
Memoizing Multi-Threaded Transactions

Lukasz Ziarek Suresh Jagannathan

Department of Computer Science Purdue University
[lziarek,suresh]@purdue.edu

Abstract. There has been much recent interest in using transactions tosimplify
concurrent programming, improve scalability, and increase performance. When
a transaction must abort due to a serializability violation, deadlock, or resource
exhaustion, its effects are revoked, and the transaction re-executed. For long-lived
transactions, however, the cost of aborts and re-executioncan be prohibitive. To
ensure performance, programmers are often forced to reasonabout transaction
lifetimes and interactions while structuring their code, defeating the simplicity
transactions purport to provide.

One way to reduce the overheads of re-executing a failed transaction is to
avoid re-executing those operations that were unaffected by the violation(s) that
induced the abort. Memoization is one way to capitalize on re-execution savings,
especially if violations are not pervasive. Within a transaction, if a procedurep is
applied with argumentv, and the transaction subsequently aborts,p need only be
re-evaluated if its argument when the transaction is retried is different fromv.

In this paper, we consider the memoization problem for transactions in the
context of Concurrent ML (CML) [20]. Our design supports multi-threaded trans-
actions which allow internal communication through synchronous channel-based
communication. The challenge to memoization in the contextis ensuring that
communication actions performed by memoized procedures inthe original (aborted)
execution can be satisfied when the transaction is retried.

We validate the effectiveness of our approach using STMBench7 [9], a cus-
tomizable transaction benchmark. Our results indicate that memoization for CML-
based transactions can lead to substantial reduction in re-execution costs (up to
45% on some configurations), with low memory overheads.

1 Introduction

Concurrency control mechanisms, such as transactions, rely on efficient control and
state restoration mechanisms for performance. When a transaction aborts, due to a se-
rializability violation [8], deadlock, transient fault [24], or resource exhaustion [11],
its effects are typically undone, and the transaction retried. A long-lived transaction
that aborts represents wasted work, both in terms of the operations it has performed
whose effects must now be erased, and in terms of overheads incurred to implement
the concurrency control protocol; these overheads includelogging costs, read and write
barriers, contention management, etc. [12].

Transactional abstractions embedded in functional languages (e.g., AtomCaml [21],
proposals in Scheme48 [14], or STM Haskell [11]) benefit fromhaving relatively few
stateful operations, but when a transaction is aborted, thecost of re-execution still re-
mains. One way to reduce this overhead is to avoid re-executing those operations that



would yield the same results produced in the original failedexecution. Consider a trans-
action T that performs a set of operations, and subsequently aborts.When T is re-
executed, many of the operations it originally performed may yield the same result,
because they were unaffected by any intervening global state change between the origi-
nal (failed) and subsequent (retry) execution. Avoiding re-execution of these operations
reduces the overhead of failure, and thus allows the programmer more flexibility and
leeway to identify regions that would benefit from being executed transactionally.

Static techniques for eliminating redundant code, such as subexpression elimination
or partial redundancy elimination, are ineffective here because global runtime condi-
tions dictate whether or not an operation is redundant. Memoization [15, 18] is a well-
known dynamic technique used to eliminate calls to pure functions. If a function f
supplied with argumentv yields resultv′, then a subsequent call tof with v can be
simply reduced tov′ without re-executingf ’s body,provided that f is effect-free.

In this paper, we consider the design and implementation of amemoization scheme
for an extension of Concurrent ML [20] (CML) that supports multi-threaded trans-
actions. CML is particularly well-suited for our study because it serves as a natural
substrate upon which to implement a variety of different transactional abstractions [7].
In our design, threads executing within a transaction communicate through CML syn-
chronous events. Isolation and atomicity among transactions are still preserved. Multi-
threaded transactions can, thus, be viewed as a computationwhich executes atomically
and in isolation instead of a simple code block. Our goal is toutilize memoization tech-
niques to avoid re-execution overheads of long-lived multi-threaded transactions that
may be aborted.

The paper is organized as follows. In the next section, we describe our programming
model, and introduce issues associated with memoization ofsynchronous communica-
tion actions. Section 3 provides additional motivation. Weintroducepartial memozia-
tion, a refinement that has substantial practical benefits in Section 4. Implementation
details are given in Section 5. We present a case study using STM-Bench [9], a highly-
concurrennt transactional benchmark, in Section 6. Related work and conclusions are
given in Section 7.

