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Abstract. There has been significant recent interest in exploring the
role of coordination languages as middleware for distributed systems.
These languages provide operations that allow processes to dynamically
and atomically access and manipulate collections of shared data. The
need to impose discipline on the manner in which these operations oc-
cur becomes paramount if we wish to reason about correctness in the
presence of increased program complexity. Transactions provide strong
serialization guarantees that allow us to reason about programs in terms
of higher-level units of abstraction rather than lower-level data struc-
tures. In this paper, we explore the role of an optimistic transactional
facility for a Linda-like coordination language. We provide a semantics
for a transactional coordination calculus and state a soundness result
for this semantics. Our use of an optimistic concurrency protocol distin-
guishes this work from previous efforts such as Javaspaces, and enables
scalable, deadlock-free implementations.

1 Introduction

A transaction defines a locus of computation that adheres to well-known safety
and failure properties. To ensure these properties hold, the semantics of a trans-
actional facility must guarantee that the effects of a transaction are not observ-
able until a commit occurs; when a commit does occur, all effects are propagated
instantaneously to the enclosing parent transaction; once a transaction commits,
the global state records its effects, and forgets the association between the ef-
fect and the transaction; and, all data accesses performed by a transaction are
performed serially with respect to other concurrently executing transactions.
These four traits correspond to isolation, atomicity, durability, and consistency
properties respectively in classical transaction models.

There have been several attempts which explore the integration of transac-
tional semantics within a coordination language framework. Most notably, Java-
Spaces [18] and TSpaces [27] combine Linda-like semantics augmented with
transactional features into Java. A formal treatment of JavaSpaces, along with



several important extensions, is given by Busi and Zavattaro [11, 12]. The Java-
Spaces implementation is based on a pessimistic concurrency control semantics:
locks are acquired when an entry is accessed, preventing other transactions from
witnessing that value until the owning transaction commits. An entry can be
physically removed from the shared space only if the removing action is part of
the same transaction as any uncommitted reads to that object. Writes to the
space become visible to other transactions only when their initiator commits.
Although relatively simple to describe, a pessimistic treatment of transactions
for coordination languages has two notable disadvantages:

1. Deadlock: Since shared data are locked by reads, two transactions each of
whom read distinct entries may deadlock depending upon the order in which
the locks are acquired. Moreover, it is not possible to acquire locks prior to
executing a transaction since determining whether an object will be read
depends upon the transaction’s dynamic control-flow. The ability to select
entries based on pattern-matching further complicates the issue of deadlock
detection and avoidance.

2. Scalability: Pessimistic concurrency control negatively impacts scalability of
distributed implementations as read operations require the acquisition of
global locks and thus increase synchronization between distributed nodes.
Non-blocking operations, such as Linda’s rdp and inp (which test for the
presence of a tuple) further complicate the implementation of pessimistic
concurrency control protocols as they require that every potential entry that
may match the operation’s template argument be locked for the duration of
the transaction [11] to preserve desired serializability invariants.

In this paper, we explore an alternative treatment of transactions within a tuple
space coordination framework that addresses these issues. We define a semantics
for a transactional variant of Linda [19] based on the synchronous π-calculus [24].
This language can be viewed as the computational core of systems such as Java-
Spaces (without some features such as leases and notification [18]) in which
effects on the shared data space are controlled via a transactional mechanism
based on an optimistic concurrency protocol. In this protocol, every transaction
conceptually operates over its own local copy of the space and performs actions
restricted to this copy. When a transaction is to commit, the state of the local
copy is compared to the current state of the global space. If serializability invari-
ants have been violated, the transaction aborts and its local copy is discarded.
Otherwise, the changes can be propagated to the global space. The rate at which
aborts occur in this scheme is closely correlated to the rate at which concurrent
threads operate in incompatible ways over the same tuples.

Our work is distinguished from previous efforts in three main respects: (a) our
transactional semantics is based on an optimistic concurrency model that elimi-
nates issues of deadlock, and obviates scalability limitations which arise in more
pessimistic lock-based transactional schemes; (b) our treatment of non-blocking
operations that test for the presence or absence of tuples, allow us to reason



about the validity of these operations using transaction-local, rather than global,
judgments; and (c) the semantics naturally allows transactions to be arbitrar-
ily nested. Taken together, these features suggest that expressive, scalable, and
deadlock-free transactional implementations for coordination languages are fea-
sible.

