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Abstract

Debugging concurrent programs is difficult. This is prihabe-
cause the inherent non-determinism that arises becauszhed-s
uler interleavings makes it hard to easily reproduce bugsrttay
manifest only under certain interleavings. The problemxescer-
bated in multi-core environments where there are multipred-
ulers, one for each core. In this paper, we propose a reptioduc
technique for concurrent programs that execute on muig-ptat-
forms. Our technique performs a lightweight analysis ofikinig
execution that occurs in a multi-core environment, and trsese-
sult of the analysis to enable reproduction of the bug in glsin
core system, under the control of a deterministic scheduler
More specifically, our approach automatically identifiesexe-
cution point in the re-execution that corresponds to tHarapoint.
It does so by analyzing the failure core dump and leveragitegla
nique calledcexecution indexinghat identifies a related point in the
re-execution. By generating a core dump at this point, angpeo-
ing the differences betwen the two dumps, we are able to guide
search algorithm to efficiently generate a failure inducolgedule.
Our experiments show that our technique is highly effecive has
reasonable overhead.

Categories and Subject Descriptors  D.3.4 [Programming Lan-
guaget Processors—Debuggers; D.2Sdftware Engineerifg
Testing and Debugging—Debugging aids, Dumps, Tracing

General Terms  Algorithms, Verification

Keywords concurrency bugs, reproduction, execution indexing,
multi-core, Heisenbugs

1. Introduction

Much of the complexity in debugging concurrent programsnste
from non-determinism that arises from scheduler inteitegs/ (in
single core environments) and true parallel evaluationnguriti-
core settings); these interleavings are often difficult tecisely
reproduce when debugging an erroneous program. Concyrrenc
errors that occur under certain interleavings, but whighabrsent
under others, are called Heisenbugs.
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In single-core environments, Heisenbugs can sometimes-be r
paired by recording all scheduler decisions [7] such thatfaiiied
execution can be faithfully replayed and examined. Unfuataly,
this approach does not easily generalize to parallel noolte en-
vironments where there are multiple schedulers, one fdr eare.
When two operations executed in parallel on different caceess
shared state, it is necessary to record the order in whictethe-
tions are performed; simply recording the thread scheduleazh
core does not provide this level of detail. Instructionelemnoni-
toring that records the order in which accesses to sharéables
occur [4, 8, 28, 18, 16] is expensive, however, and ofteniregu
hardware support, limiting its applicability.

There has been significant recent progress in testing con-
current programs on single-core systems that perform ar-(use
specified) bounded search of possible interleavings. Bysseich
as (HEss|[17], CTrigger [22] and randomization techniques [27]
leverage specific characteristics of concurrency-reléaédres to
guide this exploration. For example HESSis predicated on the
assumption that many concurrency failures can often becewlu
by injecting a few preemptions; CTrigger is based on theragsu
tion that errors in concurrent programs often arise becaedk
defined access patterns for shared variables are violaszhude
these built-in assumptions permeate their design, thesnvmetuite
differently from model-checking approaches which atterptx-
plore the entire space of interleavings,and face subsatestala-
bility problems as a result. Regardless of the specific tecten
existing approaches are not geared towaggsoducingconcur-
rency bugs in multi-core environments since they operatie mda
priori knowledge of specific failures. Their generality, while fuse
for discovering new bugs, is less beneficial for reprodugingwvn
ones.

This paper targets the problem of reproducing Heisenbugs in
parallel environments. Our technique combines lightweggtaly-
sis of a failure core dump with a directed search algorithat tises
the results of the analysis to construct a schedule thatganduce
the bug in a single-core environment. Notably, our techmidaes
not assume low level logging or hardware support in therfgili
run, as long as core dumps can be generated when a failure is en
countered, and the failure inducing program inputs ardatvia. It
requires very little program instrumentation and involmesmodi-
fications to the underlying thread scheduler. Indeed, progrcan
run on multiple cores with real concurrency in a completedynmal
fashion.

Our approach assumes core dumps will be generated when pro-
grams fail. Core dumps are expected to contain a complefe sna
shot of the program state at the point of the failure, incigdieg-
ister values, the current calling context, the virtual addrspace,
and so on. Given a core dump, our technique reverse engiaeers



highly precise identification of the failure point that pides sub-
stantially greater precision than what can be derived usisigthe
program counter (PC) and calling context. We leverage aniqak
called execution indexin@l) [29]. El generates a canonical and
unique identification of an execution point, called théex which
can be used to locate the corresponding poirdther executions
We present an algorithm to reverse engineer the index obihed
point from a core dump.

In the reproduction phase, the program is executed with the
same input on a single core under a deterministic schediilere
our technique is geared towards Heisenbugs which by thairaa
are expected to occur rarely, it is very likely that the seagbre run
does not reproduce the failure. However, using index inédiom
gleaned from the core dump, our technique can locate the poin
in the passing (re-executed) run that corresponds mostlyglts
the failure point. A core dump is generated at this point aomd-c
pared to the failure core dump. The difference between tlee tw
core dumps, especially with respect to shared variablesale a
wealth of information regarding salient differences betw¢hem.
We enhance the @=ssalgorithm to leverage this information to
efficiently construct a failure inducing schedule from tpésnt.

Our contributions are summarized as follows.

¢ \We propose a novel concurrency failure reproduction tegkei
that has negligible burden on concurrent program execution
in multi-core environments. Our technique takes a failec
dump and generates a failure inducing schedule.

e \We re-execute the program on a single core; we refer to this
re-execution as thpassing runWe leverage EI to pinpoint the
execution point in the passing run that corresponds to theda
point in the failing run. We propose an algorithm to reverse
engineer the failure index from the core dump. We also devise
an algorithm that identifies the corresponding failure p@in
the passing run.

¢ \We propose to generate a core dump in the corresponding point

in the passing run and compare it to the failure core dump. We
study two strategies to prioritize important value diffeces.
One is based on temporal distance to the failure and the isther
based on program dependences.

e We propose an algorithm based on&ssthat leverages value
difference information to quickly find a failure inducinghsm-
ule.

e We conduct experiments to evaluate the cost and efficacy of
our technique. The results arysql , apache, and splash-
Il programs show that our technique entails 1.6% overhead on
production runs. The experiment on a set of real concurrency
bugs onnysql andapache demonstrates that our technique
achieves orders of magnitude reduction on the number oflsche
ules needed to be explored and on the time required to explore
them, incurring only modest cost during the reproductioasgh

2. Overview

Consider the example in Fig. 1. Suppose two distinct threxes
ecute functionsr1() andT2(), resp. Variablex and arraya are
shared, pointep is local toT1. Depending on the value af i ],
pointerp may be set to 0 at line &; is used as a flag to indicate if
p is a null pointer. The de-reference inside functign is guarded
by ! x at line 11. The problem with this program is that the write to
x at 7 and the read at 11 are not atomic; thus, there is a race®etw
the read ofx at line 11 and the write performed by at line 21.
One possible fix is to enlarge the atomic region guardetdak
to include 11 and use the same lock to guard the writeitoT2.

A failing execution is shown in Fig. 2. Suppose the two theead
execute in parallel. In the execution shown in (a), the lo@zated

1. void T1() { 14. volatile int x, a[...];
2. for(i=...){ 15.
3. x=0; 16. void F (Node * p) {
4 p=&.. 17. p—..;
5 acquire(lock); 18. }
if (a[i]...) { 19.
20. void T2 () {
21 x=0;

.

if ;
Should be atomic

Figure 1. Example Code.

by T1 iterates twice. In the second iteratignjs set to 0 anc is

set to 1 at®). However,x is undesirably reset &), resulting in
the predicate a© taking the true branch and eventually causing a
null pointer dereference during the evaluatiorrett line 12. When
the failure occurs, a core dump is generated that recordsitinent
execution context, register values, and the contents ofanem

In the debugging phase, we re-execute the same program with
the same input. Our goal in this phase is not to reproducertbg e
but to construct a passing run under the control of a detéstign
scheduler. The execution shown in Fig. 2 (b) result34nbeing
scheduled after1; this in turn leads to the predicate @& evalu-
ating tof al se, ensuring the program completes correctly. Given
the passing run, we can now compare its state with the stdke of
failing run to reproduce the failure.

