80GHz
Machines - 460 4 GB RAM, 2x 400 GB hard drives
VM 1 VM per host
Software Hadoop 0.17.3, Java 1.6
Heap space 1 GB per slave

physical resources, software, and restrictions on the
cluster. Since this is a shared cluster, there is the
potential that several jobs are concurrently executing
during our experiments. Nonetheless, our results
strongly validate our insights.

5.1. Implementation

For both applications, we implement base ver-
sions that conform to the conventional MapReduce
formulations. We also implement modified versions;
relaxed synchronization and eager scheduling real-
ized by rewriting the global map function (gmap)
to have a local MapReduce (lmap and lreduce) as
described in the following pseudo-code:
gmap(xs : X list) {
whi l e(no- l o c a l -convergence-intimated) {

lmap(x); // emits (lkey, lval)

l r educe();
}

for each value in l reduce -output{
EmitIn termed iate(key, value);

}
}

The argument to global map is a <key, value>
list(xs). We run a local MapReduce with each ele-
ment of xs as input to lmap. We use a hashtable
to store the intermediate and final results of the
local MapReduce. Applying this method to an ar-
bitrary application requires knowledge of the local
termination condition. The local termination can be
convergence (as in Pagerank and K-Means) or a
constraint on the number of iterations.

5.2. Pagerank

The pagerank of a node in a given graph is the
scaled sum of the pageranks of all of its neighbors.

Mathematically, the pagerank of a node is given by
the following expression:

PRd = (1 − χ) + χ ∗
∑

(s,d)εE

s.pagerank/s.outlinks,

(11)
where χ is the damping factor, s .pagerank and
s .outlinks correspond to the pagerank and the out-
degree of the source node, respectively.
For both our implementations, the input is a graph

represented as an adjacency list. We start with a
pagerank of 1 for all nodes. The pageranks converge
to their correct values after a few iterations of
applying the above expression for each node. We
define convergence by constraining the change in
individual pagerank values (10−5 in our case) across
iterations.

5.2.1. General Pagerank. The general MapReduce
implementation of pagerank iterates over a map
task that emits the pageranks of all source nodes
to the corresponding destinations in the graph,
and a reduce task that accumulates the pager-
ank contributions from various sources to a single
destination. In the actual implementation, the map
function emits tuples of the type <destination-
node, pagerank contributed to this destination node
by the source>. The reduce task operates on
a destination node, which gathers the pageranks
from its incoming source nodes and computes a
new pagerank for itself. Thus, after every iteration,
the nodes have renewed pageranks that propagate
through the graph in subsequent iterations until
they converge. One can observe that even a small
change in the pagerank of one node is broadcast to
all the nodes in the graph in successive iterations
of MapReduce, incurring a potentially significant
global synchronization cost.
Our baseline for performance comparison is a

MapReduce implementation for which maps cor-
respond to complete partitions, as opposed to single
node updates. We use this as a baseline because the
performance of this formulation was noted to be
on par or better than the adjacency-list formulation
where the update of a single node is associated with
a map. For this reason, our baseline provides a more
competitive implementation.

5.2.2. Eager Pagerank. We begin our description
of Eager Pagerank with an intuitive description of
how the underlying algorithm accommodates asyn-
chrony. In a graph with a power-law type distribu-
tion, one may assume that each hub is surrounded by
a large number of spokes, and that inter-hub edges
are comparatively infrequent. This allows us to relax
strict synchronization on inter-hub edges until the
subgraph in the proximity of a hub has relatively
self-consistent pageranks. Disregarding the inter-
hub edges does not lead to algorithmic inconsistency
since, after every few local iterations of MapReduce
calculating the pageranks in the subgraph, there
is a global synchronization (following a global
map) leading to a dissemination of the pageranks
in this subgraph to other subgraphs via inter-hub
edges. This propagation reimposes consistency on
the global state. Consequently, we update only the
(neighboring) nodes in the smaller subgraph. We
achieve this by a set of iterations of local MapRe-
duce, as described in the semantics. Evidently, this
method leads to improved efficiency if each map
operates on a hub or a group of topologically
localized nodes. Such topology is inherent in the
way we collect data, as it is crawler-induced. One
can also use one-time graph partitioning using tools
like Metis2, as in our case. The overall performance
of MapReduce implementation is largely invariant
on the choice of partitioner for wide-area (latency
dominated) platforms. In the Eager Pagerank im-
plementation, the map task operates on a sub-graph.
LocalMapReduce, within the global map, computes
the pagerank of the constituent nodes in the sub-
graph. Consequently, we run the local MapReduce
to convergence.
Instead of waiting for all the other global map

