’rinciples of Concurrency anc
Parallelism

Lecture 8: Lock-free Data Structures
3/19/12

slides adapted from The Art of Multiprocessor
Programming, Herlihy and Shavit

CS390C: Principles of Concurrency and Parallelism

Tuesday, March 27, 12

Last Lecture: Spin-Locks

=
B 61} Y

A

spin critical Resets lock
/ lock section upon exit

CS390C: Principles of Concurrency and Parallelism

Tuesday, March 27, 12

Today: Concurrent Objects

e Adding threads should not lower throughput
— Contention effects

— Mostly fixed by Queue locks

CS390C: Principles of Concurrency and Parallelism

Tuesday, March 27, 12

Today: Concurrent Objects

e Adding threads should not lower throughput
— Contention effects

— Mostly fixed by Queue locks
e Should increase throughput

— Not possible if inherently sequential

— Surprising things are parallelizable

CS390C: Principles of Concurrency and Parallelism 4

Tuesday, March 27, 12

Coarse-Grained Synchronization

e Each method locks the object
— Avoid contention using queue locks

— Easy to reason about

e In simple cases

e So, are we done!

CS390C: Principles of Concurrency and Parallelism 5

Tuesday, March 27, 12

Coarse-Grained Synchronization

e Sequential bottleneck

— Threads “stand in line”

e Adding more threads

— Does not improve throughput

— Struggle to keep it from getting worse

e So why even use a multiprocessor?

— Well, some apps inherently parallel ...

CS390C: Principles of Concurrency and Parallelism 6

Tuesday, March 27, 12

Fine-Grained Sznchroniza’rion

e Instead of using a single lock ...
e Split object into
— Independently-synchronized components

e Methods conflict when they access
— The same component ...

— At the same time

CS390C: Principles of Concurrency and Parallelism

Tuesday, March 27, 12

Second:
Optimistic Synchronization

e Search without locking ...
e If you find it, lock and check ...

— OK: we are done
— Oops: start over
e Evaluation
— Usually cheaper than locking, but

— Mistakes are expensive

CS390C: Principles of Concurrency and Parallelism

Tuesday, March 27, 12

Third:
Lazy Synchronization

e Postpone hard work

e Removing components is tricky

— Logical removal

e Mark component to be deleted

— Physical removal

e Do what needs to be done

CS390C: Principles of Concurrency and Parallelism

Tuesday, March 27, 12

Fourth:
Lock-Free anchroniza‘rion

e Don’t use locks at all

— Use compareAndSet() & relatives ...
e Advantages

— No Scheduler Assumptions/Support
e Disadvantages

— Complex

— Sometimes high overhead

CS390C: Principles of Concurrency and Parallelism 10

Tuesday, March 27, 12

Linked List

e |llustrate these patterns ...
e Using a list-based Set

— Common application

— Building block for other apps

CS390C: Principles of Concurrency and Parallelism 1

Tuesday, March 27, 12

Set Interface

e Unordered collection of items
e No duplicates

e Methods
—add(x) put X in set
— remove(x) take X out of set
— contains(Xx) tests if X in set

CS390C: Principles of Concurrency and Parallelism 12

Tuesday, March 27, 12

List-Based Sets

public interface Set<T> {
public boolean add(T x);
public boolean remove(T Xx);
public boolean contains(T Xx);

}

CS390C: Principles of Concurrency and Parallelism 13

Tuesday, March 27, 12

List Node

public class Node {
public T item;
public int key;
public Node next;

}

CS390C: Principles of Concurrency and Parallelism

14

Tuesday, March 27, 12

The List-Based Set

(B PE o CE PR
[+]

Sorted with Sentinel nodes
(min & max possible keys)

CS390C: Principles of Concurrency and Parallelism 15

Tuesday, March 27, 12

Reasoning about Concurrent
Objects

e |nvariant
— Property that always holds
e Established because

— True when object is created

— Truth preserved by each method
e Each step of each method

CS390C: Principles of Concurrency and Parallelism 16

Tuesday, March 27, 12

Specifically ...

e Invariants preserved by
—add()
—remove()
— contains()
e Most steps are trivial
— Usually one step tricky

— Often linearization point

e point at which method’s effects can be safely made visible

CS390C: Principles of Concurrency and Parallelism 17

Tuesday, March 27, 12

Interference

e Invariants make sense only if
— methods considered

— are the only modifiers

e Language encapsulation helps

— List nodes not visible outside class

céwhefrMitbiesacesset frrRgrammingiclism 18

Tuesday, March 27, 12

Interference

® Freedom from interference needed even for
removed nodes

— Some algorithms traverse removed nodes
— Careful with malloc() & free()!