Our technique consists of three steps. In the first stepalyaas
the core dump to uniquely identify the execution point whigre
program crashed (poiri®) and tries to locate the same (closest)
point in the passing run. In our example, the same point does n
occur in the passing run. The closest (temporal) poitdis

Note that using calling contexts as an abstraction of these p
gram points is not very accurate. Assume in the first itenatiche
loop inT1 shown in Fig. 2(a), the predicate afi ] takes the false
branch so that has the value of 0, leading to the predicate at 11
taking the true branch, resulting in the pointer being deremced
insideF() . When the pointer is de-referenced, the calling context
is the same as the context in the second iteration that sasttie
failure, namelymai n — T1 — F.

To gain greater precision, we leverage a canonical exetutio
point representation callegkecution indexing29]. An execution
point is uniquely represented by itsdex In this paper, we devise
an algorithm to reverse engineer the index of the failuratfoom
the failure core dump. The failure index is used to find theeor
sponding point or the closest corresponding point in thesipgs
run. Such a point is callethe aligned poinin this paper. In our
example, since the predicate@®t does not take the true branch, it
serves the role of the aligned point since it is the pointetof the
failure point in the erroneous run.

In the second step, a core dump is generated at the aligned
point (in the passing run), het®. The core dump is compared to
the failure core dump to identify the variables, particlylahared
variables, that have different values across the two ruhgsé&
value differences are the result of schedule differencesour
example, the salient value difference isxgras highlighted in the
two core dumps.

In the third step, a schedule permutation algorithm in thgtsp
of CHESS[17] is used to permute the schedule in the passing run
with the goal of inducing the failure. As the passing run ctetgs
successfully, the standardH€ssalgorithm would try to generate
preemptions at all synchronization points in the passing of
which there may be many. In comparison, with the identifarati



T1 T2
2. |for (i=1) T1 [gor i=1) Tl
for (i=1)
2. (for (i=2) for (i=2)
3. x=0; x=0; for (i=2)
4. p=&...; p=&...; x=0;
5. | acquire(lock); acquire(lock); =&
6. | if(a[i]...) if (a[i]...) acquire(lock);
7. =1; @ x=1; if (afi]...)
8. p=0; G p=0; x=1;
10.| release(lock); > E) release(lock); p=0;
11| if (Ix) if(1X) <—1o| preemption ——release(lock);
2 B — ST
17. crashed iF (%)
T1
core dump core dump F(p);
(Context: main—>T1—>F—>l7\ [Context: main—T1—11 ) crashed pP—...;

=t 4, {3

afl={{...}, {...}}

0 [0 =] )

0 [t [=2] )

(a) Failing run on multicores

(b) Passing run on a single core

(c) Reproduction

Figure 2. Overview. Plain boxes represent executionsfshaded boxes represent executionsfrounded boxes represent core dumps;

of the aligned point and the core dump analysis, our algoritn
focus on the set of synchronizations close to the alignedtpoi
and it can selectively inject preemptions at those poirkslyi
to manifest the observed value differences, substantiatlycing

the search space that must be explored. In our example, there

are potentially five preemption points i1, corresponding to the
beginning of T1 and theacquire andrel ease operations in
the two iterations of the loop. Our algorithm concludes ttiet
rel ease(| ock) operation at® is the closest synchronization
point that influences. Consequently, the scheduler is instrumented
to inject a preemption right after the lock release. By d@ngthe
failure is successfully reproduced.

3. Reverse Engineering Precise Failure Points

Identifying the execution point in a passing run that cqroesls to
the failure point, i.e., the aligned point, serves two catigoals:
first, it locates the set of synchronizations that are clas¢hée
aligned point; second, it helps identify the salient vaegahthat
have faulty values by comparing the core dump at the aligoéad p
and the failure core dump. To do so requires reverse engigeer
the precise identification of a failure point from a core dump
Using the program counter (PC) of the failure point is the tmos
straightforward way to identify the failure point. Howeyéme in-

that produce billions of dynamic points may have less tha@ on
thousand unique calling contexts.

3 x=0 |[4p=.

Figure 3. The Index Tree of the Execution ot in Fig. 2 (a).

3.1 Execution Indexing

Execution indexingEl) is a technique proposed in [29]. Execution
points are uniquely represented by a signature derived & qmo-
gram’s dynamic control flow. Points across multiple exemaiare
aligned by their indices — namely, two points are considéoeoe

struction denoted by the same PC may be encountered multiplealigned if they have the same index.

times during an execution; for example, it may appear iredgt
calling contexts, or on different iterations of a loop. A ra®o-
phisticated approach is to use the calling context and thefRi@
failure point as a signature. However, this is also not sefficas
exemplified by our earlier example in Section 2, in which thé c
to F() resides in a loop in which multiple execution points cor-
responding to different iterations all have the same agltiontext
and PC. Theoretically, a program has a finite number of gatlon-
texts but its execution may have infinite number of dynamia{so
which implies that many execution points may alias to theesam
calling context and PC signature. An empirical study désctiin

[6] confirms this hypothesis empirically, and shows thatexiens

The basic idea of El is to use execution structure to corelat
points across executions. The tree in Fig. 3, calledndex tree
represents the structure of the thread executihgn the failing
execution in Fig. 2 (a). Leaf nodes are boxed, representatg-s
ment executions. Internal nodes are circled, represetttimdgpody
of complex statement executions. Sample complex statenaeat
conditionals and method invocations. The labels of thermate
nodes represent the complex statement and the branch fekn i
plicable. In particular, the root node represents the eriiread. It
consists of the loop statement 2. Since 2 is a complex stateme
and the true branch was taken, the execution within the tramech
is represented by a node with the labél Xote that because it is



a child of the root node, it is represented as being direatited
within the body ofT1. Since statements 3, 4, 5, and so on directly
nest in the true branch of 2, they are the children of thendde.
Furthermore, as the first execution of 2 takes the true brahehe

is another iteration of the loop, leading to anothér &pearing
as the child node of the™node on the second level. The process
continues in this vein leading to the structure as showngn i

The structure off1 in the passing execution in Fig. 2 (b) can
be similarly constructed. The primary difference lies ie tlact
that the predicate at line 11 in the second iteration takefexeht
branch. Hence, the two trees only differ at the isolated atehe
right corner of the tree shown in Fig. 3. The two executiors ar
aligned by aligning the trees. Intuitively, this structuaignment
tolerates cases in which a predicate takes different beenabross
runs by aligning the execution points before and after tfferdint
branches.

At runtime, the index trees are usually not explicitly con-
structed. Instead, thimdex of the current execution point, which
is the path from the root of the index tree to the leaf representi
the point is maintained. It represents the nesting structure of the
current point. The index can be used to identify the aligneiditp
in a different execution. For example, the index of the craaimt
in Fig. 2 (a) is the shaded path shown in Fig. 3. This index @n b
used to see if the same point is encountered in the passinig run
Fig. 2 (b). In our example, the crash point is not executechén t
passing run, reflected by fact that the corresponding indexot
encountered. In contrast, the closest point in the passimgsrthe
predicate instance denoted by the indesof— 2T — 2T — 11.

