
Exceptionally Safe Futures

Armand Navabi and Suresh Jagannathan

Purdue University, Department of Computer Science
{anavabi,suresh}@cs.purdue.edu

Abstract. A future is a well-known programming construct used to introduce
concurrency to sequential programs. Computations annotated as futures are ex-
ecuted asynchronously and run concurrently with their continuations. Typically,
futures are not transparent annotations: a program with futures need not produce
the same result as the sequential program from which it was derived. Safe futures
guarantee a future-annotated program produce the same result as its sequential
counterpart. Ensuring safety is especially challenging in the presence of con-
structs such as exceptions that permit the expression of non-local control-flow.
For example, a future may raise an exception whose handler is in its continuation.
To ensure safety, we must guarantee the continuation does not discard this han-
dler regardless of the continuation’s own internal control-flow (e.g. exceptions it
raises or futures it spawns). In this paper, we present a formulation of safe futures
for a higher-order functional language with first-class exceptions. Safety can be
guaranteed dynamically by stalling the execution of a continuation that has an
exception handler potentially required by its future until the future completes. To
enable greater concurrency, we develop a static analysis and instrumentation and
formalize the runtime behavior for instrumented programs that allows execution
to discard handlers precisely when it is safe to do so.

1 Introduction

A future [3] provides a simple way for programmers to introduce concurrency to se-
quential programs. When executed, a computation annotated as a future yields a place-
holder and introduces an asynchronous thread of control whose result is stored within
the associated placeholder. When the computation following the future (its continua-
tion) requires the future’s value, it performs a touch or claim operation on the place-
holder. A claim action acts as a synchronization barrier, forcing the continuation to
block until the future yields a result. For programs with no side-effects, a future-annotated
program exhibits the same observable behavior as the original sequential version. To
preserve deterministic behavior equivalent to that of the original sequential program in
the presence of side-effects requires additional machinery.

Consider the code example in Figure 1. Function f takes an integer argument x. If x
is even, it returns the result of applying g to the value stored in reference r. If x is odd, it
stores the result of g (x) in r and returns x. Variable a is bound to the result of a future-
annotated computation (line 5). Thus computation f (m) is executed concurrently with
its continuation. The continuation spawns future f (n) to be bound to b (line 6), which
is evaluated concurrently with call f (p) (line 7). Thus, the three calls to function f will
be executed concurrently. Safe futures require that concurrent execution of these calls

must adhere to the dependences imposed by sequential evaluation: a read of reference
r performed in one call must not witness a write to r by a later one, and a write to r by
one call must be witnessed by a read of r in a later call.

1let val g = fn x => (* side-effect free computation *)
2val r = ref 0
3val f = fn x => if ((x mod 2) = 0) then g (!r)
4else (r := g (x); x)
5in let val a = future (f (m))
6val b = future (f (n))
7in f (p)
8end
9end

Fig. 1. Safe futures in the presence of mutable references

Safety can be guaranteed using both dynamic [10] and static [9] techniques. For
example, compiler inserted barriers supported by a lightweight runtime can be used to
enforce dependences defined by the sequential semantics [9]. Figure 2 illustrates how
function f can be rewritten based on an interprocedural control-flow analysis. The read
on line 3 is preceded by barrier ALLOWED(L3), which completes only once all futures
in the logical past have granted permission by performing a GRANT(L3) operation. A
future can grant permission for condition L3 once it has entered a branch in which
no further conflicting write access to r will be performed, or it has completed its final
write to r. Thus in the true branch of function f, the future will immediately grant on L3
allowing concurrent execution of its continuation to read r because the future will not
write it. In the false branch, the future will only grant after it has written to r, ensuring
its continuation will witness its write. Note that similar instrumentation is required to
force the write on line 7 to wait for its futures (i.e. computations which execute in the
logical past) to read r, but has been omitted in Figure 2 for brevity.

1val f =
2fn x => if ((x mod 2) = 0)
3then let val tmp = (GRANT(L3); ALLOWED(L3); !r)
4in g (tmp)
5end
6else let val tmp = g (x)
7val _ = (r := tmp; GRANT(L3))
8in x
9end

Fig. 2. Barrier Instrumentation

Given the instrumentation presented in Figure 2, consider the resulting runtime
schedule for an execution where m = 13, n = 4 and p = 2. Since m is odd, the call
f (m) will write to r. Both f (n) and f (p) will not write to r, and therefore both imme-
diately grant on condition L3 notifying their continuations that they will not change the
value of reference r. Before reading the value of r, they perform an ALLOWED operation
on condition L3. The first future computation, f (m) is logically ordered before both
computations, and therefore their ALLOWED barriers must wait for the future’s GRANT.
The future computation grants after it has written to r ensuring the currently executing
calls to f read the value of r that is consistent with a sequential execution.

Unfortunately, the presence of mutable references is not the only means by which
sequential behavior can be compromised. Exceptions and related abstractions that in-
troduce non-local control-flow introduce challenging complications. In the presence of
exceptional control-flow, a future may raise an exception whose handler is defined in
its continuation. Since the future and continuation are evaluated concurrently, the con-
tinuation must not be allowed to discard a handler that may be required by the future.

Consider the code example presented in Figure 3. The example does not have mu-
table references. Function f either returns the result of applying g to argument x if x
is odd, or raises an exception if x is even. Under a sequential evaluation (i.e. one with
futures erased), f (m) and f (n) are evaluated to completion in that order. If future f (m)
raises an exception that it does not internally handle (i.e. an escaping exception), the
continuation f (n) is not evaluated. For example if m = 0 then computation f (m) on
line 5 raises an escaping exception and computation f (n) is not evaluated. Instead the
exception raised by the future is handled by the handler on line 6 and the program
evaluates to 0.

1let val g = fn x => (* side-effect free computation *)
2val f = fn x => if ((x mod 2) = 1) then g (x)
3else if (x = 0) then raise ZeroException
4else raise NonZeroEvenException
5in (let b = future (f (m)) in f (n) end)
6handle ZeroException => 0
7| NonZeroEvenException => 1
8end

Fig. 3. Safe futures in the presence of exception handling

To enforce determinism in the presence of concurrent execution, constraints must
be imposed on what a future’s continuation may do. In a concurrent execution, fu-
ture f (m) and continuation f (n) are evaluated concurrently, but if the future raises an
escaping exception the continuation should have never been evaluated. This imposes
constraints on continuation f (n). For example, if n = 2, then it will raise excep-
tion NonZeroEvenException. If it raises the exception before its future completes,
the evaluation cannot discard the ZeroException handler and handle NonZeroEven-
Exception since the handlers may be required by f (m). Furthermore, even if the con-

tinuation does not raise an exception and instead evaluates to a value (i.e. if n = 3), the
continuation is not free to evaluate past the exception handlers because its future still
may raise an escaping exception that requires one of the handlers.