2 Coordination Languages and Transactions

We are interested in defining robust, scalable concurrent programs that use a
Linda-style coordination framework to mediate access to shared data. Classi-
cal coordination models such as Linda allow atomic access and modification of
content-addressable data. However, explicit support for treating a locus of com-
putation and the collection of data the computation accesses as a single atomic
unit is not provided. An atomic transaction is a control abstraction that pro-
vides such functionality. The transactional semantics of concurrent actions in the
context of a coordination model ensures serializability and atomicity properties
of operations that read, remove, write, and test for the presence of tuples in a
global data space.

2.1 JavaSpaces

Sun Microsystem’s JavaSpaces is a well-known attempt at integrating a Linda-
like coordination language enriched with transactional support into a general
purpose programming language. Although expressive, the JavaSpaces program-
ming model is somewhat unintuitive and difficult to implement. We consider
its main features here and refer interested readers to the specification [18] and
related research papers [8, 11, 12, 9, 26] for further clarification. In particular, we
do not consider leasing and event notification which are treated in detail by Busi
and Zavattaro in [11, 12].

In JavaSpaces a shared data space is an object which supports at least the fol-
lowing operations: write(), read(), take(), readIfExists() and takeIf-
Exists(). The first operation deposits an entry in the shared space. The op-
erations read( template) and take( template) scan the shared space for an
entry matching template, reading or removing a matching tuple, respectively,
if one exists and blocking otherwise. Although the match operation in JavaS-
paces is user-defined, we restrict ourselves in this paper to traditional value-
based structural pattern matching familiar to pure Linda systems. If the tem-
plate is the distinguished null value, any entry in the data space may match.
readIfExists() and takeIfExists() are non-blocking equivalents of read()
and take() respectively (similar to Linda’s rdp and inp). If no value matching
the template is currently in the shared space, these operations return null. Busi
and Zavattaro have discussed in detail the implications of the ability to test for
the presence of a value [11, 12]. We revisit these operations in later sections.



Fig. 1. Threads and transactions may be interleaved in various ways: (a) plain, (b)
nested, (c) multi-threaded, (d) multi-threaded and nested.

2.2 Transactions

In this paper, we consider a multi-threaded nested transactional model. When
transactions are nested [25], each top-level transaction is divided into a number
of child transactions; each of which can also have nested transactions. Nested
transactions commit from the bottom up, and child transactions must always
commit before their parent. A transaction abort at one level does not necessar-
ily affect a transaction in progress at a higher level. The updates of committed
transactions at intermediate levels are visible only within the scope of their im-
mediate predecessors. Support for nested transactions is an important feature of
our semantics. A nested transaction defines a locus of computation whose effects
are bounded by its parent. Thus, the effects of operations on shared data can be
controlled by defining an appropriate transaction nesting structure, leading to
improved modularity and scalability. Programs are more modular because the
effects of a nested transaction are localized to its parent. Programs are scalable
because effects are not propagated immediately as the nested transaction com-
mits; instead, changes are aggregated and made globally visible only when the
parent transaction commits.

In a multi-threaded transaction model, each transaction can have multiple con-
current threads operating on the same view of the shared state. In a nested trans-
action model, multiple threads can be executing in parent and child transaction
concurrently. Fig. 1 summarizes the different interactions that arise between
transactions and threads.

A transactional facility can be modeled by a simple API consisting of the op-
eration start() and commit(). We assume an implicit transactional context so
that start() initiates a new transaction. If the current thread is already running
within a transaction, the new transaction is nested in the current one, otherwise
the new transaction becomes a top-level transaction. The commit() operation



Fig. 2. Serialized execution of transaction A and B. The shared data space is only
updated upon commit. Each transaction has its own view of the data space. The
shared space starts out as { 〈1〉, 〈2〉 }. At time 2, transaction A performs a take(?)

which removes entry 〈1〉 from the space. Thus from A’s point of view the shared space
contains a single entry (〈2〉). A commit reconciles a transaction’s local view with the
state of the shared space.

attempts to finalize the changes made by the current transaction, propagating
its results to the parent if one exists.

2.3 Motivating examples

To illustrate some salient issues related to the incorporation of transactional
semantics into a coordination language, consider the actions defined in Fig. 2.
Transactions A and B perform read and write actions on a global data space
which initially has two singleton tuples 〈1〉 and 〈2〉. Transaction A takes 〈1〉 and
then writes it back. Once A is done, transaction B performs a non-destructive
read of 〈1〉 and commits. This is a valid interleaving as all actions of A precede
the actions of B.