2 Programming Model

Our programming model supports multi-threaded closed nested transactions. An ex-
pression wrapped within anatomic expression is executed transactionally. If the value
yielded by a transaction isretry , the transaction is automatically re-executed. A trans-
action mayretry because a serializability violation was detected when it attempted
to commit, or because it attempts to acquire an unavailable resource [11]. An executing
transaction may create threads which in turn may communicate with other threads ex-
ecuting within the transaction using synchronous message passing expressed via CML
selective communication abstractions. To enforce isolation, communication between
threads executing within different transactions is not permitted. A transaction attempts
to commit only when all threads it has spawned complete. Updates to shared channels
performed by a transaction are not visible to other transactions until the entire transac-
tion completes successfully.



We are interested in allowing multi-threaded transactionsprimarily for reasons of
composability and performance. A computation wrapped within an atomic section may
invoke other procedures which may spawn threads and have these threads communi-
cate with one another. This is especially possible when considering long-lived transac-
tions that encapsulate complex computations involving multiple layers of abstraction.
Prohibiting such activity within an atomic section would necessarily compromise com-
posability. Moreover, allowing multi-threaded computation may improve overall trans-
action performance; this is certainly the case in the benchmark study we present in
Section 6.

Inter-thread communication within a transaction is handled through dynamically
created channels on which threads place and consume values.Since communication is
synchronous, a thread wishing to communicate on a channel that has no ready recipient
must block until one exists. Communication on channels is ordered.

2.1 Memoization T 1 T 2 T 3
r e t r y

T 1 T 2 T 3 T 4

(a) (b)

Fig. 1. Memoization can help avoid recomputation in aborted multi-threaded transactions.

A transaction may spawn a collection of threads that communicate with one another
via message-passing (see Fig. 1(a)). When the transaction is retried (see Fig. 1(b)), some
of these communication events may be satisfiable when the procedures in which the
events occurred are invoked (e.g., the first communication event in the first two threads),
while others are not (e.g., the second communication actionperformed by thread T2 to
thread T3). The shaded region indicates the pure computation in T1 and T2 that may be
avoided when the transaction is re-executed. Note that T2 must resume execution from
the second communication action because the synchronization action with T3 from the
aborted execution is not satisfiable when the transaction isretried; since the send action
by T3 was received by T4, there is no other sender available toprovide the same value
to T2.

In this context, deciding whether an application to procedure f can be avoided based
on previously recorded memo information depends upon the value of its arguments, the



communication actions performed byf , threadsf spawns, andf ’s return value. Thus,
the memoized return value of a call tof can be used if (a) the argument given matches
the argument previously supplied; (b) recipients for values sent byf on channels in an
earlier call are still available on those channels; (c) a value that was consumed byf
on some channel in an earlier call is again ready to be sent by another thread; and (d)
threads created byf can be spawned with the same arguments supplied in the memoized
version. Ordering constraints on all sends and receives performed by the procedure must
also be enforced.

To avoid performing the pure computation within a call, a send action performed
within the applied procedure, for example, will need to be paired with a receive oper-
ation executed by some other thread. Unfortunately, there may be no thread currently
scheduled that is waiting to receive on this channel. Consider an application that calls
a memoized proceduref which (a) creates a threadT that receives a value on chan-
nel c, and (b) sends a value onc computed through values received on other channels
that is then consumed byT . To safely use the memoized return value forf nonetheless
still requires thatT be instantiated, and that communication events executed inthe first
call can still be satisfied (e.g., the valuesf previously read on other channels are still
available on those channels). Ensuring these actions can succeed involves a systematic
exploration of the execution state space to induce a schedule that allows us to consider
the call in the context of a global state in which these conditions are satisfied.

Because such an exploration may be infeasible in practice, our formulation con-
siders a weaker alternative calledpartial memoization. Rather than requiring global
execution to reach a state in whichall constraints in a memoized application are satis-
fied, partial memoization gives implementations the freedom to discharge some fraction
of these constraints, performing the rest of the application as normal.

3 Tracking Communication Actions

The key requirement for effective memoization of procedures executing within CML
transactions is the ability to track communication actionsperformed among proce-
dures. Provided that the global state would permit these same actions to succeed if a
procedure is re-executed with the same inputs, memoizationcan be employed to reduce
re-execution costs.

atomic(fn () =>
let val (c1, c2) = (mkCh(), mkCh())

fun f() = (...; send(c1, v1); ...)
fun g() = (recv(c1); send(c2,v2))

in spawn(f()); spawn(g()); recv(c2)
end)

Fig. 2. The call to f can always be memoized since there is only a single receiver on channel
c1 .