e Garbage collection helps here

CS390C: Principles of Concurrency and Parallelism 19

Tuesday, March 27, 12

Abstract Data Types

e Concrete representation:

L —{el 3=l 5—~(1]

e Abstract Type:
- {a,b}

CS390C: Principles of Concurrency and Parallelism 20

Tuesday, March 27, 12

Abstract Data Types

e Meaning of rep given by abstraction map

= 3() = {a,b}

([O-td 33D

CS390C: Principles of Concurrency and Parallelism 21

Tuesday, March 27, 12

Rep Invariant

e Which concrete values meaningful?
— Sorted?
— Duplicates!?
e Rep invariant
— Characterizes legal concrete reps
— Preserved by methods

— Relied on by methods

CS390C: Principles of Concurrency and Parallelism 22

Tuesday, March 27, 12

Blame Game

e Suppose
— add() leaves behind 2 copies of x
= remove() removes only |

e Which is incorrect!?

— If rep invariant says no duplicates

e add() is incorrect

— Otherwise
e remove() is incorrect

CS390C: Principles of Concurrency and Parallelism

23

Tuesday, March 27, 12

Rep Invariant (partly)

e Sentinel nodes

— tail reachable from head
e Sorted

e No duplicates

CS390C: Principles of Concurrency and Parallelism 24

Tuesday, March 27, 12

Abstraction Map

e S(head) =
—{ x | there exists a such that

ea reachable from head and
ea.item =X

~}

CS390C: Principles of Concurrency and Parallelism

25

Tuesday, March 27, 12

Remove()

R

CS390C: Principles of Concurrency and Parallelism 26

Tuesday, March 27, 12

(I3—>lal (e[F—{d[)

CS390C: Principles of Concurrency and Parallelism 27

Tuesday, March 27, 12

Cogrse-Grained Locking

é6

CS390C: Principles of Concurrency and Parallelism 28

Tuesday, March 27, 12

Cogrse-Grained Locking

o
(T9——>(a[F¥— (dl)

honk!]_

ITOTTK !

CS390C: Principles of Concurrency and Parallelism 29

Tuesday, March 27, 12

—.Coarse-Grained Locking
?
="C

Simple but hotspot + bottleneck

CS390C: Principles of Concurrency and Parallelism 29

Tuesday, March 27, 12

Coarse-Grained Locking

e Easy, same as synchronized methods
e Simple, clearly correct

— Deserves respect!

e Works poorly with contention
— Queue locks help

— But bottleneck still an issue

CS390C: Principles of Concurrency and Parallelism 30

Tuesday, March 27, 12

Fine-grained Locking

e Requires careful thought

e Split object into pieces
— Each piece has own lock

— Methods that work on disjoint pieces need not
exclude each other

CS390C: Principles of Concurrency and Parallelism 31

Tuesday, March 27, 12

Hand-over-Hand locking

([(ol 37— (e[3—(]]

6

Hand-over-Hand locking

Lo (e[57— ([]

Hand-over-Hand locking

Hand-over-Hand locking

Hand-over-Hand locking

6 6o

Removing a Node

L[5 (e[5= (e[(] 7 (]]

remove(b)

CS390C: Principles of Concurrency and Parallelism

37

Tuesday, March 27, 12

Removing a Node

CS390C: Principles of Concurrency and Parallelism

38

Tuesday, March 27, 12

6

Removing a Node

6

remove(b)

CS390C: Principles of Concurrency and Parallelism

BEadCE gt

39

Tuesday, March 27, 12

Removing a Node

CS390C: Principles of Concurrency and Parallelism

40

Tuesday, March 27, 12

remove(b)

Removing a Node

6 O

seaenjiice

[3 {d]

CS390C: Principles of Concurrency and Parallelism 4l

Tuesday, March 27, 12

Removing a Node

6

remove(b)

[3 {d]

42

CS390C: Principles of Concurrency and Parallelism

Tuesday, March 27, 12

Removing a Node

6
el (3]

OO

CS390C: Principles of Concurrency and Parallelism

Why hold 2 locks?

