
Asynchronous Algorithms in MapReduce

Karthik Kambatla, Naresh Rapolu, Suresh Jagannathan, Ananth Grama

Department of Computer Science, Purdue University

{kkambatl, nrapolu, suresh, ayg}@cs.purdue.edu

Abstract—

Asynchronous algorithms have been demonstrated to im-
prove scalability of a variety of applications in parallel environ-
ments. Their distributed adaptations have received relatively
less attention, particularly in the context of conventional
execution environments and associated overheads. One such
framework, MapReduce, has emerged as a commonly used pro-
gramming framework for large-scale distributed environments.
While the MapReduce programming model has proved to be
effective for data-parallel applications, significant questions
relating to its performance and application scope remain
unresolved. The strict synchronization between map and reduce
phases limits expression of asynchrony and hence, does not
readily support asynchronous algorithms.

This paper investigates the notion of partial synchroniza-
tions in iterative MapReduce applications to overcome global
synchronization overheads. The proposed approach applies a
locality-enhancing partition on the computation. Map tasks
execute local computations with (relatively) frequent local
synchronizations, with less frequent global synchronizations.
This approach yields significant performance gains in dis-
tributed environments, even though their serial operation
counts are higher. We demonstrate these performance gains
on asynchronous algorithms for diverse applications, including
PageRank, Shortest Path, and K-Means. We make the following
specific contributions in the paper — (i) we motivate the
need to extend MapReduce with constructs for asynchrony,
(ii) we propose an API to facilitate partial synchronizations
combined with eager scheduling and locality enhancing tech-
niques, and (iii) demonstrate performance improvements from
our proposed extensions through a variety of applications from
different domains.

I. INTRODUCTION

Motivated by the large amounts of data generated by web-

based applications, scientific experiments, business transac-

tions, etc., and the need to analyze this data in effective,

efficient, and scalable ways, there has been significant recent

activity in developing suitable programming models, runtime

systems, and development tools. The distributed nature of

data sources, coupled with rapid advances in networking

and storage technologies naturally motivate abstractions for

supporting large-scale distributed applications.

Asynchronous algorithms have been shown to enhance

the scalability of a variety of algorithms in parallel en-

vironments. In particular, a number of unstructured graph

problems have been shown to utilize asynchrony effectively

to tradeoff serial operation counts with communication

costs. The increased communication costs in distributed

settings further motivates the use of asynchronous algo-

rithms. However, implementing asynchronous algorithms

within traditional distributed computing frameworks presents

challenges. These challenges, their solutions, and resulting

performance gains form the focus of this paper.

To support large-scale distributed applications in unreli-

able wide-area environments, Dean and Ghemawat proposed

a novel programming model based on maps and reduces,

called MapReduce [4]. The inherent simplicity of this pro-

gramming model, combined with underlying system sup-

port for scalable, fault-tolerant, distributed execution, make

MapReduce an attractive platform for diverse data-intensive

applications. Indeed, MapReduce has been used effectively

in a wide variety of data processing applications. Large

volumes of data processed at Google, Yahoo, Facebook,

etc. stand testimony to the effectiveness and scalability of

MapReduce. The open-source implementation of MapRe-

duce, Hadoop MapReduce1, serves as a development testbed

for a wide variety of distributed data-processing applications.

A majority of the applications currently executing in

the MapReduce framework have a data-parallel, uniform

access profile, which makes them ideally suited to map and

reduce abstractions. Recent research interest, however, has

focused on more unstructured applications that do not lend

themselves naturally to data-parallel formulations. Common

examples of these include sparse unstructured graph opera-

tions (as encountered in diverse domains including social

networks, financial transactions, and scientific datasets),

discrete optimization and state-space search techniques (in

business process optimization, planning), and discrete event

modeling. For these applications, there are two major unre-

solved questions: (i) can the existing MapReduce framework

effectively support such applications in a scalable manner?

and (ii) what enhancements to the MapReduce framework

would significantly enhance its performance and scalability

without compromising desirable attributes of programmabil-

ity and fault tolerance?

This paper primarily focuses on the second question

— namely, it seeks to extend the MapReduce semantics

to support specific classes of unstructured applications on

large-scale distributed environments. Recognizing that one

of the key bottlenecks in supporting such applications is

the global synchronization between the map and reduce

1Hadoop. http://hadoop.apache.org/mapreduce/

phases, it introduces notions of partial synchronization and

eager scheduling. The underlying insight is that for an

important class of applications, algorithms exist that do

not need (frequent) global synchronization for correctness.

Specifically, while global synchronizations optimize serial

operation counts, violating these synchronizations merely

increases operation counts without impacting correctness

of the algorithm. Common examples of such algorithms

include, computation of eigenvectors (pageranks) through

(asynchronous) power methods, branch-and-bound based

discrete optimization with lazy bound updates, computing

all-pairs shortest paths in sparse graphs, constraint labeling

and other heuristic state-space search algorithms. For such

algorithms, a global synchronization can be replaced by

concurrent partial synchronizations. However, these partial

synchronizations must be augmented with suitable local-

ity enhancing techniques to minimize their adverse effect

on operation counts. These locality enhancing techniques

typically take the form of min-cut graph partitioning and

aggregation in graph analysis, periodic quality equalization

in branch-and-bound, and other such operations that are

well known in the parallel processing community. Replacing

global synchronizations with partial synchronizations also

allows us to schedule subsequent maps in an eager fashion.