Unfortunately, non-local control-flow introduced by exceptions makes static injec-
tion of barriers (e.g. GRANT, ALLOWED) ineffective for exploiting parallelism. To see
why, consider the following example:

(let y = future (f (n)) in c ()) handle E => ...

To disallow evaluation of the continuation c () from discarding the handler that may
be required by future f (n), ALLOWED barriers need to be inserted at all exit points in
function c. The exit points consist of program points that signify successful completion
of the function and any raise statement that potentially raises an escaping exception.
GRANT’s would need to be inserted in function f at program points where f is guar-
anteed to no longer raise escaping exception E so that future f (n) will notify its con-
tinuation of when it is safe for it to proceed past the handler for E. In the presence of
non-local control flow and first-class exceptions, a static analysis cannot precisely de-
termine which static raise statements may raise escaping exceptions. Imprecision in the
static analysis leads to an overly conservative injection of ALLOWED barriers, forcing
continuations to block when it may be safe to proceed. As a result, static injection of
barriers may potentially limit parallelism significantly.

Determining the earliest point during execution for which it is safe for a contin-
uation to cross a handler boundary (i.e. discard a handler) is the focus of this paper.
The context of our investigation is a higher-order functional language with first-class
exceptions. We present an operational semantics that guarantees safety by stalling a
continuation from discarding an exception handler before its future (or any future it
may have created) is still executing. To enable greater concurrency, we formalize a
flow-sensitive static analysis and instrumentation technique to annotate program points
with possible escaping exceptions that may be reached from that point. We then de-
fine an operational semantics on instrumented programs that allows a continuation to
cross a handler boundary before futures spawned in its try block have completed, if
those futures and the futures they spawn (or may spawn) are guaranteed to not require
the handler, as dictated by the results of the static analysis. Our results are the first to
formalize the integration of safe (deterministic) futures within a language that supports
first-class exceptions.

2 The Language

Figure 4 presents the syntax of a higher-order functional language Λ that has futures and
first-class exceptions. The language is based on the language presented in [1]. It is an
intermediate representation of an idealized functional language with futures. The lan-
guage has been extended with first-class exceptions, an exit primitive that terminates
the computation, and constructs to raise and handle exceptions. Like [1], our language
does not have a touch (or claim) primitive. Instead, the parallel semantics we present
transparently touch placeholder variables. This makes future annotations truly transpar-
ent relieving the programmer of the burden of inserting touch operations based on the

KERNEL-LANGUAGE Λ:

M ∈ Λ ::= Vl | xl | exitl x | raisel x
| tryl M handle X 7→ M
| let x = V in M
| let x = if y then M else M in M
| let x = (y z) in M
| let x = future(M) in M

V ∈ Value ::= c | λ x.M | X
x ∈ V ars := {x, y, z, . . .}
c ∈ Const := {unit, true, false, 0, 1, . . .}

X ∈ Exception ::= Exn1 | Exn2 | . . . | Exnn

Fig. 4. Language Syntax

data flow properties of the program. Although the language does not support dynamic
creation of new exception values, adding such functionality does not introduce any ad-
ditional complexity to our development. We make the usual assumption that all λ- and
let-bound variables are distinct. All other terms in the language (i.e. variables, values,
exit statements, ...) are given unique labels so that the static analysis and instrumentation
presented in Section 4 can uniquley identify program terms.

2.1 Sequential Evaluation Semantics

Figure 5 defines the sequential semantics for programs in Λ. The semantics is defined
by function Fseq that maps a program M to a result R where R is either a constant, a
procedure (i.e., λ-term), an exception value, or error. The semantics erases future an-
notations in a program M with a runtime term that synchronously evaluates the future
computation and binds its result to a variable (resulting in program M̃). The evalua-
tion rule N →seq N ′ reduces runtime term N to a new program term N ′. Evaluating
exit V causes evaluation to terminate with result V .

3 Safe (Parallel) Dynamic Evaluation

In the parallel semantics presented in this section, the result of an incomplete future
computation is represented at runtime by a placeholder. The semantics specifies con-
currently evaluating future computations and enforces a global logical order on com-
putations. As demonstrated in the semantics presented in Section 3.1, this ordering is
used when a computation attempts to exit the program and when a future computa-
tion invalidates its continuation by raising an escaping exception. Logically, a future
computation Nf is ordered before the computation Nc associated with its continuation.
Any future computations spawned during the evaluation of Nf are also ordered before
Nc. This ordering is maintained by assigning each computation an order identifier con-
sisting of a real number r and integer d. A computation with order identifier (r, d) is
logically ordered before a computation with (r′, d′) if r < r′. The integer d in the order

R ∈ Results ::= c | λ x.M | X | error
N ∈ RTTerms ::= V | x | exit V | raise X | try N handle X 7→ N

| let x = if V then N else N in N | let x = (V V) in N

| let x = N in NfM = M [(let x = future(M ′) in M ′′)/(let x = M ′
in M ′′)]

Fseq(M) =

V if fM ⇒∗

seq V
error otherwise

EVALUATION RULES:

ε ∈ EvalCntxt ::= [] | try ε handle X 7→ N | let x = ε in N

N →seq N ′

ε[N] ⇒seq ε[N ′] ε[exit V] ⇒seq V

try V handle X 7→ N →seq V (try)
try raise X handle X 7→ N →seq N (handle)
try raise X ′ handle X 7→ N →seq raise X ′ (tryraise)
let x = V in N →seq N [x/V] (bind)
let x = raise X in N →seq raise X (bindraise)

let x = if V then N1 else N2 in N →seq

let x = N1 in N V = true

let x = N2 in N V = false
(if)

let x = (V V ′) in N →seq let x = N ′[y/V ′] in N V = λ y.N ′ (apply)

FIG. 5. SEQUENTIAL EVALUATION

identifier is used to determine how to compute new order identifiers for newly spawned
computations. The primordial main computation is given order identifier (0.0, 0).

Let computation N , with order identifier (r, d), evaluatee the following runtime
term: (let x = future(M) in M ′). The semantics replaces computation N with
two new computations Nf and Nc to evaluate the future computation M and its con-
tinuation M ′, respectively. Nf is given order identifier (r, d + 1) and Nc is given
(r + 0.5d, d + 1). This ordering implies that Nf is logically ordered before Nc because
(r < (r + 0.5d)).

Computations are evaluated in parallel, and each computation may spawn a future
replacing itself with two new computations. An important property of assigning order
identifiers is that all computations transitively spawned by the future computation Nf

are also ordered before the continuation Nc. As explained above, if the spawning com-
putation N has order identifier (r, d), the semantics assigns future Nf order identifier
(r, d + 1) and continuation Nc order identifier (r + 0.5d, d + 1). Suppose computation
Nf spawns another future, Nf ′ with continuation Nc′ . The semantics assigns Nf ′ order
identifier (r, d + 2) and Nc′ order identifier (r + 0.5d+1, d + 2). Note the following re-
lation holds: (r < (r + 0.5d+1) < (r + 0.5d)). Thus Nf ′ is ordered before Nc′ which
is ordered before Nc. All computations transitively spawned by Nc will be given order
identifiers r′ such that (r′ ≥ r + 0.5d) and will therefore be ordered after Nf ′ and Nc′ .
It is straightforward to see that the demonstrated relation between order identifiers holds
for all futures and their continuations.