42

Tuesday, March 27, 12

Concurrent Removes

Concurrent Removes

Concurrent Removes

Concurrent Removes

Concurrent Removes

Concurrent Removes

Concurrent Removes

Concurrent Removes

Concurrent Removes

céwhefrMitbiesacesset frrRgrammingiclism 51

Tuesday, March 27, 12

Concurrent Removes

Tuesday, March 27, 12

Uh, Oh

SEagER [3 {d]

remove(b)

g

CS390C: Principles of Concurrency and Parallelism

Tuesday, March 27, 12

Uh, Oh

Bad news, ¢ not removed

CS390C: Principles of Concurrency and Parallelism

54

Tuesday, March 27, 12

Problem

e Jo delete node ¢
— Swing node b’s next field to d

e Problem is, [Z|3_>

— Someone deleting b concurrently could

direct a pointer

CS390C: Principles of Concurrency and Parallelism >3

Tuesday, March 27, 12

Insight

e If a node is locked
— No one can delete node’s successor
e If a thread locks

— Node to be deleted
— And its predecessor

— Then it works

CS390C: Principles of Concurrency and Parallelism 36

Tuesday, March 27, 12

Hand-Over-Hand Again

Hand-Over-Hand Again

Hand-Over-Hand Again

Hand-Over-Hand Again

CS390C: Principles of Concurrency and Parallelism

60

Tuesday, March 27, 12

Hand-Over-Hand Again

CS390C: Principles of Concurrency and Parallelism

61

Tuesday, March 27, 12

Hand-Over-Hand Again

SEagER [3 {d]

OO

CS390C: Principles of Concurrency and Parallelism

62

Tuesday, March 27, 12

Removing a Node

L[5 (e[5= (e[(] 7 (]]

g

CS390C: Principles of Concurrency and Parallelism

remove(b)

Tuesday, March 27, 12

Removing a Node

[[F=>{a[5= (e[(] 7 (]]

CS390C: Principles of Concurrency and Parallelism

Tuesday, March 27, 12

Removing a Node

(5= (a[(e[([5 (]]

CS390C: Principles of Concurrency and Parallelism

Tuesday, March 27, 12

Removing a Node

CS390C: Principles of Concurrency and Parallelism

Tuesday, March 27, 12

remove(b)

Removing a Node

CS390C: Principles of Concurrency and Parallelism

67

Tuesday, March 27, 12

remove(b)

Removing a Node

CS390C: Principles of Concurrency and Parallelism

68

Tuesday, March 27, 12

Removing a Node

CS390C: Principles of Concurrency and Parallelism

69

Tuesday, March 27, 12

Removing a Node

6 6
(ol 3 (o] 3> (e 3 (e[

g

CS390C: Principles of Concurrency and Parallelism

remove(b)

Tuesday, March 27, 12

Removing a Node

Must acquire
Lock for b

71

CS390C: Principles of Concurrency and Parallelism

Tuesday, March 27, 12

Removing a Node

Cannot acquire
lock for b

72

CS390C: Principles of Concurrency and Parallelism

Tuesday, March 27, 12

Removing a Node

6 6

[g: %@D
@%%

CS390C: Principles of Concurrency and Parallelism

Tuesday, March 27, 12

Proceed to
remove(b)

Removing a Node

CS390C: Principles of Concurrency and Parallelism

(d]

74

Tuesday, March 27, 12

Removing a Node

CS390C: Principles of Concurrency and Parallelism

75

Tuesday, March 27, 12

Removing a Node

CS390C: Principles of Concurrency and Parallelism

76

Tuesday, March 27, 12

([5—

remove(b)

Removing a Node

CS390C: Principles of Concurrency and Parallelism

77

Tuesday, March 27, 12

Removing a Node

([5— (d]

CS390C: Principles of Concurrency and Parallelism 78

Tuesday, March 27, 12

Remove method

public boolean remove(Item item) {
int key = item.hashCode();

Node pred,
try {

} finally {

curr.unlock()
pred.unlock()

+}

curr;

°
4
.
4

CS390C: Principles of Concurrency and Parallelism

79

Tuesday, March 27, 12

Remove method

try {

pred = this.head;
pred.lock();

curr = pred.next;
curr.lock();

}mfinally { .. }

CS390C: Principles of Concurrency and Parallelism 80

Tuesday, March 27, 12

Adding Nodes

e To add node e
— Must lock predecessor

— Must lock successor

e Neither can be deleted

— (Is successor lock actually required?)

CS390C: Principles of Concurrency and Parallelism 81

Tuesday, March 27, 12

Rep Invariant

e Easy to check that
— tail always reachable from head

— Nodes sorted, no duplicates

CS390C: Principles of Concurrency and Parallelism 82

Tuesday, March 27, 12

Drawbacks

e Better than coarse-grained lock
— Threads can traverse in parallel
e Still not ideal

— Long chain of acquire/release

— Inefficient

CS390C: Principles of Concurrency and Parallelism 83

Tuesday, March 27, 12

Optimistic Synchronization

e Find nodes without locking
e Lock nodes
e Check that everything is OK

CS390C: Principles of Concurrency and Parallelism 84

Tuesday, March 27, 12

Optimistic: Traverse without
Locking

(13— (o[(e[(3L

CS390C: Principles of Concurrency and Parallelism 85

Tuesday, March 27, 12

Optimistic: Traverse without
Locking

oyt
0%

CS390C: Principles of Concurrency and Parallelism 85

Tuesday, March 27, 12

Optimistic: Lock and Load

%@-ﬁf&%\-
.

