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Abstract

Software systems often undergo many revisions during
their lifetime as new features are added, bugs repaired, ab-
stractions simplified and refactored, and performance im-
proved. When a revision, even a minor one, does occur,
the changes it induces must be tested to ensure that invari-
ants assumed in the original version are not violated un-
intentionally. In order to avoid testing components that
are unchanged across revisions, impact analysis is often
used to identify code blocks or functions that are affected
by a change. In this paper, we present a novel solution to
this general problem that uses dynamic programming on in-
strumented traces of different program binaries to identify
longest common subsequences in strings generated by these
traces. Our formulation allows us to perform impact analy-
sis and also to detect the smallest set of locations within the
functions where the effect of the changes actually manifests
itself. Sieve is a tool that incorporates these ideas. Sieve
is unobtrusive, requiring no programmer or compiler inter-
vention to guide its behavior. Our experiments on multiple
versions of open-source C programs shows that Sieve is an
effective and scalable tool to identify impact sets and can
locate regions in the affected functions where the changes
manifest. These results lead us to conclude that Sieve can
play a beneficial role in program testing and software main-
tenance.

1 Introduction

Revisions to an existing piece of software can occur for
a variety of reasons. These include the addition of new fea-
tures and functionality, code restructuring to improve per-
formance, or refactoring for improved maintainability. Re-
gardless of the reasons that cause a revision, testing the ef-
fects of its changes is important. Revisions are rarely in-
tended to violate backward compatibility; existing function-
ality and invariants should thus not be affected as a result
of changes that occur between two versions of a program.

Quite often, however, this dictum does not hold. Chang-
ing a set of components in a program can sometimes result
in unwanted changes in other components, leading to soft-
ware defects and bugs. As a result, expensive test regimes
are required [10]. Recent work on isolating and correcting
software bugs [12, 17, 27, 18] provide efficient strategies
for testing a single instance of a program with respect to
desired invariants, but they do not easily generalize to com-
paring changes across multiple program versions.

We focus our attention on identifying dissimilarities
across program versions. We do so by using test results
on older versions to automatically identify regions in newer
versions that are affected (or impacted) by the changes that
characterize their differences; it is precisely these regions
that merit comprehensive review and more elaborate testing
using sophisticated techniques [12]. We state this problem
more formally as follows:

“Given two versions of a program, is there an efficient
mechanism to dynamically detect the functions affected in
the newer version by modifications made to the older?
Moreover, can we precisely identify the regions in the af-
fected functions where the effect of these modifications man-
ifest?”

In seminal work, Law and Rothermel [16] define the
problem of dynamic impact analysis and presented a solu-
tion, PathImpact, based on whole program path profiling.
In subsequent work [15], they present algorithms that al-
low the data needed by PathImpact to be collected incre-
mentally. In [6], Breech et al. present an online approach
for calculating impact sets. Execute-after sequences [1] and
coverage impact analysis [22] also attempt to identify func-
tions that are potentially affected by a program change using
program traces and test data. In [1], Apiwattanapong et al.
describe an efficient and precise dynamic impact analysis
technique based on the following hypothesis: “if a func-
tion follows a modified function in at least one execution
sequence, it is affected.” The algorithm used to detect the
affected functions has similar precision as path impact anal-
ysis but is more efficient. At the other extreme, the execute-
after sequence approach is as efficient as coverage impact
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analysis, but is more precise. Ren et al. present a tool for
change impact analysis of Java programs in [25]. Their
approach analyzes two versions of a program, and decom-
poses their difference into a set of atomic changes. The
impact of changes between the versions is reported in terms
of affected tests whose execution behavior is influenced by
these changes.

While existing designs for impact analysis are signifi-
cant first steps, they provide only a partial solution to the
problems we consider. Since the sole purpose of these con-
servative designs is to detect impact sets efficiently, current
solutions are unable to identify precisely the regions in a
newer version of a program that are affected by changes to
an older version. To achieve this degree of precision re-
quires accurate tracking of program execution. For exam-
ple, functions in an execution sequence that are invoked af-
ter a call to a modified function may nonetheless be totally
unaffected by the modifications made. Even with precise
knowledge about a program execution’s control and data-
flow behavior, new techniques are still required to precisely
identify the regions within impacted functions that are af-
fected by changes.