Figs. 3 and 4 illustrate possible interleavings if the actions performed by A and
B are enclosed within transactions under different transactional semantics. In
Fig. 3 transaction B reads 〈1〉 after it was taken by A. In a pessimistic model
such as the one used by JavaSpaces [11], this interleaving is not valid as the
take() performed by A locks 〈1〉 and prevents B from performing a read. In an
optimistic semantics, transaction B can proceed and, in fact, both transactions
can commit successfully.

Fig. 4 illustrates a case in which, under an optimistic semantics, transaction B
has to abort. In this example, A reads 〈1〉 but writes back another copy of 〈2〉,
while B still reads 〈1〉. Of course when B gets to the point of committing, it finds
that the global space does not have tuple 〈1〉 and thus is forced to abort.



Fig. 5 illustrates a more serious problem with JavaSpaces. We use inp as a non-
blocking take (i.e. takeIfExists()). Assume the global data space is initially
empty. Transaction A checks if tuple 〈2〉 is present, and will take if it is, while
transaction B attempts to take 〈1〉. Both operations fail as the space contains

Fig. 3. Valid optimistic interleaving. In a pessimistic semantics transaction B would
have to block until A commits, i.e. it would behave as illustrated in Fig. 2.

Fig. 4. Valid optimistic interleaving. Transaction B fails to commit due to a conflict in
the global data space (entry 〈1〉 is absent).

Fig. 5. Valid optimistic interleaving. Transaction B abort due to a conflict in the state
of the shared space (〈1〉 is present). A pessimistic semantics would deadlock.



no matching value. A proceeds to write 〈1〉 and B to write 〈2〉, after which both
transactions commit. In an optimistic semantics transaction B would abort be-
cause at time 6 the contents of the global space is {〈1〉 } while transaction B
expect 〈1〉 not to be in the space (since it has checked this at time 2). In Sun’s
JavaSpace implementation, both transactions are allowed to commit success-
fully. This behavior is incorrect as noted by Busi and Zavattaro [11]. In a correct
pessimistic semantics (i.e. [11]) this problem can be redressed by prohibiting
other transactions from depositing any matching writes to the tuple-space once
A performs its test. However, in this example, such a semantics would lock any
transaction from depositing a single element tuple, and would thus prevent B
from committing since it subsequently performs a write on 〈2〉.

Thus, the example of Fig. 5 would deadlock in a pessimistic semantics because
each transaction is trying to acquire a lock held by the other transaction. In
general, a correct implementation of pessimistic concurrency control may entail
locking large portions of the shared data space. Consider for instance the action
readIfExists( null) which, in JavaSpaces, matches any entry in the data
space. If the data space is empty when the action is evaluated, the current
transaction will lock the entire space and no other transaction will be able to
write to the space until this one commits if serializability invariants are to be
preserved.

Transaction protocols for coordination languages are further complicated when
nested transactions are considered. The semantics of nested transactions per-
mit child transactions to see the effects of their parents, even before the parent
commits. Using pessimistic concurrency control, the rules governing when tuple
operations become visible, and when read and write locks are released must be
strengthened. Fig. 6 describes a valid execution sequence in which transaction A
defines a nested transaction C. Tuples written by C are unavailable to B until A
commits, although they are available to A once C commits. Tuples written by A
are available to C even before A commits. This figure reveals that fine-grained pes-
simistic concurrency protocols require sophisticated lock management schemes
to allow nested transactions to inherit locks on tuples owned by their ances-
tors. In constrast, an optimistic concurrency protocol maintains multiple local
logs and directly incorporates notions of visibility into the log structure. When
a nested transaction attempts to read a tuple, writes performed by its parent
that match the tuple pattern are visible to the nested transaction. To ensure
that writes performed in a nested transaction are propagated correctly, an op-
timistic concurrency mechanism need only guarantee that nesting of logs reflect
transaction nesting. No special lock management protocol is required.

3 A transactional coordination calculus

The transactional Linda calculus is based on the synchronous π calculus [1, 4,
22] which provides a small and elegant computational core. The main departure
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Fig. 6. Actions performed by a nested transaction are not visible to the parent until
the inner transaction commits; the effects of a nested transaction are not visible to
other transactions until its parent commits.

from the π calculus is that rather than communicating by means of channel-
based message passing, processes exchange tuples through a common shared
space. Embeddings of Linda in process calculi have been explored in previous
work [6, 17]. We shall focus only on essential features from the point of view of
the transactional behavior of the calculus.

