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Abstract. There has been much recent interest in using transactigisify
concurrent programming, improve scalability, and inceepsrformance. When
a transaction must abort due to a serializability violatideadlock, or resource
exhaustion, its effects are revoked, and the transactiereeuted. For long-lived
transactions, however, the cost of aborts and re-execa#inrbe prohibitive. To
ensure performance, programmers are often forced to restsmut transaction
lifetimes and interactions while structuring their codefeiting the simplicity
transactions purport to provide.

One way to reduce the overheads of re-executing a failedgdrdion is to
avoid re-executing those operations that were unaffeggetidviolation(s) that
induced the abort. Memoization is one way to capitalize eexecution savings,
especially if violations are not pervasive. Within a trastgan, if a procedure is
applied with argument, and the transaction subsequently abgrtseed only be
re-evaluated if its argument when the transaction is rigelifferent fromv.

In this paper, we consider the memoization problem for tatiens in the
context of Concurrent ML (CML) [20]. Our design supports tirthreaded trans-
actions which allow internal communication through symctous channel-based
communication. The challenge to memoization in the coniexnsuring that
communication actions performed by memoized procedurteiariginal (aborted)
execution can be satisfied when the transaction is retried.

We validate the effectiveness of our approach using STMBeijg], a cus-
tomizable transaction benchmark. Our results indicatentiganoization for CML-
based transactions can lead to substantial reduction éneedtion costs (up to
45% on some configurations), with low memory overheads.

1 Introduction

Concurrency control mechanisms, such as transactionsprekfficient control and

state restoration mechanisms for performance. When aaittior aborts, due to a se-
rializability violation [8], deadlock, transient fault 42, or resource exhaustion [11],
its effects are typically undone, and the transactionadtrA long-lived transaction

that aborts represents wasted work, both in terms of theatipas it has performed
whose effects must now be erased, and in terms of overheadised to implement

the concurrency control protocol; these overheads indhuglging costs, read and write
barriers, contention management, etc. [12].

Transactional abstractions embedded in functional lagesiée.g., AtomCaml [21],
proposals in Scheme48 [14], or STM Haskell [11]) benefit fivewing relatively few
stateful operations, but when a transaction is abortedzdseof re-execution still re-
mains. One way to reduce this overhead is to avoid re-exegthiose operations that



would yield the same results produced in the original fafleelcution. Consider a trans-
actionT that performs a set of operations, and subsequently abbfienT is re-
executed, many of the operations it originally performed/mield the same result,
because they were unaffected by any intervening globa stetnge between the origi-
nal (failed) and subsequent (retry) execution. Avoidingxecution of these operations
reduces the overhead of failure, and thus allows the progiammore flexibility and
leeway to identify regions that would benefit from being exed transactionally.

Static techniques for eliminating redundant code, suchibexgression elimination
or partial redundancy elimination, are ineffective hereauese global runtime condi-
tions dictate whether or not an operation is redundant. Meation [15, 18] is a well-
known dynamic technique used to eliminate calls to puretfans. If a functionf
supplied with argument yields resulty, then a subsequent call fowith v can be
simply reduced to’ without re-executing’s body,provided that f is effect-free.

In this paper, we consider the design and implementatiomaodsoization scheme
for an extension of Concurrent ML [20] (CML) that supports Itithreaded trans-
actions. CML is particularly well-suited for our study bese it serves as a natural
substrate upon which to implement a variety of differentis@ctional abstractions [7].
In our design, threads executing within a transaction comoate through CML syn-
chronous events. Isolation and atomicity among transastme still preserved. Multi-
threaded transactions can, thus, be viewed as a computdtioh executes atomically
and in isolation instead of a simple code block. Our goal istilize memoization tech-
niques to avoid re-execution overheads of long-lived mthittaded transactions that
may be aborted.