This has the important effect of smoothing load imbalances

associated with typical applications.

This paper combines partial synchronizations, locality

enhancement, and eager scheduling, along with algorithmic

asynchrony to deliver distributed performance improvements

of up to 800% (and beyond in some cases). Importantly,

our proposed enhancements to programming semantics do

not impact application programmability. We demonstrate

all of our results on an Amazon EC2 8-node cluster,

which involves real-world cloud latencies, in the context of

PageRank, Shortest Path, and clustering (K-Means) imple-

mentations. These applications are selected because of their

ubiquitous interaction patterns, and are representative of a

broad set of application classes.

The rest of the paper is organized as follows: section II

provides a more comprehensive background on MapReduce,

Hadoop, and motivates the problem; section III outlines

our primary contributions and their significance; section IV

provides an API to realize partial synchronizations; sec-

tion V discusses our implementations of the proposed API,

PageRank, Shortest Path and K-Means clustering in the

context of the API and analyze the performance gains of

our approach. We outline avenues for ongoing work and

conclusions in sections VIII and IX.

II. BACKGROUND AND MOTIVATION

The primary design motivation for the functional MapRe-

duce abstractions is to allow programmers to express simple

concurrent computations, while hiding the cumbersome de-

tails of parallelization, fault-tolerance, data distribution, and

load balancing in a single library [4]. The simplicity of the

API makes programming easy. Programs in MapReduce are

expressed as map and reduce operations. The map phase

takes in a list of key-value pairs and applies the programmer-

specified map function independently on each pair in the list.

The reduce phase operates on a list, indexed by a key, of

all corresponding values and applies the reduce function

on the values; and outputs a list of key-value pairs. Each

phase involves distributed execution of tasks (application

of the user-defined functions on a part of the data). The

reduce phase must wait for all the map tasks to complete,

since it requires all the values corresponding to each key.

In order to reduce the network overhead, a combiner is

often used to aggregate over keys from map tasks executing

on the same node. Fault tolerance is achieved through

deterministic-replay, i.e., re-scheduling failed computations

on another running node. Most applications require iterations

of MapReduce jobs. Once the reduce phase terminates,

the next set of map tasks can be scheduled. As may be

expected, for many applications, the dominant overhead in

the program is associated with the global synchronizations

between the map and reduce phases. When executed in

wide-area distributed environments, these synchronizations

often incur substantial latencies associated with underlying

network and storage infrastructure.

To alleviate the overhead of global synchronization,

we propose partial synchronizations (synchronization only

across a subset of maps) that take significantly less time

depending on where the maps execute. We observe that in

many parallel algorithms, frequent partial synchronizations

can be used to reduce the number of global synchronizations.

The resulting algorithm(s) may be suboptimal in serial

operation counts, but can be more efficient and scalable

in a MapReduce framework. A particularly relevant class

of algorithms where such tradeoffs are possible are iter-

ative techniques applied to unstructured problems (where

the underlying data access patterns are unstructured). This

broad class of algorithms underlies applications ranging

from PageRank to sparse solvers in scientific computing

applications, and clustering algorithms. Our proposed API

incorporates a two-level scheme to realize partial synchro-

nization in MapReduce, described in detail in section IV.

We illustrate the concept using a simple example — con-

sider PageRank computations over a network, where the rank

of a node is determined by the rank of its neighbors. In the

traditional MapReduce formulation, during each iteration,

map involves each node pushing its PageRank to all its

outlinks and reduce accumulates all neighbors’ contri-

butions to compute PageRank for the corresponding node.

These iterations continue until the PageRanks converge. An

alternate formulation would partition the graph; each map

task now corresponds to the local PageRank computation

of all nodes within the sub-graph (partition). For each of

the internal nodes (nodes that have no edges leaving the

partition), a partial reduction accurately computes the rank

(assuming the neighbors’ ranks were accurate to begin with).

On the other hand, boundary nodes (nodes that have edges

leading to other partitions) require a global reduction to

account for remote neighbors. It follows therefore that if

the ranks of the boundary nodes were accurate, ranks of

internal nodes can be computed simply through local itera-

tions. Thus follows a two-level scheme, wherein partitions

(maps) iterate on local data to convergence and then perform

a global reduction. It is easy to see that this two-level

scheme increases the serial operation count. Moreover, it

increases the total number of synchronizations (partial +

global) compared to the traditional formulation. However,

and perhaps most importantly, it reduces the number of

global reductions. Since this is the major overhead, the

program has significantly better performance and scalability.

Indeed optimizations such as these have been explored

in the context of traditional HPC platforms as well with

some success. However, the difference in overhead between

a partial and global synchronization in relation to the in-

tervening useful computation is not as large for HPC plat-

forms. Consequently, the performance improvement from

algorithmic asynchrony is significantly amplified on dis-

tributed platforms. It also follows thereby that performance

improvements from MapReduce deployments on wide-area

platforms, as compared to single processor executions are

not expected to be significant unless the problem is scaled

significantly to amortize overheads. However, MapReduce

formulations are motivated primarily by the distributed

nature of underlying data and sources, as opposed to the

need for parallel speedup. For this reason, performance

comparisons must be with respect to traditional MapReduce

formulations, as opposed to speedup and efficiency measures

more often used in the parallel programming community.