In order to maintain the current index, the current (transi-
tive) nesting structure needs to be maintained. In othedsydhe
branches and method bodies that the current execution pegts

benchmark one CD | aggr.to one| notaggr.| loop | total
apache-2.0.46 84.42 4.93 4.18 6.47 | 105K
mysql-5.1.31 | 89.92 2.77 3.1 422 | 892K
postgresql-8.3| 86.46 34 2.7 7.44 | 521K

Table 1. The distribution of control dependences. Column “one CD”
means the percentage of statements that have a single labependence;
column “aggr. to one” means although the statement has pteultiontrol
dependences, these control dependences can be aggremaied; tcol-
umn “not aggr.” indicates the number of statements that hawéple non-
aggregatable control dependences; column “loop” are loegigates. Note
that these control dependences are all intra-procedutarprocedural de-
pendences caused by function invocations are capturecelathstack.

In Rule (3), if a predicate is encountered, an entry comgrise
the predicate and the branch outcome is pushed to the stat&. N
that the branch outcome label is used to distinguish whicthef
two regions is entered. Finally, Rule (4) specifies thatéf¢hrrent
executing statement is the immediate post-dominator oftdpe
entry on the stack, the top entry is popped. The while loomis t
handle multiple entries having the same immediate postiukor.
The state of the IS and the label of the current executingstent
constitute the current index.

Consider the failing execution in Fig. 2 (a). When thr@ads
spawned, an entry with labglL is pushed, which is only popped
when the thread terminates. When the loop enters its firsttioa,
namely, predicate 2 takes the true branch, an entry witH 2be
is pushed. The entry will be popped when its immediate post-
dominator, the end of the method, is encountered. Entetieg t
second iteration results in another indeX, Being pushed onto the
stack. Upon the execution of statement 3 in the second ierat

in need to be decided. To do so, two types of execution regions the concatenation of the current stack} [2T, 2], and statement

are defined. The first type of region concerns predicate hemc
and the second type concerns method bodies. Regions fdilew t
last-in-first-out rule, meaning the last entered regiontrbesexited
first. Hence, a stack (andex stack1S)) can be used to maintain
the index of the current execution point. An entry is pushethée
stack if a region is entered. It is popped when the regionite@éx
The state of the stack reflects the nesting structure of thermu
execution point and can be used to construct the currenxinde

An online algorithm that computes nesting structure based o
post-dominance analysis was proposed to deal with contal fl
caused bybr eak, conti nue, etc., which violates syntactic con-
straints. More specificallya predicate branch region is delimited
by the predicate and its immediate post-dominattofact, all state-
ment executions in a predicate branch region are contraruimt
on the predicate. Intuitively, a statemenis control dependent on
the true/false branch of a predicatdf x's execution is directly
determined by taking the true/false branch [ method body re-
gion is delimited by the entry to the method and the exit frioen t
method

Rule  Event Instrumentation
1) Enter procedur IS.pushk)

) Exit procedureX 1S.pop()

3) Predicate ap with the IS.pushg®)

branch outcome beinlg
Statemens

while (pP=IS.top()A sis the immediate
post-dominator op) 1S.pop()

4)

*|S is the indexing stack.

Figure 4. El rules.

The instrumentation rules for El are presented in Fig. 4. The
first two rules mark the start and the end of a procedure byipgsh
and popping the entry associated with the procedure, régplyc

3, precisely represents the index of the statement executio

El has been successfully used to associate correspondimg po
across multiple concurrent executions in the context of date
detection [29] and dead lock detection [13].

3.2 Reverse Engineering a Failure Index

As described earlier, maintaining El requires instrumigoaand
thus runtime overhead. In [29], a highly optimized El impkstta-
tion entails 42% overhead on average, which is clearly tgh to
be used for production runs. Furthermore, such high overpea
turbs concurrent executions significantly, which in turnymaask
failures that would otherwise appear in normal runs.

In this paper, we propose to reverse engineer the index of the
failure point from the core dump, entailing negligible dvead
during production runs. The key observation is that giveiCawe
can almost always reverse engineer its immediate nestgigme
which is denoted by a predicate or a method entry. The nesting
region of the predicate or the method entry can be recuysivel
computed until the whole index is recovered.

1. if (p) 11. if (pl ||
2. sl ‘T 12. p2)
3. else 13. sl;
4. s2; \ 14. else
5. 83 15. s2;
16. s3
(a) One-CD (b) Aggregatable to One-CD

Figure 5. Examples for non-loop control dependences. Control
flow graphs are presented to the right of the code snippetsiegh
boxes denote the given PCs.



21. if (p1) {

22. if(p2)
23. goto 26;
24. sl;

25. if (p3)
26. s2;

27. else

28. s3;

29. }

30. s4

Figure 6. Example of a non-aggregatable non-loop control depen-
dence.

Non-Loop-Predicate Statements with Control Dependences.
We first consider the case in which the given PC is not a loog-pre
icate and it nests in some predicate reglofi&irough static control
flow analysis, we can compute the static control dependeotces
the given PC, which denote the set of possible nesting regibn
runtime. We observe that most statements have a single stati
trol dependence, hence at runtime the given PC can onlyer@sid
one region. Fig. 5 (a) presents such an example. Assume at run
time, statement 2 is executed and we want to reverse engiseer
nesting region. Since it is control dependent on one préglicz.
statement 1, it must reside in the true branch of statemetgice,
its parent node in the index tree must be Table 1 presents the
distribution of the various cases of control dependencesset of
concurrent programs. Observe that 84-89% of the staterhemes
single control dependences.

It is also possible that a PC has multiple static control depe

dences. However, at runtime, it can have only one such depen-

dence. Hence, we need to be able to reverse engineer the idynam
dependence from the multiple possibilities. Fig. 5 (b) pres an
example. Statically, statement 13 is control dependentlénahd
12" 2. Dynamically, depending on whether the path-%113 or
11 — 12 — 13 is taken, 13 is control dependent on'1dr 127,
respectively. In other words, it may nest in the true brarfchloor
12. As shown in Table 1, 2.8-5% of statements have multipte po
sible nesting regions caused by an OR operator. For such,case
can aggregate the disjunction to one complex predicatead.th
has only one nesting region. Let 2112 denote the complex predi-
cate, thTe parent of 13 in the index tree can be reverse emgthes
11-12".

In a more complex (and more unlikely) case, a statement may
have multiple static control dependences caused by unoomali
jumps. The multiple predicates can not be easily aggregatec
complex predicate. Our solution is to find the closest comsion
gle control dependence ancestor. In Fig. 6, statement 28tisally
control dependent on 22and 29 . At runtime, it nests in one of
these two regions, depending on the path taken. Accordifigto
ble 1, 2.7-4.2% of statements fall into this category. Inhsacase,
since both 22 and 26 are (transitively) control dependenhetrue
branch of 21, the parent node of 26 in the reverse engineeded i

gineered as well. We observe that loop related index sulesegs
are in the form of a string of consecutive loop predicates.ifro
stance, consider the sample index tree shown in Fig. 3, théfat
the failure point is transitively nested in the second tieraof the
for loop is represented by the failure index (the shaded)retbing
a substring of 2 — 2T, because the second loop predicate execu-
tion is dictated by the branch outcome of the first loop pratic
execution. It is easy to infer that if the loop is exerciseiimes, in
thenth iteration, the index stack will have a stringro€onsecutive
loop predicates along the spine. If the loop has a loop catmt,
value can be easily recovered from the core dump. If the lagsd
not have a loop count, e.g., because it is generated via a waril-
struct, our solution is to instrument the code to add a logmto
Since the instrumentation does nothing but increases theteo
by one per iteration, the overhead is negligible. A detasiedly of
this approach is presented in Section 6.