The paper is organized as follows. In the next section, werdesour programming
model, and introduce issues associated with memoizatisgrathronous communica-
tion actions. Section 3 provides additional motivation. Meoducepartial memozia-
tion, a refinement that has substantial practical benefits indedt Implementation
details are given in Section 5. We present a case study u3ikgEench [9], a highly-
concurrennt transactional benchmark, in Section 6. Retlaterk and conclusions are
given in Section 7.

2 Programming Model

Our programming model supports multi-threaded closededetinsactions. An ex-
pression wrapped within aatomic expression is executed transactionally. If the value
yielded by a transaction isetry, the transaction is automatically re-executed. A trans-
action mayretry because a serializability violation was detected whenténapted

to commit, or because it attempts to acquire an unavailasieurce [11]. An executing
transaction may create threads which in turn may commumiedh other threads ex-
ecuting within the transaction using synchronous messagsimng expressed via CML
selective communication abstractions. To enforce ismattcommunication between
threads executing within different transactions is nottted. A transaction attempts
to commit only when all threads it has spawned complete. tsda shared channels
performed by a transaction are not visible to other transastuntil the entire transac-
tion completes successfully.



We are interested in allowing multi-threaded transactipnimarily for reasons of
composability and performance. A computation wrappediwigim atomic section may
invoke other procedures which may spawn threads and hage theeads communi-
cate with one another. This is especially possible whenideriag long-lived transac-
tions that encapsulate complex computations involvingtiplel layers of abstraction.
Prohibiting such activity within an atomic section wouldceesarily compromise com-
posability. Moreover, allowing multi-threaded computatimay improve overall trans-
action performance; this is certainly the case in the bereckratudy we present in
Section 6.

Inter-thread communication within a transaction is haddterough dynamically
created channels on which threads place and consume va8ines.communication is
synchronous, a thread wishing to communicate on a chanaieh#s no ready recipient
must block until one exists. Communication on channelsdecd.

2.1 Memoization

@) (b)
Fig. 1. Memoization can help avoid recomputation in aborted nthittaded transactions.

A transaction may spawn a collection of threads that comoateiwith one another
via message-passing (see Fig. 1(a)). When the transastiemnied (see Fig. 1(b)), some
of these communication events may be satisfiable when theegduwes in which the
events occurred are invoked (e.g., the first communicatientan the first two threads),
while others are not (e.g., the second communication apoformed by thread T2 to
thread T3). The shaded region indicates the pure compuotatibl and T2 that may be
avoided when the transaction is re-executed. Note that T regsume execution from
the second communication action because the synchramzattion with T3 from the
aborted execution is not satisfiable when the transactigatiied; since the send action
by T3 was received by T4, there is no other sender availaljjeaeide the same value
to T2.

In this context, deciding whether an application to procedican be avoided based
on previously recorded memo information depends upon thed its arguments, the



communication actions performed Iiy threadsf spawns, and’s return value. Thus,
the memoized return value of a call facan be used if (a) the argument given matches
the argument previously supplied; (b) recipients for valsent byf on channels in an
earlier call are still available on those channels; (c) aiwdahat was consumed by

on some channel in an earlier call is again ready to be senbh@ther thread; and (d)
threads created biycan be spawned with the same arguments supplied in the medhoiz
version. Ordering constraints on all sends and receivdsnoeed by the procedure must
also be enforced.

To avoid performing the pure computation within a call, acsention performed
within the applied procedure, for example, will need to beguhwith a receive oper-
ation executed by some other thread. Unfortunately, thexg Ine no thread currently
scheduled that is waiting to receive on this channel. Cemsid application that calls
a memoized procedurk which (a) creates a thread that receives a value on chan-
nelc, and (b) sends a value acomputed through values received on other channels
that is then consumed By. To safely use the memoized return value faronetheless
still requires thafl be instantiated, and that communication events executiifirst
call can still be satisfied (e.g., the valukgreviously read on other channels are still
available on those channels). Ensuring these actions caeead involves a systematic
exploration of the execution state space to induce a sca¢ldat allows us to consider
the call in the context of a global state in which these cooulitare satisfied.

