
Lecture 5 cont’d - Erlang

CS390 PCP
2/7/2012

Author: Sergei Uversky

The previous lecture left off talking about pattern matching in Erlang. As a quick

addendum to this topic, it is important to note that, if properly used, the patterns in Erlang

are non-overlapping.

The meat of the first half of the lecture focused on studying some examples of

concurrency in Erlang, beginning with a naïve counter program with several inherent issues

(such as a lack of direct access to the counter variable and non-implicit messaging). The

code for this “naïve counter” is reprinted in Fig. 1 (below), with a refinement available in

Fig. 2 (found on the following page).

-module(counter).
-export([start/0,loop/1]).
start() ->
 spawn(counter, loop, [0]).
loop(Val) ->
 receive
 increment -> loop(Val + 1)
end.

Fig 1. “Naive counter” source

Clearly, the implementation found in Fig. 1 is not satisfactory. Although superficially

the goal of our counter was fulfilled (to make an incrementing counter value), several

needed features are missing. We can implement a better example by having a more robust

message-passing implementation and an actual way to end the program. We can thus

imagine a set of function-argument pairs called start(), increment(Counter),

value(Counter), stop(Counter) and loop(Val), all with rather self-explanatory

purposes and return values. We can also take advantage of this “refined counter” to

demonstrate some of the intricacies of Erlang’s pattern matching system.

-module(counter).
-export([start/0,loop/1,increment/1,value/1,stop/1]).

%% First the interface functions.
start() ->
 spawn(counter, loop, [0]).

increment(Counter) -> Counter ! Increment.

value(Counter) ->
 Counter ! {self(),value},
 receive
 {Counter,Value} -> Value
end.

stop(Counter) -> Counter ! Stop.

loop(Val) ->
 receive
 increment -> loop(Val + 1);
 {From,value} -> From ! {self(),Val}, loop(Val);
 stop -> true;
 Other -> loop(Val)
 end.

Fig 2. “Refined counter” source

increment(Counter) and stop(Counter) are fairly straightforward to

understand. When they are called with any particular Counter as an argument, they pass an

Increment or a Stop message to that particular Counter, respectively. loop(Val) then

either increments the current value by one and continues looping (for an Increment

signal), or simply returns true when a Stop signal is received.

value(Counter) is a bit less straightforward – when called, it sends a message

consisting of a pair containing itself and a “value” name. Why is this pair necessary? Why

can we not take the same approach as with the other two functions and simply pass a

Value which we then receive in loop? The answer lies in Erlang’s pattern matching, which,

if invoked in this way, would overlap the received Value with (for example) Stop. We thus

utilize a pair, despite the fact that we never use the second element of the pair in the loop

call.

We can see now that we have a more robust counter program. We can now use this

knowledge base to analyze a concurrent “ping/pong” program which spawns two processes

and has them communicate with each other via message-passing until a certain condition is

met. Consider Fig. 3 on the following page.

-module(M).
-export([start/0, ping/1, pong/0]).

ping(0) ->
 pong ! finished,
 io:format("ping finished~n", []);
ping(N) ->
 pong ! {ping, self()},
 receive pong ->
 io:format("Ping received pong~n", [])
 end,
ping(N – 1).

pong() ->
 receive
 finished -> io:format("Pong finished~n", []);
 {ping, Ping_PID} ->
 io:format("Pong received ping~n", []),
 Ping_PID ! pong,
 pong()
 end.

start() -> register(pong, spawn(M, pong, [])),
 spawn(M, ping, [3]).

Fig 3. Ping / pong concurrency.

We can begin our analysis at start(), which registers the name “pong” and binds it

to the act of spawning a pong process with no arguments inside module M. This ties pong’s

process ID to an accessible name, so that pong can be available on the top level

environment. start() then spawns the process ping with a preset arbitrary end

condition (in this case, 3).

By looking at ping’s pattern matching, we can see the following course of events

unfurl. As ping has received a non-zero argument, we look at ping(N), which dictates we

pass a message to pong consisting of a pair – the name ping, and a self() call, which

gives pong access to that particular ping’s process ID. We then wait until pong replies with

a message, at which point we display “Ping received pong” and iterate once more with our

end condition decremented by one. When the end condition reaches zero, we send a

finished message to pong and display a relevant string to the screen.