Note that an execution index is not a full execution histany b
a precise indicator of an execution point. Hence, to recoosan
index, it is sufficient to know the value of loop counters fbet
live loops (i.e., loops have not terminated) at the pointailufe.
These live loops are nesting, just like functions nesting @alling
context. The counters of loops that have terminated befoee t
failure need not be maintained.

Statements Directly Nesting in Method Bodieslf the given
PC does not directly nest in any predicate region, it mustotly
nest in the body of a method invocation. In such cases, thexind
parent node of the given PC is explicit from the call stackiclvlis
an integral part of the core dump.

The algorithm is presented in Algorithm 1. MethéiddPar-
ent() is a recursive function that reverse engineers the index of a
given PC from the failure core dump. To compute the index ef th
failure point, we invoke the method with the failure PC. LSri26
handle cases that the PC directly nests in a method body. dalhe ¢
site and the nesting method is recovered from the callingesbn
The method is the parent node of the PC in the index. The algo-
rithm proceeds with the call site PC. Lines 7-13 handle |cages.
The algorithm first retrieves the loop count valileand then in-
sertsi entries of the loop predicate to the index. Lines 16-19 handl
the PC having a non-loop predicate control dependence dipheul
predicates that can be aggregated into a complex one. Lihes 2
23 handle the non-aggregatable cases. At line 26, if theafotbe
index tree is reached, the recursive process terminatber@ise,
it recursively calls itself to identify the parent node o&thewly
recovered index node.

Example. Consider our example in Fig. 2 (a). MethdiddPar-
ent() is called with the failure PC (line 17). This operation istn
statically control dependent on any other statement. k threctly
nests in the method body &f ) . The method is added as the par-
ent of 17 in the index. Call site 12 is recovered from the daitk.
MethodfindParent() is now recursively invoked with the call site
PC, 12. Since 12 has a unique control dependente ridde 11

is added to the index. As 11 is control dependent on the loegipr

is 217 . We are losing some accuracy because we do not distinguishcate 2, the loop count =2 is retrieved from the core dump. Hence,

the two different paths leading from 21 to 26. However, weehav
not found this loss of precision to be a problem in practice.

Loop Predicates.If the given PC is a loop predicate (4.2-7.4% ac-
cording to Table 1), its parent node in the index can be revens

1Switch-case statements are considered as falling inta#tegory.

2 According to [9], control dependence can be algorithmjcalétermined
as follows:x is control dependent on the true/false brancly df there is
a path fromy to x along the true/false edge pfuch thaix post-dominates
each statement along the path exaept

entry 2" is added twice to the index. Finally, the entry of thraad
is added and the process terminates. Observe that the ifdes o
crash point is precisely reverse engineered.

Note that we only need to reverse engineer the failure index o
the thread where the failure occurred. Specifically, wedimeed
to reverse engineer the indices of the current executiontpaif
other threads. The reason is that schedule differences Imawst
induced the failure through value differences in the fgilihread.



Algorithm 1 Reverse Engineering Failure Index.

Input the failure PC

Output The index of failure PC, stored idx

Definitions contextis the calling context, whose entries are in
the format ¢, m), meaning methodn is invoked at call sitec;
getLoopCount(l p) retrieves the loop count value of lodp from
the core dumpp® represents thk branch of predicate.

/*find the index parent of a given PC, with respect to the failure
core dumpy/
findParent (pc)
1: cd = static control deps. gbc
2: if cd==@then
[*directly nesting in the method body*/
4. (callsite method= contextpop()
5 idx= methode “—"e idX;
6: parentcallsite
7
8

: else ifcd contains a loop predicatg’ then
. [*directly nesting in a loop*/
9: i=getLoopCount(lp)

10: fort=1toido

11 idx=IpT & “—"eidx;

12:  end for

13:  parent=Ip

14: else

15:  /*directly nesting in non-loop predicates*/
16:  if cd=={p°} orcd can be aggregated ¥ then
17 /*one CD or aggregatable to one CD*/

18: idx= pP e “—" e idx

19: parent p

20: else

21: P = the closest common CD ancestorcof
22: idx= 0P e “—"e idx

23: parent q

24:  endif

25: end if

26: if parent+# the beginning of the threatien

27.  findParent(parenf

28: end if

3.3 Identifying the Aligned Point in Passing Runs

With the recovered failure index, we can identify the point i
passing runs that corresponds to the failure point. If supbiat
is not encountered due to schedule differences, we wanetuifg
the closest alignment.

The proposed instrumentation rules are presented in Fig. 7.
passing runs, the failure index is provided in variatbe The rules
remove entries fronidx when matching regions are encountered,
until idx is empty, indicating the alignment of the failure point
has been successfully identified. Rule (5) specifies thatnwhe
method is entered and it matches the head entighgfindicating
the execution is about to enter a matching method body, the bie
idx is simply removed. Rule (6) defines predicate instrumemmati
If condition (D is satisfied, it means execution is about to enter a
matching branch and hence the headlzfis removed. If condition
@ is satisfied, meaning the same predicate is encounterethdut t
branch outcome is different, the passing run is terminatéal thve
CLOSEST_ALI GNMVENT signal, meaning the exact alignment can
not be found and this is the closest alignment. Intuitiveipce
the execution denoted by the remaining entriesdi must nest
in the branch indicated by the head entry and the passingsrun i
taking a different branch, it is impossible to match the rieing
entries. It is worth mentioning that an important propeftgantrol

dependence is that it is control dependent og, executingy
implies executingx. If idx is a precise index, namely, an index
strictly following the definition, when the curreidx head entry
h is removed, we know that the new head, denotedi’bynust be
executed, because is control dependent oh by definition. This
guarantees our instrumentation rules can make progress.
However, we have only reverse engineered the failure index,
which may miss some index entries because of non-aggrégatab
multiple static control dependences as described eadi@rdition
@) is defined to tolerate such inaccuracy. It specifies thatef th
currentidx head entry is (transitively) control dependent on the
opposite branch, which implies the execution will neverchethe
current head entry, the instrumentation also terminatek thie
CLOSEST_ALI GNMVENT signal.
Rule (7) specifies that a successful alignment exists if aisé |
entry ofidx matches the currently executing statement, meaning all
nesting regions have been successfully matched.

Instrumentation

if (idx.head=X) idx-=idx.head

if (dx.head=p° D)
idx-=idx.head

elseif (dx.head=p™@) ||

controlDep(idx.head p @)

exit(CLOSESTALIGNMENT)

if (Jidx|==1 && idx.head=s)
exit(EXACT_ALIGNMENT)

Event

Enter procedurX
Predicate ap with the
branch outcomé

Rule
5)
(6)

) Statemens

Figure 7. Instrumentation rules for finding the closest aligned
point. MethodcontrolDep(x, y) decides ifx is transitively control
dependent ow.

Example 1.Consider the failure index as shaded in Fig. 3. Assume
it is provided to the instrumented passing run in Fig. 2 (o
entering thread'1, the head node of the indeki, is removed. En-
tering threadrl dictates that statement 2 must be executed, as the
branch outcomes match, thus the firkti@ removed. Similarly, the
second 2 is removed when the second iteration is entered. Upon
the execution of 11 in the second iteration, since the branth
come in the passing run is false when the index entry indicate
true, we have according to rule (6) conditi@), a precise align-
ment mismatch, but have nonetheless found the closesinadign

for the two executions.

Example 2.Consider the program in Fig. 6. Assume in the failing
run, the path taken is 21— 22F — 24— 25T — 26 and the failure
occurs at 26. As discussed earlier, due to the non-aggidgata
multiple static control dependences of 26, the reverseneeged
index is 21 — 26. Assume in the passing run, the program takes
the path 21 — 22F — 24 — 257 — 28 — END, that is, taking

a different branch at 25. Upon executing 21 with the true dhnan
outcome, the 21 entry of the index is popped. Upon executing
25", since 26 is control dependent on"™25he condition® of
Rule (6) applies and the instrumentation signals findingctbsest
alignment.