tasks operating on different subgraphs, we eagerly
schedule the next local map and local reduce it-
erations on the individual subgraph inside a sin-
gle global map task. Upon local convergence of
the subgraphs, we synchronize globally, so that
all nodes can propagate their computed pageranks
to other sub-graphs. These iterations over global
MapReduce run to convergence. Such an Eager
Pagerank incurs more computational cost, since
local reductions may proceed with imprecise values

2. Metis. http://glaros.dtc.umn.edu/gkhome/views/metis

TABLE 2. Input graph properties

Input graphs Stanford webgraph Power-law
Nodes 280,000 100,000
Edges 3 million 3 million
Damping factor 0.75 0.85

of global pageranks. However, the pagerank of
any node propagated during the global reduce is
representative, in a way, of the sub-graph it belongs
to. Thus, one may observe that the local and global
reduce functions are functionally identical.
Note that in Eager Pagerank, the local reduce

waits on a local synchronization barrier, while the
local maps can be implemented on a thread pool
within a single host in a cluster. The local syn-
chronization does not incur any inter-host commu-
nication delays. This makes the local overheads
considerably lower than the global overheads.

5.2.3. Input data. Table 2 describes the two graphs
that are considered for our experiments on Pagerank.
Our primary validation dataset is the Stanford web
graph from the Stanford Webbase project3. It is a
medium-sized crawl conducted in 2002 of 280K
nodes and about 3 million edges. To study the
impact of problem size and related parameters,
we also rely on synthetic graphs with power-law
distributions, generated through preferential attach-
ment [4] in igraph4. The algorithm used to create
the synthetic graph is described below, along with
its justification.
Preferential attachment based graph generation.
Graph datasets are generated by adding vertices

one at a time – connecting new vertices to numConn
vertices already in the network, chosen uniformly at
random. For each of these numConn vertices, numIn
and numOut of its inlinks and outlinks are chosen
uniformly at random and connected to the joining
vertex. This is done for all of the newly connected
nodes to the incoming vertex. This method of creat-
ing a graph is closely related to the evolution of the
web. This procedure increases the probability of a
highly reputed site getting linked to new sites, since

3. Stanford Webbase project. http://diglib.stanford.edu:8091/ testbed/-
doc2/WebBase/
4. The igraph library, http://igraph.sourceforge.net/

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000

N
um

be
r o

f l
in

ks

Number of pages

Inlink distribution of Stanford webgraph

Inlinks

Fig. 3. Inlink distribution of the Stanford webgraph

 1

 10

 100

 1000

 10000

 1 10 100 1000

N
um

be
r o

f l
in

ks

Number of pages

Inlink distribution of synthetic power-law graph

Inlinks

Fig. 4. Inlink distribution of the synthetic power-law
graph

it has a greater probability of being in an inlink from
other randomly chosen sites. Figures 3 and 4 show
the distribution of inlinks for the two input graphs.

5.2.4. Results. To show the dependence of per-
formance on global synchronizations, we vary the
number of iterations of the algorithm by altering
the number of partitions the graph is split into.
Fewer partitions result in a smaller number of larger
subgraphs. Each map task does more work and
would normally result in fewer global iterations
in the relaxed case. The fundamental observation
here is that it takes fewer iterations to converge
for a graph having already converged subgraphs.
The trends are more pronounced when the graph
follows a power-law distribution more closely. In
either case, the total number of iterations are fewer
than in the general case. For Eager Pagerank, if
the number of partitions is decreased to one, the