The design of our approach is motivated by solutions to
similar problems in computational biology. Mutations are a
common phenomena in biological systems. Intuitively, we
envision multiple versions of a program as being analogous
to collections of mutations from an original source. One
popular way to perform sequence matching for the purpose
of identifying mutations is to abstract it to the problem of
finding an optimal alignment between two sequences using
dynamic programming. The optimal alignment problem is
a dual of the popular longest common subsequence prob-
lem [8]. Dynamic programming vis-a-vis the longest com-
mon subsequence problem is a powerful tool, and more ef-
fective than simple string matching because it helps to iden-
tify the minimum set of locations that cause a mismatch
between two strings. In contrast, string matching always
provides a boolean response. Dynamic programming also
provides flexibility to define the cost function for alphabet
(mis)matches.

Based on these insights, we develop a tool called Sieve
for identifying regions of change across program versions.
Over a range of benchmarks, the results of our experiments
show a reduction of 30-60% in the number of functions that
are marked as impacted compared to impact analysis based
on execute-after sequences. Furthermore, we also observe
that the majority of affected functions across all benchmarks
have small regions where changes manifest; typically the
size of these regions is three lines or less. The significance
of the latter result is that Sieve simplifies the task of deter-
mining if changed behavior in a revision is intended or acci-
dental, and facilitates devising test suites to validate desired
properties on revisions.

Sieve, like other dynamic impact analyzers, can gener-
ate false negatives, i.e., functions that are actually affected
may go undetected due to the quality of the test inputs. Be-
cause impacted functions are identified based on the effects
of their observed actions, Sieve is more sensitive to test in-
put quality than related systems, e.g., [1], that use coarser-
grained techniques (e.g., function call graphs) to build im-
pact sets. Thus, we expect Sieve’s utility to be best ex-
ploited when comprehensive test suites are available.

The impact sets produced by Sieve are also intimately
tied to the set of operations that are tracked. In this paper,
we evaluate a Sieve implementation that tracks all opera-
tions to the program stack and heap, as well as an imple-
mentation that tracks only heap operations. If two versions
of a function differ in the use of a register allocated variable
only, neither of these implementations identify the function
as being impacted by the change. For realistic programs, we
believe these simplifications do not lead to significant loss
of safety.

On the other hand, this sensitivity can also lead to greater
precision, and thus fewer false positives. In other words, a
test input that exercises different behavior across two ver-
sions of a function in terms of the operations tracked by
Sieve will result in these functions being flagged as im-
pacted. Conversely, unlike other dynamic impact analyzers,
a test input that does not reveal different behavior across
two versions of a function will not result in that function
being flagged even if changes were introduced upstream in
the function’s callers.

In Execute-After Sequences [1] (EAS), to safely estimate
the impact set of functions [21], the newer version is exe-
cuted on some test inputs and the functions traversed in the
process of execution are time stamped. Our approach also
shares similarities with this technique in the methodology
of trace collection, except as opposed to time-stamping the
functions traversed, we track fine granular data (memory
read or write) in the newer version. In both cases the dy-
namic execution of the newer version must be monitored,
albeit at different granularity. As in EAS [1], we also
demonstrate that dynamic tracking can be efficient and scal-
able.

This paper makes the following technical contributions:

1. New Mechanism: We propose a novel mechanism
to abstract program behavior. Our technique consid-
ers program execution in terms of memory reads and
writes and use dynamic programming to detect varia-
tions across two different (binary) program versions.
No a priori information is needed to help identify
changes across program versions, other than a map-
ping to indicate the functions that should be compared.

2. Impact Analysis: Our technique automatically detects
functions in a newer version that are (un)affected by
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the modifications made to an older version. The preci-
sion and safety of the approach is based on the quality
of test inputs, as is the case with many comparable de-
signs and testing methodologies.

3. Efficiently Identifying Changed Regions: We iden-
tify regions of code in affected functions at which the
changes to the source manifest themselves in the pro-
gram. The proposed approach is scalable and is a func-
tion of the program size.

4. Sieve: We have implemented a tool using our approach
that has been tested on a number of open-source C
programs. Sieve uses binary program instrumentation
and dynamic programming on memory traces derived
from instrumented programs. No annotation of pro-
gram sources or compiler enhancements are required.