Consider the example code presented in Fig. 2 that spawns twothreads to execute
proceduresf andg within an atomic section. Suppose that the section fails to commit,



and must be retried. To correctly utilizef ’s memoized version from the original failed
execution, we must be able to guarantee the send on channelc1 has a recipient. At the
time the memoization check is performed, the thread computing g may not even have
been scheduled. However, by delaying the memoization decision for f ’s call until g is
ready to receive a value onc1 , we guarantee that memoized information stored forf

can be successfully used to avoid performing the pure computation within its body.

atomic(fn () =>
let val (c1, c2, c3) =

(mkCh(), mkCh(), mkCh())
fun f() = (...; send(c1,v1); recv(c2))
fun g() = (recv(c1); recv(c2))
fun h() = (send(c2,v2);

send(c2,v3);
send(c3,()))

in (spawn(f()); spawn(g()); spawn(h());
recv(c3))

end)

Fig. 3. Because there may be multiple possible interleavings that pair synchronous communica-
tion actions among concurrently executing threads, memoization requires dynamically tracking
these events.

Unfortunately, reasoning about whether an application canleverage memoized in-
formation is usually more difficult. Consider a slightly modified version of the program
shown in Fig. 3, that introduces an auxiliary procedureh . Proceduref communicates
with g via channelc1 . It also either receives valuev2 or v3 from h depending upon
its interleaving withg . Suppose that when this section is first executed,g receives
valuesv2 from h and f receives valuev3 . If the section must be re-executed, the
call to f can be avoided only if the interleaving of actions betweeng and h allow f

to receivev3 . Thus, a decision about whether the call tof can be elided requires also
reasoning about the interactions betweenh and g , and may involve enforcing a spe-
cific schedule to ensure synchronous operations mirror their behavior under the aborted
execution.

Notice that if v2 and v3 are equal, the receive inf can be paired with either send
in h . Thus, memoization can be leveraged even under different schedules than a prior
execution. Unlike program replay mechanisms [23], no qualifications are made on the
state of the thread with which a memoization candidate communicates. Consequently,
an application can utilize a memoized version of a procedureunder a completely differ-
ent interleaving of threads and need not communicate with the same threads or opera-
tions it did during its previous execution.

4 Approach

To support memoization, we must record, in addition to argument and return values,
synchronous communication actions, thread spawns, channel creation etc. as part of



the memoized state. These actions define a set of constraintsthat must be satisfied at
subsequent applications of a memoized procedure. To recordconstraints, we require
expressions to manipulate amemo store, a map that given a procedure identifier and
an argument value, returns the set of effects performed by the procedure when invoked
with that argument. If the set of constraints returned by thememo store is satisfied in
the current state, then the return value can be used, and the application elided.

For example, if there is a communication constraint that expects the procedure to
receive valuev on channelc , and at the point of call, there exists a thread able to send
v on c , evaluation can proceed to a state in which the sender’s action is discharged,
and the receive constraint is considered satisfied.

If the current constraint expects to send a valuev on channell , and there exists a
thread waiting onl , the constraint is also satisfied. A send operation can matchwith
any waiting receive action on that channel. The semantics ofsynchronous communica-
tion allows us the freedom to consider pairings of sends withreceives other than the one
it communicated with in the original memoized execution. This is because a receive ac-
tion places no restriction on either the value it reads, or the specific sender that provides
that the value.

Similarly, if the current constraint records the fact that the previous application of
the function spawned a new thread, or channel, then those actions must be performed
as well. Thus, if all recorded constraints, which representeffects performed within a
procedurep, can be satisfied in the order in which they occur, pure computation within
the p’s body can be elided at its calls.

4.1 Partial Memoization

Determining whether all memoization constraints can be satisfied may require perform-
ing a potentially unbounded number of evaluation steps to yield an appropriate global
state. However, even if it is not readily possible to determine if all constraints necessary
to elide the pure computation within an application can be satisfied, it may be possi-
ble to determine that some prefix of the constraint sequence can be discharged. Partial
memoization allows us to avoid re-executing any pure computation bracketed by the
first and last elements of this prefix.