Fig. 5. Number of Iterations to converge(on y-axis) for
different number of Partitions(on x-axis) for the Stanford
webgraph for a damping factor of 0.75

entire graph is given to one global map and its local
MapReduce would compute the final pageranks of
all the nodes. If the partition size is one, each
partition gets a single adjacency list, Eager Pagerank
becomes regular Pagerank, because each map task
operates on a single node.
Figures 5 and 6 show the number of iterations

taken by the relaxed and general implementations of
Pagerank, on the Stanford and synthetic webgraphs
that we use for input, as we vary the number of
partitions. The number of iterations does not change
in the general case as each iteration performs the
same work irrespective of the number of partitions
and partition sizes. Also, in Eager Pagerank, we
found that the average number of local MapReduce
iterations per one global map task is 4̃0, which
corresponds to the increased computation. Inspite of
such increased computation, we observe significant
performance benefits.
The results for Eager Pagerank are consistent with

our predictions. The number of global iterations
decrease with the number of partitions. For both
graphs, the number of iterations to converge in-
creases monotonically with the number of partitions.
The time to solution depends strongly on the

number of iterations but is not completely deter-
mined by it. It is true that the global synchroniza-
tion costs would decrease, but when we reduce
the number of partitions significantly, the work
done by each map task increases. This increase
potentially results in increased cost of computation;
more than the benefit from reduced communication/

Fig. 6. Number of Iterations to converge(on y-axis) for
different number of Partitions(on x-axis) for the synthetic
webgraph for a damping factor of 0.85

Fig. 7. Time to converge(on y-axis) for various number
of Partitions(on x-axis) for the Stanford webgraph for a
damping factor of 0.75

synchronizations. Consequently, there is an optimal
number of partitions for every application on a given
platform.
Figures 7 and 8 show the runtimes for the

relaxed and general implementations of Pagerank on
the stanford and synthetic webgraphs with varying
number of partitions. One may notice the significant
performance gains the relaxed case achieves over
the general case for both graphs. On average, we see
2x to 3x improvement in runtimes. The improve-
ment in the case of a synthetic graph is expected
to be more uniform and consistent, which can be
attributed to its close conformance to a power-law
distribution. This in turn leads to faster convergence
inside the subgraph, which is observed consistently
in our experiments.
Finally, given that both graphs exhibit power-

law-type characteristics, we notice their respective

Fig. 8. Time to converge(on y-axis) for various number
of Partitions(on x-axis) for the synthetic webgraph for a
damping factor of 0.85

points of optimality, 400 partitions for the Stanford
webgraph and 200 for the synthetic webgraph. We
also observe that the smaller the graph, the lower
this optimal number of partitions.

5.3. K-Means

K-Means is a commonly-used technique in un-
supervised clustering. Implementation of the algo-
rithm in the MapReduce framework is straightfor-
ward, as demonstrated in [13, 3]. Briefly, in the
map phase, every point chooses its closest cluster
centroid, and in the reduce phase, every centroid
is updated to be the mean of all the points that
chose the particular centroid. The iterations of map
and reduce phases continue until the centroid
movement is below a given threshold. Euclidean dis-
tance metric is generally used to determine centroid
movement.
In the proposed relaxed MapReduce framework,

each global map handles a unique subset of the
input points. The local map and reduce iterations
inside the global map, cluster the given subset of
the points using the common input-cluster-centroids.
Once convergence is achieved in the local iterations,
the global map emits the input-cluster-centroids
and their associated updated-centroids. The global
reduce calculates the final-centroids, which is the
mean of all updated-centroids corresponding to
a single input-cluster-centroid. The final-centroids
form the input-cluster-centroids for the next iter-
ation. These iterations continue until the input-