1.1 Overview

As a first step towards detecting and isolating variations,
we abstract a program as a sequence of memory reads and
writes. Test input is fed into two versions and the trace
is collected using binary instrumentation. A trace is com-
posed of sequences of <Operation, Value> tuples, where
Operation is either a read or write to memory and Value
is the value read from, or written to memory. The trace is
analogous to a string and the tuple analogous to an alpha-
bet. Comparing two functions that exist in two program
versions is equivalent to comparing the subsequence of the
trace corresponding to the two functions under comparison.
Based on a user-defined cost function, the Levenstein [13]
distance is calculated and the gaps [4] in the comparison
recorded. Recall that the Levenstein distance between two
strings is defined as the shortest sequence of edit operations
that lead from one string to the other. By repeating the pro-
cess for multiple test inputs, cumulative information on the
gaps present in the older version relative to the newer ver-
sion is obtained. By mapping the tuples back to the corre-
sponding regions in the source, information on the affected
locations within an impacted function is obtained. If the
Levenstein distance between the two functions is zero, we
regard the function in the newer version as being unaffected
by changes in the older version.

Given memory traces of length m and n for two versions,
the time complexity of dynamic programming is O(mn).
Thus, even traces of modest length (approximately 15K)
can considerably slow down the comparison process. In-
deed, for some applications, there are a several million reads
or write operations to memory. We found in earlier imple-
mentations of Sieve that comparison across dynamic traces
using the above described representation incurs a significant
cost and may not scale to larger systems. The following op-
timization reduces this cost significantly.

Instead of representing a trace as a sequence of tuples
of type < Operation,Value >, we represent a trace as a
sequence of tuples of type < `, h > , where ` is the line
number in the source and h is a hash of ordered sequences
of < Operation, V alue > tuples corresponding to oper-
ations performed by `. Using this representation has two
implications with respect to efficiency:

1. The amount of space required to store the trace is pro-
portional to the number of lines in the program and not
the number of instructions executed.

2. The time taken for performing alignment using dy-
namic programming becomes negligible.

Observe that a hash need not necessarily be calculated at
the end of program execution. Efficient techniques based on
Rabin fingerprinting [23] are available to compute hashes
intermittently. This ensures that the amount of memory re-
quired to hold the trace is small. For the benchmarks used
in this paper, it is sufficient for us to calculate the hash at the
end of program execution, and using Rabin Fingerprinting
was not necessary. In the rest of the paper, any reference
to a trace refers to the trace obtained using the optimization
technique discussed above, unless explicitly stated other-
wise.

Since this optimization critically relies on hashing to
reduce overheads, it is certainly possible to construct ex-
amples that exhibit behavior different from the idealized
technique described above. Indeed, undesirable false neg-
atives that impact the safety of the analysis could be
introduced simply because a collection of dissimilar <
Operation,Value > sequences in two versions of a func-
tion have the same hash. Our experimental results indicate
though that improvements in efficiency due to the optimiza-
tion does not come at the expense of safety or accuracy for
realistic programs, and that the potential loss of safety due
to unintended hash collisions does not occur in practice.

2 Motivation and Background

Common modifications to a function include adding new
variables, renaming or deleting existing variables, changing
the interface of the function by adding or deleting parame-
ters, changing return values, inlining function calls, making
external state changes, or modifying function logic. Some
of these changes, for example, variable renaming or inlin-
ing, have no effect on other functions in most cases; on the
other hand, modifying program logic or making external
state changes can affect other function behavior. Since test-
ing is an expensive process, focusing test cases on function
components changed as a consequence of this latter cate-
gory is beneficial. Even here, changing a function’s logic
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may not necessarily lead to observable change in the func-
tion’s callers.

Our technique for detecting locations at which changes
to an older version lead to different behavior in the newer
one is similar to solutions to related problems in the area
of computational biology. More specifically, alignment of
new sequences with previously characterized sequences can
help in characterizing molecules corresponding to the new
sequence [4]. The problem of aligning two sequences is
abstracted into the longest common subsequence problem.
The solution to this problem [8] is a popular application of
dynamic programming. Finding the minimum edit distance
between any two strings is a dual to the longest common
subsequence problem.

1 void main(){ void main(){
2 ... ...

3 old(s); new(s);

4 f(s); f(s);

5 ... ...