Consider the example presented in Fig 4. Within the atomic section, we apply pro-
ceduresf, g, h andi. The calls tog, h, andi are evaluated within separate threads
of control, while the application off takes place in the original thread. These different
threads communicate with one other over shared channelsc1 andc2.

Suppose the atomic section aborts, and must be re-executed.We can now consider
whether the call tof can be elided when the section is re-executed. In the initialexe-
cution of the atomic section, spawn constraints would have been added for the threads
responsible for executingg, h, andi. Second, a send constraint followed by a receive
constraint, modeling the exchange of valuesv1 and eitherv2 or v3 on channelsc1
and c2 would have been included in the memo store forf . For the sake of the discus-
sion, assume that the send ofv2 by h was consumed byg and the send ofv3 was
paired with the receive inf .

The spawn constraints for the different threads are always satisfiable, and when
discharged, will result in the creation of new threads whichwill begin their execution



atomic(fn () =>
let val (c1,c2) = (mkCh(),mkCh())

fun f () = (send(c1,v1); ... recv(c2))
fun g () = (recv(c1); ... recv(c2))
fun h () = (...

send(c2,v2);
send(c2,v3));

fun i () = recv(c2)
in spawn(g); spawn(h); spawn(i);

f(); send(c2, v3)
...
retry

end)
end

Fig. 4. Determining if an application can be memoized may require examining an arbitrary num-
ber of possible thread interleavings.

by trying to applyg, h andi, consulting their memoized versions to determine if all
necessary constraints can be satisfied. The send constraintassociated withf matches
the corresponding receive constraint associated found in the memo store forg . De-
termining whether the receive constraint associated withf can be matched requires
more work. To match constraints properly, we need to force a schedule that causesg
to receive the first send byh and f to receive the second, causingi to block until f
completes.

Fixing such a schedule is tantamount to examining an unbounded set of interleav-
ings. Instead, we couldpartially elide the execution off ’s call on re-execution by
satisfying the send constraint (that communicatesv1 on c1 to g ), avoiding the pure
computation following (abstracted by ”. . . ”), allowing theapplication of f to begin
execution at therecv on c2 . Resumption at this point may lead to the communication
of v2 from h rather thanv3 ; this is certainly a valid outcome, but different from the
original execution.

5 Implementation

Our implementation is incorporated within MLton [16], a whole-program optimizing
compiler for Standard ML. The main changes to the underlyingcompiler and library
infrastructure are the insertion of write barriers to trackchannel updates, barriers to
monitor procedure arguments and return values, hooks to theCML library to monitor
channel based communication, and changes to the ConcurrentML scheduler. The entire
implementation is roughly 5K lines of SML: 3K for the STM, and300 lines of changes
to CML.

5.1 STM Implementation

Our STM implementation implements an eager versioning, lazy conflict detection pro-
tocol [4, 22]. References are implemented as ”servers” operating across a set of chan-
nels; each channel has one server receiving from it and any number of channels sending



to it. Our implementation uses both exclusive and shared locks to optimize read-only
transactions. If a transaction aborts or yields (retry ), it first reverts any value it has
changed based on a per-transaction change log, and then releases all locks it currently
holds. The transaction’s log is not deleted as it contains information utilized for memo-
ization purposes.

Recall our design supports nested, multi-threaded transactions. A multi-threaded
transaction is defined as a transaction whose processing is split among a number of
threads. Transactions that perform a collection of operations on disjoint objects can
have these operations be performed in parallel. The threadswhich comprise a multi-
threaded transaction must synchronize at the transaction’s commit point. Namely, the
parent thread will wait at its transaction boundary until its children complete. We allow
spawned threads and the parent transaction to communicate through CML message
passing primitives. Synchronization invariants among concurrent computation within a
transaction must be explicitly maintained by the application. The transaction as a whole,
however, is guaranteed to execute atomically with the rest of the computation.

5.2 Memoization

A memo is first created by capturing the procedure’s argumentat the call site. For each
communication within the annotated procedure, we generatea constraint. A constraint
is composed of a channel identifier and the value that was sentor received on the chan-
nel. In the case of a spawn, we generate a spawn constraint which simply contains the
procedure expression which was spawned. Constraints are ordered and augment the
parent transaction’s log. When a procedure completes, its return value is also added to
the log. To support partial memoization, continuations arecaptured with the generated
constraints.

