
Lecture Notes # 2

17 January 2012

Lecturer: Professor Suresh Jagannathan

Scribe: Matthew Barrett

Contents:
1. Resolving Issues From Previous Meeting
2. Homework
3. Lecture
4. References

1



1 Section 1

First we resolve some issues raised during lecture on 12 January 2012 regard-
ing the organization of processes on a machine.

A program runs in the context of a process, which is depicted in the
following Figure.

In Figure 1 the ”program segment” represents the instructions to run,
the ”data segment” contains the heap and stack (as is depicted in Figure 2),
and r1, ..., r32 are the register values.

The heap contains memory segments which were obtain by calls to malloc()
while the stack contains all of the procedure calls and their local (non-
malloc()ed) data. Each procedure call is placed in a frame which contains
certain data for the procedure.

2



For example if our program begins execution then a frame for main() is
pushed onto the stack.

Then if our main() function calls a function f() with parameter x, then

the stack looks like this.
When the (any) new function is called all state information for the current

function is saved in the frame before passing to the new frame.
Each process believes that it has access to the entire system memory ad-

dress space. Processes typically use much less memory than the system o↵ers
and so the operating system maps the process’ addresses to some subsection
of the system memory. This is made possible by a partitioning scheme of
the process’ address space into “pages,” where the used pages are kept in
physical (system) memory.

3



2 Section 2

Homework #1 was assigned and is due 31 January 2012 [4]. To introduce
this homework assignment we recall “call/cc” from the previous lecture and
the notion of a “co-routine,” being a mechanism which allows the transfer
of program control without returning. (I.e., when control is transferred, if
the new routine throws control back to the original routine then the original
routine resumes execution where it left o↵.) To implement said functionality
use a “continuation” as mentioned in the previous lecture. See also lecture
slides 2 and 3, [2,3]. For this assignment we will need to download and
install Racket [5]. There are additional readings listed on the course web
page. The solution will be limited to replacing the lines “Suspend ” with
approximately 3 lines of code to implement provider/consumer transfer of
control. (Use call/cc.)

3 Section 3

New material began on slide 14 of Lecture Slides 2, [2].
Slide 14

These two trees have di↵erent structures but the letters labeling the leaves
appear in the same order on each, which is called a “same fringe” pair. Given
two trees, how can we determine if they are a same fringe pair?

Slide 15

A simple approach would be to collect all of the leaves of the trees into
two arrays and then compare the leaves. This approach however has several
drawbacks, most notably that too many steps will be executed if even the
first leaves di↵er!!!

Slide 16

This slide introduces a slick approach to solving the problem by using co-
routines and passing control. The philosophy is simple and described here.
Let routine A find the first leaf of trees TA and then throw control to routine
B which finds the first leaf of tree TB. Routine B then compares the leaves
and if they fail to match then routine B acknowledges so and terminates the
search. Otherwise routine B throws control back to routine A which finds
the next leaf of tree TA, and so on ad infinitum. This slide provides code and
asks how to write such routines A,B.

4



Slide 17

This slide tells us that a computation (state information) may be captured
and stored by “call/cc”.

Slide 18

More of slide 17.
Slide 19

This slide produces all of the code for a similar example, similar to the
“same fringe” problem. A procedure called ’generate � numbers()’ will
generate numbers in the order 0, 1, 2, . . .. However, after each generation
the “call/cc” function saves the computation (state information) and throws
control, with parameter the generated number, to the procedure ’make �
generator()’. This procedure executes and then throws control back to
’generate � numbers()’ to generate the next number in the list. This re-
peats ad infinitum. It seems that the syntax of the code was the tricky part
of this slide, ye be warned.

Slide 20

Puts into words the content, briefly, of slide 19.
Slide 21

If we wish to have more explicit control over the continuation-capture process
then we may implement this in a language like Scheme, ML, Haskell or
others.

!ThehomeworkistobecompletedinScheme!

This slide contains one such example in ML.
Slide 22

This slide suggests that a determined computer scientist may be able to
implement threading (scheduling, cooperation) and concurrency with con-
tinuations. Caveat coder: this ain’t so easy.

The remainder of the lecture focused on the first 5 slides of Lecture
Slides 3, [3].

Slides 2 and 3 re-iterate what was stated at the beginning of class in
Section 1.

Slides 3 and 4 indicate that di↵erent processes have memory spaces which
are distinct and protected from other processes. However, a process may
contain multiple threads which may share resources (e.g., memory!).

Slide 5 re-iterates that care must be taken by the process/programmer
when managing resources for multiple threads within a single process.

5



References

[1] Suresh Jagannathan, Course Lecture. Purdue University, CS 39000-
PCP. 17 January 2012.

[2] Suresh Jagannathan, Lecture Slides 2. Purdue University,
CS 39000-PCP. http://www.cs.purdue.edu/homes/suresh/390C-
Spring2012/lectures/Lecture-2.pdf. 17 January 2012.

[3] Suresh Jagannathan, Lecture Slides 3. Purdue University,
CS 39000-PCP. http://www.cs.purdue.edu/homes/suresh/390C-
Spring2012/lectures/Lecture-3.pdf. 17 January 2012.

[4] Suresh jagannathan, Assignment # 1. Purdue University,
CS 39000-PCP. http://www.cs.purdue.edu/homes/suresh/390C-
Spring2012/hw/hw1.html. 17 January 2012.

[5] Racket. http://racket-lang.org. 17 January 2012.

[6] Essentials of Programming Languages, Friedman, Wand, Haynes (2001).

[7] Continuation-based Multiprocessing, Wand (1980).

[8] Continuations and Threads: Expressing Machine Concurrency Directly
in Advanced Languages (1997).

[9] Continuations and Concurrency, Hieb and Dybvig (1990).

Purdue University, West Lafayette IN 47907 USA
suresh@cs.purdue.edu
mrbarret@purdue.edu

6