While our development efforts and validation results are

in the context of PageRank, K-Means and Shortest Path

algorithms, concepts of partial reductions combined with

locality enhancing techniques and eager map scheduling

apply to broad classes of iterative asynchronous algorithms.

III. TECHNICAL CONTRIBUTIONS

This paper makes the following specific contributions —

• Motivates the use of MapReduce for implementing

asynchronous algorithms in a distributed setting.

• Proposes partial synchronizations and an associated

API to alleviate the overhead due to the expensive

global synchronization between map and reduce

phases. Global synchronizations limit asynchrony.

• Demonstrates the use of partial synchronization and

eager scheduling in combination with coarse-grained,

locality enhancing techniques.

• Evaluates the applicability and performance improve-

ments due to the aforementioned techniques on a va-

riety of applications – PageRank, Shortest Path, and

K-Means.

IV. PROPOSED API

In this section, we present our API for the proposed partial

synchronization and discuss its effectiveness. Our API is

built on the rigorous semantics for iterative MapReduce, we

propose in the associated technical report [7]. As mentioned

earlier, our API for iterative MapReduce comprises a two-

level scheme — local and global MapReduce. We refer

to the regular MapReduce with global synchronizations

as global MapReduce, and MapReduce with local/partial

synchronization as local MapReduce. A global map takes a

partition as input, and involves invocation of local map and

local reduce functions iteratively on the partition. The local

reduce operation applies the specified reduction function

to only those key-value pairs emanating from local map

functions. Since partial synchronization suffices, local map

operations corresponding to the next iteration can be eagerly

scheduled. The local map and local reduce operations can

use a thread-pool to extract further parallelism.

Often, the local and global map/reduce operations are

functionally the same and differ only in the data they are

applied on. Given a regular MapReduce implementation,

it is fairly straight-forward to generate the local map and

local reduce functions using the semantics explained in the

technical report [7], thus not increasing the programming

complexity. In the traditional MapReduce API, the user pro-

vides map and reduce functions along with the functions

to split and format the input data. To generate the local map

and local reduce functions, the user must provide functions

for termination of global and local MapReduce iterations,

and functions to convert data into the formats required by

the local map and local reduce functions.

However, to accommodate greater flexibility, we propose

use of four functions — gmap, greduce, lmap and

lreduce; gmap invoking lmap and lreduce functions,

as described in section V. Functions Emit() and EmitIn-

termediate() support data-flow in traditional MapReduce.

We introduce their local equivalents — EmitLocal() and

EmitLocalIntermediate(). Function lreduce operates on

the data emitted through EmitLocalIntermediate(). At the

end of local iterations, the output through EmitLocal() is

sent to the greduce; otherwise, lmap receives it as input.

Section V describes our implementation of the API and our

implementations of PageRank, Shortest Path, and K-Means

using the proposed API; demonstrating its ease of use and

effectiveness in improving the performance of applications

using asynchronous algorithms.

V. IMPLEMENTATION AND EVALUATION

In this section, we describe our implementation of the API

and the performance benefits from the proposed techniques

of locality-enhanced partitioning, partial synchronization,

Table I
MEASUREMENT TESTBED, SOFTWARE

Amazon EC2 8 64 bit EC2 Compute Units
8 Large Instances 15 GB RAM, 4 x 420 GB storage

Software Hadoop 0.20.1, Java 1.6
Heap space 4 GB per slave

and eager scheduling. We consider three applications —

PageRank, Shortest Path, and K-Means to compare general

MapReduce implementations with their modified implemen-

tations.

Our experiments were run on an 8-node Amazon EC2

cluster of extra large instances. This reflects the character-

istics of a typical cloud environment. Also, it allows us to

monitor the utilization and execution of map and reduce

tasks. Table I presents the physical resources, software, and

restrictions on the cluster.

A. API Implementation

As in regular MapReduce, our execution also involves

map and reduce phases; each phase executing tasks on

nodes. Each map/reduce task involves the application of

gmap/greduce functions to corresponding data. Within the

gmap function we execute local MapReduce iterations.

gmap(xs : X list) {

while(no-local-convergence-intimated) {

for each element x in xs {

lmap(x); // emits lkey, lval

}

lreduce(); // operates on the output of lmap functions

}

for each value in lreduce-output{

EmitIntermediate(key, value);

}

}

Figure 1. Construction of gmap from lmap and lreduce

Figure 1 describes our construction of gmap from the

user-defined functions — lmap and lreduce. The argu-

ment to gmap is a <key, value> list(xs), on which the local

MapReduce operates. lmap takes an element of xs as input,

and emits its output by invoking EmitLocalIntermediate().

Once all the lmap functions execute, lreduce operates

on the local intermediate data. A hashtable is used to store

the intermediate and final results of the local MapReduce.

Upon local convergence, gmap outputs the contents of

this hashtable. greduce acts on gmap’s output. Such an

implementation allows the use of other optimizations like

combiners in conjunction. A combiner, as described in the

original MapReduce paper [4], operates on the output of all

gmap tasks on a single node to decrease the network traffic

during the synchronization.

The rest of the section describes benchmark applications,

their regular and eager (partial synchronization with ea-

ger scheduling) implementations, and corresponding perfor-

mance gains. We discuss PageRank in detail to illustrate our

approach; Shortest Path and K-Means are discussed briefly

in the interest of space.