3.1 Semantics

The operational semantics (see Figure 6) is defined by function Fsd from program M
to a result R (where R is the same as it was in the sequential semantics). The transition
rule S ⇒sd S′ maps a program state to a new program state. A program state is a
process S which represents a collection of concurrently evaluating runtime terms (i.e.
computations). Each computation maintains a local term context which is a three-tuple
consisting of the placeholder p whose value is being computed by the term, the order
identifier (r′, d′) of the computation that spawned the future, and the computation’s
own order identifier, (r, d). The original program term is the only computation that is
not a future. It is evaluated with term context 〈main, (−1,−1), (0, 0)〉, where main is a
special placeholder value and (−1,−1) signifies that it has no spawning parent.

Any references to a future’s result in its continuation are replaced with a new place-
holder variable. The semantics guarantees safety by preventing unsafe evaluation of the
continuation beyond a ε•p evaluation context. The evaluation context signifies that the
term being evaluated in the hole is a continuation of the future corresponding to place-
holder p. Evaluation of terms with V •p, raise X•p, and exit V •p are restricted. For
example, the term (try V •p handle X 7→ V ′) is stuck and cannot discard the handler
because the future corresponding to p, which was spawned inside of the try body, has
yet to complete and may require the handler defined by the try statement.

Runtime terms in a continuation may contain placeholder variables. The introduc-
tion of placeholder variables is discussed below as part of the future rule. In certain
cases the result of a placeholder is required to proceed with evaluation and in other
cases it is not. For example, in the term (let x = (p1 p2) in N) the abstraction result

of p1 is required for evaluation to proceed, but the result of argument p2 is not required.
The placeholder can simply be substituted into the λ-expression’s body. Given a run-
time term N with placeholder variables, the function R(N) annotates each placeholder
variable p whose result is required with a + superscript. This distinction forces the con-
tinuation to perform a touch operation only on placeholder variables whose values are
necessary to its evaluation. To guarantee that the program evaluates to a non-placeholder
value, the program M is transformed to (let x = M in exit x). The exit statement
forces a touch operation on variable x. This is necessary in the case that during evalua-
tion x is replaced by a placeholder variable (e.g. if M is (let x = future(M ′) in x)).

Rule seq states that if N ∈ S and N →seq N ′ then S ⇒sd S′ where in the new
process state S′, term N is replaced by R(N ′). Since variables may be substituted by
placeholders (e.g. under apply rule of→seq), theR function is applied to the new term.
Note that all rules, except for the seq rule, are on terms that contain a •p or a placeholder
variable, and that both •p and placeholders are introduced by the future rule (explained
below). This implies that evaluation under →seq and ⇒sd are trivially equivalent in the
absence of futures. The let rule allows continuations to proceed past the let evaluation
context. The ε•p evaluation context is only meant to disallow unsafe evaluation (e.g.
discarding of try statements).

Rule future defines evaluation of a future-spawning term. Given term (let x =
future(M) in M ′) ∈ S, the term is replaced in the process state with two new terms-
one to evaluate the future computation M and one to evaluate the continuation M ′.
The continuation is evaluated in the evaluation context of the spawning term which
includes any try statements that contain the spawning term. References to the variable
x in M ′ are replaced by a fresh placeholder p′ and function R replaces placeholders
that need to be touched with p′+. If the term context of the spawning computation
is 〈p, (r, d), (r′, d′)〉, the term context of future computation is 〈p′, (r′, d′), (r′, d′ +
1)〉 and the term context of continuation is 〈p, (r, d), (r′ + 0.5d

′
, d′ + 1)〉. When the

continuation requires the value of p′+ the semantics will know which computation to
synchronize with based on the term context of future computation (via the touch rule).
The continuation term is evaluated in the ε•p′

context so as to block the continuation
from discarding a handler that may be required by the future corresponding to p′. When
the future evaluates to a value, it removes the blocking context from its continuation
(via rule unblock). For a computation to evaluate to a value (rather than to V •p′′

, for
example) all of its futures must remove their corresponding blocking contexts.

The raise rule defines what happens when a future raises an escaping exception.
Terms in S′ represent valid computations and terms in Sc represent computations that
have been invalidated by this future’s raise. All computations that have been spawned
as a result of evaluating the continuation of the raising future are invalid. All other
computations are valid. Invalidated computations are replaced with ⊥. The term ε•p

in the continuation of the future corresponding to p is replaced with a raise of the
exception from the future, propagating the future’s raise to the context where it was
spawned. By replacing the term and the •p, the semantics ensures that the future’s raise
will never be propagated again. The exit rule requires that all computations that are
logically ordered before the exiting computation have evaluated to values and therefore
cannot invalidate the exiting computation.

N ∈ RTTerms ::= . . . | let x = future(N) in N | ⊥ | p+ | N•p

V ∈ V alue ::= . . . | p

p ∈ PhV ars ::= {main, p1, p2, . . .}
C ∈ TermContext ::= 〈p× (real × int)× (real × int)〉

S ::= {(N1)C1
, . . . , (Nn)Cn

}
S|NC ::= S ∪ {NC}

R(N) =

8>>>>>>>>>><>>>>>>>>>>:

V N = V
x N = x
exit p+ N = exit p
raise p+ N = raise p
try R(N ′) handle X 7→ R(Nh) N = try N ′ handle X 7→ Nh

let x = if p+ thenR(N1) elseR(N2) N = (let x = if p then N1 else N2

inR(N) in N)
. . .

Fsd(M) =

8<:
V if {(let x = M in exit x)〈main,(−1,−1),(0,0)〉} ⇒

∗
sd

{(N1)C1
, . . . , (Nn)Cn

, (V)〈main,(−1,−1),(r,d)〉}
error otherwise

EVALUATION RULES:

ε ∈ EvalCntxt ::= [] | try ε handle X 7→ N | let x = ε in N | exit ε | raise ε

| let x = if ε then Nt else Nf in N | let x = (ε V) in N | ε•p

N →seq N ′

S|(ε[N])C ⇒sd S|(ε[R(N ′)])C

(seq)

let x = N in N ′ →seq N ′′

S|(ε[let x = N•p1...•pn in N ′])C ⇒sd S|(ε[N ′′•p1...•pn])C

(let)

C = 〈p, (r, d), (r′, d′)〉 p′ fresh

Cf = 〈p′, (r′, d′), (r′, d′ + 1)〉 Cc = 〈p, (r, d), (r′ + 0.5d′
, d′ + 1)〉

S|(ε[let x = future(N) in N ′])C ⇒sd S|(N)Cf
|(ε[R(N ′[x/p′])•p′

])Cc

(future)