Unlike traditional memoization techniques, it is not readily apparent if a memoized
version of a procedure can be utilized at a call site. Not onlymust the arguments match,
but the constraints which were captured must be satisfied in the order they were gener-
ated. Thus, we delay a procedure’s execution to see if its constraints will be matched.
Constraint matching is similar to channel communication inthat the delayed procedure
will block on each constraint. Constraints can be satisfied either by matching with other
constraints or by exchanging and consuming values from channels. Constraints are sat-
isfied if the value passed on the channel matches the value embedded in the constraint.
Therefore, constraints ensure that a memoized procedure both receives and sends spe-
cific values and synchronizes in a specific order. Constraints make no qualifications
about the communicating threads. Thus, a procedure which received a specific value
from a given thread may be successfully memoized as long as its constraint can be
matched withsome thread.

If constraint matching fails, pure computation within the application cannot be fully
elided. Constraint matching can only fail on a receive constraint. A receive constraint
obligates a function to read a specific value from a channel. To match a constraint on a
channel with a regular communication event, we are not obligated to remove values on
the channel in a specific order. Since channel communicationis blocking, a constraint
that is being matched can choose from all values whose senders are currently blocked
on the channel. This does not violate the semantics of CML since the values blocked



on a channel cannot be dependent on one another; in other words, a schedule must
exist where the matched communication occurs prior to the first value blocked on the
channel.

Unlike a receive constraint, a send constraint can never fail. CML receives are am-
bivalent to the value they remove from a channel and thus any receive on a matching
channel will satisfy a send constraint. If no receives or sends are enqueued on a con-
straint’s target channel, a re-execution of the function will also block. Therefore, failure
to fully discharge constraints by stalling memoization on apresumed unsatisfiable con-
straint does not compromise global progress. This observation is critical to keeping
memoization overheads low.

In the case that a constraint is blocked on a channel that contains no other communi-
cations or constraints, memoization induces no overheads,since the thread would have
blocked regardless. However, if there exist communications or constraints that simply
do not match the value the constraints expects, we can fail, and allow the thread to
resume execution from the continuation stored within the constraint. To identify such
situations, we have implemented a simple yet effective heuristic. Our implementation
records the number of context switches to a thread blocked ona constraint. If this num-
ber exceeds a small constant (two in our current implementation), memoization stops,
and the thread continues execution within the procedure body at that communication
point.

Our memoization technique relies on efficient equality tests for performance and
expressivity. We extend MLton’s poly-equal function to support equality on reals and
closures. Although equality on values of type real is not algebraic, built-in compiler
equality functions were sufficient for our needs. To supportefficient equality on pro-
cedures, we approximate function equality as closure equality. Unique identifiers are
associated with every closure and recorded within their environment; runtime equality
tests on these identifiers are performed during memoization.

5.3 CML hooks

The underlying CML library was also modified to make memoization efficient. The
bulk of the changes were hooks to monitor channel communication and spawns, and
to support constraint matching on synchronous operations.Successful communications
occurring within transactions were added to the log in the form of a constraints, as de-
scribed previously. Selective communication and complex composed events were also
logged upon completion. A complex composed event simply reduces to a sequence of
communications that are logged separately.

The constraint matching engine also required a modificationto the channel struc-
ture. Each channel is augmented with two additional queues to hold send and receive
constraints. When a constraint is being tested for satisfiability, the opposite queue is
first checked (e.g. a send constraint would check the receiveconstraint queue). If no
match is found, the regular queues are checked for satisfiability. If the constraint cannot
be satisfied immediately it is added to the appropriate queue.



6 Case Study - STMBench7

As a realistic case study, we consider STMBench7 [9], a comprehensive, tunable multi-
threaded benchmark designed to compare different STM implementations and designs.
Based on the well-known 007 database benchmark [5], STMBench7 simulates data stor-
age and access patterns of CAD/CAM applications that operate over complex geometric
structures (see Fig. 5).