6 } }

7

8 void old(LIST *s){ void new(LIST *s){
9 LIST *t; LIST *r, *p;

10

11 r = malloc(LIST);

12 t = s->next; p = s->next;

13 r->next = s;

14

15 while(s != NULL){ for(u = s;

u != NULL;u=u->next){
16 print(s->val); print(u->val);

17 s = s->next;

18 } }

19 s = delete r(r);

20

21 if(t->val > NUM) if(p->val > NUM)

22 print("error"); print("error");

23 } }

Figure 1. Two different versions of a list ma-
nipulating procedure

For example, given two strings aabcabcd and
abacbd, the longest common subsequence is aacbd. One
possible alignment of these two sequences is: a-abcabcd
and aba-c-b-d. The edit distance in this case is four, as-
suming unit cost for insertions and deletions. The optimal-
ity of an alignment is dependent on the cost function used,
which can be defined in many ways. In this paper, we con-
sider a simple notion of optimality. The space introduced
into an alignment to compensate for insertions and deletions
in one sequence relative to another is defined as a gap [4].

Gaps in our alignments have unit cost, while all other alpha-
bets have zero cost. Thus an optimal alignment is one that
has the smallest number of gaps; observe that for any pair
of strings, there maybe many such optimal alignments. The
flexibility in defining cost based on the application context
is an important characteristic that makes it useful for appli-
cations in sequence alignment. As we describe below, we
also make use of this flexibility in our approach.

2.1 Example

A motivating example is given in Figure 1. We show two
program fragments, one labeled old, and the other new.
Both procedures perform similar actions involving travers-
ing and printing elements of an input list. However, new
adds a new temporary cell, and subsequently deletes it in
delete r before returning. Assuming delete r is im-
plemented correctly, the behavior of the two procedures is
exactly the same with respect to their callers.

Trace Element: <Operation,Value>

Op: Read(R),Write(W)

Value: 32 bit value

q: new cell allocated by malloc in new

old: <R, y>, <W, y>, <R, 10>, <R, y>,
<W, y>, <R, 15>, <R,φ>, <W,φ>, <R, 15>

new: <W, q>, <R, y>, <W, y>, <R, x>, <W, x>,
<R, x>, <W, x>, <R, 10>, <R, y>, <W, y>,
<R, 15>, <R,φ>, <W,φ>, <R, q>, <W, x>,
<R, 15>

Figure 2. Memory Trace (without hashing) as-
sociated with the functions in Figure 1

Using our approach, memory traces associated with the
invocation of these procedures on the same test input are
first obtained. Suppose the list referenced by s contains
pointers to cells {x,y}, where x holds 10, y holds 15. The
memory trace generated for the approach without any hash-
ing optimization is given in Figure 2. The associated align-
ment is shown in Figure 3.

Based on the approximation introduced in Section 1.1,
the hash of the sequence of operations performed in each
line is given in Table 1. Correspondingly, the memory
trace generated and the optimal alignment obtained using
dynamic programming is shown in Figure 2. In the figure,
gaps are represented by a hyphen. Consequently, the re-
gions in the actual source can also be aligned. For example,
the statement r->next = s in new does not have a cor-
responding statement in old. This corresponds to a gap in
sequence alignment. Similarly, other gaps are present for
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old: -, <R, y>, <W, y>, -, -, -, -, <R, 10>,
<R, y>, <W, y>, <R, 15>, <R,φ>, <W,φ>,
-, -, <R, 15>

new: <W, q>, <R, y>, <W, y>, <R, x>, <W, x>,
<R, x>, <W, x>, <R, 10>, <R, y>, <W, y>,
<R, 15>, <R,φ>, <W,φ>, <R, q>, <W, x>,
<R, 15>

Figure 3. Alignment for the trace (without
hashing) shown in Figure 2. The gap cost is
7.

the newly allocated cell, and the call to delete r. Re-
naming variables (e.g., t is renamed p), adding new vari-
ables, etc. does not trigger an alignment mismatch be-
cause their effects remain unchanged. Observe that there
are multiple operations in line 15 of procedure new. While
in our current implementation, we restrict ourselves to line
numbers, instrumentation can be done to obtain the column
number of the operation and the above approach can be eas-
ily extended. Observe that the approach with the approxi-
mation can align the operations s = s->next and u =
u->next in the source. However, the hashing approxima-
tion may discard the possible alignment. Indeed, such con-
structs may potentially lead to a larger number of regions in
the program being identified as affected than those detected
by the optimal approach. Given the cost-benefit tradeoffs,
such false positives on the conservative side do not pose a
major problem.