3.1 Syntax

The syntax of the calculus is summarized in Fig. 7. We take an infinite set of
names ranged over by meta-variable x. Tuples are sequences of formal and actual
entries ranged over by meta-variable v. The empty tuple is denoted by 〈 〉. The
expression x . v denotes the tuple resulting from concatenating an actual name
x with tuple v, while x? . v denotes the concatenation of a formal variable x with
v. Meta-variable t ranges over transaction identifiers, and ` over sequences of
transaction identifiers.

The syntactic category of processes, ranged over by P and Q, includes the empty
process 0 and parallel composition of processes P | Q. Synchronous output, writ-
ten v. P, deposits the tuple denoted by v in the shared data space and proceeds to
execute P. The input operation (v). P evaluates the template v against the shared
space; if a matching value is found, the tuple is taken from the shared space and
the process continues as P with the formals of v replaced by actuals from the
tuple; the operation blocks if no matching value can be found. Guarded repli-
cation, written (v)! P, performs an input of v and, if a match is found, proceeds
as P with (in parallel) a copy of the original process (v)! P. The test operation,
(v)? P ; Q is a non-blocking test for presence which tries to find a tuple matching
the template v, and if one is found, proceeds to evaluate P with the tuple; if
no matching tuple is found in the space Q is evaluated. The restriction operator



Syntax:

P ::= 0 | P|Q | (ν x) P | trans P | t[ P ] | commit | (v). P | v. P | (v)? P ; Q | (v)! P

v ::= 〈 〉 | x . v | x? . v τ ::= v | v/v | ¬v | com | srt ` ::= 〈 〉 | ` . t

E ::= 〈 〉 | E . ` : ρ ρ ::= 〈 〉 | ρ . v | ρ .¬v | ρ . v?

(v). P
v′/v−→〈 〉

v′/v P (L-inp)

(v)? P ; Q
v−→〈 〉

v′/v P (L-pos)

(v)? P ; Q
¬v−→〈 〉 Q (L-neg)

(v)! P
v′/v−→〈 〉

v′/v P | (v)! P (L-loop)

v. P
v−→〈 〉 P (L-outp)

trans P
srt−→t t[ P ] (L-start)

t[ commit | P ]
com−→t 0 (L-comm)

P
τ−→` P′

t[ P ]
τ−→t . ` t[ P′ ]

(L-trans)

P
v′/v−→` P′ v′, E ′ = take(E , `) v ≤ v′

P E `
=⇒ P′ E ′

(G-inp)

P
v−→` P′ E ′ = put(E , `, v)

P E `
=⇒ P′ E ′

(G-outp)

P
¬v−→` P′ E ′ = neg(E , `, v)

P E `
=⇒ P′ E ′

(G-neg)

P
srt−→` P′ E ′ = start(E , `)

P E `
=⇒ P′ E ′

(G-start)

P
com−→` P′ E ′ = commit(E , `)

P E `
=⇒ P′ E ′

(G-comm)

P E ≡ P′ E P′ E `
=⇒ Q′ E ′ Q′ ≡ Q

P E `
=⇒ Q E ′

(G-cong)

Evaluation Contexts:

E [ • ] | E [ • ] | P

P
τ−→` P′

t[E [ P ]]
τ−→t . ` t[E [ P′ ]]

P
τ−→` P′ x 6∈ fn(τ)

(ν x) P
τ−→` (ν x) P′

Structural Congruence:

P | Q ≡ Q | P (ν x) (ν y) P ≡ (ν y) (ν x) P

P | (ν x) Q ≡ (ν x) P | Q if x 6∈ fn(P)

t[ (ν x) P ] ≡ (ν x) t[ P ]

(ν x) P E ≡ P′ E if x 6∈ fn(E) ∧ P ≡ P′

Fig. 7. Syntax and Semantics



Free Names:

fn(0) = {} fn(P | Q) = fn(P) ∪ fn(Q) fn((ν x) P) = fn(P)− x fn(t[ P ]) = fn(P)

fn(commit) = {} fn((v). P) = fn(P) ∪ fn(v)− bn(v) fn(v. P) = fn(P) ∪ fn(v)− bn(v)

fn(trans P) = fn(P) fn((v)? P ; ) = fn(P) ∪ fn(v)− bn(v) fn((v)! P) = fn(P) ∪ fn(v)− bn(v)

fn(x . v) = {x} ∪ fn(v) fn(x? . v) = fn(v) fn(〈 〉) = {}

bn(x . v) = bn(v) bn(x? . v) = {x} ∪ bn(v) bn(〈 〉) = {}

Matching:

〈 〉 ≤ 〈 〉 x . v ≤ x . v′ if v ≤ v
′

x
? . v ≤ x . v′ if v ≤ v

′

Fig. 8. Free Names and Matching Rules.