(V)〈p,(r,d),(r′,d′)〉 ∈ S

S|(ε[p+])C ⇒sd S|(ε[V])C

(V)〈p,(r,d),(r′,d′)〉 ∈ S

S|(ε[N•p])C ⇒sd S|(ε[N])C
(touch) (unblock)

Cf = 〈p, (r, d), (r′, d′)〉
S′ = {(N ′)〈pi,(ri,di),(r

′
i,d′

i)〉
| (N ′)〈pi,(ri,di),(r

′
i,d′

i)〉
∈ S, (r′i < r′ or r′i ≥ (r + 0.5d−1))}

Sc = {(⊥)C | (N ′)C ∈ S, (N ′)C /∈ S′} S′′ = S′ ∪ Sc

S|(raise X)Cf
|(ε[N•p])Cc

⇒sd S′′|(raise X)Cf
|(ε[raise X])Cc

(raise)

C = 〈p, (r′, d′), (r, d)〉
(Ni)〈pi,(r′

i,d′
i),(ri,di)〉 /∈ S ri < r Ni 6= V ′

S|(ε[exit V])C ⇒sd {(V)〈main,(−1,−1),(r,d)〉}
(exit)

FIG. 6. SAFE DYNAMIC EVALUATION

3.2 Example

Consider the following program:

1. let x = future(M1) in
2. try let y = future(M2) in
3. let z = future(M3) in M4

4. handle X 7→ c

Evaluation begins with a single term in the process state evaluating the above let ex-
pression. The program spawns three futures M1, M2 and M3 resulting in a process state
with four terms. Runtime terms N1, N2 and N3 correspond to program terms M1,M2

and M3, respectively. The continuation of these futures is the following runtime term
in the process state: (try N ′

4
•p3•p2 handle X 7→ c)•p1 , where term N ′

4 corresponds
to the evaluation of program term M4. The bulleted evaluation context on term N ′

4 pre-
vents the continuation from discarding the handler, because the futures corresponding
to p2 and p3 (i.e. N2 and N3) may require it.

Consider what happens if term N2 raises exception X without handling it inter-
nally. The raise rule will propagate the exception into its continuation and invalidate
all futures spawned by its continuation (i.e. N3). N3 is replaced with ⊥, and the term
N ′•p3•p2

4 is replaced with the raise of exception X , resulting in term
(try raise X handle X 7→ c)•p1 .

The continuation is now free to use the handler and evaluate to c. Note that the
continuation still has the blocking context for p1 from the first future preventing it from
completing with value c. This is because N1 may exit the program or raise an escaping
exception invalidating its continuation’s computation. Once N1 evaluates to a value it
notifies the continuation by removing the p1 blocking context, allowing the main thread
to complete with value c.

3.3 Semantic Equivalence

In this section we provide a proof sketch proving that the result of evaluating program
M under safe dynamic semantics is the same as evaluating M under sequential seman-
tics. For the proof, we define a transform function T to map a process state S in the safe
dynamic semantics to a runtime term N in the sequential semantics. We use the trans-
form function to show that for any process state S, if S ⇒∗

sd V then T (S) ⇒∗
seq V .

Given a process state S, the transform function T first identifies the computation
Nf in the process state which is logically ordered before all other computations (i.e. the
computation with the smallest r as its order identifier). If the continuation of Nf has
not spawned any new computations, then the transform function will combine the future
computation and its continuation to build runtime term (let x = future(Nf) in N),
where N is the continuation of Nf . If the continuation has split its computation by
spawning futures, which also may have spawned other futures, then the transform func-
tion is recursively applied to all computations that have been spawned as a result of
evaluating Nf ’s continuation to construct Nf ’s continuation term. The computations’
order identifiers are used to identify which computations have been spawned from a

given continuation. The transform function also replaces runtime terms that may ap-
pear in the safe dynamic semantics but not in the sequential semantics with equivalent
terms. For example, invalidated computations represented as⊥ in the sequential seman-
tics are replaced with (exit − 1) which is safe because those computations will never
be reached in the evaluation of the runtime term due to an exception raise. The transform
function and proof details are presented in an accompanying technical report [8].

Lemma 1. If S is a final state that evaluates to V then T (S) ⇒∗
seq V .

The lemma states that if a final process state S reached by evaluation under safe dy-
namic semantics evaluates to V , then the transform of the process state evaluates to V
under sequential semantics.

Lemma 2. If S ⇒sd S′ and T (S) ⇒∗
seq N ′, then T (S′) ⇒∗

seq N ′.
The lemma states that given an evaluation rule S ⇒sd S′, if the transform of S (i.e.
T (S)) yields runtime term Ns and the transform of S′ (i.e. T (S′)) yields runtime term
Ns′ then there exists a sequence of ⇒seq rules from Ns, and a sequence of ⇒seq rules
from Ns′ that result in a common term N ′. The lemma is proved by a case analysis on
evaluation derivations S ⇒sd S′.

Theorem 1. If Fsd(M) = R, then Fseq(M) = R.
The result of evaluating program M under the safe dynamic semantics is guaranteed to
be the same as the result of evaluating M under the sequential semantics. The proof is
by induction on the length of ⇒sd evaluation sequences. The base case is demonstrated
by instantiating Lemma 1 and 2 and the inductive case is demonstrated by instantiating
the inductive hypothesis and Lemma 2.

4 Instrumented Evaluation

The operational semantics defined thus far prevents a continuation from executing past a
try expression if a future spawned within the try block has yet to complete. In this sec-
tion, we present a flow-sensitive static analysis, program instrumentation, and a refined
operational semantics that extracts more parallelism than this conservative treatment
while still guaranteeing determinism. Informally, our solution is based on the observa-
tion that if a future reaches a point in its execution where it will no longer raise escaping
exception X , then its continuation can proceed past a handler for exception X .

In the instrumented semantics, the blocking evaluation context is of the form ε•(p,Σ).
The evaluation context signifies that the term being evaluated in the whole is a contin-
uation of the future that corresponds to placeholder p and that the evaluation of the
future may result in a raise of escaping exception X ∈ Σ or may exit the program if
exit ∈ Σ. A continuation evaluating runtime term (try V •(p,Σ) handle X 7→ Nh),
where X /∈ Σ may proceed past the try expression (unlike in the previously presented
semantics), thus discarding the handler. Static instrumentation specifies which escaping
exceptions an evaluating future computation may raise and whether or not it may exit
the program. We present an operational semantics that leverages the instrumentation so
that a future computation notifies its continuation immediately when its computation
and the futures it creates may no longer raise an escaping exception or perform an exit
operation (by removing elements from Σ in the blocking context of its continuation).

