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The previous lecture left off talking about pattern matching in Erlang.  As a quick 

addendum to this topic, it is important to note that, if properly used, the patterns in Erlang 

are non-overlapping.

The meat  of  the first  half  of  the lecture focused on studying some examples of 

concurrency in Erlang, beginning with a naïve counter program with several inherent issues 

(such as a lack of direct access to the counter variable and non-implicit messaging).  The 

code for this “naïve counter” is reprinted in Fig. 1 (below), with a refinement available in 

Fig. 2 (found on the following page). 

-module(counter). 
-export([start/0,loop/1]).
start() ->
  spawn(counter, loop, [0]).
loop(Val) -> 
  receive
        increment -> loop(Val + 1)
end.

Fig 1. “Naive counter” source

Clearly, the implementation found in Fig. 1 is not satisfactory.  Although superficially 

the  goal  of  our  counter  was  fulfilled  (to  make  an  incrementing  counter  value),  several 

needed features are missing.  We can implement a better example by having a more robust 

message-passing implementation and an actual  way to end the program.   We can thus 

imagine  a  set  of  function-argument  pairs  called  start(),  increment(Counter), 

value(Counter), stop(Counter)  and loop(Val),  all  with rather  self-explanatory 

purposes  and return values.   We can also take advantage of  this  “refined counter”  to 

demonstrate some of the intricacies of Erlang’s pattern matching system.



-module(counter). 
-export([start/0,loop/1,increment/1,value/1,stop/1]).

%% First the interface functions. 
start() ->
  spawn(counter, loop, [0]).

increment(Counter) -> Counter ! Increment.

value(Counter) ->
  Counter ! {self(),value}, 
  receive
     {Counter,Value} -> Value
end.

stop(Counter) -> Counter ! Stop.

loop(Val) ->
    receive
        increment -> loop(Val + 1);
        {From,value} -> From ! {self(),Val}, loop(Val);
        stop -> true;
        Other -> loop(Val)
    end.

Fig 2. “Refined counter” source

increment(Counter)  and  stop(Counter) are  fairly  straightforward  to 

understand.  When they are called with any particular Counter as an argument, they pass an 

Increment or a Stop message to that particular Counter, respectively.  loop(Val) then 

either  increments  the  current  value  by  one  and continues  looping  (for  an  Increment 

signal), or simply returns true when a Stop signal is received.

value(Counter) is a bit less straightforward – when called, it sends a message 

consisting of a pair containing itself and a “value” name.  Why is this pair necessary?  Why 

can we not take the same approach as with the other two functions and simply pass a 

Value which we then receive in loop?  The answer lies in Erlang’s pattern matching, which, 

if invoked in this way, would overlap the received Value with (for example) Stop.  We thus 

utilize a pair, despite the fact that we never use the second element of the pair in the loop 

call.

We can see now that we have a more robust counter program.  We can now use this 

knowledge base to analyze a concurrent “ping/pong” program which spawns two processes 

and has them communicate with each other via message-passing until a certain condition is 

met.  Consider Fig. 3 on the following page.



-module(M).
-export([start/0, ping/1, pong/0]).

ping(0) ->
   pong ! finished,
   io:format("ping finished~n", []);
ping(N) ->
   pong ! {ping, self()}, 
   receive pong ->
      io:format("Ping received pong~n", [])
   end,
ping(N – 1).

pong() ->
    receive 
      finished -> io:format("Pong finished~n", []);
      {ping, Ping_PID} ->
         io:format("Pong received ping~n", []), 
         Ping_PID ! pong,
         pong()
       end.

start() -> register(pong, spawn(M, pong, [])), 
           spawn(M, ping, [3]).

Fig 3. Ping / pong concurrency.

We can begin our analysis at start(), which registers the name “pong” and binds it 

to the act of spawning a pong process with no arguments inside module M.  This ties pong’s 

process  ID  to  an  accessible  name,  so  that  pong can  be  available  on  the  top  level 

environment.   start() then  spawns  the  process  ping with  a  preset  arbitrary  end 

condition (in this case, 3).

By looking at  ping’s pattern matching, we can see the following course of events 

unfurl.  As ping has received a non-zero argument, we look at ping(N), which dictates we 

pass a message to  pong consisting of a pair – the name ping, and a  self() call, which 

gives pong access to that particular ping’s process ID.  We then wait until pong replies with 

a message, at which point we display “Ping received pong” and iterate once more with our 

end condition  decremented by one.   When the end condition reaches  zero,  we send a 

finished message to pong and display a relevant string to the screen.