Because such an exploration may be infeasible in practizefosmulation con-
siders a weaker alternative callpdrtial memoization. Rather than requiring global
execution to reach a state in whiah constraints in a memoized application are satis-
fied, partial memoization gives implementations the freetimdischarge some fraction
of these constraints, performing the rest of the applicad®normal.

3 Tracking Communication Actions

The key requirement for effective memoization of procedwerecuting within CML
transactions is the ability to track communication actipesformed among proce-
dures. Provided that the global state would permit theseesastions to succeed if a
procedure is re-executed with the same inputs, memoizegioibe employed to reduce
re-execution costs.

atomic(fn () =>
let val (cl, c2) = (mkCh(), mkCh())
fun f(Q) (...; send(cl, v1); ...)
fun gQ) (recv(cl); send(c2,v2))
in spawn(£()); spawn(g()); recv(c2)
end)

Fig.2. The call to £ can always be memoized since there is only a single receivehannel
cl.

Consider the example code presented in Fig. 2 that spawnthteads to execute
procedureg and g within an atomic section. Suppose that the section fail®toruit,



and must be retried. To correctly utiliz's memoized version from the original failed
execution, we must be able to guarantee the send on chatrtgs a recipient. At the
time the memoization check is performed, the thread comguti may not even have
been scheduled. However, by delaying the memoizationidedar £ 's call until g is
ready to receive a value ool , we guarantee that memoized information storedffor
can be successfully used to avoid performing the pure coatipatwithin its body.

atomic(fn () =>
let val (c1, c2, c3) =
(mkCh (), mkCh(), mkCh())

fun f() = (...; send(cl,vl); recv(c2))
fun g() = (recv(cl); recv(c2))
fun h() = (send(c2,v2);

send(c2,v3);
send(c3,()))
in (spawn(£()); spawn(g()); spawn(h());
recv(c3))
end)

Fig. 3. Because there may be multiple possible interleavings thiatspnchronous communica-
tion actions among concurrently executing threads, meatioiz requires dynamically tracking
these events.

Unfortunately, reasoning about whether an applicationlea@rage memoized in-
formation is usually more difficult. Consider a slightly nifield version of the program
shown in Fig. 3, that introduces an auxiliary procedureProceduref communicates
with g via channelc1. It also either receives value2 or v3 from h depending upon
its interleaving withg. Suppose that when this section is first execuigdeceives
valuesv2 from h and f receives valuev3. If the section must be re-executed, the
call to £ can be avoided only if the interleaving of actions betwgeand h allow £
to receivev3. Thus, a decision about whether the callftaan be elided requires also
reasoning about the interactions betweaemnd g, and may involve enforcing a spe-
cific schedule to ensure synchronous operations mirror iediavior under the aborted
execution.

Notice that if v2 and v3 are equal, the receive ifi can be paired with either send
in h. Thus, memoization can be leveraged even under differéaetdsdes than a prior
execution. Unlike program replay mechanisms [23], no djigations are made on the
state of the thread with which a memoization candidate comicates. Consequently,
an application can utilize a memoized version of a procednder a completely differ-
ent interleaving of threads and need not communicate wéls#time threads or opera-
tions it did during its previous execution.

4  Approach

To support memoization, we must record, in addition to argoihand return values,
synchronous communication actions, thread spawns, charestion etc. as part of



the memoized state. These actions define a set of consttla@itmust be satisfied at
subsequent applications of a memoized procedure. To rexmorstraints, we require
expressions to manipulatenaemo store, a map that given a procedure identifier and
an argument value, returns the set of effects performeddptbcedure when invoked
with that argument. If the set of constraints returned byrtteano store is satisfied in
the current state, then the return value can be used, angpfieadion elided.

For example, if there is a communication constraint thateigpthe procedure to
receive valuev on channelk , and at the point of call, there exists a thread able to send
v on c, evaluation can proceed to a state in which the sendersraitidischarged,
and the receive constraint is considered satisfied.