Fig. 9. K-Means iterations for different thresholds

cluster-centroids converge.
The algorithm used in the relaxed approach to

K-Means is similar to the one recently shown by
Tom-Yov and Slonim [17] for pairwise clustering.
An important observation from their results is that
the input to the global map should not be the same
subset of the input points in every iteration. For
every few iterations the input points need to be
partitioned differently across global maps so as to
avoid getting stuck in a local minima. Also, the
convergence condition must include detection of
oscillations along with the Euclidean metric.
We use the K-Means implementation in the nor-

mal MapReduce framework from the Apache Ma-
hout project5. Sampled US Census data of 1990
from the UCI Machine Learning repository6 was
used as the dataset for comparison between the
normal and relaxed approaches. The sample size is
around 200K points, each with 68 dimensions. For
both relaxed and normal K-Means , initial centroids
were chosen randomly for the sake of generality.
Algorithms such as canopy clustering can be used
to identify initial centroids for faster execution and
better quality of final clusters.
Figures 9 and 10 respectively show the number

of iterations and the time taken to converge for
a particular dataset of 200K points with varying
thresholds. All the experiments were conducted on
the 460 node cluster described above. To eliminate
the impact of random partitioning performed after
every 5 iterations (chosen heuristically), each ex-

5. Apache Mahout. http://lucene.apache.org/mahout.
6. US Census Data, 1990. UCI Machine Learning Repository.

http://kdd.ics.uci.edu/databases/census1990/USCensus1990.html

Fig. 10. K-Means time taken for different thresholds

Fig. 11. Iterations and Time-to-Converge for different
Partitions

periment was run 10 times and the average number
of iterations and time taken were considered. We
observe a consistent two-fold speedup with respect
to the parallel K-Means algorithm implemented in
traditional MapReduce.
The number of local MapReduce iterations inside

each global map increases as the threshold for
convergence decreases. It is important to observe
from the figure that increase in computation does
not translate to an increase in the overall time. Total
time-to-converge depends primarily on the number
of global synchronizations (iterations). Furthermore,
global synchronization costs increase with the clus-
ter size, implying scalable performance gains.
Figure 11 shows the number of iterations and

time-to-converge with varying number of partitions
(disjoint subsets of points). A global map applies lo-
cal MapReduce clustering on its input partition. An
increase in the number of partitions decreases the
size of subset of points. The normal K-Means clus-

tering takes 18 iterations for this dataset to converge
for a threshold of 0.01. From the graph, one can
observe that (i) relaxed K-Means is significantly
faster for the partitions considered, and (ii) as in
Pagerank, there exists an optimal number of parti-
tions, namely at 109 partitions. Note that the precise
cluster centroids are not identical across the general
and relaxed MapReduce implementations. However,
we verify the clustering quality (through inter and
intra-cluster distances) to be statistically identical
across these implementations.

6. Discussion

While we demonstrate quantitative performance
improvements for selected algorithms, we must ad-
dress other key questions, namely: how general is
our proposed approach (are there large application
classes than can benefit from this)? how do our
proposed extensions impact program complexity?
what impact do they have on underlying fault-
tolerance mechanisms and overall scalability? We
provide qualitative arguments for each of these
questions:
Generality. Our relaxed synchronization mecha-
nisms can be generalized to broad classes of ap-
plications. The pagerank application, which relies
on an asynchronous mat-vec, is representative of
eigenvalue/ linear system solvers (computing eigen-
vectors using the power method of repeated mul-
tiplications by a unitary matrix). A wide range of
similar applications requiring the spectra of graphs,
global alignments, random walks, can be computed
using this algorithmic template. For all of these
applications, our methods and results are directly
applicable. Algorithms such as shortest paths over
sparse graphs and graph alignment can be directly
cast into our framework. Beyond graphs, an asyn-
chronous mat-vec forms the core of iterative linear
system solvers. Our asynchronous k-means imple-
mentation extends this to problems in data min-
ing and analysis. Other problems in data analysis,
such as PCA/SVD/dimensionality reduction directly
follow from our eigenvalue solution. Clearly, this
represents a very large application class.
Programming Complexity.While relaxed synchro-
nization requires slightly more programming effort