86

CS390C: Principles of Concurrency and Parallelism

Tuesday, March 27, 12

Optimistic: Lock and Load

Oo

céwhefrMitbiesacesset frrRgrammingiclism 87

Tuesday, March 27, 12

What could go wrong?

(13— (o[(e[(3L

CS390C: Principles of Concurrency and Parallelism 88

Tuesday, March 27, 12

What could go wrong?

=
0%

CS390C: Principles of Concurrency and Parallelism 88

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 89

Tuesday, March 27, 12

What could go wrong?

6 6
(T3 ([3—+(E] -

m:

AU

CS390C: Principles of Concurrency and Parallelism 90

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism

remove(b)

91

Tuesday, March 27, 12

céwhefrMitbiesacesset frrRgrammingiclism 92

Tuesday, March 27, 12

céwhefrMitbiesacesset frrRgrammingiclism 93

Tuesday, March 27, 12

What could go wrong?

(53— @D (@3—CD

O o || Uh-oh

céwhefrMitbiesacesset frrRgrammingiclism 94

Tuesday, March 27, 12

Validate - Part 1

6 o6

(13— (o[(e[(3L

Oo

CS390C: Principles of Concurrency and Parallelism 95

Tuesday, March 27, 12

Validate - Part 1

6
([3— @ 3—CD)

Yes, b still

reachable from
head

CS390C: Principles of Concurrency and Parallelism 95

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 96

Tuesday, March 27, 12

CB—»WGJB}—'
O, o 0 O

CS390C: Principles of Concurrency and Parallelism 96

Tuesday, March 27, 12

97

CS390C: Principles of Concurrency and Parallelism

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 98

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 99

Tuesday, March 27, 12

?

o

C
(15—
/
0

o

CS390C: Principles of Concurrency and Parallelism 100

Tuesday, March 27, 12

Validate Part 2

(while holding locks)

G:-]—»@ﬁ-{%:—]—»
00'&

CS390C: Principles of Concurrency and Parallelism 101

Tuesday, March 27, 12

Validate Part 2
(while holding locks)

@%@.

Yes, b still
points to d

CS390C: Principles of Concurrency and Parallelism 101

Tuesday, March 27, 12

Optimistic: Linearization Point

102

CS390C: Principles of Concurrency and Parallelism

Tuesday, March 27, 12

Optimistic: Linearization Point

Loe >

o

CS390C: Principles of Concurrency and Parallelism 102

Tuesday, March 27, 12

Same Abstraction Map

e S(head) =
—{ x | there exists a such that

ea reachable from head and
ea.item =X

~}

CS390C: Principles of Concurrency and Parallelism 103

Tuesday, March 27, 12

Invariants

e Careful: we may traverse deleted nodes

e But we establish properties by
— Validation

— After we lock target nodes

CS390C: Principles of Concurrency and Parallelism 104

Tuesday, March 27, 12

Correctness

o If
— Nodes b and ¢ both locked
— Node b still accessible

— Node c still successor to b

e [hen
— Neither will be deleted

— OK to delete and return true

CS390C: Principles of Concurrency and Parallelism 105

Tuesday, March 27, 12

Unsuccessful Remove

Unsuccessful Remove

Unsuccessful Remove

CS390C: Principles of Concurrency and Parallelism

106

Tuesday, March 27, 12

Unsuccessful Remove

CB—»@B—EF}@—»
o Q

O

CS390C: Principles of Concurrency and Parallelism 106

Tuesday, March 27, 12

Unsuccessful Remove

CS390C: Principles of Concurrency and Parallelism

106

Tuesday, March 27, 12

Unsuccessful Remove

CS390C: Principles of Concurrency and Parallelism

106

Tuesday, March 27, 12

Unsuccessful Remove

CS390C: Principles of Concurrency and Parallelism

106

Tuesday, March 27, 12

Validate (1)

6 O
L[5 (e[5= (e[> (d] 5 ([]

CS390C: Principles of Concurrency and Parallelism 107

Tuesday, March 27, 12

Validate (1)

6 o6
(13— (a3 e[3~ (3L

Yes, b still

reachable from
head

107

CS390C: Principles of Concurrency and Parallelism

Tuesday, March 27, 12

Validate (2)