If the current constraint expects to send a vatuen channell , and there exists a
thread waiting onl , the constraint is also satisfied. A send operation can maitth
any waiting receive action on that channel. The semantisgrméhronous communica-
tion allows us the freedom to consider pairings of sends seiteives other than the one
it communicated with in the original memoized executionislit because a receive ac-
tion places no restriction on either the value it reads, esthecific sender that provides
that the value.

Similarly, if the current constraint records the fact thze previous application of
the function spawned a new thread, or channel, then thosmachust be performed
as well. Thus, if all recorded constraints, which represdfeicts performed within a
procedurep, can be satisfied in the order in which they occur, pure coatjmurt within
the p's body can be elided at its calls.

4.1 Partial Memoization

Determining whether all memoization constraints can bisféad may require perform-
ing a potentially unbounded number of evaluation stepsetdyan appropriate global
state. However, even if it is not readily possible to detemnif all constraints necessary
to elide the pure computation within an application can kesfsad, it may be possi-
ble to determine that some prefix of the constraint sequemcde discharged. Partial
memoization allows us to avoid re-executing any pure coatpmit bracketed by the
first and last elements of this prefix.

Consider the example presented in Fig 4. Within the atormitie®, we apply pro-
cedurest, g, h andi. The calls tog, h, andi are evaluated within separate threads
of control, while the application of takes place in the original thread. These different
threads communicate with one other over shared charneladc?.

Suppose the atomic section aborts, and must be re-exet\techn now consider
whether the call taf can be elided when the section is re-executed. In the irikiat
cution of the atomic section, spawn constraints would haenkadded for the threads
responsible for executing, h, andi. Second, a send constraint followed by a receive
constraint, modeling the exchange of values and eitherv2 or v3 on channels1
and c2 would have been included in the memo store for-or the sake of the discus-
sion, assume that the send @ by h was consumed byg and the send of/3 was
paired with the receive irf .

The spawn constraints for the different threads are alwatisfimble, and when
discharged, will result in the creation of new threads whigt begin their execution



atomic(fn () =>
let val (c1,c2) = (mkCh(),mkCh())
fun £ Q) (send(c1,vl); ... recv(c2))
fun g () (recv(cl); ... recv(c2))
fun h () = (

send(c2,v2);

send(c2,v3));
fun i () = recv(c2)

in spawn(g); spawn(h); spawn(i);
£(); send(c2, v3)

retry
end)
end

Fig. 4. Determining if an application can be memoized may requie@ring an arbitrary num-
ber of possible thread interleavings.

by trying to applyg, h andi, consulting their memoized versions to determine if all
necessary constraints can be satisfied. The send constsaintiated withf matches
the corresponding receive constraint associated foundemtemo store fog . De-
termining whether the receive constraint associated Witban be matched requires
more work. To match constraints properly, we need to forcehadule that causes

to receive the first send by and £ to receive the second, causingto block until £
completes.

Fixing such a schedule is tantamount to examining an unbedirdt of interleav-
ings. Instead, we coulgartially elide the execution off ’s call on re-execution by
satisfying the send constraint (that communicatéson c1 to g), avoiding the pure
computation following (abstracted by "..."), allowing ttapplication of £ to begin
execution at therecv on c2. Resumption at this point may lead to the communication
of v2 from h rather thanv3; this is certainly a valid outcome, but different from the
original execution.

5 Implementation

Our implementation is incorporated within MLton [16], a wagprogram optimizing
compiler for Standard ML. The main changes to the underlgimgpiler and library
infrastructure are the insertion of write barriers to tratlannel updates, barriers to
monitor procedure arguments and return values, hooks tGhkhie library to monitor
channel based communication, and changes to the Conclwttestheduler. The entire
implementation is roughly 5K lines of SML: 3K for the STM, aB@0 lines of changes
to CML.