than traditional MapReduce, we argue that the pro-
gramming complexity is not substantial. This is also
evidenced by the simplicity of the semantics used
in the paper to describe it. In our implementations
of pagerank and k-means, this represented tens of
lines of code.
Fault-tolerance. While our approach relies on ex-
isting MapReduce mechanisms for fault-tolerance,
in the event of failure(s), our recovery times may
be slightly longer as each map task is coarser and
re-execution would take longer. However, all of
our experimental results are reported on a produc-
tion wide-area cluster of 460 nodes, with real-life
transient failures. This leads us to believe that the
overhead is not significant.
Scalability. In general, it is difficult to estimate
the resources available to, and used by a program
execution in a Cloud computing environment. We
draw our assertions on scalability of our formulation
by inferring resource availability from granularity of
task partitions. Please note that these inferences are
meant to be qualitative in nature, and not based on
raw data (since the data is not made available by
design).
Typically, clusters run of the order of 10 map

tasks per node. Since each map handles one com-
plete partition of the graph, for very large num-
bers of partitions(e.g., 6400), we potentially use
the entire 460 nodes in the Google cluster for the
map phase. Such high node utilization incurs heavy
network delays during copying and merging before
the reduce phase, leading to increased synchro-
nization overheads. Significant speedups obtained
using our semantics for iterative MapReduce in such
a large data center environments, demonstrate that
our solution is indeed scalable.

7. Related work

Over the past few years, the MapReduce pro-
gramming model has gained attention primarily
because of its simple programming model and the
wide range of underlying hardware environments.
There have been efforts exploring both the systems
aspects as well as the application base for MapRe-
duce.
Chen et al [2] describe their experiences with

large data-intensive tasks — analyzing the NetFlix

user data and scene matching in GPS-tagged im-
ages along with compute-intensive tasks such as
earthquake simulations. They observe that small
application-specific optimizations greatly improve
the performance and runtime. For data-intensive
tasks, they show that intelligent partitioning of input
data to maps heavily reduces network communica-
tion during global synchronization. They also note
that several applications are entirely data parallel,
obviating the need for a reduce operation. They
argue that the MapReduce runtime (e.g., Hadoop)
should be optimized for such reduction-free com-
putations. They also propose indexing of inputs and
intermediate data to enable faster access, prove-
nance tracking for linkage and dependence, and
sampling of input data to learn characteristics such
as skews in the map and reduce computations.
HBase7 and HyperTable8 are ongoing projects using
the primitives of HDFS (Hadoop Distributed File
System) providing a distributed, column-oriented
store for efficient indexing of data being used in
the MapReduce system.
A number of efforts [10, 14, 19] target optimiza-

tions to the MapReduce runtime and scheduling sys-
tems. Proposals include dynamic resource allocation
to fit job requirements and system capabilities to
detect and eliminate bottlenecks within a job. Such
improvements combined with our efficient appli-
cation semantics, would significantly increase the
scope and scalability of MapReduce applications.
The simplicity of MapReduce programming model
has also motivated its use in traditional shared
memory systems [13].
A dominant component of a typical Hadoop

execution corresponds to the underlying commu-
nication and I/O. This happens even though the
MapReduce runtime attempts to reduce communi-
cation by trying to instantiate a task at the node
or the rack where the data is present. Afrati et al.9
study this important problem and proposed alternate
computational models for sorting applications to
reduce communication between hosts in different
racks. Our extended semantics deal with the same
problem but, from the application‘s perspective,

7. HBase. http://hadoop.apache.org/hbase
8. Hypertable. http://www.hypertable.org
9. A New Computation Model for Rack-based Computing.

http://infolab.stanford.edu/ ullman/pub/mapred.pdf

irrespective of the underlying hardware resources.
There is considerable work on distributed

data mining techniques. In particular, works by
Agarawal [9, 7] on middleware architechtures for
parallel datamining and Parthasarthy [1, 15] on
parallel-clustering and mining have shown excellent
performance. The context of our proposed work,
namely MapReduce, presents a distinct set of over-
heads, requires semantic extension evaluation that
can leverage algorithmic asynchrony to alleviate
these overheads.
There have been recent efforts aimed at bridging