STMBench7 was originally written in Java. We have implemented a port to Standard
ML (roughly 1.5K lines of SML) using our channel based STM. Inour implementation,
all nodes in the complex assembly structure and atomic partsgraph are represented as
servers with one receiving channel and handles to all other adjacent nodes. Handles to
other nodes are simply the channels themselves. Each serverthread waits for a message
to be received, performs the requested computation, and then asynchronously sends the
subsequent part of the traversal to the next node. A transaction can thus be implemented
as a series of channel based communications with various server nodes.

let fun findAtomicPart(object, pid) =
let val assembly =

travCAssembly(object, pid)
val bag = travAssembly(assembly, pid)
val component = travBag(bag, pid)
val part = traveComp(component, pid)

in part
end

fun sclHgt(object, pid, c) =
let val part = findAtomicPart(object, pid)

val newHeight = height(part)*recv(c)
val = changeHeight(part, newHeight)

in send(c,newHeight)
end

fun Traversal(object, pid1, pid2, height) =
atomic(fn () =>

let val c1 = channel()
val c2 = channel()
val = spawn(sclHgt(object,

pid1,
c1))

val = spawn(sclHgt(object,
pid2,
c2))

in send(c1, height);
send(c2, recv(c1));
recv(c2
... retry ...)

end)
in Traversal()
end

Fig. 5. The figure on the left shows the overall structure of structure of a CAD/CAM object. The
code on the right illustrates a multi-threaded atomic traversal of these objects.



At its core, STMBench7 builds a tree of assemblies whose leafs contain bags of
components; these components have a highly connected graphof atomic parts and de-
sign documents. Indices allow components, parts, and documents to be accessed via
their properties and IDs. Traversals of this graph can beginfrom the assembly root or
any index and sometimes manipulate multiple pieces of data.

The program on the right side of Fig. 5 shows a code snippet that is responsible
for modifying the height parameters of a building’s structural component. A change
made by the procedureTraversal affects two components of a design, but the specific
changes to each component are disjoint and amenable for concurrent execution. Thus,
the modification can easily be expressed as disjoint traversals, expressed by the pro-
cedurefindAtomicPart. ThesclHgt procedure shown in Fig. 5) changes the height
parameter of distinct structural parts. Observe that although the height parameter of
pid2 depends on the new height ofpid1, the traversal to find the part can be executed
in parallel. Oncepid1 is updated, the traversal forpid2 can complete.

Consider what would happen if the atomic section is unable tocommit. Observe that
much of the computation performed within the transaction are graph traversals. Given
that most changes are likely to take place on atomic parts, and not on higher-level graph
components such as complex or base assemblies, the traversal performed by the re-
execution is likely to overlap substantially with the original traversal. Of course, when
the transaction executes, it may be that some portion of the graph has changed. Without
knowing exactly which part of the graph has been modified by other transactions, the
only obvious safe point for re-execution is the beginning ofthe traversal.

6.1 Results

To measure the effectiveness of our memoization technique,we executed two config-
uration of the benchmark, and measured overheads and performance by averaging re-
sults over ten executions. Thetransactional configuration uses our STM implementa-
tion without any memoization. Thememoized transactional configuration implements
partial memoization of aborted transactions. The benchmarks were run on an Intel P4
2.4 GHz machine with one GByte of memory running Gentoo Linux, compiled and
executed using MLton release 20051202. Our experiments arenot executed on a mul-
tiprocessor because the utility of memoization for this benchmark is determined by
performance improvement as a function of transaction aborts, and not on raw wallclock
speedups.

All tests were measured against a graph of over 1 million nodes. In this graph,
there were approximately 280k complex assemblies and 1400Kassemblies whose bags
referenced one of 100 components; by default, each component contained a parts graph
of 100 nodes.

Our tests varied two independent variables: the read-only/read-write transaction ra-
tio (see Fig. 6) and part graph size (see Fig. 7). The former issignificant because only
transactions that modify values can cause aborts. Thus, an execution where all trans-
actions are read-only or which neverretry cannot be accelerated, but one in which
transactions can frequently abort orretry offers potential opportunities for memoiza-
tion.



In our experiments, the atomic parts graph (the graph associated with each compo-
nent) is modified to vary the length of transactions. By varying the number of atomic
parts associated with each component, we significantly alter the number of nodes that
each transaction accesses, and thus lengthen or shorten transaction times.

For each test, we varied the maximum number of memos (labeledcache size in the
graphs) stored for each procedure. Tests with a small numberexperienced less memo
utilization than those with a large one. Naturally, the larger the size of the cache used to
hold memo information, the greater the overhead. In the caseof read-only non-aborting
transactions (shown in Fig. 6), performance slowdown is correlated to the maximum
memo cache size.

(a) (b)

Fig. 6. (a) presents normalized runtime speedup with a varying readto write ratio. (b) shows the
average percent of transactions which are memoizable as read/write ratios change.