4. Identifying Critical Shared Variable Accesses

In the previous section, we introduced how to identify thgredd
point in a passing run. Recall that the aligned point couldhae
exact alignment or the closest alignment. A core dump is rgeee
at the aligned point. Critical shared variables are idesttifby
comparing the core dump with the previously acquired faikcore
dump. Accesses to the critical shared variables are alsifigel
and prioritized to drive schedule perturbation.
We consider a core dump to be a complete snapshot of the

program state, including the call stack, registers, andetht&e



virtual space. In other words, the current states of alvadtireads
are captured. We compare the values of all global variafpiess,
local variables on the current stack frame of the failingé#at, and
all the heap variables reachable from registers, glob@hblks or
the local variables of the failing thread. Note that it is netessary
to compare variables in all threads as the failure must bsechhy
some value differences the failing thread We use the algorithm
in Boehm’s garbage collector [5] to identify all reachableap
variables. The basic idea is to traverse memory regionsigfiro
pointer fields as much as possible. We call the path leadmg fr
a register, a global pointer or a local stack pointer to a nrgmo
variable thereference pathto the variable. We compare all the
memory variables that are of primitive types, edar andi nt,
and which have identical reference paths in the two core dump
Note that a memory variable may have multiple referencespiath
the presence of aliasing. In this paper, we treat the aliasadory
variable as multiple variables, identified by the differesfierence
paths associated with it.

the difference is used as the slicing criterion, namelyihe most
critical read tox at 11 is closest to the slicing criterion. The write
x=1 inside the predicate in the second iteration ranks the secon
The same write in the first iteration has the lowest prioriyitds
not in the slice and hence not relevant to the failure. Noae tie
temporal distance heuristic can not exclude it.

5. Reproducing Failures

The last phase of our technique is to search for a failureandu
ing schedule with the guidance of CSV accesses. We enhaeace th
CHESS[17] algorithm, which is used for testing concurrent pro-
grams, for this purpose. The idea@fESSis to insert preemptions

at synchronization points in a systematic way such that plaees

of interleavings can be algorithmically explored to find éufie in-
ducing schedule. Even though the number of possible préempt
combinations is exponential, the number of preemptionsrthest

be used in combination with one another to trigger a failsrafien

The core dump comparison produces a set of value differences bounded.

We focus on value differences of shared variables. The dhare
variables that have different values in the two core dumesalied
critical shared variables (CSVs), because they reflect tiheome
of schedule differences. They are also the reason why ardailu
occurs in one run but not the other. The schedule perturzati®

will be discussed in Section 5, is guided by the accesseseto th (©xy

CSVs in the passing run. More specifically, we want to pertheb

benign CSV accesses to produce the failure. In this papestwdy @O

two strategies to prioritize CSV accesstmmporal distanceand
dependence distance

Prioritization Based on Temporal Distanc&his heuristic prior-
itizes CSV accesses according to the temporal distanceebatw
the access and the aligned point. The intuition is that infélile
ing run, the CSV accesses critical to the failure are ofteseto
the failure point. Since we do not monitor the failed run, vee u
the temporal distances to the aligned point in the passingsian
approximation. Moreover, since all passing runs are erecuia

a deterministic scheduler on a single core, we can easiltifgle
all accesses that occur before the aligned point and ontyitizie
these accesses. For our example in Fig. 2k} the CSV, and
the read ofx at 11 in the second iteration is the closest access to
the aligned point, the write=1 inside the predicate in the second
iteration is the second closest, and so on. The wH@ in T2 is
not considered as it occurred after the aligned point andnhdid
contribute to the value difference at the aligned point.

Prioritization Based on Dependence Distan€his heuristic prior-
itizes CSV accesses according to the dependence distaiveecne
an access and the aligned point. The intuition is that in aflen§
run, the CSV accesses critical to the failure must have itarad
to the failure through data/control dependences and timelttebe
close to the failure point along dependence edges. Sincewetd
have dependence information in the failing run, we use tipecle
dence distance in the passing run as an approximation.
Specifically, we perform dynamic slicing [15] from the alegh
point in the passing run with the variable that causes thexbeh
differences. If the exact alignment is identified, the \aleathat
triggers the crash in the failing run is used as the slicitgigon. If
only the closest alignment is identified, it must be the chaéthe
two runs diverge at a predicate, and the variables that actinghe
predicate are used as the slicing criteria. Note that thagables

® for (i=1) x=0;
élic.quire(lock)' for (i=1)
release(lock); acquire(lock); acquire(lock)
for ki:l) release(lock); ;'.e.lease(lock)'
;c.quire(lock)' for (i=1) for '(-i:I)
E&°) release(lock); acquire(lock); ;l'c.quire (lock)
if (Ix) release(lock);
—0- e release(lock);
x=0; if (!x) if (%)
(a) Original Run (b) First attempt (c) Second attempt

Figure 8. Applying CHESSto the passing run in Fig. 2 (b).

CSv

@f r(i=1)

()

Access

for (i=2)
x=0;
P=&...;
acquire(lock);

if (a[i]...)

x=1;

p=0;
x}

release(lock);
if (Ix)
N Bl

Figure 9. EnhancingcHESS Each access is superscripted with its
priority; symbol L represents the lowest priority.

{x=1%}

x} O

(10"}
{x=0"}

We use the running example to illustrate thieessalgorithm.
Fig. 8 (a) shows the passing run in Fig. 2 (b). Lab@sto ®
indicate possible preemption points. They are all assediatith
synchronization operations or the beginning of threadseBaon
program semantics, preemption may be injected before er aft
a synchronization. For example, the preemptions assdciaiti
acqui re(l ock),such asB), are before thacqui re(| ock),

could be non-shared variables. The CSV accesses are ragked bto allow threads needingock to be scheduled. For a similar

their distances to the slicing criteria. Those that are mdté slice
are given the lowest priority as they are very likely not vale
to the failure. In Fig. 2, since the passing run and the fgilian
differ at the predicate execution at line 11, the variabé taused

reason, preemptions associated wigi ease() are after the lock
release, e.gO. Given a set of candidate preemption points, the
algorithm adopts several strategies to generate testssimmest
strategy is linear search [17], namely, induce one preempoint



at a time in a linear fashion. Fig. 8 (b) and (c) show the firgi tw
preemption attempts. In the first attenipt,is preempted such that
T2 runs beforeTl. In the second attemptl is preempted a®)
such thatr2 is executed beforg1 acquires the lock.

Algorithm 2 Search for Failure Inducing Schedule.

Input A list of preemption candidates in the execution order ef th
first passing run, stored ipreemption

Output the preemptions that are needed to reproduce the failure.

Description a preemption is a tripleidx, accessescsy), with
idx being the index that uniquely identifies the preemption foin
accessethe CSV access annotatiacgvthe CSV annotationwl a
list containing weighted preemptionis;is the preemption bound;
and, methodestrun(s) applies a set of preemptions.

findScheduld preemptiof
1: for i=1tok do
2.  for eachi-subset ofpreemptiondenoted as, do
3: W=3pmes (the minimal priority superscript
pmaccesses
wl+= (w, 9)
end for
: end for
sortwl in an ascending order of weight.
: while wl # @ && the failure is not reproducedo
(w, )= wl.pop().
10:  testrun(s)
11: end while
12: returns

in

©oNOA

preempt (pm)
21: for each thread other than the preempted ode

22:  cs\wthe CSV set of the current synchronization poinfof
23: if Ave csy vis accessed bym.accessethen

24: create a check point and continue the execution With
25: if the failure is reproducethen

26: exit()

27: end if

28: restore the check point

29:  endif

30: end for

Besides applying preemptions, the algorithm also contiws
scheduler to systematically pick up the available threadsun.
For instance, if there are threa®s and T4 in our example, the
algorithm also explores different schedules so that bothroa at
chosen preemption points.