the gap between relational databases and MapRe-
duce [16]. These efforts propose a merge phase after
the reduce phase to compute joins on outputs
of various reductions. Olston et al [11] propose a
SQL-style declarative language, Pig Latin, on top
of the MapReduce model. The underlying compiler
deals with the automatic creation of the procedural
map and reduce functions for data-parallel opera-
tions. Such languages further enhance programma-
bility and allow the system to optimize execution.
Dryad [8], DryadLINQ [18], and Sawzall [12] aim
to make MapReduce an implicit low-level program-
ming primitive. A program written in LINQ can
be parsed to form a DAG, which is then used by
the DRYAD system to schedule the data parallel
portions on a distributed cluster. Most of these
efforts are aimed at bringing MapReduce program-
ming primitives into high-level languages and also
to overcome the rigidity of MapReduce semantics.
They are also helpful in logical separation of data-
parallel and task-parallel regions in a general appli-
cation.
All of the aforementioned efforts try to improve

efficiency of MapReduce by adding software layers
on top of existing MapReduce semantics or by im-
proving the underlying runtime. In contrast, we aim
to extend MapReduce semantics to leverage algo-
rithmic asynchrony in important application classes.

8. Future Work

The myriad trade-offs associated with wide range
of overheads on different platforms pose intriguing
challenges. We identify some of these challenges as
they relate to our proposed solutions:

Generality of semantic extensions. We have
demonstrated the use of partial synchronization and
eager scheduling in the context of specific applica-
tion classes. While we have argued in favor of their
broader applicability, these claims must be quan-
titatively established. Several task-parallel applica-
tions with complex interactions are not naturally
suited to traditional MapReduce formulations. Are
the proposed set of semantic extensions adequate
for such applications? MapReduce tries to strike a
balance between programmability and performance.
It attempts to divest the programmer of burdens of
optimizing locality, scheduling, and communication.
In doing so, it often compromises performance.
These trade-offs must be viewed in the context of
the underlying platforms and applications.
Implications for tightly coupled systems. MapRe-
duce has been shown to be an effective alternative
to Pthreads even on the shared memory systems
[13] for specific applications. It is important to note
that shared memory MapReduce has a much larger
design space because of greater control over the
spawned map and reduce tasks (thread pools).
A number of performance optimizations are pos-
sible here – ranging from pipelining iterates of
map and reduce operations, to reordering map
and reduce operations for enhancing computation-
communication characteristics. Other optimizations
involve speculative execution of maps, relying on
promises as outputs of maps as opposed to the
values themselves. This rich space of optimizations
bears significant research investigation.
Integration of proposed semantics with high-level
programming languages. Our proposed semantics
and its variants can be integrated with SQL-type
declarative languages, namely Pig-Latin [11] and
DryadLINQ [18]. The resulting system would po-
tentially improve the efficiency of MapReduce sig-
nificantly, while decreasing the load on application
programmers to make decisions over the distribution
of data.
Optimal granularity for maps. As shown in our
work, as well as the results of others, the perfor-
mance of a MapReduce program is a sensitive func-
tion of map granularity. An automated technique,
based on execution traces and sampling [6] can
potentially deliver these performance increments

without burdening the programmer with locality
enhancing aggregations.
System-level enhancements. Often times, when
executing iterative MapReduce programs, the output
of one iteration is needed in the next iteration. Cur-
rently, the output from a reduction is written to the
distributed file system (DFS) and must be accessed
from the DFS by the next set of maps, which
involves significant overhead. Using online data
structures (for example, Bigtable) provides credible
alternatives, however, issues of fault tolerance must
be resolved.

9. Conclusion

In this paper, we propose extended semantics for
MapReduce based on partial synchronizations and
eager map scheduling. We demonstrate that when
combined with locality enhancing techniques and al-
gorithmic asynchrony, these extensions are capable
of yielding significant performance improvements.
We demonstrate our results in the context two
selected problems — pagerank and K-Means clus-
tering. Our results strongly motivate the use of par-
tial synchronizations for broad application classes.
Finally, these enhancements in performance do not
adversely impact the programmability and fault-
tolerance features of the underlying MapReduce
framework.

References

[1] S. Asur and S. Parthasarathy. A viewpoint-
based approach for interaction graph analysis.
ACM SIGKDD, 2009.

