
Lecture 10a: Cilk and Work-Stealing Schedulers

Sergei Uversky

April 03, 2012

Abstract

In previous lectures, we considered the implications of using thread-
spawning systems such as POSIX or Erlang in order to implement concur-

rency. In this lecture, however, we instead look at an alternative approach
to concurrency, which utilizes tasks and lazy task creation in order to par-
allelize programs.

1 Introduction to Tasks

Previously in this course, we have considered systems such as POSIX and Er-
lang, which have allowed us to implement concurrency via thread creation. In
such a system, the creation of a thread inherently evokes a large amount of work
(e.g. space allocation), which has to be done by a scheduler. Thus, working in
such a system inherently involves balancing the creation of these threads with
optimization and fine-tuning, in order to mitigate performance loss.

However, it is possible to conceive of a different approach to concurrent pro-
gramming; one which avoids the overhead native to the aforementioned systems.
For example, consider a generic thread create(f()) function. In the previ-
ous context, this function is seen as a command to spawn a thread no matter
what; however, in this task-oriented scenario, we will instead view it as a “hint”
to create a thread - i.e., if there are enough resources available to make a thread,
then we shall do so, but otherwise we will simply run the function sequentially.
We shall call this “hint” function make thread?(f()).

This naive approach, regrettably, is not without its flaws. Let us consider
some of them:

• Given n cores, if we attempt to run a number of processes P (k) concur-
rently, the n + 1th process and onwards will inevitably run in the same
thread. However, what if P (1...n) execute and return quickly, whereas
P (n+1...k) do not? The earlier cores will then be unutilized, creating an
unnecessary drop in performance!

• The “sequentialized” processes created after the first n might generate
data used by other processes, creating unnecessary overhead and defeating
the purpose of the concurrent paradigm we studied at the beginning of the
semester.

1

• The means by which we check if resources are available might be resource-
intensive themselves - however, this is not necessarily true, as the resource-
checking procedure is completely abstract.

Despite these limitations, there are ways to utilize this approach and still
yield notable performance gains. Let us consider the pseudocode for a simple
function sum tree(tree), whose purpose is to sum the leaves of a tree. The
code is shown below, in Figure 1.

1. function sum_tree(tree) = {
2. if leaf?(tree) then
3. leaf_value(tree)
4. else
5. sum_tree(left(tree)) + sum_tree(right(tree))
6. }

Figure 1: Sum tree function.

sum tree(tree) is easily parallelizable. We can imagine “marking” the left
recursion in line 5 as a point where we want to create another thread, and have
the right recursion stay in the “main” thread. We thus get a system of threads
branching left, as seen below:

Figure 2: Left tree thread branching.

Note, however, that this parallelized system grows not with our resources or
number of cores n, but instead with the size of the j-element tree, or simply
log(j). This is obviously problematic, as it falls into all of the pitfalls discussed
before.

Now, what if we were able to take a somewhat different approach in which
we lazily create threads, holding off on creation until we have reached the point
where we know that creating a thread will help us? This is the crux of the
approach shown in Figure 3 on the following page, dubbed lazy task creation:

2

make thread?(f())
...

k

Figure 3: Lazy task creation with continuations.

Looking back to our knowledge of continuations, it is clear that there are
two important elements to consider when looking at the abstract creation of a
thread - the thread itself, and the continuation that follows the thread. Instead
of explicitly creating a thread (which is not necessarily needed), we should
consider a different approach:

1. Have the program begin running f(), and

2. Have the program say that there is some continuation k which another
processor is now free to execute.

Consider an environment with functions f(), g() and h() and continuations
kf , kg and kh respective to the preceding functions. If a processor were to run
f(), after f() returns, it would attempt to run kf (the continuation associated
with f()). If kf has been “taken” already - that is, if another processor has
begun executing kf while the first was busy executing f() - then the processor
will signal other processors that it is free to perform the other continuations.

In such a system, we are creating tasks - potential creation points of threads.
The preceding example actually demonstrated lazy task creation!

2 Cilk

The language Cilk1 (which is based on C) is founded on the concept of lazy task
creation, and utilizes continuations as the fundamental unit of processing. Cilk
is efficient in that it does not allocate stack space, save registers, etc. (all of the
typical overhead associated with threading) until we know that we can do so.
In this lecture and the following, we will look at the structure of Cilk programs
and its programming philosophy.

Cilk is somewhat counterintuitive, in two main senses:

1. Cilk is optimized primarily for serial execution. This seems especially
strange, but some careful thinking about Amdahl’s law shows that this
is the best way to improve performance - after all, the primary source of
bottlenecking in practical concurrent applications is the fraction of code
which is not parallelizable!

1Intel’s Thread Building Blocks are primarily based on Cilk, in order to improve perfor-
mance.

3

2. Cilk inverts expectations of what will be executed remotely. The Cilk
equivalent of make thread?(f()) (our abstract task spawner) actually
executes f() locally and the continuation kf is what has the potential to
be executed remotely.

Consider the following Cilk program, which takes a basic recursive approach
to calculating the nth Fibonacci number:

1. cilk int fib (int n) {
2. int n1, n2;
3. if (n < 2)
4. return n;
5. else {
6. n1 = spawn fib(n - 1);
7. n2 = spawn fib(n - 2);
8. sync;
9. return (n1 + n2);
10. }
11. }

Figure 4: Fibonacci function in Cilk.

Note the use of the cilk header (indicating the function is a Cilk function),
and the associated keywords spawn and sync. The spawn keyword embodies the
lazy task creation approach discussed earlier, and allows the given procedures (in
this case, fib(n - 1) and fib(n - 2)) to be executed asynchronously with the
caller. The The sync keyword is the “join point”, where the current thread waits
for all locally-spawned tasks to return before continuing. In Cilk, procedures
cannot terminate while they have outstanding children (i.e. children which have
spawned tasks which have not yet returned).

Cilk is very faithful to C - indeed, a properly written Cilk program will
turn into a C program with acceptable, serial execution if all Cilk keywords
are erased. This is extended to function calls - the spawn keyword can only be
applied to Cilk functions, and Cilk functions cannot be called by normal means,
instead requiring a spawn. Thus, in a Cilk program, main() must be declared
as a Cilk function, in order to allow parallelization of the rest of the code.

We have had to be rather careful with our terminology here, as a thread in
Cilk has a very particular definition:

thread The maximal sequence of instructions not containing a spawn, sync or
return (that is, a unit of work that can actually have some sort of resources
assigned to it).

The lecture concluded with a look at a model of Cilk execution, which gives
a graphical representation of the concepts we discussed the rest of the day. The

4

model is shown below, with circles showing threads, downward edges showing
the spawning of a new subcomputation, and horizontal edges showing the trans-
fer of a continuation to a successor thread. Upward edges indicate the return of
a value to a parent.

Figure 5: Cilk execution model.

The following lecture yields a more in-depth look into the structure and
concepts behind Cilk programs.

5