CHESSIs intended as a testing tool that explores all possible

set of CSVs that will be accessed by the current thread irutived.
Itis computed by aggregating all the CSVs that are accesstteb
thread after the preemption. Such information is used tdegthe
scheduler to select threads when preemptions are applied.

For example, in Fig. 9, at the preemption candidBiethe set
of accesses iéx=1(?1, denoting that there is a CSV write-1 in
the execution betwee®) and ®), and its priority is 2. The CSV
set is{x}, denoting that1 will accessx from ©) to the end of the
thread.

The search algorithm is presented in Algorithm 2. Assume a
preemption bound d.3 Lines 1 and 2 generate preemption com-
binations that contain less than or equalktpreemptions. Each
combination is assigned a weightthat is computed as the sum
of the highest priority (the smallest superscript) of theemsses in
each member preemption (line 3). For instance, assume ar&wo p
emption combinatior{ pmy, pmp}, in which the accesses q@imy
is {x = 18y = 3°} and the accesses g is {x = 0%,y = 59}.

Its weight ismin(a, b) + min(c,d). Combinations are inserted into
the worklistwl at line 4. After all combinations are generated, the
worklist is sorted in an ascending order at line 7. The loolines
8-11 applies each combination in the worklist in order whi fail-

ure is reproduced or the worklist is exhausted.

Method preempt() presents the scheduling algorithm when a
preemptionpm is applied. For each thread other than the pre-
empted one, the algorithm testpih.accessdsas any overlap with
the CSV set of the current synchronization poinffofRecall that
pm.accessexntains the CSV accesses in the schedule block led by
pmand the CSV set of is the set of CSVs that will be accessed
by T. Intuitively, the algorithm tests if switching to execudim
may perturb the CSV accesses in the preempted schedule. block
If so, the scheduler selecisto continue execution at line 24. All
possible selections df will be explored.

Example. Consider our running example. According to the pre-
emption candidates and their annotations as shown in Fitne9,
sorted worklist is{(1,{®}), (2,{D}), (3.{®,D}), ...}. When
applying the first combination in the worklistl is preempted at

®), T2 is the only thread that can be scheduled and its CSV set con-
tainsx. The accesses @ is {(! x) ¥}, in whichx is accessed.
According to the test at line 23, the search algorithm sefezto
execute next and thus reproduces the failure.

6. Evaluation

Our implementation consists of six components. The firshés t
static instrumentation engine that is responsible forumsenting
deployed software to add loop counters. To achieve maximenmn g
erality, we implement it on GCC-4.1.2. This is the only compo
nent that is expected to be used in the production envirohmen
The remaining components are only used for reproductiomen t

preemption combinations for a given bound. Because we have 9€bugging phase. The second component is the post-dominato

information regarding the source of a failure, we can ditbet
search space more profitably. Next, we present an enhancesls
algorithm that exploits information gleaned earlier.

We identify the sequence of preemption candidates from the
passing run. We call the execution delimited by a preemptan
didate pm and its immediate following preemption candidate the
schedule blocked by pm Our scheduler never preempts a sched-
ule block and hence all statement executions inside a bleldah
to the same thread. We annotate each preemption candiddite wi
two pieces of information.

The first is the set of CSV accesses that are within the sched-

ule block led by the preemption. Such information is usedrto p
oritize the preemptions because it indicates what accesagde
perturbed if the preemption were triggered. The seconcepgethe

and control dependence analysis. It is also implemented Th€
third component is for failure index reverse engineering eore
dump comparison. The fourth component is a tracing system on
Valgrind [19] that collects traces for slicing. It is alsspansible

for locating the aligned point when the failure index is givé&he
fifth component is the enhancedH€ss[17] algorithm. It is im-
plemented on Valgrind. For comparison purpose, we haveiso
plemented the originatHESSalgorithm. The sixth component is
the dynamic slicing algorithm mentioned in [30]. We implertex

it with C. The experiments were conducted on a Intel Core 2 Duo
2.26GHz machine with 4GB memory, running Linux 2.6.

3 For our experiments, we skt= 2 because it was shown in prior work [17]
that most failures only need two preemptions to trigger.



Table 2. Concurrency Bugs Studied.

Table 4. Failure Inducing Schedule Production.

bugs id description | exec. time| threads
apache-1| 21285 atom* 1.2s 3
apache-2| 45605 race 1.4s 2
mysql-1 | 21587 atom 5.5s 2
mysql-2 | 12228 atom 4.9s 2
mysql-3 | 12212 race 1.5s 2
mysql-4 | 12848 atom 6.8s 2
mysql-5 | 42419 atom 14.2s 2

*at ommeans atomicity violation.

bug chess* chessX+dep [[ chessX+temporal

tries [ time || tries [ time fies |  time |
apache-1 || 1028 | 18hr || 832 | 14.6hr || 644 10.9hr
apache-2** 63 2.2hr 34 4658s 27 3078s
mysql-1 760 | 18hr 4 3189s 4 3189s
mysql-2 421 | 18hr 5 1152s 5 1152s

mysql-3 712 | 18hr 7 940s 7 940s

mysql-4 619 | 18hr 6 3880s 6 3880s
mysql-5 562 | 18hr 6 3453s 6 3453s
*Executions were cut off after 18 hours if the bugs was notadpced.

**The plain chess is able to reproduce the bug.

Table 3. Core Dump Analysis.

Table 5. ChessX+Temporal Using Instruction Count.

bugs core dump vars/diffs shared/CSV/| len(index) bugs instrs. vars/diffs | shared/CSV| chessX+temporal
(F+P) tries [ time (s)
apache-1] 108/108MB || 23273/38 260075 49 apache-1]| 400M | 22715/128|  100/1 1329 | 24hr
apache-2| 99/99M 2975/30 123/7 13 apache-2¢|| 112M | 2975/33 116/10 54 1.9hr
mysql-1 | 48/48MB 6686/64 1665/30 21 mysql-L || 7450M | 6586/180 | 1576/48 | 50 Bhr
mysql-2 | 55/55MB 8310/359 | 2171/60 50 mysql-2* || 8954M | 7200/163 | 2245/90 | 36 4.5nr
mysql-3 | 49/49MB 2294/118 840/11 51 mysql-3 || 2708M | 5583/229 | 1941/49 | 30 Bhr
mysql-4 | 45/45MB 4150/86 1877/71 35 mysql-4 || 16285M | 4104/203 | 1663/101 | 28 Bhr
mysql-5 | 158/158MB || 17289/701| 728/67 84 mysql-5 || 17456M | 10711/383| 1083/39 33 6hr

We select a set of bugs fromysql andapache to evalu-
ate the effectiveness of our technique. These programs alte m
threaded and have been widely used as subjects for concuiden
bugging. The bugs are on the full version of the programs:eSiine
bug repositories for these programs do not provide core dumg
manually inspect the reports to extract the required inpdtenvi-
ronmental setup. Since the original inputs from the bug ntspere
usually very short, leading to only a few milliseconds of @x#&on,
we lengthen these inputs by prepending randomly genenapeds.
We then instrument the programs to add necessary loop gsunte
We subsequently perform stress testing with the generaiaat i
on multiple cores to produce the reported failures. If thieifa is
exposed, we collect its core dump. Table 3 shows the set lef fai
ures that we successfully produced. Tirgt column presents the
bug ids in their repositories. The bug charateristics aserileed in
thedescri pti on column. The original execution time on multi-
ple cores and the number of threads are presentegléin. ti me
andt hr eads, resp. It is worth mentioning that while stress testing
is very expensive, it is not part of our proposed technique,ib
used only to acquire the failure core dumps. After the coraplis
collected, the program is executed with the same input onglesi
core under our Valgrind tracing component, which generatess
and a core dump at the aligned point. The two core dumps ame the
compared. The results are fed to our schedule search &ligotit
produce the failure inducing schedule.