4.1 Static Analysis and Program Instrumentation

Our instrumentation assumes the presence of control-flow analysis FlowP (x) [6, 7]
which maps variable x to all possible values it may be bound to during the evaluation
of program P . Program term M is instrumented with a grant set Σ (represented by
superscript .Σ) and a nogrant set Σ′ (represented by subscript /Σ′). The grant set Σ
includes all escaping exceptions that may be raised by the instrumented term, and a
special exit element if the term may exit the program. The nogrant set Σ′ includes all
escaping exceptions that may be raised after evaluation of the instrumented term by the
enclosing term and the exit element if the enclosing term may exit the program after
evaluation of the instrumented term. The nogrant set ensures a computation does not
prematurely notify its continuation that it cannot reach an escaping exception or exit.
Term M is transformed to the instrumented term T̃ defined by the following grammar:

T ∈ InstTerms′ ::= Vl | xl | exitl x | raisel x

| tryl T̃ handle X 7→ T̃ | . . .

T̃ ∈ InstTerms ::= T .Σ
/Σ′

When a future f is spawned its continuation is evaluated in context: ε•(p,Σ), where Σ
is initially equal to f ’s grant set. Let f be the following future computation:

(let x = if y then raise z else Mf in M)

If FlowP (z) = {X} and computations Mf and M do not raise an escaping exception
X (or exit), then the continuation of f may discard X’s handler as soon as control
enters the false branch during the evaluation of f . Static instrumentation allows the
instrumented semantics to notify f ’s continuation when control enters the false branch.
In the instrumented term below Σ and Σf are the grant sets (i.e. the sets of possible
escaping exceptions and exit that may be reached) of M and Mf , respectively.

(let x = if y then (raise z).{X}
/Σ else Mf

.Σf

/Σ in M.Σ
/{})

.{X}∪Σf∪Σ

/{}

As mentioned above Mf and M do not raise X (i.e. X /∈ (Σf ∪ Σ)). The grant set
of the entire term captures all escaping exceptions that may be raised by the future
(i.e. {X} ∪ Σf ∪ Σ). The nogrant set is empty; the term represents the entire future
computation and therefore has no enclosing term. If f computes placeholder p, the
continuation of f evaluates in context ε•(p,Σ′), where Σ′ = ({X} ∪ Σf ∪ Σ). When
f ’s evaluation enters the false branch of the if-then-else statement, f will remove
those escaping exceptions it can no longer reach from Σ′ in the evaluation context of
its continuation. Since both the false branch and the body of the statement do not raise
X , the future will remove element X from Σ′. The result is that f ’s continuation will
evaluate in the following evaluation context: ε•(p,Σf∪Σ).

Relation I(T̃) defines constraints on instrumented terms T̃ (see Figure 7). Variable
and value terms are uniquely labeled with their static location, and each term has its own
nogrant set depending on its context. Of course, value and variable occurrences may not
raise exceptions or exit the program so their grant sets are always empty. An exit state-
ment obviously exits and therefore has grant set {exit}, and a raise statement clearly

raises an exception. Since exceptions are first-class, the raise statement’s grant set con-
tains all exceptions it may raise (i.e. the grant set for term (raisel x) is FlowP (x)).
A try expression’s grant set includes all exceptions (and exit) that escape from the
try block except the handled exception, and all escaping exceptions from the handler
block. Thus, the continuation of a future f will not be forced to wait for a grant on an
exception that is handled internally by f . The nogrant set for the try expression’s try
block includes the try expression’s nogrant set, all escaping exceptions raised by the
handler block, and the handled exception. Computing the grant and nogrant sets for the
try’s handler block is straightforward, as is the case for value binding let-expressions
and if-then-else expressions.

Since abstractions are first-class, the grant set of an application term with abstrac-
tion variable y is the union of grant sets for T̃i where λ z.T̃i ∈ FlowP (y) and the
grant set for the body of the let-expression. An abstractions may appear in different
contexts; therefore, the body of a λ-expression must be instrumented with a conserva-
tive approximation for its nogrant set. The nogrant set is the union of nogrant sets for
each context the abstraction may be applied. This is demonstrated in the instrumenta-
tion constraints presented in Figure 7 by requiring that the nogrant sets associated with
the bodies of each potential abstraction is a subset of the set of exceptions for the cur-
rent context. This overly conservative nogrant set disallows grants that are safe. The
disallowed grants that should have been granted during evaluation of the application
are applied at runtime after evaluating the application (see Figure 8). The grant set for
a term that spawns a future consists of the grant set of the future term and the continua-
tion. Thus if the term itself is spawned as a future, its continuation will need to wait for
both the (sub) future and the original future to grant on exceptions and exit. A future
computation has an empty nogrant set because it is evaluated as a separate computation.

4.2 Semantics

Terms instrumented with grant and nogrant sets are evaluated using the semantics de-
fined in Figures 8 and 9. In Figure 8 we omit instrumentation that is not relevant to
evaluation. A local evaluation rule Ñ →is 〈Ñ ′, Σ〉 reduces an instrumented runtime
term Ñ to a new instrumented runtime term Ñ ′ and a grant effect Σ. The grant ef-
fect represents the escaping exceptions (and exit) that were reachable by Ñ but not
reachable by Ñ ′.

For the
−→
try rule, the try block evaluates to a value and thus does not require the

exception handler. The →is evaluator will compute a grant effect consisting of those
elements in the handler’s grant set that are not in its nogrant set. If the body of the try
statement raises the handled exception (i.e. rule

−−−−→
handle), the →is evaluator grants ex-

ceptions in the raise statement’s grant set (i.e. the static approximation of which excep-
tions may have been raised by this statement), that are not in its nogrant set. Note that
the instrumentation constraints ensure the exception being handled, which is clearly in
the grant set, is also in the nogrant set disallowing the rule to grant on the raised excep-
tion. This is correct because the instrumentation constraints ensure that a continuation
of a future does not wait for exceptions internally handled by its future. If another ex-
ception is raised in the try block (i.e.

−−−−−→
tryraise rule), the exception is propagated and

I(Vl
.{}
/Σ) I(xl

.{}
/Σ) I((exitl x)

.{exit}
/Σ)

Σ = FlowP (x)

I((raisel x).Σ
/Σ′)

I(T .Σ
/Σ′∪Σh∪{X}) I(Th

.Σh
/Σ′)

I((tryl T .Σ
/Σ′∪Σh∪{X} handle X 7→ Th

.Σh
/Σ′)

.(Σ\{X})∪Σh

/Σ′)

I(T .Σ
/Σ′)

I(let x = V in T .Σ
/Σ′)

.Σ

/Σ′

I(Tt
.Σt
/Σ′′∪Σ) I(Tf

.Σf

/Σ′′∪Σ) I(T .Σ
/Σ′′)

I((let x = if y then Tt
.Σt
/Σ′′∪Σ else Tf

.Σf

/Σ′′∪Σ in T .Σ
/Σ′′)

.Σt∪Σf∪Σ

/Σ′′)

FlowP (y) = {λ z1.T1, . . . , λ zn.Tn} I(T1
.Σ1
/Σ′

1
), . . . , I(Tn

.Σn
/Σ′

n
)

I(T .Σ
/Σ′) Σ′

i ⊆ (Σ ∪Σ′) Σ′′ =
Sn

(i=1)Σi

I((let x = (y z) in T .Σ
/Σ′)

.Σ∪Σ′′

/Σ′)

I(Tf
.Σf

/{}) I(T .Σ
/Σ′)

I((let x = future(Tf
.Σf

/{}) in T .Σ
/Σ′)

.Σf∪Σ

/Σ′)

Fig. 7. Instrumentation Constraints

since the handler is not invoked, the →is evaluator will grant elements in the handler’s
grant set that are not in its nogrant set.