Operation sequence Hash
<R,y>, <W,y> h1

<R,10>, <R,15> h2

<R,y>, <W,y>, <R,φ >, <W,φ > h3

<R,15> h4

<W,q> h5

<R,x>, <W,x> h6

<R, x>, <W, x>, <R,y>, <W,y>, <R,φ >, <W,φ > h7

<R, q>, <W, x> h8

Table 1. Operation sequences and the corre-
sponding hash values

If this were the only change in the program, our approach
would identify functions new and delete r as potentially
affected. In contrast, path impact analysis [16], for example,
uses the program’s call graph and the syntactically changed
functions as markers; it would identify all functions that
are executed after new in any test case as impacted. For
example, functions f, main and functions that succeed f
would be recorded as affected by these changes.

old new
- <11, h5 >

<12, h1 > <12, h1 >
- <13, h6 >
- <15, h7 >

<16, h2 > <16, h2 >
- <19, h8 >

<17, h3 > -
<21, h4 > <21, h4 >

Table 2. Alignment for the trace shown in Fig-
ure 1. The gap cost is 5.

3 Sieve

3.1 Implementation

Sieve is a tool that consists of two components, an instru-
mentation module and a comparison module. Both compo-
nents operate over program binaries. The binaries, repre-
senting a program and its revision, are instrumented using
PIN [19], and execute on the same test input. The effect of
the instrumentation yields memory traces. These traces are
then compared using dynamic programming, and optimally
aligned based on a user defined cost function. A block dia-
gram of this process is given in Figure 4.

Regions in Affected functionsAffected functions

Dynamic Programming

Test Input 

Cost function

Old Binary

Instrumentation Instrumentation 

New Binary

Figure 4. Block Diagram for Sieve.

Gaps in the alignment help detect operations performed
by the newer version that are absent in the older version,
and vice versa. Accumulating this information over all test
inputs provides the set of affected regions in the newer ver-
sion. If there are no gaps present in such a comparison over
all test inputs, Sieve declares the functions to be unaffected.
Otherwise, it identifies the affected regions (in the form of
line numbers) in the newer version.
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3.2 Instrumentation Module based on
PIN

We use PIN [19], a dynamic binary instrumentation tool,
for instrumentation purposes. PIN supports a rich set of ab-
stract operations that can be used to analyze applications
at the instruction level without detailed knowledge of the
underlying instruction set. PIN uses dynamic compilation
techniques to instrument executables while they are run-
ning, and instrumentation code can be inserted at desired
locations in the binary.

The instrumentation module takes as input the binary and
the list of functions in the binary that need to be instru-
mented. When the binary is executed on a given test input
with dynamic instrumentation, a list of tuples is generated.
The elements in the tuple include the type of operation, the
value, the line number and the function in which the instruc-
tion was generated.

3.3 Comparison Module Using Dynamic
Programming

The comparison module operates over traces generated
by instrumenting the binaries to be compared as they exe-
cute on the same input. To provide an analogy, if the trace
is viewed as a string, the equivalence of an alphabet in the
string here is a tuple <Line Number, Hash Value>. A dy-
namic programming table is constructed. While more so-
phisticated cost functions can be defined, as a first step, the
current implementation has a very simple cost function. The
cost at any box, dij of the dynamic programming table is
calculated as follows. If alphabets i and j are equal, i.e., the
tuples are equivalent, then the cost di,j is the minimum of
di−1,j−1, di−1,j + 1 and di,j−1 + 1. After filling up all the
values in the table, a traversal from the end of the table (the
last row and last column) through the boxes responsible for
the values in the current box, gives the alignment of the two
traces. A detailed description of the dynamic programming
algorithm for Longest Common Subsequence is presented
in [8].

3.4 Memory Aliasing

The values read from, or written to memory, are used in
determining the equality of tuples. However, if these val-
ues are pointers to memory locations, the values for two
different versions need not be the same, yet semantically
may point to the same location. This necessitates use of
techniques to check whether a value is a pointer. Similar
problems arise in garbage collection techniques. In the cur-
rent implementation of Sieve, we use techniques used in
Boehm GC [5]. For example, one of the heuristics to iden-
tify whether an object is a value or a pointer examines the

most significant byte. If it is set, then the object is consid-
ered a pointer and vice versa. We also address other issues
related to memory aliasing across program versions in [24].

4 Evaluation

4.1 Experimental Setup

We have examined Sieve using two versions of the
following software packages: bzip2 [7], bunzip2 [7],
gawk [11], wget [26], gzip, grep and flex [9]. All
these programs are written in C. The details on the versions
used for the benchmarks, the lines of code, the number of
functions and other parameters are given in Table 3. Terms
used in the table are defined below:

Instrumentation Time (IT): The time taken to insert
instrumentation code into the binary and subsequently
execute all the test cases.