*the bugs are reproduced.

roughly the sanfe as the consequence of generating the coredumps
at the aligned points. Note that while many variables arehalale

in the failing thread, very few of them have different valireshe

two core dumps. Also, the CSVs represents a small fractigheof
total number of shared variables, indicating that CSVs dtete
tively reduce the schedule search space.

Table 4 quantifies the effectiveness of our technique. We de-
note the original G@essalgorithm, our enhanced algorithm with
the temporal distance heuristic, and the enhanced algositfih
the dependence distance heuristicchsss, chessX+t enpor al ,
andchessX+dep, respectively. For each algorithm, we collect the
number of schedules tried and the total time to execute thedsc
ules. In most cases, our algorithm requires less than 19wréle
the originalchess algorithm can not find the preemptions within
18 hours, even after a few hundreds tries. We believe thas#tse
support the claim that our technique is able to direct thecbea
quickly to the failure. Our current implementation is on §fahd, a
relatively slow dynamic instrumentation system. Even withany
instrumentation, Valgrind could slow down the original exgon
by a factor of 4-10. We have not yet attempted to perform aby su
stantial optimizations to reduce this overhead. We alsemieshat
chessX+dep is able to reduce the number of tries for two out of
the seven cases.

To show the benefits of using execution indexing over simply
using instruction counts to locate the failurep point, veoalcquire

Table 3 presents the results of the core dump analysis. Thethe number of thread-local executed instructions from \ard
core dunp column presents the sizes of the core dumps. The counters when the failure occurs. In the passing run, weutgec

vars/ diffs column presents the number of variables that are
reachable from the failing thread and hence subject to cdmpa
son, and the number of variables having different valuekertwo
core dumps. Columehar ed/ CSV presents the number of shared
variables compared and the number of critical shared Vasab
(CSVs), i.e. shared variables with different values. Tlséd¢alumn
presents the length of the reverse engineered failureendiince
the passing run is performed inside Valgrind to locate tignad
point, the generated core dump also contains the state gfik@l

To compare the core dump sizes, we exclude the part from Val-

grind. We can observe that the failing and the passing comgdu
have roughly the same size, indicating their memory maygpang

the same number of instructions for the same thread and tloén |
for the execution of the failure PC. Such a point is considex®
the aligned point. The rest of the procedure is same as oexiingl
based approach. Note that we do not consider a design ttethese
instance count of the failure point PC because it entailsifsignt
overhead on production runs due to the cost of maintaining?@
counters. The results are presented in Table 5.iTi& r s. col-
umn represents the thread local instruction counts whefatloees
occur. The next two columns present the core dump comparson
sults and the last two columns present the result of running o

4Core dumps are geneated by dumping the mapped memory segment



Table 6. Other Cost.

bugs core dump parsing diff (s) | slicing (s)
time (s)
apache-1 16 0.191 39.1
apache-2 7 0.003 30.3
mysql-1 343 0.025 33.9
mysql-2 331 0.066 41.1
mysql-3 299 0.030 35.7
mysql-4 190 0.048 32.3
mysql-5 728 0.200 45.8

is the dominant cost in core dump analysis. The reason is that
the core dumps are very large and we currently use an exgensiv
GDB coredump interface to retrieve variable values, whictaiés
sending string queries to (and parsing string results frGDB.

We expect an online algorithm that does not rely on the GDB
string interface to substantially reduce such costs. Agrgtbssible
optimization is not to parse the entire core dump, but ratbkscted
(relevant) portions. Columal i ci ng ti nme presents the slicing
cost. Due to the length of the considered executions, falids

are too expensive to collect. We collect traces for a winddw o
20 million instruction executions, roughly 400MB. Recdiat we
perform dynamic slicing on traces. We find that these traces a
sufficient to drive our algorithms. It is worth mentioningattthese

chess algorithm, guided by the core dumps. We can obsertve tha costs are all one time costs because they are only needehefor t

the number of reachable variables are quite different froose
in Table 3 because of the different definitions of alignednfsoi
The number of variable differences and CSVs is also diffefeo-
tably, the number of CSVs is often larger than the corresipgnd
number in Table 3 in many cases). The reason for this diftexen
is that many of these variables are not frequently updatedjnmg
them insensitive to core dump timing. Finally, the impottab-
servation is that most failures (5 out of 7) can not be repcedu
within a reasonable timeframe. This is because: (1) thef<&¥'s
are different, the real critical shared variables are nesent in the
CSV set; (2) the search algorithm starts at a wrong point tfie
aligned point according to instruction count) preventihg tight
pre-emption(s) from being located.

1.03
1.025
1.02
1.015
1.01
1.005
1

Figure 10. Runtime Overhead on Production Systems.

Fig. 10 presents the overhead of our loop counter instruanent
tion. Besidesrysql andapache, we also select the concurrent
programs from the splash-Il benchmark as our subjects kecau
they are more loop intensiveln order to minimize the effect of
non-determinism on instrumentation overhead, we run tinelbe
marks on a single core with a deterministic scheduler. Feré#a
sults, we can see the overhead ranges from 0-2.5% with aagever
of 1.6%. This supports our claim of the technique has ndgkgi
runtime overhead on production runs. Note that althougasspl|
programs are loop intensive, many of their loops have loameo
ters and do not need to be instrumented, which explains wdy th
have lower overhead thapache andnysql .

Table 6 quantifies other costs. Colunuws e dunp parsi ng
andtime to conpar e present the times to parse and compare the
two core dumps, respectively. It is clear that parsing canags

5Some 32 bits splash-Il programs are not included becaus8®Grinstru-
menter failed to compile them.

first re-execution.

Case Study Next, we perform a case study apache with the
bug id 21285, i.eapache- 1. The apache web server maintains a
cache shared by threads for processing requests. Conteatob
are placed into the cache in two steps. In the first step, atbly
added to the cache with a default size, since at this stagextt
size of content is unknown. In the second step, when the skaet
of the object is available, the object that was added edsiérst
removed from the cache and then placed in the cache again with
the proper size. This strategy allows early detection whatiphe
requests try to cache the same content. However, since theteyws
are not atomic, an object with a default size could be evitriea

the cache before it is replaced by an object with the propes, si
leading to a crash as we explain below.

A part of the relevant code is presented in Fig. 11. To handle
a request, a thread first callseat e_enti ty() to place content
with a default size in the cache. Subsequently, when thescbrr
size is known, inwr it e_body(), the same thread removes the
content it added earlier, modifies its size and replaces thin
cache. Observe that the loskonf — | ock is not held across the
two methods, leading to the possibility of an atomicity atibn.
When new content is inserted into the cacheanhe_i nsert (),
existing content is evicted if the projected total cache gixceeds
the limit.