The grant effect computed by rule
−−→
bind for a value-binding let-expression is empty,

because the new runtime term may raise the same set of escaping exceptions as the
reduced term. If the expression being bound results in a raise of an exception, rule
−−−−−−→
bindraise will compute a grant effect that includes escaping exceptions that may be
raised by the body of the let-expression, which will never be reached, (i.e. Σ) as
long as those exceptions may not be raised by the raise statement (i.e. Σr) or by the
computation following the entire term (i.e. Σ′). The rule also computes the new nogrant
set that results from propagating the raise without evaluating the let-expression body.
The new nogrant set is equal to the nogrant set of the let-expression body.

The
−→
if rule computes the grant effect resulting from taking a branch of an if-then-

else statement, and recomputes the grant set of the entire term based on the branch
taken. If the true (false) branch is taken, the grant set of the entire term is the union of
the true (false) branch’s grant set and the grant set of the let-body. The grant effect
consists of exceptions raised (and exit) by the false (true) branch that cannot be raised
by the true (false) branch, the let-body, or the computation that follows.

Rule
−−−→
apply computes the grant effect for an application term. The nogrant set of

the abstraction body (i.e. Σ′
1) may be overly conservative, not allowing the evaluation

of the body to grant on certain exceptions. Thus the runtime will grant all exceptions in
the nogrant set of the abstraction body that are not raised by the rest of the term (i.e.
Σ′

1\(Σ ∪Σ′)) as soon as the application has completed evaluation. This is achieved by
replacing the body of the let-expression with a grant effect causing the grant effect to

be applied before evaluating the body. The grant effect immediately computed by the
rule consists of those exceptions in the let-expression’s grant set modulo those in the
grant set of the abstraction’s body (i.e. Σ1), those that are reachable from the let-body
(i.e. Σ) and those associated with the computation following the let-body (i.e. Σ′).
Note that the grant effect will include exceptions added to the grant set based on the
static approximation of which abstractions may have been bound to V as long as the
exceptions may not be raised by the rest of the term or by the abstraction value actually
bound to V at runtime.

The global evaluation rules are mostly analogous to the evaluation rules for the safe
dynamic semantics. The unblock rule is worth noting because it removes the blocking
evaluation for future f from a continuation as soon as f reaches a point where it has
granted everything that was in its grant set. This allows a future computation to eval-
uate to a value (rather than a blocked value) before its futures complete, if they are
guaranteed to not invalidate its evaluation by exiting or raising an escaping exception.
Thus unlike the safe dynamic semantics, in the instrumented semantics a continuation
touching a placeholder corresponding to future f does not need to block until all of
f ’s futures complete. Three new rules are also defined: grantmain , grant and try . The
first two deal with grant effects and the try allows computation within a continuation
to discard an exception handler if its future indicates it is safe to do so.

The grantmain rule ignores grant effects from the main computation, because it is
not a future of any continuation. When a local evaluation reduces to a term and grant
effect 〈Ñ ,Σ 〉 the grant rule will grant elements in Σ that are safe to grant. An element
is safe to grant if the granting computation cannot reach the element (i.e. it is not in Σf)
and the granting future is not a continuation of another future that still may reach the
element (i.e. it is not in Σ′′). To compute Σ′′, we use function A•, which computes the
set of futures a given term is a continuation of. The grant action is reflected in the grant
rule by removing elements Σg from Σ′ in the continuation’s ε•(p,Σ′) context. The grant
effect is then propagated to the continuation which may itself be a future.

The try rule exploits concurrency that could not be availed in the absence of instru-
mentation. A continuation may proceed past a try statement before its futures complete
if the futures and all the futures they spawn will not require the handler defined by the
try expression. This rule is similar to the let rule which allows evaluation of a con-
tinuation to proceed past a let term, except the try rule is conditional on the blocking
instrumentation indicating it is safe to discard the handler.

4.3 Example

The following example shows how the instrumented semantics allows for greater par-
allelism than the safe dynamic semantics. For brevity we have omitted the instrumen-
tation from the example, but we assume the program has been instrumented to satisfy
the instrumentation constraints presented in Figure 7. We explain in the text any instru-

N ∈ RTTerms′ ::= V | exit V | raise X | try eN handle X 7→ eN | let x = if V then eN else eN in eN | . . .eN ∈ RTTerms ::= N.Σ
/Σ | ⊥ | p+ | eN•(p,Σ) | 〈 eN, Σ〉

V ∈ V alue ::= . . . | p

p ∈ PhV ars ::= {main, p1, p2, . . .}
C ∈ TermContext ::= 〈p× (real × int)× (real × int)〉

S ::= {(gN1)C1
, . . . , g(Nn)Cn

}

S| eNC ::= S ∪ { eNC}

A•(eN) =

{(p, Σ)} ∪ A•(ε[eN ′]) if eN = ε[eN ′•(p,Σ)]
φ otherwise

Fis(M) =

8>>><>>>:
V if {(let x = eT in exitl x)〈main,(−1,−1),(0,0)〉} ⇒

∗
sd

{(eN1)C1
, . . . , (eNn)Cn

, (V
.{}

/{})
〈main,(−1,−1),(r,d)〉

}
where eT is instrumented version of M

error otherwise

EVALUATION RULES:

ε ∈ EvalCntxt ::= [] | try ε handle X 7→ eN | let x = ε in eN | exit ε | raise ε

| let x = if ε then eNt else eNf in eN | let x = (ε V) in eN | ε•(p,Σ)

try V handle X 7→ N
.Σh
/Σ′ →is 〈V, Σh\Σ′〉 (

−→
try)

try (raise X).Σr
/Σ′

r
handle X 7→ eN →is 〈 eN, Σr\Σ′

r〉 (
−−−−→
handle)

try (raise X ′)
.Σr

/Σ′
r
handle X 7→ N

.Σh
/Σ′ →is 〈(raise X ′)