[2] Shimin Chen and Steven W. Schlosser. Map-
reduce meets wider varieties of applications.
Technical Report, IRP-TR-08-05, Intel Re-
search, Pittsburg, 2008.

[3] Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin,
YuanYuan Yu, Gary Bradski, Andrew Y. Ng,
and Kunle Olukotun. Map-reduce for machine
learning on multicore. Advances in Neural In-
formation Processing Systems 19, pages 281–
288.

[4] Price D. J. de S. A general theory of bibliomet-
ric and other cumulative advantage processes.

Journal of the American Society for Informa-
tion Science, Vol 27 , 292-306, 1976.

[5] Jeffrey Dean and Sanjay Ghemawat. Mapre-
duce: Simplified data processing on large clus-
ters. Symposium on Operating System Design
and Implementation (OSDI), 2004.

[6] Richard O. Duda, Peter E. Hart, and David G.
Stork. Chapter 8 pattern classification 2nd edi-
tion. A Wiley-Interscience Publication, 2001.

[7] L. Glimcher, X Zhang, and G. Agarwal. Scal-
ing and parallelizing a scientific feature min-
ing application using a cluster middleware.
IPDPS’04 IEEE International Parallel and
Distributed Processing Symposium, 2004.

[8] Michael Isard, Mihai Budiu, Yuan Yu, An-
drew Birrell, and Dennis Fetterly. Dryad: dis-
tributed data-parallel programs from sequen-
tial building blocks. Proceedings of the 2nd
ACM SIGOPS/EuroSys European Conference
on Computer Systems, 2007.

[9] R. Jin and G. Agarwal. A middleware for
developing parallel datamining applications.
SIAM Conference on Data Mining, 2001.

[10] Karthik Kambatla, Abhinav Pathak, and
Himabindu Pucha. Towards optimizing hadoop
provisioning for the cloud. 1st Workshop on
Hot Topics in Cloud Computing, HotCloud,
2009.

[11] Christopher Olston, Benjamin Reed, Utkarsh
Srivastava, Ravi Kumar, and Andrew Tomkins.
Pig latin: A not-so-foreign language for data
processing. SIGMOD ’08: Proceedings of the
ACM SIGMOD international conference on
Management of data, 2008.

[12] R. Pike, S. Dorward, R. Griesemer, and
S. Quinlan. Interpreting the data: Parallel
analysis with sawzall. Scientific Programming
Journal Special Issue on Grids and Worldwide
Computing Programming Models and Infras-
tructure, 13(4):227-298, 2003.

[13] Colby Ranger, Ramanan Raghuraman, Arun
Penmetsa, Gary Bradski, and Christos
Kozyrakis. Evaluating mapreduce for multi-
core and multiprocessor system. Proceedings
of the 13th Intl. Symposium on High-
Performance Computer Architecture (HPCA),
Phoenix , AZ, 2007.

[14] Thomas Sandholm and Kevin Lai. Mapre-

duce optimization using dynamic regulated
prioritization. SIGMETRICS/Performance ’09:
Proceedings of the 2009 Joint International
Conference on Measurement & Modeling of
Computer Systems, 2009.

[15] V. Satuluri and S. Parthasarathy. Applications
to community discovery. ACM SIGKDD, 2009.

[16] H.-C. Yang, A. Dasdan, R.-L. Hsiao, and
D. S. P. Jr. Map-reduce-merge: simplified re-
lational data processing on large clusters. SIG-
MOD ’07: Proceedings of the ACM SIGMOD
international conference on Management of
data, 2007.

[17] Elad Yom-tov and Noam Slonim. Parallel
pairwise clustering. SDM’09, Proceedings of
SIAM Data Mining conference, 2009.

[18] Yuan Yu, Michael Isard, Dennis Fetterly, Mi-
hai Budiu, far Erlingsson, Pradeep Kumar
Gunda, and Jon Currey. Dryadlinq: A system
for general-purpose distributed data-parallel
computing using a high-level language. Sym-
posium on Operating System Design and Im-
plementation (OSDI), San Diego, CA, 2008.

[19] Matei Zaharia, Andrew Konwinski, Anthony
Joseph, Randy Katz, and Ion Stoica.