5.1 STM Implementation

Our STM implementation implements an eager versioning, tamnflict detection pro-
tocol [4, 22]. References are implemented as "servers”dijmgy across a set of chan-
nels; each channel has one server receiving from it and ampauof channels sending



to it. Our implementation uses both exclusive and sharekslt@ optimize read-only
transactions. If a transaction aborts or yielde{ry), it first reverts any value it has
changed based on a per-transaction change log, and thaeseelall locks it currently
holds. The transaction’s log is not deleted as it contaiftgination utilized for memo-
ization purposes.

Recall our design supports nested, multi-threaded trénsac A multi-threaded
transaction is defined as a transaction whose processimgitiasiong a number of
threads. Transactions that perform a collection of openation disjoint objects can
have these operations be performed in parallel. The threadh comprise a multi-
threaded transaction must synchronize at the transastiammit point. Namely, the
parent thread will wait at its transaction boundary unsilahildren complete. We allow
spawned threads and the parent transaction to communivategh CML message
passing primitives. Synchronization invariants amongcocorent computation within a
transaction must be explicitly maintained by the appl@atirhe transaction as a whole,
however, is guaranteed to execute atomically with the resteocomputation.

5.2 Memoization

A memo is first created by capturing the procedure’s arguiaetiie call site. For each
communication within the annotated procedure, we genaratestraint. A constraint
is composed of a channel identifier and the value that wasoseateived on the chan-
nel. In the case of a spawn, we generate a spawn constraicl wimply contains the
procedure expression which was spawned. Constraints dexent and augment the
parent transaction’s log. When a procedure completesstitsi value is also added to
the log. To support partial memoization, continuationsagtured with the generated
constraints.

Unlike traditional memoization techniques, it is not rdsadpparent if a memoized
version of a procedure can be utilized at a call site. Not amigt the arguments match,
but the constraints which were captured must be satisfidtkiotder they were gener-
ated. Thus, we delay a procedure’s execution to see if itstcaints will be matched.
Constraint matching is similar to channel communicatiothat the delayed procedure
will block on each constraint. Constraints can be satisfigeteby matching with other
constraints or by exchanging and consuming values fromradlanConstraints are sat-
isfied if the value passed on the channel matches the valuedstat in the constraint.
Therefore, constraints ensure that a memoized procedtinaéceives and sends spe-
cific values and synchronizes in a specific order. Constaimdke no qualifications
about the communicating threads. Thus, a procedure whidived a specific value
from a given thread may be successfully memoized as longsasoitstraint can be
matched withsome thread.

If constraint matching fails, pure computation within thphcation cannot be fully
elided. Constraint matching can only fail on a receive a@ist. A receive constraint
obligates a function to read a specific value from a chanmeinatch a constraint on a
channel with a regular communication event, we are not al#igjto remove values on
the channel in a specific order. Since channel communic&ibtocking, a constraint
that is being matched can choose from all values whose seadecurrently blocked
on the channel. This does not violate the semantics of CMtesthe values blocked



on a channel cannot be dependent on one another; in otheswargthedule must
exist where the matched communication occurs prior to tisevalue blocked on the
channel.

Unlike a receive constraint, a send constraint can neveidBiL receives are am-
bivalent to the value they remove from a channel and thus ecgive on a matching
channel will satisfy a send constraint. If no receives ordsesre enqueued on a con-
straint’s target channel, a re-execution of the functidhal$o block. Therefore, failure
to fully discharge constraints by stalling memoization @resumed unsatisfiable con-
straint does not compromise global progress. This observé critical to keeping
memoization overheads low.

In the case that a constraint is blocked on a channel thaatmo other communi-
cations or constraints, memoization induces no overhsaus the thread would have
blocked regardless. However, if there exist communicatmmconstraints that simply
do not match the value the constraints expects, we can fadl,alow the thread to
resume execution from the continuation stored within thestraint. To identify such
situations, we have implemented a simple yet effective isger Our implementation
records the number of context switches to a thread blockedammstraint. If this num-
ber exceeds a small constant (two in our current implemienfgtmemoization stops,
and the thread continues execution within the procedurg abthat communication
point.