B. PageRank

The PageRank of a node is the scaled sum of the PageR-

anks of all its incoming neighbors, given by the following

expression:

PRd = (1− χ) + χ ∗
∑

(s,d)ǫE

s.pagerank/s.outlinks (1)

where χ is the damping factor, s .pagerank and s .outlinks
correspond to the PageRank and the out-degree of the source

node, respectively.

The asynchronous PageRank algorithm involves an iter-

ative two step method. In the first step, the PageRank of

each node is sent to all its outlinks. In the second step,

the PageRanks received at each node are aggregated to

compute the new PageRank. The PageRanks change in each

iteration, and eventually converge to the final PageRanks.

For regular as well as eager implementations, we use a graph

represented as adjacency lists as input. All nodes have an

initial PageRank of 1. We define convergence by a bound on

the norm of difference (infinite norm of 10−5 in our case).

1) General PageRank: The general MapReduce imple-

mentation of PageRank iterates over a map task that emits

the PageRanks of all the source nodes to the corresponding

destinations in the graph, and a reduce task that accu-

mulates PageRank contributions from various sources to a

single destination. In the actual implementation, the map

function emits tuples of the type < dn, pn >, where dn is the

destination-node, and pn is the PageRank contributed to this

destination node by the source. The reduce task operates

on a destination node, gathering the PageRanks from the

incoming source nodes and computes a new PageRank. After

every iteration, the nodes have renewed PageRanks which

propagate through the graph in subsequent iterations until

they converge. One can observe that a small change in the

PageRank of a single node is broadcast to all the nodes in

the graph in successive iterations of MapReduce, incurring

a potentially significant cost.

Our baseline for performance comparison is a MapReduce

implementation for which maps operate on complete parti-

tions, as opposed to single node adjacency lists. We use this

as a baseline because the performance of this formulation

was noted to be on par or better than the adjacency-list

formulation. For this reason, our baseline provides a more

competitive implementation.

2) Eager PageRank: We begin our description of Eager

PageRank with an intuitive illustration of how the underly-

ing algorithm accommodates asynchrony. In a graph with

specific structure (say, a power-law type distribution), one

may assume that each hub is surrounded by a large number

of spokes, and that inter-component edges are relatively

fewer. This allows us to relax strict synchronization on inter-

component edges until the sub-graph in the proximity of a

hub has relatively self-consistent PageRanks. Disregarding

the inter-component edges does not lead to algorithmic

inconsistency since, after few local iterations of MapReduce

calculating the PageRanks in the sub-graph, there is a global

synchronization (following a global map), leading to a dis-

semination of the PageRanks in this sub-graph to other sub-

graphs via inter-component edges. This propagation imposes

consistency on the global state. Consequently, we update

only the (neighboring) nodes in the smaller sub-graph. We

achieve this by a set of iterations of local MapReduce as

described in the API implementation. This method leads

to improved efficiency if each global map operates on a

component or a group of topologically localized nodes.

Such topology is inherent in the way we collect data as

it is crawler-induced. One can also use one-time graph

partitioning using tools like Metis2. We use Metis since our

test data set is not partitioned a-priori.

In the Eager PageRank implementation, the map task

operates on a sub-graph. Local MapReduce, within the

global map, computes the PageRank of the constituent nodes

in the sub-graph. Hence, we run the local MapReduce to

convergence. Instead of waiting for all the other global

map tasks operating on different sub-graphs, we eagerly

schedule the next local map and local reduce iterations on

the individual sub-graph inside a single global map task.

Upon local convergence on the sub-graphs, we synchronize

globally, so that all nodes can propagate their computed

PageRanks to other sub-graphs. This iteration over global

MapReduce runs to convergence. Such an Eager PageR-

ank incurs more computational cost, since local reductions

may proceed with imprecise values of global PageRanks.

However, the PageRank of any node propagated by the

local reduce is representative, in a way, of the sub-graph

it belongs to. Thus, one may observe that the local reduce

and global reduce functions are functionally identical. As the

sub-graphs (partitions) have approximately the same number

of edges, we expect similar number of local iterations in

each global map. However, if the convergence rates are very

different, the global synchronization requires waiting for all

partitions to converge.

Note that in Eager PageRank, local reduce waits on a

local synchronization barrier, while the local maps can be

implemented using a thread pool on a single host in a cluster.

The local synchronization does not incur any inter-host

2METIS. http://glaros.dtc.umn.edu/gkhome/views/metis/

Table II
PageRank INPUT GRAPH PROPERTIES

Input graphs Graph A Graph B

Nodes 280,000 100,000
Edges 3 million 3 million
Damping factor 0.85 0.85

communication delays. This makes associated overheads

considerably lower than the global overheads.

3) Input data: Table II describes the two graphs used as

input for our experiments on PageRank, both conforming

to power-law distributions. Graph A has 280K nodes and

about 3 million edges. Graph B has 100K nodes and about

3 million edges. We use preferential attachment [3] to

generate the graphs using igraph3. The algorithm used to

create the synthetic graphs is described below, along with

its justification.

Preferential attachment based graph generation.