What, then, does pong do? It simply waits for messages to be passed to it in one of

two forms. If it received finished, then it displays a string and returns control to ping,

which eventually terminates as well. If it receives a pair from ping, however, it displays a

string to the screen, passes a pong message to the received Ping_PID and loops.

It is interesting to note that the preceding example can be readily converted to work

in a distributed environment. This generalization would require some code changes, but

none of them would change the control flow of the program, merely some of the top-level

implementation details. The distributed source code can be found in Fig. 4 below.

-module(M).
-export([start/0, ping/1, pong/0]).

ping(0,Pong_node) ->
 {pong, Pong_Node} ! finished,
 io:format("ping finished~n", []);

ping(N) ->
 {pong, Pong_Node} ! {ping, self()},
 receive pong ->
 io:format("Ping received pong~n", [])
 end,
ping(N - 1, Pong_Node).

pong() ->
 receive
 finished ->
 io:format("Pong finished~n", []);
 {ping, Ping_PID} ->
 io:format("Pong received ping~n", []),
 Ping_PID ! pong,
 pong()
 end.

start_pong() ->
 register(pong, spawn(M, pong, [])),
start_ping(Pong_Node) ->
 spawn(M, ping, [3, Pong_Node]).

On one host:
 erl -sname ping

On another:
 erl -sname pong

On one node:
 M:start_pong().

On another:
 M:start_ping(pong@<host>).

Fig 4. Distributed ping / pong concurrency.

The lecture continued with a brief discussion of monitoring. A code snippet follows

in Fig. 5, but it is sufficient to say that spawn_link can be bound to a variable and used to

monitor your program, keeping track of things such as exceptions and pattern-match errors.

...
process_flag(trap_exit, true),
Pid = spawn_link(fun() -> ... end),
receive
 {’EXIT’, Pid, Why} ->
 ...
end

Fig 5. Monitoring snippet

We then considered a server/client setup, which involved the use of remote

procedure calls. Consider the following basic server/client setup found in Fig. 6:

server(Fun, Data) ->
 receive
 {new_fun, Fun1} ->
 server(Fun1, Data);
 {rpc, From, ReplyAs, Q} ->
 {Reply, Data1} = Fun(Q, Data),
 From ! {ReplyAs, Reply},
 server(Fun, Data1)
 end.

rpc(A, B) ->
 Tag = new_ref(),
 A ! {rpc, self(), Tag, B},
 receive
 {Tag, Val} -> Val
 end.

Fig 6. Server/client setup.

The remote procedure call (or RPC) is found in the aptly-named rpc(A, B)

function, which does the following:

1. Tag = new_ref(), Creates a Tag bound to a new_ref(), which allows

multiple RPCs in the same process, and allows differentiation of RPC calls.

2. A ! {rpc, self(), Tag, B}, Sends an RPC message with all of the

relevant info to the server A.

3. receive ... end. Waits for the server to reply with the same Tag (meaning

the appropriate RPC was answered) and reads data accordingly.

We can see that the server itself waits on messages. One possibility is that the

server receives a message telling it to update its function, containing a new_fun message

and the relevant new Fun1 to perform. Alternatively, the server could receive the

message that the RPC would send, which would cause the server to perform some Fun on

the Data, which would subsequently be stored in {Reply, Data1}. The process ID of the

RPC (which was passed to the server in the RPC using self()) would then be sent a

message containing a reply by the server, and the server would resume running.

The lecture was concluded with a discussion of concurrency patterns found in

Erlang. There are many different basic concurrency patterns which are easily created and

understood in Erlang – indeed, we have already seen that we can define four very important

concurrency patterns by only using basic sends and receives. An overview of these patterns

is found in Fig. 7.

Unicast

 A ! B

RPC call
 Call (RPC)
 A ! {self(), B},
 receive
 {A, Reply} -> Reply
 end

Event Handling

 receive
 A -> A
 end

Callback
 receive
 {From, A} ->
 From ! F(A)
 end

Fig 7. Basic send/receive concurrency patterns in Erlang

This concluded our overview of Erlang, and will hopefully serve as the basis for a

fruitful understanding of both Erlang as a language, and its relation to and importance

within concurrent and parallel programming.