Our memoization technique relies on efficient equalitystdst performance and
expressivity. We extend MLton’s poly-equal function to pog equality on reals and
closures. Although equality on values of type real is nothtgic, built-in compiler
equality functions were sufficient for our needs. To supjdfitient equality on pro-
cedures, we approximate function equality as closure @gudhique identifiers are
associated with every closure and recorded within theirrenment; runtime equality
tests on these identifiers are performed during memoization

5.3 CML hooks

The underlying CML library was also modified to make memoaatefficient. The
bulk of the changes were hooks to monitor channel commuaitaind spawns, and
to support constraint matching on synchronous operatfunscessful communications
occurring within transactions were added to the log in thienfof a constraints, as de-
scribed previously. Selective communication and comptergosed events were also
logged upon completion. A complex composed event simplyced to a sequence of
communications that are logged separately.

The constraint matching engine also required a modificatiahe channel struc-
ture. Each channel is augmented with two additional quendsld send and receive
constraints. When a constraint is being tested for satilifigtihe opposite queue is
first checked (e.g. a send constraint would check the rea@mstraint queue). If no
match is found, the regular queues are checked for satigffaliithe constraint cannot
be satisfied immediately it is added to the appropriate queue



6 Case Study - STMBench7

As a realistic case study, we consider STMBench7 [9], a ceimgmisive, tunable multi-
threaded benchmark designed to compare different STM imgattations and designs.
Based on the well-known 007 database benchmark[5], STMBésicnulates data stor-
age and access patterns of CAD/CAM applications that operesr complex geometric
structures (see Fig. 5).

STMBench7 was originally written in Java. We have implenedr# portto Standard
ML (roughly 1.5K lines of SML) using our channel based STMolrr implementation,
all nodes in the complex assembly structure and atomic geafsh are represented as
servers with one receiving channel and handles to all otfijacant nodes. Handles to
other nodes are simply the channels themselves. Each skeread waits for a message
to be received, performs the requested computation, amdathyenchronously sends the
subsequent part of the traversal to the next node. A trainsazan thus be implemented
as a series of channel based communications with variousrseodes.

Modile. [e—e]  Manual let fun findAtomicPart(object, pid) =

t let val assembly =

1 travCAssembly(object, pid)

val bag = travAssembly(assembly, pid)

1 val component = travBag(bag, pid)

Set val part = traveComp(component, pid)
T in part

« L end
Complex fun sclHgt(object, pid, c) =

Assemblies

let val part = findAtomicPart(object, pid)
val newHeight = height(part)*recv(c)

val _ = changeHeight(part, newHeight)
1 in send(c,newHeight)
Set end
0 fun Traversal(object, pidi, pidy, height) =
A TR atomic(fn () =>
let val cy = channel()
1 I Base val cy = channel()
Bag) (Bag Astenes val _ = spawn(sclHgt(object,
. " Pldl B
i » A 1 - cq ) )
. o Composite val _ = spawn(sclHgt(object,
ke - . .Farts pidg s
1 (Design Library)
root Set C2 ) )
part : in send(cy, height);
) send(cy, recv(cy));
Atomic Part 1, -~ <‘: - recv(c2
Connection \ £ Document . retry e )
v " end)
- in Traversal()
end

Fig. 5. The figure on the left shows the overall structure of striechfra CAD/CAM object. The
code on the right illustrates a multi-threaded atomic trsakof these objects.



At its core, STMBench7 builds a tree of assemblies whoses leantain bags of
components; these components have a highly connected gfapdmic parts and de-
sign documents. Indices allow components, parts, and dectgrio be accessed via
their properties and IDs. Traversals of this graph can bisgim the assembly root or
any index and sometimes manipulate multiple pieces of data.