Analysis Time (AT): The time taken to analyze the
results of instrumentation, analyze using Execute-After
Sequence (EAS) [1], or perform dynamic programming in
Sieve.

We explain the significance of the other columns later
in the section. The test cases are randomly generated for
bzip2, bunzip2 and wget and existing test suites are
used for the rest of the benchmarks. We perform our tests
on a Linux 2.6.11.10 (Gentoo release 3.3.4-r1) system run-
ning on an Intel(R) Pentium(R) 4 CPU 3.00GHz with 1GB
memory. The version of the PIN [19] tool used was a special
release 1819 (2005-04-15) for Gentoo Linux. The sources
were compiled using GCC version 3.3.4.

PIN, the instrumentation tool, yields a sequence of line
numbers and a hash value associated with each line number
for each function that is instrumented. We assume that older
versions of a program are instrumented and traces obtained
for the corresponding test cases are presented as input. By
executing PIN on the newer version of the program, we ob-
tain a new set of traces that need to be compared with an ex-
isting set of traces for the older version. In Sieve, we apply
dynamic programming as described earlier on the obtained
trace for pairs of functions from the two versions respec-
tively; we obtain the regions (in the form of line numbers)
in the newer version that differ from the older version.

Sieve is highly customizable, and users can choose the
granularity of memory operations they wish to collect. We
present two such instantiations. The first (Sieveh) records
information about all operations to heap allocated data. The
second (Sievem), in addition, also records operations to
stack locations. As we show below, there is modest im-
provement in the size of impact sets when stack operations
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Benchmark Old New LoC Total Total EAS Sieveh Sievem

Version Version (in K) Functions Tests IT AT IT AT IT AT
bzip2 0.9.5d 1.0.2 9 107 101 189 < 1 516 1 1026 < 1
bunzip2 0.9.5d 1.0.2 9 107 101 146 < 1 422 < 1 959 < 1
flex v0(orig) v1(orig) 12 162 525 1265 < 1 2084 < 1 2935 8
gawk 3.1.3 3.1.4 41 522 133 298 < 1 572 1 1763 < 1
grep v0(orig) v1(seed) 11 123 470 842 < 1 1193 < 1 3292 10
gzip v0(orig) v1(seed) 6 81 217 216 < 1 773 < 1 1189 6
wget 1.6 1.7 28 312 105 367 < 1 466 < 1 808 8

Table 3. Benchmark Information and Results (Time in seconds).

are also considered with corresponding increase in instru-
mentation time. The degree of granularity chosen depends
upon a variety of factors, including test case quality, the
presumed disparity among two versions, knowledge about
program structure (e.g., heap/stack intensive), etc. As men-
tioned earlier, the granularity level chosen may impact the
safety of the analysis if variations between different ver-
sions of a function manifest via operations that are not
tracked.

4.2 Results

Our experimental results allow us to answer the follow-
ing questions about our approach:

• If a function is impacted, what are the sizes of regions
in the function that are affected?

• Is there any reduction in the number of impacted func-
tions reported using Sieve, compared to EAS?

• Is there a significant change in the rate of detection of
impacted functions with increase in the number of test
cases?

• What is the time overhead of Sieve compared to EAS?

Figure 5(a) characterizes functions found in the bench-
marks with respect to the number of heap read and write
instructions they perform. For example, in bzip2, roughly
35% of all functions perform fewer than six operations on
the heap, and in wget roughly 10% of all functions perform
more than 18 operations involving the heap.

Figure 5(b) presents, for those functions in a newer ver-
sion impacted by a change, the size of the affected regions
within those functions. For example, in flex, we observe
that over 43% of all impacted functions have changes lim-
ited to three or fewer lines of code. Indeed, for all the ap-
plications in our benchmark suite, more than 50% of all im-
pacted functions have fewer than three lines of code im-
pacted by a change and 80% have fewer than 10 lines of
code changed (except for bzip2).