The configuration we used to trigger the bug, according to
the bug report, is a cache that allows 2 objects, and 3 threads
that handle three respective requests that demand cadhitige
failure core dump, we observe that the program has crashed on
cachecache.c182. The failure index is not encountered in the
passing run. In fact, the two runs diverge at the predicdieeai81.
When the failure core dump is compared against the core dump
collected at 181 in the passing run, we find 5 CSVs out of th&®260
shared variables. The varialwe— cur r ent _si ze used at 181 is
one of the CSVs. In this study, we only inspect the resultssofg
the dependence distance based strategy. Accesses toraiitie
with the reference path @fache_cache — pq — si ze are also
present in the slice. The variable is not shown in the codepsii
for brevity. It keeps track of the number of objects in thetmac

With the ranked CVS access information, our algorithm tries
640 one-preemptions and 4 two-preemptions before it finds th
failure inducing schedule. The generated schedule demiavals
preemptions: one at line 545 and the other at line 175, both
are synchronizations leading schedule blocks that access
current _si ze. The corresponding execution perturbation is as
follows. The first thread is preempted just before it accuittee
lock at line 545. Observe that at this point it has not placey a
content into the cache. Then the second thread is run, angriet
empted at line 175. At this point, this thread has placedesunt
into the cache with a default size, but the object has not logen
dated with the proper size. Now, the cache has one objecthirde
thread is run to completion and the number of objects in ticbea



mod_mem_cache.c
create_entity (...) {

cache_cache.c
cache_insert (void * entry) {

while (... || {c—current_size|+ size_entry(entry) >

c—max_size)) {

ejected=cache_pq_pop(...);

c—current_size -= c—size_entry(ejected);
c—free_entry (ejected);

c—current_size += c—size_entry(entry);

545  apr_thread mutex_lock(sconf—lock); 181
if (!chache_find(key))
cache_insert(obj);
556  apr_thread mutex_unlock(sconf—lock)
} huge loop count
underflows the cache]
¥
write_body (...) {
apr_thread_mutex_lock(sconf—lock);
1030 cache remove(obj); 175

obj—...—m_len=obj—count;
cache_insert(obj);
apr_thread mutex_unlock(sconf—lock);

apr_atomic_set(...); /in mod_mem_cache.c

}

cache_remove (void *entry) {
c—current_size -= c—size_entry(entry);

}

Figure 11. Case study ofipache- 1.

increases to two (the limit). Now of the two remaining thread
the scheduler picks the first thread to run as it comes befmre t
second in the canonical order. When the first thread triedatoep
its content into the cache, the size limit is exceeded anddlobe
chooses to evict the object placed in cache by the seconddthre
inside functioncache_i nsert () . After the first thread completes,
the second is resumed. However, when the second threaddries
remove the (already evicted) object from the cache at 108dds

up subtracting its size from — cur r ent _si ze again. This leads
to a negative number which manifests as a very large posisiles
since the field is an unsigned integer. Given this value, when
thread tries to place the content back into the cache, the luagp
count underflows the object queue at line 182.

7. Limitations and Discussion

Our technique currently assumes that the failure inducipgtican
be acquired and used in re-executions, which may not beftte i
servers have been running for a long time. A potential soifuit to

use a lightweight checkpointing technique [25, 28, 23] toidthe

need to re-collect all inputs from the beginning of the exiecu

It would then only be necessary to reconstruct executiom fitee

closest checkpoint and consider the inputs processedaftere

Our technique relies on core dumps. Some concurrencyetelat
failures may not crash, but rather produce wrong outputispagh
most bug reports we have seen figrisgl andapache fall into the
crash category. While core dumps can be acquired at wroqmbut
points, we have not investigated the efficacy of our appraath
non-crashing but erroneous executions.

To mitigate privacy concerns that may arise because of teé ne
to supply coredumps on production runs, we note that ountgqak
only requires sufficient information to identify shared iadles
that carry different values; the exact values of the shagseihbles
are not important. Furthermore, recent techniques on aniaiyg
end-user information [10] to protect privacy apply natlyr&h our
setting.

State drifting [1] describes scenarios in which concursehied-
ules may quickly diverge significantly from sequential stiies.
Though state drifting makes a vast array of states a posgiftiis
not necessary to compare the closest correct state agaerfsiity
state where the bug was observed. In practice, there exisigrae
of freedom because both the states under which the bug ceuld b
reproduced and the possible candidates that could be usednto
pare against the faulty state increase as the total numipaisstble
states increase.

There are other contexts that may give rise to concurrengg bu
that we have not yet considered. For example, race condlitiwat

arise due to relaxed memory consistency support in hardi2éie
cannot be reproduced with a serial schedule. Moreover, emlr-t
nique can not replay kernel and device state since it opepately

in user space. Hence, it does not handle bugs that are teidjdpgr
kernel actions. From our experience with the bug reportdHer
considered programs, such cases are rare. It is also possiil
the different state of a CSV may have been overwritten byrothe
writes before the core dump occurs. However, this is onlypro
lematic when the overwrites happen to make the variable tie/e
same value in the two runs (so that it does not manifest itself
a CSV); we have yet to see such conditions in the bug reports we
have examined.

8. Related Work

The prior work most relevant to ours is search-based reptaxu
techniques. In [23], a multi-phased reproduction techaigupro-
posed. Specifically, coarse-grained logging is used in yrboh
runs to collect system call and synchronization informatighile
such coarse-grained information does not guarantee regiray
failures, a search algorithm is used to generate failureidimgy
schedules. In [2], a technique is proposed to search fougres
based on output constraints, namely, constraints thatupsothe
same erroneous output. Limited logging is needed in praatuct
runs to collect input traces, path profiles, and event ortere-
duce the search space. A constraint solver is used to repeddil-
ures. Compared to these techniques, our approach shargsntiee
observation that software-based approaches must perfioectet!
schedule search because low overhead coarse-graineadoiggi
not sufficient for faithful replay. The unique feature of @alution
is that we reduce the search space by analyzing core-duaves; |
aging the idea of execution indexing. As a result, our temptaihas
negligible overhead on production runs.

There are also software based replay systems that recdrd ind
vidual memory accesses and their happens-before relddoBs.
Such systems entail substantial runtime overhead. Ther&dwen
substantial work on software-based record and replay fplicp
tions such as parallel and distributed system debugging?2.124,
11, 3, 14, 20] . These systems only perform coarse-graingd lo
ging at the level of system calls or control flow and hence ate n
sufficient for reproducing concurrency failures. We coesithese
techniques complementary to ours.

Recently, it has been shown that with architectural support-
current execution can be faithfully replayed [12, 16, 1§, ¥&hile
such techniques are highly effective, they demand deplayrok
special hardware, which limits their applicability.



Over the years, significant progress has been made in testing

concurrent programs. KESS [17] is a stateless bounded model
checker that performs systematic stress testing to expoge ib
concurrent programs. It can be adopted to reproduce Haigsnb
However, since @esswas not designed for failure reproduction,
it does not exploit available failure information to guide enu-
meration of different schedules. Our technique leveragéaré
core dumps for this purpose. CTrigger [22] is another camray
testing technique that searches for schedule perturlsatiobreak
usual patterns of shared variable accesses to expose Raftdom
schedule perturbations are also shown to be effective ingtghg
races and deadlocks [27, 13]. We believe our core dump dsalys
can be synergistically combined with these algorithms.

9. Conclusion

We propose a concurrency bug reproduction technique foti-mul
core executions that relies on a novel core dump analysiscret-

ule search. The technique only requires adding loop cosiriter
production runs, which has negligible runtime overheadeGia
failure core dump from a parallel (multi-core) run, our amgmch
re-executes the program with the same input and identifiexen
cution point in the re-execution that corresponds to tharaipoint

on a concurrent (single-core) system. This is done by revengi-
neering a canonical state representation, called the gaacin-
dex, of the failure point from the failure core dump. The xde
used in the re-execution to locate the corresponding paimiew
core dump is generated during the re-execution at the qgumnes

ing point. The two core dumps are compared to identify shared
variables with different values, which imply schedule eliffinces.

A CHEsslike algorithm is proposed to leverage the shared variable
difference information to search for failure inducing sdhles. Ex-
perimental results show that the approach is very effective-
duces failure inducing schedules more quickly than exgssearch
techniques with modest overhead, and provides a feasiifiaitpue

for reproducing bugs that manifest in multi-core environtse
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