The program on the right side of Fig. 5 shows a code snippetish@sponsible
for modifying the height parameters of a building’s struaticomponent. A change
made by the procedulraversal affects two components of a design, but the specific
changes to each component are disjoint and amenable fouentexecution. Thus,
the modification can easily be expressed as disjoint tralgrexpressed by the pro-
cedurefindAtomicPart. ThesclHgt procedure shown in Fig. 5) changes the height
parameter of distinct structural parts. Observe that afjhothe height parameter of
pid, depends on the new heightpfd,, the traversal to find the part can be executed
in parallel. Oncepid, is updated, the traversal fpi.d, can complete.

Consider what would happen if the atomic section is unabtetomit. Observe that
much of the computation performed within the transactiangraph traversals. Given
that most changes are likely to take place on atomic partspnanon higher-level graph
components such as complex or base assemblies, the tlgpersamed by the re-
execution is likely to overlap substantially with the origl traversal. Of course, when
the transaction executes, it may be that some portion ofrdgghghas changed. Without
knowing exactly which part of the graph has been modified byiotransactions, the
only obvious safe point for re-execution is the beginnintheftraversal.

6.1 Results

To measure the effectiveness of our memoization technigaesxecuted two config-
uration of the benchmark, and measured overheads and parice by averaging re-
sults over ten executions. Theansactional configuration uses our STM implementa-
tion without any memoization. Theemoized transactional configuration implements
partial memoization of aborted transactions. The bencksnaere run on an Intel P4
2.4 GHz machine with one GByte of memory running Gentoo Ljnzompiled and
executed using MLton release 20051202. Our experimentsairexecuted on a mul-
tiprocessor because the utility of memoization for thisdienark is determined by
performance improvement as a function of transaction aband not on raw wallclock
speedups.

All tests were measured against a graph of over 1 million sotte this graph,
there were approximately 280k complex assemblies and 1488&mblies whose bags
referenced one of 100 components; by default, each compooetained a parts graph
of 100 nodes.

Our tests varied two independent variables: the read-a@dgfwrite transaction ra-
tio (see Fig. 6) and part graph size (see Fig. 7). The formggisficant because only
transactions that modify values can cause aborts. Thusxeouton where all trans-
actions are read-only or which neveetry cannot be accelerated, but one in which
transactions can frequently abortsstry offers potential opportunities for memoiza-
tion.



In our experiments, the atomic parts graph (the graph assacwith each compo-
nent) is modified to vary the length of transactions. By vagythe number of atomic
parts associated with each component, we significantly eiieenumber of nodes that
each transaction accesses, and thus lengthen or shorisadtian times.

For each test, we varied the maximum number of memos (laloelete size in the
graphs) stored for each procedure. Tests with a small nueXpeErienced less memo
utilization than those with a large one. Naturally, the &rtie size of the cache used to
hold memo information, the greater the overhead. In the csmad-only non-aborting
transactions (shown in Fig. 6), performance slowdown isetated to the maximum
memo cache size.

9 Cache Size 1
B Cache Size 2
A Cache Size 4
8
1
3;
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Fig. 6. (a) presents normalized runtime speedup with a varying t@adite ratio. (b) shows the
average percent of transactions which are memoizable dswii@ ratios change.

Our experiments consider four different performance f&ogl) runtime improve-
ments for transactions with different read-write ratioas different memo cache sizes
(Fig. 6(a)); (b) the amount of memoization exhibited by s@actions, again across dif-
ferent memo cache sizes (Fig. 6(b)); (c) runtime improvesas a function of trans-
action length and memo cache size (Fig. 7(a)); and, (d) tigeegeof memoization
utilization as a function of transaction length and memdeasize (Fig. 7). Memory
overheads were measured by utilizing MLton’s profiler andsgistics. Memory over-
heads were proportional to cache sizes and averaged rolig¥lyor caches of size 16.
Runs with cache sizes of 32 had overheads of 18%.