Our experiments consider four different performance facets: (a) runtime improve-
ments for transactions with different read-write ratios across different memo cache sizes
(Fig. 6(a)); (b) the amount of memoization exhibited by transactions, again across dif-
ferent memo cache sizes (Fig. 6(b)); (c) runtime improvements as a function of trans-
action length and memo cache size (Fig. 7(a)); and, (d) the degree of memoization
utilization as a function of transaction length and memo cache size (Fig. 7). Memory
overheads were measured by utilizing MLton’s profiler and GCstatistics. Memory over-
heads were proportional to cache sizes and averaged roughly15% for caches of size 16.
Runs with cache sizes of 32 had overheads of 18%.

Memoization leads to substantial performance improvements when aborts are likely
to be more frequent. For example, even when the percentage ofread-only transac-
tions is 60%, we see a 20% improvement in runtime performancecompared to a non-
memoizing implementation. The percentage of transactionsthat utilize memo infor-
mation is related to the size of the memo cache and the likelihood of the transaction
aborting. In cases where abort rates are low, for example when there is a sizable frac-
tion of read-only transactions, memo utilization decreases. This is because a procedure
is applied potentially many times, with the majority of applications not requiring mem-
oization because they were not in aborted transactions. Therefore, its memo utilization



will be much lower than a procedure in a transaction that aborted once and which was
able to leverage memo information when subsequently re-applied.

(a) (b)

Fig. 7. (a) shows normalized runtime speedup compared to varying transactional length. (b) shows
the percentage of aborted transactions which are memoizable as transaction duration changes.

To measure the impact of transaction size on performance andutilization, we varied
the length of the random traversals in the atomic parts graph. As Fig. 7(a) illustrates,
smaller transactions offer a smaller chance for memoization (they are more likely to
complete), and thus provide less opportunities for performance gains; larger transac-
tions have a greater chance of taking advantage of memo information. Indeed, we see
a roughly 30% performance improvement once the part size becomes greater than 80
when the memo cache size is 16 or 32. As transaction sizes increase, however, the
amount of the transaction that is memoizable decreases slightly (Fig. 7(b)). Larger trans-
actions have a higher probability that some part of their traversal has changed and are
thus not memoizable. After a certain size, an increase in thetraversal length of the
atomic parts graph no longer impacts the percent of memos used. This is because the
majority of the transaction that is memoizable is found in the initial traversal through
the assembly structure, and not in the highly-contented parts components.

As expected, increasing the memoization cache size leads toan increase in both
run-time speed up as well as the percent of the transactions that we are able to memo-
ize. Unfortunately, as a result our memoization overheads are also increased both due
to the larger amount of memos taken during execution as well as increased time to
discover which memo can be utilized at a given call site. Memory overheads increase
proportionally to the size of the memo cache.

7 Related Work and Conclusions

Memoization, or function caching [15, 17, 13], is a well understood method to reduce
the overheads of function execution. Memoization of functions in a concurrent setting
is significantly more difficult and usually highly constrained [6]. We are unaware of
any existing techniques or implementations that apply memoization to the problem of



optimizing execution for languages that support first-class channels and dynamic thread
creation.

Self adjusting mechanisms [2, 3, 1] leverage memoization along with change propa-
gation to automatically alter a program’s execution to a change of inputs given an exist-
ing execution run. Selective memoization is used to identify parts of the program which
have not changed from the previous execution while change propagation is harnessed to
install changed values where memoization cannot be applied. The combination of these
techniques has provided an efficient execution model for programs which are executed
a number of times in succession with only small variations intheir inputs. However,
such techniques require an initial and complete run of the program to gather needed
memoization and dependency information before they can adjust to input changes.

New proposals [10] have been presented for self adjusting techniques to be applied
in a multi-threaded context. However, these proposals impose significant constraints on
the programs considered. References and shared data can only be written to once, forc-
ing self adjusting concurrent programs to be meticulously hand crafted. Additionally
such techniques provide no support for synchronization between threads nor do they
provide the ability to restore to any control point other than the start of the program.

Reppy and Xiao [19] present a program analysis for CML that analyzes communica-
tion patterns to optimize message-passing operations. A type-sensitive interprocedural
control-flow analysis is used to specialize communication actions to improve perfor-
mance. While we also use CML as the underlying subject of interest, our memoization
formulation is orthogonal to their techniques.