.Σr

/Σ′
r
, Σh\Σ′〉 (

−−−−−→
tryraise)

let x = V in N.Σ
/Σ′ →is 〈(N [x/V]).Σ

/Σ′ , φ〉 (
−−→
bind)

let x = (raise X).Σr
/Σ′

r
in N.Σ

/Σ′ →is 〈(raise X).Σr
/Σ′ , Σ\(Σ′ ∪Σr)〉 (

−−−−−−→
bindraise)

let x = if V then Nt
.Σt
/Σ′′∪Σ

else Nf
.Σf

/Σ′′∪Σ in N.Σ
/Σ′′

→is

8>>><>>>:
〈(let x = Nt

.Σt
/Σ′′∪Σ in N.Σ

/Σ′′)
.Σt∪Σ

/Σ′′ ,
Σf\(Σt ∪Σ′′ ∪Σ)〉

V = true

〈(let x = Nf
.Σf

/Σ′′∪Σ in N.Σ
/Σ′′)

.Σf∪Σ

/Σ′′ ,
Σt\(Σf ∪Σ′′ ∪Σ)〉

V = false

(
−→
if)

(let x = (V V ′) in N.Σ
/Σ′)

.Σ′′

/Σ′ →is 〈(let x = N ′.Σ1
/Σ′

1
[y/V ′] V = λ y.(N ′.Σ1

/Σ′
1
) (

−−−→
apply)

in 〈N.Σ
/Σ′ , Σ′

1\(Σ ∪Σ′)〉)Σ1∪Σ

Σ′ , Σ′′\(Σ1 ∪Σ ∪Σ′)〉

FIG. 8. LOCAL EVALUATION RULES FOR INSTRUMENTED SEMANTICS

eN →is 〈 eN ′, Σ〉
S|(ε[eN])C ⇒is S|(ε[〈R(eN ′), Σ〉])C

(local)

(let x = eN in N ′) →is 〈 eN ′′, Σ〉
S|(ε[let x = eN•(p1,Σ1)...•(pn,Σn) in eN ′])C ⇒sd S|(ε[〈 eN ′′•(p1,Σ1)...•(pn,Σn), Σ〉])C

(let)

t′, t′′ fresh C = 〈p, (r, d), (r′, d′)〉 p′ fresh

Cf = 〈p′, (r′, d′), (r′, d′ + 1)〉 Cc = 〈p, (r, d), (r′ + 0.5d′
, d′ + 1)〉

S|(ε[let x = future(N
.Σf

/{}) in eN ′])C ⇒sd S|(N.Σf

/{})
Cf

|(ε[R(eN ′[x/p′])•(p
′,Σf)])Cc

(future)

(V
.{}

/{})
〈p,(r,d),(r′,d′)〉

∈ S

S|(ε[p+])C ⇒sd S|(ε[V])C S|(ε[eN•(p,φ)])C ⇒is S|(ε[eN])C

(touch) (unblock)

Cf = 〈p, (r, d), (r′, d′)〉
S′ = {(eN ′)〈pi,(ri,di),(r

′
i,d′

i)〉
| (eN ′)〈pi,(ri,di),(r

′
i,d′

i)〉
∈ S, (r′i < r′ or r′i ≥ (r + 0.5d−1))}

Sc = {(⊥)C | (eN ′)C ∈ S, (eN ′)C /∈ S′} S′′ = S′ ∪ Sc

S|((raise X)
.Σf

/Σ′
f
)
Cf

|(ε[N.Σc
/Σ′

c

•(p,Σ)
])

Cc

⇒sd S′′|((raise X)
.Σf

/Σ′
f
)
Cf

|(ε[(raise X)
.Σf

/Σ′
c
])

Cc

(raise)

C = 〈p, (r′, d′), (r, d)〉
(eNi)〈pi,(r′

i,d′
i),(ri,di)〉 /∈ S ri < r eNi 6= V ′.{}

/{}

S|(ε[(exit V)
.{exit}
/Σ])

C
⇒sd {(V .{}

/{})〈main,(−1,−1),(r,d)〉}
(exit)

C = 〈main, (−1,−1), (r, d)〉
S|(ε[〈 eN, Σ〉])C ⇒is S|(ε[eN])C

(grantmain)

Cf = 〈p, (r, d), (r′, d′)〉 A•(ε[N
.Σf

/Σ′
f
]) = {(p1, Σ1), . . . , (pn, Σn)}

Σ′′ =
Sn

(i=1) Σi Σg = Σ\(Σ′′ ∪Σf)

S|(ε[〈N.Σf

/Σ′
f
, Σ〉])

Cf

|(ε[eN•(p,Σ′)
c])Cc

⇒is S|(ε[N.Σf

/Σ′
f
])

Cf

|(ε[〈 eN•(p,Σ′\Σg)
c , Σg〉])Cc

(grant)

(try eN handle X 7→ eN ′) →is 〈 eN ′′, Σ′〉 Σ′′ =
Sn

(i=1) Σi X /∈ Σ′′

S|(ε[try eN•(p1,Σ1)...•(pn,Σn) handle X 7→ eN ′])C ⇒is S|(ε[〈 eN ′′•(p1,Σ1)...•(pn,Σn), Σ′〉])C

(try)

Fig. 9. Global Evaluation Rules for Instrumented Semantics

mentation that is relevant to the evaluation of the program.

1. let x = future(T̃1) in
2. try let y = future(T̃2) in
3. let z = future(let w = if false then raise X

4. else T̃3 in T̃ ′
3)

5. in raise X ′

6. handle X 7→ c

Let Ñ1 and Ñ2 be runtime terms in the process state corresponding to instrumented
terms T̃1 and T̃2, respectively, Ñ3 be the runtime term for the if-then-else expression
on line 3, and Ñ4 be the following runtime term:

(try (raise X ′)•(p3,Σ)•(p2,Σ2) handle X 7→ c)•(p1,Σ1)

In the above runtime term, Σ is the grant set for the if-then-else expression, Σ1

is the grant set for Ñ1 and Σ2 is the grant set for Ñ2. Assume that X /∈ Σ2 (i.e. T̃2

may not raise escaping exception X). Since X ∈ Σ due to the raise in the true branch
of the future computation, the try rule does not hold for Ñ4 and the handler cannot
be discarded. Once control enters the false brach during the evaluation of Ñ3, the →is

evaluator will compute a grant effect that includes elements in the grant set of the true
branch (i.e. {X}) that are not in the grant and nogrant sets of the false branch. Let Σ3

and Σ′
3 be the grant and nogrant sets of T̃3 and assume that X /∈ (Σ3 ∪ Σ′

3) (i.e. the
false branch and the body of the if expression do not raise an escaping exception X).
According to the

−→
if rule, the grant effect Σg contains X . The grant rule removes X

from Σ of the blocking evaluation context associated with p3 in term Ñ4. The grant
would be propagated but since Ñ4 is not a future computation (i.e. its term context is
〈main, (−1,−1), (r, d)〉), the grantmain rule applies. Since X is no longer in Σ the
try rule applies for term Ñ4 allowing evaluation to proceed past the handler even though
the future computations corresponding to p2 and p3 have yet to complete.