Memoization leads to substantial performance improveswhen aborts are likely
to be more frequent. For example, even when the percentageadfonly transac-
tions is 60%, we see a 20% improvement in runtime performanogared to a non-
memoizing implementation. The percentage of transactibatutilize memo infor-
mation is related to the size of the memo cache and the liketifof the transaction
aborting. In cases where abort rates are low, for exampleere is a sizable frac-
tion of read-only transactions, memo utilization decrea3éis is because a procedure
is applied potentially many times, with the majority of apptions not requiring mem-
oization because they were not in aborted transactiongefdre, its memo utilization



will be much lower than a procedure in a transaction thattalosnce and which was
able to leverage memo information when subsequently réieapp
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Fig. 7. (a) shows normalized runtime speedup compared to varyamgactional length. (b) shows
the percentage of aborted transactions which are memeizatiransaction duration changes.

To measure the impact of transaction size on performancatdizétion, we varied
the length of the random traversals in the atomic parts graphFig. 7(a) illustrates,
smaller transactions offer a smaller chance for memoiadtioey are more likely to
complete), and thus provide less opportunities for perforoe gains; larger transac-
tions have a greater chance of taking advantage of memaniation. Indeed, we see
a roughly 30% performance improvement once the part sizerhes greater than 80
when the memo cache size is 16 or 32. As transaction sizesaser however, the
amount of the transaction that is memoizable decreasénlgl{ig. 7(b)). Larger trans-
actions have a higher probability that some part of theirarsal has changed and are
thus not memoizable. After a certain size, an increase irtrthersal length of the
atomic parts graph no longer impacts the percent of memas U$és is because the
majority of the transaction that is memoizable is found i ihitial traversal through
the assembly structure, and not in the highly-contenteid gamponents.

As expected, increasing the memoization cache size leads tocrease in both
run-time speed up as well as the percent of the transactiansve are able to memo-
ize. Unfortunately, as a result our memoization overheaglgso increased both due
to the larger amount of memos taken during execution as vseihereased time to
discover which memo can be utilized at a given call site. Mgnowerheads increase
proportionally to the size of the memo cache.

7 Redated Work and Conclusions

Memoization, or function caching [15,17, 13], is a well urateod method to reduce
the overheads of function execution. Memoization of fumtsiin a concurrent setting
is significantly more difficult and usually highly constraoh[6]. We are unaware of
any existing techniques or implementations that apply niezation to the problem of



optimizing execution for languages that support firstl@sannels and dynamic thread
creation.

Self adjusting mechanisms [2, 3, 1] leverage memoizationgith change propa-
gation to automatically alter a program'’s execution to angeeof inputs given an exist-
ing execution run. Selective memoization is used to idgpirts of the program which
have not changed from the previous execution while changeggration is harnessed to
install changed values where memoization cannot be apflfeglcombination of these
techniques has provided an efficient execution model fogams which are executed
a number of times in succession with only small variationtheir inputs. However,
such techniques require an initial and complete run of tlogmam to gather needed
memoization and dependency information before they camsatf) input changes.

New proposals [10] have been presented for self adjustotgitques to be applied
in a multi-threaded context. However, these proposals gap@nificant constraints on
the programs considered. References and shared data gaveomtitten to once, forc-
ing self adjusting concurrent programs to be meticulouslychcrafted. Additionally
such techniques provide no support for synchronizatiowéet threads nor do they
provide the ability to restore to any control point othentlilae start of the program.

Reppy and Xiao [19] present a program analysis for CML thatyes communica-
tion patterns to optimize message-passing operationspé-$gnsitive interprocedural
control-flow analysis is used to specialize communicatictivas to improve perfor-
mance. While we also use CML as the underlying subject ofésteour memoization
formulation is orthogonal to their techniques.

Our memoization technique shares some similarity withsaational events [7].
Transactional events require arbitrary look-ahead inuatan to determine if a com-
plex composed event can commit. We utilize a similar apgrdacormalize memo
evaluation. Unlike transactional events, which are atamit must either complete en-
tirely or abort, we are not obligated to discover if an apgiicn is completely mem-
oizable. If a memoization constraint cannot be dischargexcan continue normal
execution of the function body from the failure point.
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