(ν x) P generates a fresh name x; the calculus is lexically scoped, so x is visible
only in process P . Finally trans P and commit are used to, respectively, start
and terminate a new transaction. The transaction trans P will execute the pro-
cess P until a commit is evaluated, at which point all changes effected by the
transaction will become visible to all other transactions. If a conflict is detected
the transaction will not be able to commit and the evaluation of the thread will
remain stuck. Note also that all other threads within the same transaction and
nested transaction are terminated upon a commit. The calculus does not provide
an explicit abort operation; we model aborted transactions as stuck terms on
commit transitions.

3.2 Semantics

The semantics of the calculus is shown in Figs. 7, 8, and 9. The semantics is
stratified so that the local reduction relation P

τ−→` Q defines that process
P can reduce to Q in one step. The transition is labeled by an action τ and a

x.v/x.v′ P = v/v′ P
x.v/y?.v′ P = v/v′

x/y P
〈 〉/〈 〉 P = P

x/y 0 = 0 x/y P | Q = x/y P | x/y Q x/y (ν x) P = (ν x) P

x/y (ν x′) P = (ν x′) x/y P
x/y t[ P ] = t[ x/y P ] x/y commit = commit

x/y (v). P = (x/y v).
x/y P if x 6∈ fn(v) x/y (v). P = (x/y v). P if x ∈ fn(v)

x/y (v)! P = (x/y v)!
x/y P if x 6∈ fn(v) x/y (v)! P = (x/y v)! P if x ∈ fn(v)

x/y (v)? P ; Q = (x/y v)?
x/y P ; x/y Q if x 6∈ fn(v) x/y (v)? P ; Q = (x/y v)? P ; if x ∈ fn(v)

x/y v. P = (x/y v).
x/y P if x 6∈ fn(v) x/y x.v = y.x/y v

x/y x
?.v = x?.v

x/y z
?.v = z.x/y v

x/y 〈 〉 = 〈 〉

Fig. 9. Substitutions.



transaction `. The global relation P E `=⇒ Q E ′ defines the behavior of a program
P in an environment E . We assume congruence of environments under element
reordering.

In the local reduction relation the tuple space remains implicit. Each reduction
step is labeled by one of the following actions: v, v

′
/v,¬v, srt, and com, indicating

a write of v, a take of v′ matching v, a test for absence of v, the start of a
transaction and a commit, respectively. Furthermore transitions are labeled by
the issuing transaction name, `, composed of a sequence of transaction identifiers;
the different identifiers correspond to the levels of nesting, thus t . t′ . t′′′ denotes
an action performed by transaction t′′′ nested in transactions t′ and t.

Starting a transaction with trans P creates a process P running within some
transaction t, and is denoted t[ P ]. We assume that each new transaction iden-
tifier t is chosen to be distinct. Transactions can be nested, for instance the
expression t[ t′[ P ] | Q ] denotes two parallel processes P and Q such that Q is
running within a top level transaction t and a process P in a transaction t′

nested within t. For example, the expression trans (trans v.0) denotes a pro-
cess that will spawn two transactions, the second nested within the first. Then
the expression will reduce in one step to the inactive process:

t[ t′[ v.0 ] ] v−→t . t′ t[ t′[0 ] ]

Notice that in this configuration, the tuple v was output from transaction t . t′

and since there is no commit for that transaction that value will never become
available to other processes.

The global reduction relation `=⇒ manages the shared data space and defines
the semantics of the transactional facility. The semantics does not fix a specific
implementation or a particular transactional model as it is parameterized by
an environment E which contains the tuple space and five operations over envi-
ronments that implement the actual transactional model. Although we provide
definitions for these operations that capture the essential traits of an optimistic
concurrency protocol, other specifications that define alternative implementa-
tions of the protocol, or which express different transactional semantics (such as
pessimistic concurrency) can be developed without modifying the global reduc-
tion relation.