Our memoization technique shares some similarity with transactional events [7].
Transactional events require arbitrary look-ahead in evaluation to determine if a com-
plex composed event can commit. We utilize a similar approach to formalize memo
evaluation. Unlike transactional events, which are atomicand must either complete en-
tirely or abort, we are not obligated to discover if an application is completely mem-
oizable. If a memoization constraint cannot be discharged,we can continue normal
execution of the function body from the failure point.

References

1. Umut A. Acar, Guy E. Blelloch, Matthias Blume, and Kanat Tangwongsan. An Experimental
Analysis of Self-Adjusting Computation. InPLDI, pages 96–107, 2006.

2. Umut A. Acar, Guy E. Blelloch, and Robert Harper. Adaptivefunctional programming. In
POPL, pages 247–259, 2002.

3. Umut A. Acar, Guy E. Blelloch, and Robert Harper. Selective Memoization. InPOPL, pages
14–25, 2003.

4. Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon, Brian R. Murphy, Bratin Saha, and
Tatiana Shpeisman. Compiler and Runtime Support for Efficient Software Transactional
Memory. InPLDI, pages 26–37, 2006.

5. Michael J. Carey, David J. DeWitt, and Jeffrey F. Naughton. The 007 benchmark.SIGMOD
Record, 22(2):12–21, 1993.

6. Iliano Cervesato, Frank Pfenning, David Walker, and Kevin Watkins. A Concurrent Logical
Framework II: Examples and Applications. Technical ReportCMU-CS-02-102, Department
of Computer Science, Carnegie Mellon University, 2002.



7. Kevin Donnelly and Matthew Fluet. Transactional Events.In Proceedings of the ACM
SIGPLAN International Conference on Functional Programming, pages 124–135, 2006.

8. Jim Gray and Andreas Reuter.Transaction Processing. Morgan-Kaufmann, 1993.
9. Rachid Guerraoui, Michal Kapalka, and Jan Vitek. STMBench7: a Benchmark For Software

Transactional Memory. InEurosys, 2007.
10. Matthew Hammer, Umut A. Acar, Mohan Rajagopalan, and Anwar Ghuloum. A Proposal

for Parallel Self-Adjusting Computation. InDAMP, 2007.
11. Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Composable Mem-

ory Transactions. InPPoPP, pages 48–60, 2005.
12. Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer, III. Software

Transactional Memory for Dynamic-Sized Data Structures. In ACM Conference on Prin-
ciples of Distributed Computing, pages 92–101, 2003.

13. Allan Heydon, Roy Levin, and Yuan Yu. Caching Function Calls Using Precise Dependen-
cies. InPLDI, pages 311–320, 2000.

14. Richard Kelsey, Jonathan Rees, and Michael Sperber. TheIncomplete Scheme 48 Reference
Manual for Release 1.1, July 2004.

15. Yanhong A. Liu and Tim Teitelbaum. Caching IntermediateResults for Program Improve-
ment. InPEPM, pages 190–201, 1995.

16. MLton. http://www.mlton.org.
17. William Pugh. An Improved Replacement Strategy for Function Caching. InLFP, pages

269–276, 1988.
18. William Pugh and Tim Teitelbaum. Incremental Computation via Function Caching. In

POPL, pages 315–328, 1989.
19. John Reppy and Yingqi Xiao. Specialization of CML Message-Passing Primitives. InACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 315–326,
2007.

20. John H. Reppy.Concurrent Programming in ML. Cambridge University Press, 1999.
21. Michael F. Ringenburg and Dan Grossman. AtomCaml: First-Class Atomicity via Rollback.

In Proceedings of the ACM SIGPLAN International Conference on Functional Program-
ming, pages 92–104, 2005.

22. Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh, and Benjamin
Hertzberg. McRT-STM: a High-Performance Software Transactional Memory system for a
Multi-Core Runtime. InPPoPP, pages 187–197, 2006.

23. Andrew P. Tolmach and Andrew W. Appel. Debuggable Concurrency Extensions for Stan-
dard ML. In PADD ’91: Proceedings of the 1991 ACM/ONR workshop on Parallel and
distributed debugging, pages 120–131, 1991.

24. Lukasz Ziarek, Philip Schatz, and Suresh Jagannathan. Stabilizers: a modular checkpoint-
ing abstraction for concurrent functional programs. InProceedings of the ACM SIGPLAN
International Conference on Functional Programming, pages 136–147, 2006.