What, then, does pong do?  It simply waits for messages to be passed to it in one of 

two forms.  If it received finished, then it displays a string and returns control to ping, 

which eventually terminates as well.  If it receives a pair from ping, however, it displays a 

string to the screen, passes a pong message to the received Ping_PID and loops.



It is interesting to note that the preceding example can be readily converted to work 

in a distributed environment.  This generalization would require some code changes, but 

none of them would change the control flow of the program, merely some of the top-level  

implementation details.  The distributed source code can be found in Fig. 4 below.

-module(M).
-export([start/0, ping/1, pong/0]).

ping(0,Pong_node) ->
   {pong, Pong_Node} ! finished,
   io:format("ping finished~n", []);

ping(N) ->
   {pong, Pong_Node} ! {ping, self()}, 
   receive pong ->
      io:format("Ping received pong~n", [])
   end,
ping(N - 1, Pong_Node).

pong() ->
    receive 
      finished ->
         io:format("Pong finished~n", []);
      {ping, Ping_PID} ->
         io:format("Pong received ping~n", []), 
         Ping_PID ! pong,
         pong()
       end.

start_pong() -> 
    register(pong, spawn(M, pong, [])), 
start_ping(Pong_Node) -> 
    spawn(M, ping, [3, Pong_Node]).

On one host: 
  erl -sname ping

On another:
  erl -sname pong

On one node:
  M:start_pong().

On another:
  M:start_ping(pong@<host>).

Fig 4. Distributed ping / pong concurrency.

The lecture continued with a brief discussion of monitoring.  A code snippet follows 

in Fig. 5, but it is sufficient to say that spawn_link can be bound to a variable and used to 

monitor your program, keeping track of things such as exceptions and pattern-match errors.

...
process_flag(trap_exit, true),
Pid = spawn_link(fun() -> ... end),
receive
   {’EXIT’, Pid, Why} ->
      ...
end

Fig 5. Monitoring snippet



We  then  considered  a  server/client setup,  which  involved  the  use  of  remote 

procedure calls.  Consider the following basic server/client setup found in Fig. 6:

server(Fun, Data) ->
   receive
      {new_fun, Fun1} ->
         server(Fun1, Data);
      {rpc, From, ReplyAs, Q} ->
         {Reply, Data1} = Fun(Q, Data),
         From ! {ReplyAs, Reply},
         server(Fun, Data1)
   end.

rpc(A, B) ->
   Tag = new_ref(),
   A ! {rpc, self(), Tag, B},
   receive
      {Tag, Val} -> Val
   end.

Fig 6. Server/client setup.

The  remote  procedure  call  (or  RPC)  is  found  in  the  aptly-named  rpc(A, B) 

function, which does the following:

1. Tag = new_ref(),   Creates  a  Tag bound  to  a  new_ref(),  which  allows 

multiple RPCs in the same process, and allows differentiation of RPC calls.

2. A ! {rpc, self(), Tag, B},    Sends an RPC message with all  of  the 

relevant info to the server A.

3. receive ... end.   Waits for the server to reply with the same Tag (meaning 

the appropriate RPC was answered) and reads data accordingly.

We can see that the  server itself waits on messages.  One possibility is that the 

server receives a message telling it to update its function, containing a new_fun message 

and  the  relevant  new  Fun1 to  perform.   Alternatively,  the  server could  receive  the 

message that the RPC would send, which would cause the server to perform some Fun on 

the Data, which would subsequently be stored in {Reply, Data1}.  The process ID of the 

RPC (which was passed to the server in the RPC using  self()  )  would then be sent a 

message containing a reply by the server, and the server would resume running.



The lecture was concluded with a  discussion of  concurrency patterns found in 

Erlang.  There are many different basic concurrency patterns which are easily created and 

understood in Erlang – indeed, we have already seen that we can define four very important 

concurrency patterns by only using basic sends and receives.  An overview of these patterns 

is found in Fig. 7.  

Unicast

   A ! B

RPC call
   Call (RPC)
      A ! {self(), B},
      receive
         {A, Reply} -> Reply
      end

Event Handling

   receive
      A -> A
   end

Callback
   receive
      {From, A} ->
         From ! F(A)
   end

Fig 7. Basic send/receive concurrency patterns in Erlang

This concluded our overview of Erlang, and will hopefully serve as the basis for a 

fruitful  understanding of  both Erlang as a  language,  and its  relation to and importance 

within concurrent and parallel programming.