Test graphs are generated by adding vertices one at a

time — connecting them to numConn vertices already in

the network, chosen uniformly at random. For each of these

numConn vertices, numIn and numOut of its inlinks and

outlinks are chosen uniformly at random and connected to

the joining vertex. This is done for all the newly connected

nodes to the incoming vertex. This method of creating a

graph is closely related to the evolution of online communi-

ties, social networks, the web, etc. This procedure increases

the probability of highly reputed nodes getting linked to

new nodes, since they have greater likelihood of being in

an inlink from other randomly chosen sites. The best-fit

for inlinks in the two input graphs yields the power-law

exponent for the graphs, demonstrating their conformity with

the hubs-and-spokes model. Very few nodes have a very high

inlink values, emphasizing our point that very few nodes

require frequent global synchronization. More often than

not, even these nodes (hubs) mostly have spokes as their

neighbors.

Crawlers inherently induce locality in the graphs as they

crawl neighborhoods before crawling remote sites. We parti-

tion graphs using Metis. A good partitioning algorithm that

minimizes edge-cuts has the desired effect of reducing global

synchronizations as well. This partitioning is performed

off-line (only once) and takes about 5 seconds which is

negligible compared to the runtime of PageRank, and hence

is not included in the reported numbers.

4) Results: To demonstrate the dependence of perfor-

mance on global synchronizations, we vary the number

of iterations of the algorithm by altering the number of

partitions the graph is split into. Fewer partitions result

in a smaller number of large sub-graphs. Each map task

does more work and would normally result in fewer global

3The Igraph Library. http://igraph.sourceforge.net/

 4

 8

 16

 32

 64

 128

100 200 400 800 1600 3200 6400

#
 I
te

ra
ti
o
n
s

Partitions

Eager General

Figure 2. PageRank: Number of Iterations to converge(on y-axis)
for different number of Partitions(on x-axis) for Graph A

 4

 8

 16

 32

 64

 128

100 200 400 800 1600 3200 6400

#
 I
te

ra
ti
o
n
s

Partitions

Eager General

Figure 3. PageRank: Number of Iterations to converge(on y-axis)
for different number of Partitions(on x-axis) for Graph B

iterations in the relaxed case. The fundamental observation

here is that it takes fewer iterations to converge for a

graph having already converged sub-graphs. The trends are

more pronounced when the graph follows the power-law

distribution more closely. In either case, the total number

of iterations are fewer than in the general case. For Eager

PageRank, if the number of partitions is decreased to one,

the entire graph is given to one global map and its local

MapReduce would compute the final PageRanks of all the

nodes. If the partition size is one, each partition gets a single

adjacency list; Eager PageRank becomes General PageRank,

because each map task operates on a single node.

Figures 2 and 3 show the number of global iterations taken

by the eager and general implementations of PageRank on

input graphs A and B that we use for input, as we vary

the number of partitions. The number of iterations does not

change in the general case, since each iteration performs

the same work irrespective of the number of partitions and

partition sizes.

The results for Eager PageRank are consistent with our

expectation. The number of global iterations is low for

 100

 1000

 10000

100 200 400 800 1600 3200 6400

T
im

e
 (

s
e
c
o
n
d
s
)

Partitions

Eager General

Figure 4. PageRank: Time to converge(on y-axis) for various
number of Partitions(on x-axis) for Graph A

 100

 1000

 10000

100 200 400 800 1600 3200 6400

T
im

e
 (

s
e
c
o
n
d
s
)

Partitions

Eager General

Figure 5. PageRank: Time to converge(on y-axis) for various
number of Partitions(on x-axis) for Graph B

fewer partitions. However, it is not strictly monotonic since

partitioning into different number of partitions results in

varying number of inter-component edges.

The time to solution depends strongly on the number

of iterations but is not completely determined by it. It is

true that the global synchronization costs would decrease

when we reduce the number of partitions significantly;

however, the work to be done by each map task increases

significantly. This increase potentially results in increased

cost of computation, more so than the benefit of decreased

communication. Hence, there exists an optimal number of

partitions for which we observe best performance.

Figures 4 and 5 show the runtimes for the eager and

general implementations of PageRank on graphs A and B

with varying number of partitions. These figures highlight

significant performance gains from the relaxed case over the

general case for both graphs. On an average, we observe 8x

improvement in running times.

C. Shortest Path

Shortest Path algorithms are used to compute the shortest

paths and distances between nodes in directed graphs. The

graphs are often large and distributed (for example, net-

works of financial transactions, citation graphs) and require

computation of results in reasonable (interactive) times. For

our evaluation, we consider Single Source Shortest Path

algorithm in which we find the shortest distances to every

node in the graph from a single source. All-Pairs Shortest

Path has a related structure, and a similar approach can be

used.

Distributed implementation of the commonly used Dijk-

stra’s algorithm for Single Source Shortest Path allows asyn-

chrony. The algorithm maintains the shortest known distance

of each node in the graph from the source (initialized to

zero for the source and infinity for the rest of the nodes).

Shortest distances are updated for each node as and when a

new path to the node is discovered. After a few iterations, all

paths to all nodes in the graph are discovered, and hence the

shortest distances converge. Distributed implementations of

the algorithm allow partitioning of the graph into sub-graphs,

and computing shortest distances of nodes using the paths

within the sub-graph asynchronously. Once all the paths in

the sub-graph are considered, a global synchronization is

required to account for the edges across sub-graphs.