To quantify Sieve’s utility, we faithfully implemented the
EAS algorithm, path impact analysis, as described in [1]
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Figure 6. Histogram showing the number
of impacted functions detected by EAS and
Sieve

for C programs. Typically, functions are compared across
versions and marked as (un)changed. A function that fol-
lows a changed function in any execution is labeled as af-
fected. Figure 6 presents the the number of functions found
to be impacted using Sieve as compared to a EAS. The
number of impacted functions identified ranges from 8 for
bunzip2 to 220 for gawk under Sieveh and range from
12 for bunzip2 to 260 for gawk under Sievem , a proper
subset of the functions identified as affected by EAS. A re-
duction from 30% to 60% in the size of the impacted set is
observed across our benchmark set when comparing Sieveh

(or Sievem) with EAS. Interestingly, for some benchmarks
tested, we found that the versions syntactically differ (with-
out considering the complexity of the change) at main and
therefore the list of functions covered by the test suite im-
mediately becomes part of the impact set using EAS. The
implication of this result is that when functions present near
the root of the call graph are changed, the utility of EAS-like
approaches significantly reduce. On the other hand, Sieve
is independent of the location of a function in the call graph
and does not consider syntactic changes to functions specifi-
cally. Furthermore, another consequence of this observation
is that the focus of regression testing can be improved be-
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Figure 5. Histogram (a) shows that most functions in these benchmarks perform a non-trivial number
of heap-related operations. Histogram (b) shows that for approximately 60 % of the functions in
every benchmark, three or fewer lines within these functions are impacted. The results shown here
are based on Sieveh.

cause the set of impacted functions that must be examined,
i.e., the set of functions that truly exhibit different runtime
behavior across revisions observed by our instrumentation
mechanism, is reduced compared to impact analyzers that
do not leverage this degree of precision.
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Figure 7. Number of impacted functions
found Vs Number of test cases (in log scale)

While executing all test cases may result in precise data,
in many instances, it is preferable that the set of impacted
functions in the newer version is obtained by executing a
smaller number of test cases. Figure 7 presents our exper-
imental results on the number of impacted functions iden-
tified, corresponding to the number of test cases executed.
Interestingly, a majority of the affected functions are iden-
tified by executing the binary on 10 or fewer inputs. For
a majority of the benchmarks (except flex), the number
of impacted functions saturates after executing 20% of the

total number of test cases in an ad hoc order. This high-
lights the fact that test prioritization techniques can play a
significant role in reducing this overhead.

In Table 3, we show the instrumentation time (IT) and
analysis time(IT) for EAS, Sieveh, and Sievem, respec-
tively. The analysis time (time taken for dynamic program-
ming or analysis EA-Sequences) is similar, and is less than
a second for most of the benchmarks. However, the instru-
mentation time for Sieveh (or Sievem) is modestly higher
than that of EAS. This is expected, since Sieve tracks pro-
gram execution more accurately, as compared to EAS. For a
modest increase in instrumentation time, there is substantial
improvement with respect to identifying impacted regions.
The amount of memory required for Sieve is approximately
4MB for the benchmarks studied.

Both Sieveh and Sievem use hashing to make the analy-
sis scalable. If hash collisions occur frequently, such an op-
timization would impact Sieve’s effectiveness. To examine
this issue, we consider instantiations of Sieveh and Sievem

that perform no hashing. If the obtained sequences from
these match in both versions for all the test cases, then the
procedure in the newer version is considered unaffected.

By performing this process on all the benchmarks, we
notice that the number of affected procedures with the opti-
mized version of Sieveh is equal to the number of affected
procedures detected using the above mentioned process. We
also notice no difference in the number of affected proce-
dures when the above process is repeated for Sievem for all
benchmarks except gawk. In the case of gawk, we observe
that the number of affected procedures obtained using a ver-
sion of Sievem that employs hashing is two less than that
obtained using the above mentioned matching technique.
This is because of a hash collision in different versions of
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two procedures that results in their versions as being flagged
as equivalent (i.e., two different sequences hashing to the
same hash value) when the optimized version of Sieve is
used. Using more effective hash functions that decrease the
probability of collisions will help to alleviate such issues.

4.3 Effectiveness of Sieve

The benchmarks obtained from [9] (gzip, grep, and
flex) have versions for which user-defined faults can be
easily introduced. Figure 8 shows a fragment from the func-
tion updcrc from the original base (v0) version of gzip.
The purpose of updcrc is to run a set of bytes through the
crc register and return the crc value.