The rule (G-inp) defines the behavior of a destructive read over the tuple space.
Given an environment and a transaction, take returns a value available to that
transaction; if that value matches the requested template, the transition proceeds
with an updated environment. (G-outp) is similar in that it relies on the put
operation to record that a transaction ` has output tuple v. (G-neg) applies
in case there is no tuple matching template v available to transaction `. When
this occurs, the neg operation records this fact in the environment. (G-start)
sets up the environment for a new transaction. (G-com) attempts to commit
a transaction. Finally, (G-cong) allows reduction up to structural congruence



v ∈ visible(E , `)

E ′ = E . (` : ρ . v?)

v, E ′ = take(E , `)

match(visible(E , `), v) = {}
E ′ = E . (` : ρ .¬v)

E ′ = neg(E , `, v)

E ′ = E . (` : ρ . v)

E ′ = put(E , `, v)

E ′ = reflect(E ′′, ρ, `)

E ′ = commit(E ′′ . (` . t : ρ), `)

E . (` : 〈 〉) = start(E , `)

Fig. 10. Transactional semantics.

of processes. Top level ν-binders can be erased to allow names to flow into the
environment.

3.3 Optimistic transactional facility

The implementation of an optimistic transactional model is shown in Figs. 10
and 11. In this scheme, the shared tuple space is represented by an environment
E = `1 : ρ1 . . . `n : ρn which contains per-transaction logs ρ1 . . . ρn. Each of
these logs is a sequence comprised of events, v, v?,¬v; these events denote an
output of v, a removal of a tuple v? and an absence of a match for template ¬v,
respectively.

E = reflect(E , 〈 〉, `) E ′ = reflect(E . (` : ρ′ . v), ρ, `)

E ′ = reflect(E . (` : ρ′), v . ρ, `)

v ∈ visible(E , `)

E ′ = reflect(E . (` : ρ′ . v?), ρ, `)

E ′ = reflect(E . (` : ρ′), v? . ρ, `)

match(visible(E , `), v) = {}
E ′ = reflect(E . (` : ρ′ .¬v), ρ, `)

E ′ = reflect(E . (` : ρ′),¬v . ρ, `)

visible(E , `) = find(merge(E , `)) match(V, v) = { v′ | v′ ∈ V ∧ v ≤ v′}

find(ρ . v) = find(ρ ∪ v)

find(ρ . v?) = find(ρ− v)
find(ρ .¬v) = find(ρ)

merge(E , 〈 〉) = 〈 〉
merge(E . (` . t : ρ), ` . t) = merge(E , `) . ρ

Fig. 11. Auxiliary functions.

The operations on the environment are take, neg, put, commit and start. When-
ever a new transaction is created start(E , `) is used to extend the environment
with an empty log for transaction `. The operation put(E , `, v) extends the log of
transaction ` with a tuple v. The operation take(E , `) returns an arbitrary tuple
visible by transaction ` and records in the log that the tuple has been removed.
The operation neg(E , `, v) records the fact no tuple matching template v is visi-



ble to the transaction `. Finally, operation commit(E , `) attempts to commit the
change performed by transaction ` to the log of the parent transaction. Commit
operates by replaying the changes performed by transaction `. The commit fails
if the environment for `’s parent is not in the expected state.

3.4 Soundness

Proving the correctness of the semantics requires that we show our treatment
of transactions preserves desired isolation and atomicity properties. To do so,
we first define a notion of a well-defined state. Intuitively, a state is well-defined
if the contents of the logs associated with each transaction are such that no
conflicts would arise. One way to manifest this idea is to compare the state of
a transaction’s parent with its child at the point the child attempts to commit.
If the parent reflects commits from other transactions that violate invariants
recorded in the log of the committing child, the child state is not considered
well-defined. We formalize this intuition thus:

Definition 1. E is well-defined if for any transaction ` such that E ≡ E ′ . (` : ρ)
and ` = `′ . t, the function reflect(E ′, `′, ρ) is defined.

Thus, the log of a child transaction is well-defined with respect to the parent if
actions observed by the child are consistent with the actions seen by the parent.
Satisfiability of this condition implies, that after a child commits, write and take
operations performed by the child must be visible in the parent, and tuples that
were observed to be absent by the child must still be so in the parent. Observe
that the reflect operation propagates tuple events from a child transaction to
a parent transaction provided these events do not violate natural visibility and
serializability invariants.