1) Implementation: In the general implementation of Sin-

gle Source Shortest Path in MapReduce, each map operates

on one node, say u (would take its adjacency list as input);

and for every destination node v, emits the sum of the

shortest distance to u and the weight of the edge (u, j) in
consideration. This is the shortest distance to the destination

node v on a known path through the node n. Each reduce
function operates on one node (receives weights of paths

through multiple nodes as input); finds the minimum of the

different paths to find the shortest path until that iteration.

Convergence takes a number of iterations — the shortest

distances of nodes from the source would not change for

subsequent iterations. Again for the base case (like in

PageRank), we take a partition as input instead of a single

node’s adjacency list, without any loss in performance.

In the eager implementation of Single Source Shortest

Path, each map takes a sub-graph as input; and through

iterations of local map and local reduce functions, computes

the shortest distances of nodes in the sub-graph from the

source through other nodes in the same sub-graph. A global

reduce ensues upon convergence of all local MapReduce

operations. Since most real-world graphs are heavy-tailed,

edges across partitions are rare and hence we expect a

decrease in the number of global iterations, with bulk of

the work performed in the local iterations.

2) Results: We evaluate Single Source Shortest Path on

graph A used in the evaluation of PageRank. We assign

random weights to the edges in the graphs.

Figure 6 shows the number of global iterations (synchro-

nizations) Single Source Shortest Path takes to converge

for varying number of partitions in graph A. Clearly, the

eager implementation requires fewer global iterations for

 8

 16

 32

 64

 128

 256

100 200 400 800 1600 3200 6400

#
 I
te

ra
ti
o
n
s

Partitions

Eager General

Figure 6. Single Source Shortest Path: Number of Iterations to
converge(on y-axis) for different number of Partitions(on x-axis)
for Graph A

 100

 1000

 10000

100 200 400 800 1600 3200 6400

T
im

e
 (

s
e
c
o
n
d
s
)

Partitions

Eager General

Figure 7. Single Source Shortest Path: Time to converge(on y-axis)
for various number of Partitions(on x-axis) for Graph A

fewer partitions. Again, the iteration count is not strictly

monotonic, due to differences in partitioning. The number

of global iterations in the general implementation remains

the same.

Figure 7 shows the convergence time for Single Source

Shortest Path for varying number of partitions in graph A. As

observed in PageRank, though the running time depends on

the number of global iterations, it is not entirely determined

by it. As in the previous case, we observe significant

performance improvements amounting to 8x speedup over

the general implementation.

D. K-Means

K-Means is a commonly-used technique for unsupervised

clustering. Implementation of the algorithm in the MapRe-

duce framework is straightforward as outlined in [10, 2].

Briefly, in the map phase, every point chooses its closest

cluster centroid and in the reduce phase, every centroid

is updated to be the mean of all the points that chose

the particular centroid. The iterations of map and reduce

phases continue until the centroid movement is below a

 1

 2

 4

 8

 16

 32

0.1 0.01 0.001 0.0001

#
 I
te

ra
ti
o
n
s

Threshold (Delta)

Eager General

Figure 8. Iterations-to-Converge for Varying thresholds

given threshold. Euclidean distance metric is usually used

to calculate the centroid movement.

In Eager K-Means, each global map handles a unique

subset of the input points. The local map and local reduce

iterations inside the global map, cluster the given subset of

the points using the common input-cluster centroids. Once

the local iterations converge, the global map emits the input-

centroids and their associated updated-centroids. The global

reduce calculates the final-centroids, which is the mean of all

updated-centroids corresponding to a single input-centroid.

The final-centroids form the input-centroids for the next

iteration. These iterations continue until the input-centroids

converge.

The algorithm used in the eager approach to K-Means

is similar to the one recently proposed by Tom-Yov and

Slonim [12] for pairwise clustering. An important obser-

vation from their results is that the input to the global

map should not be the same subset of the input points

in every iteration. Every few iterations, the input points

need to be partitioned differently across global maps so as

to avoid the algorithm’s move towards local optima. Also,

the convergence condition includes detection of oscillations

along with the Euclidean metric.

We use the K-Means implementation in the normal

MapReduce framework from the Apache Mahout project4.

Sampled US Census data of 1990 from the UCI Machine

Learning repository5 is used as input for comparison be-

tween the general and eager approaches. The sample size

is around 200K points each with 68 dimensions. For both

General and Eager K-Means, initial centroids are chosen

at random for the sake of generality. Algorithms such as

canopy clustering can be used to identify initial centroids

for faster execution and better quality of final clusters.

Figure 8 shows the number of iterations required to

converge for different thresholds of convergence, with a

4Apache Mahout. http://lucene.apache.org/mahout/
5US Census Data, 1990. UCI Machine Learning Repository:

http://kdd.ics.uci.edu/databases/census1990/USCensus1990.html

 1

 4

 16

 64

 256

 1024

0.1 0.01 0.001 0.0001

T
im

e
 (

s
e
c
o
n
d
s
)

Threshold (Delta)

Eager General

Figure 9. Time-to-Converge for Varying thresholds

fixed number of partitions (52). It is evident that it takes

more iterations to converge for smaller threshold values.

However, Eager K-Means converges in less than one-third

of the global iterations taken by general K-Means. Figure 9

shows the time taken to converge for different thresholds. As

expected, the time to converge is proportional to the number

of iterations. It takes longer to converge for smaller thresh-

old values. Partial synchronizations lead to a performance

improvement of about 3.5x on average compared to general

K-Means.