4.4 Semantic Equivalence

In this section we provide a proof sketch proving that evaluating program M under the
instrumented semantics has the same result as evaluating M under the safe dynamic
semantics. For the proof, we define a transform function U to map a process state Si

in the instrumented semantics to a process state Ss in the safe dynamic semantics. The
transform function U simply erases instrumentation, replaces evaluation context •(p,Σ)

with •p and replaces instrumented runtime term 〈Ñ ,Σ〉 with runtime term N . We use
the transform function U to prove that for state Si, if Si ⇒∗

is V then U(Si) ⇒∗
sd V .

The proof details are presented in an accompanying technical report [8].

Lemma 3. If Si is a final state with result R then U(Si) ⇒∗
sd Ss, and Ss is a final state

in the safe dynamic semantics with result R.
The proof states that if the final process state Si reached by evaluation under instru-
mented semantics results in R, then the transform of the process state evaluates under
safe dynamic semantics to a final state Ss with result R.

Lemma 4. If Si ⇒is S′
i and U(Si) ⇒∗

sd Ss, then U(S′
i) ⇒∗

sd Ss.
The lemma states that given an instrumented evaluation rule Si ⇒is S′

i the transform of
Si and S′

i are equivalent process states in the safe dynamic semantics. In other words,
under ⇒sd there exists a sequence of rules starting from U(Si) and a sequence start-
ing from U(S′

i), such that both sequences result in a common state Ss. The proof is
by case analysis on evaluation derivations Si ⇒is S′

i. In most cases, this property
is straightforward because most the rules in the safe dynamic and instrumented se-
mantics are analogous. Thus for analogous rule Si ⇒is S′

i, we show that applying
the analogous rule in the safe dynamic semantics to the transform of Si results in
the transform of S′

i (i.e. U(Si) ⇒1
sd U(S′

i)). The following rules are not analogous:
unblock , grantmain, grant , try .

The unblock rule in the instrumented semantics unblocks a computation before
its future completes as long as the computation’s future is guaranteed not to raise an
escaping exception or exit the program. Our proof leverages this guarantee. While
the unblock rule of the safe dynamic semantics may not apply to U(Si), evaluat-
ing the future computation under a sequence of ⇒sd rules to a value will result in
a state Ss, such that the unblock rule to applies to Ss. Rules grantmain and grant
are trivial because under both rules if Si ⇒is S′

i, then U(Si) = U(S′
i). Proving the

try rule is similar to the unblock rule. Intuitively, the proof demonstrates that run-
time term (try let x = future(N) in N ′ handle X 7→ . . .) and runtime term
(let x = future(N) in try N ′ handle X 7→ . . .) are equivalent as long as N and
any future spawned from N do not raise escaping exception X . The instrumented se-
mantics allows hoisting a future from a try block’s evaluation context only when the
static instrumentation and runtime determine it will not require the handler.

Theorem 2. If Fis(M) = R, then Fsd(M) = R.
Evaluating program M under the instrumented semantics will have the same result
as evaluating M under the safe dynamic semantics. The proof is by induction on the
length of ⇒is evaluation sequences. The base case is demonstrated by Lemma 3 and 4.
Instantiating the inductive hypothesis and Lemma 4 proves the inductive case.

5 Related Work and Conclusions

Futures were first introduced in Multilisp [3] as a high level concurrency abstraction
for functional languages. Implementation of futures has been well-studied in the con-
text of functional languages [4, 5] and future-like concurrency constructs have emerged
in many multithreaded languages. Recent proposals [13, 14] that have future-like con-
structs do not guarantee safety of the kind provided by our solution.

In [10], deterministic execution of Java programs equipped with futures is enforced
using a dynamic analysis that tracks accesses and updates by futures and their continu-
ations; while this techniques deals with side-effects to shared fields, it does not enforce
equivalence between a sequential and future-annotated Java program in the presence
of exceptions. In [9], a static analysis and program transformation to provide coordi-
nation between futures and their continuations is given. [11] is closest in spirit to our
work; their implementation is similar to the safe dynamic semantics presented here, but
significantly less precise than the instrumented semantics.

The formal semantics of futures have been studied in [1, 2]. Their work develops
a semantic framework for an idealized language with futures, but the results do not
consider how to enforce safety (i.e. determinism) in the presence of exceptions. More
recently, a formal semantics for an object-oriented language with active objects, asyn-
chronous method calls and futures was presented in [12], but this presentation does not
consider enforcing determinism or deal with exceptions.

This paper presents a formulation of safe futures for a higher-order language with
first-class exceptions, via a combination of a static analysis to instrument programs
with information about when exceptions may or may not be raised, and an operational
semantics that leverages this instrumentation to extract concurrency without violating
safety. We believe our results provide a precise basis for implementations of safe futures
in realistic languages that support expressive control-flow abstractions.

References

1. C. Flanagan and M. Felleisen. The semantics of future and its use in program optimizations.
In Conference Record of POPL ’95, pages 209–220, San Francisco, California, 1995.

2. C. Flanagan and M. Felleisen. The semantics of future and an application. J. Funct. Pro-
gram., 9(1):1–31, 1999.

3. R. Halstead. Multilisp: A Language for Concurrent Symbolic Computation. ACM TOPLAS,
7(4):501–538, October 1985.

4. D. Kranz, R. H. Halstead Jr., and E. Mohr. Mul-T: A high-performance parallel Lisp. In
PLDI ’89, volume 24, pages 81–90, July 1989.

5. R. Mohr, D. Kranz, and R. Halstead. Lazy Task Creation: A Technique for Increasing the
Granularity of Parallel Programs. In ACM LFP Programming, pages 185–197, June 1990.

6. O. Shivers. Control-Flow Analysis of Higher-Order Languages or Taming Lambda. PhD
thesis, Carnegie Mellon University, May 1991.

7. J. Palsberg. Closure analysis in constraint form. In ACM TOPLAS, 47–62, 1995.
8. A. Navabi and S. Jagannathan. Exceptionally Safe Futures. Tech. Report CSD TR #08-027,

Purdue University Department of Computer Science.
9. A. Navabi, X. Zhang, and S. Jagannathan. Quasi-static scheduling for safe futures. In PPOPP

’08:, pages 23–32, 2008.
10. A. Welc, S. Jagannathan, and A. Hosking. Safe futures for java. In OOPSLA ’05:, pages

439–453. ACM Press, 2005.
11. L. Zhang, C. Krintz, and P. Nagpurkar. Supporting Exception Handling for Futures in Java

In PPPJ, pages 175–184, 2007.
12. F. S. de Boer, D. Clarke, and E. B. Johnsen. A Complete Guide to the Future In ESOP ’07:,

pages 316–330, 2007.
13. E. Allan, D. Chase, V. Luchangco, J. Maessen, S. Ryu, G. Steele, and S. Tobin-Hochstadt.

The Fortress Language Specification Version 1.0. Tech. report, Sun Microsystems, 2008.
14. P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von Praun, and

V. Sarkar. X10: an object-oriented approach to non-uniform cluster computing. In OOPSLA
’05, pages 519–538, 2005.