Definition 2. A trace tr(R) = P0 E0
`0=⇒ . . .

`n=⇒ Pn En is serial iff ∀i, j, k such
that 0 ≤ i ≤ j ≤ k ≤ n, and `i = `k, li � lj (read “li is a prefix of lj).

A serial trace is one in which for all pairs of reduction steps with the same
transaction label `, all actions that occur between these two steps are taken on
behalf of that transaction or its children. Given a notion of a serial trace, we can
define a soundness theorem that captures our desired notion of serializability:

Theorem 1. Let R be a sequence of reductions P0 E0
`0=⇒ . . .

`n=⇒ Pn1 En+1. If

En+1 is well-defined, then there exists a sequence R′ = P0 E0
`′
0=⇒ . . .

`′
n=⇒ Pn1 En+1

such that R′ is serial.

The proof of this theorem appeals to notions of permutability on global ac-
tions. Informally, two actions α1 and α2 executed in transactions `1 and `2 are



permutable if they have no data or control-dependency with each other. For
example, a take operation performed by a transaction ` has a data dependency
with any write operation performed by any of `’s parents that matches the read
tuple. Simlarly, a write action logged in any parent transaction of ` has a data
dependency with any ¬v action recorded in `. This means that any valid serial-
izable permutation cannot move a write action in a parent above a child action
that successfully tested for the absence of the tuple being written.

4 Related Work and Conclusions

The Linda coordination model [19, 14] uses generative communication on anony-
mous structured data to facilitate interactions among concurrent programs. Its
simplicity and generality make it a fertile vehicle in which to explore and for-
malize various concurrency abstractions [9, 17, 7, 13]. However, Linda does not
directly support atomic operations on aggregate shared data. To alleviate this
drawback, systems such as JavaSpaces [18] or TSpaces [27] allow operations on
tuple-spaces to be encapsulated within transactions.

There is a large body of work that explores the formal specification of various
flavors of transactions [23, 16, 20]. Most closely related to our work is that of
Bussi, Gorrieri and Zavattaro [8] and Busi and Zavattaro [11] who formalize
the semantics of JavaSpaces and discuss the semantics of important extensions
such as leasing [10]. However, their work is presented in the context of a pes-
simistic concurrency control model. Our contribution is a formal characterization
of transactions for Linda based on optimistic concurrency that provides scalable
and deadlock-free execution.

Other related efforts include the work of Black et. al. [3] and Choithia and Dug-
gan [15]. The former presents a theory of transactions that specify atomicity,
isolation and durability properties in the form of an equivalence relation on pro-
cesses. Choithia and Duggan present the pik-calculus and pike-calculus, exten-
sion of the pi-calculus that supports various abstractions for distributed trans-
actions and optimistic concurrency. Their work is related to other efforts [11,
5] that encode transaction-style semantics into the pi-calculus and its variants.
Our work is distinguished from these efforts in that it provides a simple op-
erational characterization and proof of correctness of transactions that can be
used to explore different trade-offs when designing a transaction facility for in-
corporation into a language. Haines et.al. [21] describe a composable transaction
facility in ML that supports persistence, undoability, locking and threads. Their
abstractions are very modular and first-class, although their implementation
does not rely on optimistic concurrency mechanisms to handle commits. Berger
and Honda [2] examine extensions to the pi-calculus to handle various forms
of distributed computation include aspects of transactional processing such as
two-phase commit protocols for handling commit actions in the presence of node
failures.



While we have argued that Linda implementations that use optimistic concur-
rency protocols to subsume transactional behavior are likely to be more robust
and exhibit better scalability than pessimistic variants, this argument depends
on the way tuples are manipulated by transactions. If many transactions compete
for a few tuples by attempting to update them in ways that cannot be expressed
under a serializable schedule, aborts are likely to be high. Such applications are
likely to exhibit better performance using a pessimistic protocol. Similarly, scal-
abilty limitations of pessimistic protocols that arise because of locking overheads
incurred to support test-for-presence or absence operations are irrelevant if ap-
plications do not employ these actions. In an optimistic concurrency protocol,
atomic propagation of updates from child to parent transactions when a com-
mit action occurs incurs a cost proportional to the amount of work performed
within the child transaction; we intend to explore implementation techniques to
quantify these different overheads in scalable distributed environments.
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