E. Broader Applicability

While we present results for only three applications, our

approach is applicable to a broad set of applications that

admit asynchronous algorithms. These applications include

— all-pairs shortest path, network flow and coding, neural-

nets, linear and non-linear solvers, and constraint matching.

VI. DISCUSSION

We now discuss some important aspects of our results —

primarily, (i) does our proposed approach generalize beyond

small classes of applications? (ii) what impact does it have

on the overall programmability? and (iii) how does it interact

with other aspects, such as fault tolerance and scalability, of

the underlying system?

Generality of Proposed Extensions. Our partial synchro-

nization techniques can be generalized to broad classes of

applications. PageRank, which relies on an asynchronous

mat-vec, is representative of eigenvalue solvers (computing

eigenvectors using the power method of repeated multipli-

cations by a unitary matrix). Asynchronous mat-vecs form

the core of iterative linear system solvers. Shortest Path

represents a class of applications over sparse graphs that

includes minimum spanning trees, transitive closure, and

connected components. Graph alignment through random-

walks and isoranks can be directly cast into our framework.

A wide range of applications that rely on the spectra of

a graph can be computed using this algorithmic template.

Our methods directly apply to neural-nets, network flow,

and coding problems, etc. Asynchronous K-Means clustering

immediately validates utility of our approach in various

clustering and data-mining applications. The goal of this

paper is to examine tradeoffs of serial operation counts

and distributed performance. These tradeoffs manifest them-

selves in wide application classes.

Programming Complexity. While allowing partial syn-

chronizations and relaxed global synchronizations requires

slightly more programming effort than traditional MapRe-

duce, we argue that the programming complexity is not sub-

stantial. This is manifested in the simplicity of the semantics

in the technical report [7] and the API proposed in the paper.

Our implementations of the benchmark problems did not

require modifications of over tens of lines of MapReduce

code.

Other Optimizations. Few optimizations have been pro-

posed for MapReduce for specific cases. Partial synchroniza-

tion techniques do not interfere with these optimizations.

eg., Combiners are used to aggregate intermediate data

corresponding to one key on a node so as to reduce the

network traffic. Though it might seem our approach might

interfere with the use of combiners, combiners are applied to

the output of global map operations, and hence local reduce

(part of the map) has no bearing on it.

Fault-tolerance. While our approach relies on existing

MapReduce mechanisms for fault-tolerance, in the event of

failure(s), our recovery times may be slightly longer, since

each map task is coarser and re-execution would take longer.

However, all of our results are reported on a production

cloud environment, with real-life transient failures. This

leads us to believe that the overhead is not significant.

Scalability. In general, it is difficult to estimate the re-

sources available to, and used by a program executing in

the cloud. In order to get a quantitative understanding of

our scalability, we ran a few experiments on the 460-node
cluster (provided by the IBM-Google consortium as part

of the CluE NSF program) using larger data sets. Such

high node utilization incurs heavy network delays during

copying and merging before the reduce phase, leading to

increased synchronization overheads. By showing significant

performance improvements on a huge data set even in

a setting of such large scale, our approach demonstrates

scalability.

VII. RELATED WORK

Several research efforts have targeted various aspects of

asynchronous algorithms. These include novel asynchronous

algorithms for different problems [9, 1], analysis of their

convergence properties, and their execution on different

platforms with associated performance gains. Recently, it

has been shown that asynchronous algorithms for iterative

numerical kernels significantly enhance performance on

multicore processors [8]. In shared-memory systems, apart

from the reduced synchronization costs, reduction in the

off-chip memory bandwidth pressure due to increased data

locality is a major factor for performance gains. Though the

execution of asynchronous iterative algorithms on distributed

environments has been proposed, constructs for asynchrony,

impact on performance, and interactions with the API have

not been well investigated. In this paper, we demonstrate the

use of asynchronous algorithms in a distributed environment,

prone to faults. With intuitive changes to the programming

model of MapReduce, we show that data locality along

with asynchrony can be safely exploited. Furthermore, the

cost of synchronization (due to heavy network overheads)

is significantly higher in a distributed setting compared to

tightly-coupled parallel computers, leading to higher gains

in performance and scalability.

Over the past few years, the MapReduce programming

model has gained attention primarily because of its simple

programming model and the wide range of underlying

hardware environments. There have been efforts exploring

both the systems aspects as well as the application base for

MapReduce. A number of efforts [6, 11, 14] target optimiza-

tions to the MapReduce runtime and scheduling systems.

Proposals include dynamic resource allocation to fit job

requirements and system capabilities to detect and eliminate

bottlenecks within a job. Such improvements combined with

our efficient application semantics, would significantly in-

crease the scope and scalability of MapReduce applications.

The simplicity of MapReduce programming model has also

motivated its use in traditional shared memory systems [10].

A significant part of a typical Hadoop execution cor-

responds to the underlying communication and I/O. This

happens even though the MapReduce runtime attempts to

reduce communication by trying to instantiate a task at the

node or the rack where the data is present. Afrati et al.6 study

this important problem and propose alternate computational

models for sorting applications to reduce communication

between hosts in different racks. Our extended semantics

deal with the same problem but, from an application’s per-

spective, independent of the underlying hardware resources.