3816 if (s == NULL) {
3817 c = 0xffffffffL;

3818 } else {
3819 c = crc;

3820 while (n--) {
3821 c = crc 32 tab[((int)c ^ (*s++))

& 0xff] ^ (c >> 8);

3822 }
3823 }
3824 crc = c;

3825 return c ^ 0xffffffffL;

Figure 8. Code fragment from gzip, v0(orig)

6085 if (s == NULL) {
6086 c = 0xffffffffL;

6087 } else {
6088 c = crc;

6089 if (n) do {
6090 c = crc 32 tab[((int)c ^ (*s++))

& 0xff] ^ (c >> 8);

6094 } while (n--);

6096 }
6097 crc = c;

6098 return c ^ 0xffffffffL;

Figure 9. Code fragment from gzip, v1(seed)

In the new version of gzip, the while loop is restruc-
tured as a do...while loop. The corresponding fragment
is shown in Figure 9 1. We obtained line numbers 6090 and
6094 as affected. The flaw with the newer version, is that
the corresponding lines are executed once more than the al-
lowed limit. For many other faults (which are categorized
for some benchmarks), we are able to locate the dependent
regions as affected in a similar fashion.

1Four lines from the original source are removed from the Figure for
ease of understanding. The semantics are still preserved.

5 Related Work

Law and Rothermel define the problem of dynamic im-
pact analysis in [16] and presented a solution, PathImpact,
based on whole program path profiling. In [1], Apiwat-
tanapong et al. provide an efficient and precise dynamic im-
pact analysis using execute-after sequences. They improve
on existing dynamic impact analysis approaches [16, 22].
In their approach, functions that follow a modified function
in some execution path are added to the impact set. One
of their reasons for using dynamic impact analysis is to re-
duce the parts of the program that need to be retested while
performing regression testing. Ren et al. present a tech-
nique for change impact analysis of Java programs in [25].
In their approach, a set of changes responsible for a modi-
fied test’s behavior and the set of tests that are affected by
a modification are identified. The differences between two
versions are decomposed into a set of atomic changes and,
based on static or dynamic call graph sequences, the above
mentioned details are estimated.

Many static techniques also exist for performing impact
analysis [2, 3]. Static analysis techniques are naturally more
conservative than existing dynamic impact analysis tech-
niques. A comprehensive discussion of the advantages of
dynamic impact analysis over static analysis techniques is
presented in [1]. The technique presented in this paper is
more closely related to dynamic impact analysis techniques;
we differ primarily in our attempt to precisely determine the
regions within procedures that are affected by changes.

In [15], Law and Rothermel present a useful incremen-
tal dynamic impact analysis technique for evolving soft-
ware systems. The method presented in [16] is extended
to handle the problem of dynamic impact analysis across
succession of system releases in an incremental fashion. In
this paper, we essentially present a method to identify im-
pacted regions in a new version compared to an existing
version based on longest common subsequence. Extensions
of this solution to multiple versions translate to the prob-
lem of finding longest common subsequence across multi-
ple strings. Even though the latter problem is known to be
NP-Hard, the size of the strings in the related dynamic im-
pact analysis problem is small. Therefore, we believe that
this approach is practical, and can be applied to identify
modified regions across a succession of system releases.

Tools like diff can only identify syntactic changes
across two different program versions. More sophisticated
tools like MOSS [20], which are used in detecting plagia-
rized code fail in the presence of smartly refactored code.
Horowitz identified the importance of tools that can recog-
nize semantic changes across program versions. In [14],
three different algorithms for comparing program versions
by identifying various textual and semantic changes are pre-
sented. Sieve is a tool specially designed for tracking se-
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mantic changes across versions. It gives qualitatively better
results than diff or MOSS. Zhang and Gupta [28] present
a novel method for matching dynamic execution histories
across program versions for detecting bugs and pirated soft-
ware, whereas we are interested in detecting the locations of
impact within an impacted function. It is not clear if their
method can be generalized for this purpose.

Many interesting techniques have been devised for bug
detection in software systems [12, 17, 27, 18]. For example,
in [12], Godefroid et al. present a technique to automati-
cally generate test cases so that the coverage of the program
is increased. In [17], the source of the software is mined
to detect commonly occurring patterns and the deviants are
identified as bugs. We view our contribution as a comple-
mentary technique to existing single program bug detection
techniques.

6 Conclusions

This paper describes Sieve, a tool to detect variations
across program versions. Sieve examines the execution of
two binaries on the same test input to yield the affected
functions in the newer version, along with the regions in
these functions where the change manifests. Experimental
results on a number of open source programs shows that
Sieve reduces the size of the impact set. We also find that
affected regions in the impacted functions tend to be rela-
tively small.
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