Recently, various forms of partial aggregations, similar

to combiners in the MapReduce paper [4], have been

shown to significantly reduce network overheads during

global synchronization [13]. These efforts focus on different

mathematical properties of aggregators (commutative and

associative), which can be leveraged by the runtime to

dynamically setup a pipelined tree-structured partial aggre-

gation. These efforts do not address the problem of reducing

the number of global synchronizations. In contrast, we focus

on the algorithmic properties of the application to reduce

the number of global synchronizations and its associated

6Foto N. Afrati and Jeffrey D. Ullman: A New Computation Model for
Rack-based Computing. http://infolab.stanford.edu/ũllman/pub/mapred.pdf

network overheads. By combining optimizations such as

tree-structured partial aggregation, with capabilities of the

proposed local reduce operations, we can reduce network

overhead further.

VIII. FUTURE WORK

The myriad tradeoffs associated with diverse overheads on

different platforms pose intriguing challenges. We identify

some of these challenges as they relate to our proposed

solutions:

Generality of semantic extensions. We have demonstrated

the use of partial synchronization and eager scheduling in

the context of few applications. While we have argued in

favor of their broader applicability, these claims must be

quantitatively established. Currently, partial synchronization

is restricted to a map and the granularity is determined by

the input to the map. Taking the configuration of the system

into account, one may support a hierarchy of synchroniza-

tions. Furthermore, several task-parallel applications with

complex interactions are not naturally suited to traditional

MapReduce formulations. Do the proposed set of semantic

extensions apply to such applications as well?

Optimal granularity for maps. As shown in our work,

as well as the results of others, the performance of a

MapReduce program is a sensitive function of map gran-

ularity. An automated technique, based on execution traces

and sampling [5] can potentially deliver these performance

increments without burdening the programmer with locality

enhancing aggregations.

System-level enhancements. Often times, when executing

iterative MapReduce programs, the output of one iteration

is needed in the next iteration. Currently, the output from

a reduction is written to the (distributed) file system (DFS)

and must be accessed from the DFS by the next set of maps.

This involves significant overhead. Using online data struc-

tures (for example, Bigtable) provides credible alternatives;

however, issues of fault tolerance must be resolved.

IX. CONCLUSION

In this paper, we motivate MapReduce as a platform for

distributed execution of asynchronous algorithms. We pro-

pose partial synchronization techniques to alleviate global

synchronization overheads. We demonstrate that when com-

bined with locality enhancing techniques and algorithmic

asynchrony, these extensions are capable of yielding signifi-

cant performance improvements. We demonstrate our results

in the context of the problem of computing PageRanks on

a web graph, find the Shortest Path to any node from a

source, and K-Means clustering on US census data. Our

results strongly motivate the use of partial synchronizations

for broad application classes. Finally, these enhancements in

performance do not adversely impact the programmability

and fault-tolerance features of the underlying MapReduce

framework.

ACKNOWLEDGMENTS

The authors would like to acknowledge Mr. Ashish

Gandhe for discussions and for his input on coding vari-

ous applications. This work was supported in part by the

National Science Foundation under grant IIS-0844500.

REFERENCES

[1] J.M. Bahi. Asynchronous iterative algorithms for non-

expansive linear system. J. Parallel Distrib. Comput.,

60(1), 2000.

[2] C.-T Chu, S.K. Kim, Y.-A. Lin, Y. Yu, G. Bradski,

A.Y. Ng, and K. Olukotun. Map-reduce for machine

learning on multicore. Advances in Neural Information

Processing Systems 19, 2007.

[3] Price D. J. de S. A general theory of bibliometric

and other cumulative advantage processes. J. of the

American Society for Information Science, Vol 27, 292-

306, 1976.

[4] J. Dean and S. Ghemawat. Mapreduce: Simplified data

processing on large clusters. USENIX OSDI, 2004.

[5] R.O. Duda, P.E. Hart, and D.G. Stork. Chapter 8.

pattern classication. A Wiley-Interscience Publication,

2001.

[6] K. Kambatla, A. Pathak, and H. Pucha. Towards

optimizing hadoop provisioning for the cloud. USENIX

HotCloud, 2009.

[7] K. Kambatla, N. Rapolu, S. Jagannathan, and

A. Grama. Relaxed synchronization and eager schedul-

ing in mapreduce. Purdue University Technical Report

CSD TR #09-010, 2009.

[8] L. Liu and Z. Li. Improving parallelism and locality

with asynchronous algorithms. ACM PPoPP, 2010.

[9] J.C. Miellou, D. El Baz, and P. Spiteri. A new class of

asynchronous iterative algorithms with order intervals.

Math. Comput., 67(221), 1998.

[10] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski,

and C. Kozyrakis. Evaluating mapreduce for multi-core

and multiprocessor system. IEEE HPCA, 2007.

[11] T. Sandholm and K. Lai. Mapreduce optimization using

dynamic regulated prioritization. ACM SIGMETRIC-

S/Performance ’09, 2009.

[12] E. Yom-tov and N. Slonim. Parallel pairwise clustering.

SDM, 2009.

[13] Y. Yu, P.K. Gunda, and M. Isard. Distributed ag-

gregation for data-parallel computing: interfaces and

implementations. ACM SOSP, 2009.

[14] M. Zaharia, A. Konwinski, A. Joseph, R. Katz, and

I. Stoica. Improving mapreduce performance in het-

erogeneous environments. USENIX OSDI, 2008.