6 6
[]3—»@3—{730@3—»
D

CS390C: Principles of Concurrency and Parallelism 108

Tuesday, March 27, 12

Validate (2)

Yes, b still points
tod

108

CS390C: Principles of Concurrency and Parallelism

Tuesday, March 27, 12

OK Computer

CS390C: Principles of Concurrency and Parallelism

\
return false
7 Y,
109

Tuesday, March 27, 12

Correctness

o If
— Nodes b and d both locked
— Node b still accessible
— Node d still successor to b

e Then
— Neither will be deleted
— No thread can add c after b
— OK to return false

CS390C: Principles of Concurrency and Parallelism 110

Tuesday, March 27, 12

Validation

private boolean
validate(Node pred, Node curry) {
Node node = head;
while (node.key <= pred.key) {
if (node == pred)
return pred.next == curr;
node = node.next;

}

return false;

}

CS390C: Principles of Concurrency and Parallelism

111

Tuesday, March 27, 12

Remove: searching

public boolean remove(Item item) {
int key = item.hashCode();
retry: while (true) {
Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {
if (item == curr.item)
break;
pred = curr;
curr = curr.next;

} o

CS390C: Principles of Concurrency and Parallelism 12

Tuesday, March 27, 12

On Exit from Loop

e If item is present
— curr holds item

— pred just before curr

e If item is absent
— curr has first higher key

— pred just before curr

e Assuming no synchronization problems

CS390C: Principles of Concurrency and Parallelism 113

Tuesday, March 27, 12

Remove Method

try {
pred.lock(); curr.lock();

if (validate(pred,curr) {
if (curr.item == item) {

pred.next = curr.next;

return true;

} else {

return false;

}}} finally {
pred.unlock();
curr.unlock();

}h}

CS390C: Principles of Concurrency and Parallelism

114

Tuesday, March 27, 12

Optimistic List

e Limited hot-spots
— Targets of add(), remove(), contains()

— No contention on traversals

e Moreover
— Traversals are wait-free
— Food for thought ...

CS390C: Principles of Concurrency and Parallelism 115

Tuesday, March 27, 12

So Far, So Good

® Much less lock acquisition/release
— Performance

— Concurrency

e Problems
— Need to traverse list twice

— contains() method acquires locks

CS390C: Principles of Concurrency and Parallelism 116

Tuesday, March 27, 12

Evaluation

e Optimistic is effective if
— cost of scanning twice without locks
is less than

— cost of scanning once with locks

e Drawback
— contains() acquires locks

— 90% of calls in many apps

CS390C: Principles of Concurrency and Parallelism

117

Tuesday, March 27, 12

Lazy List

e Like optimistic, except
— Scan once
— contains(x) never locks ...
e Key insight
— Removing nodes causes trouble

— Do it “lazily”

CS390C: Principles of Concurrency and Parallelism 118

Tuesday, March 27, 12

Lazy List

e remove()
— Scans list (as before)

— Locks predecessor & current (as before)

e |ogical delete
— Marks current node as removed (new!)
e Physical delete

— Redirects predecessor’s next (as before)

CS390C: Principles of Concurrency and Parallelism 119

Tuesday, March 27, 12

Lazx Removal

(I [F=>{d[T3=>{IT3=(dT3=>{dl[3>

CS390C: Principles of Concurrency and Parallelism 120

Tuesday, March 27, 12

Lazx Removal

Present in list

CS390C: Principles of Concurrency and Parallelism

[||+>@E»yﬂp_@‘

121

Tuesday, March 27, 12

Lazx Removal

Logically deleted

CS390C: Principles of Concurrency and Parallelism

[||+>@E»yﬂp_@‘

122

Tuesday, March 27, 12

Lazx Removal

[||#@w

Physically deleted

CS390C: Principles of Concurrency and Parallelism 123

Tuesday, March 27, 12

Lazx Removal

[||+>@B»w

Physically deleted

CS390C: Principles of Concurrency and Parallelism 124

Tuesday, March 27, 12

Lazy List

e All Methods

— Scan through locked and marked nodes

— Removing a node doesn’t slow down other method calls

e Must still lock pred and curr nodes.

CS390C: Principles of Concurrency and Parallelism 125

Tuesday, March 27, 12

Validation

e No need to rescan list!

o C
o C
o C

NeC

NEC

NeC

Kt
 t

Kt

nat pred is not marked

nat curr is not marked

nat pred points to curr

CS390C: Principles of Concurrency and Parallelism

126

Tuesday, March 27, 12

Business as Usual

Lall 3> (el 3= ([

CS390C: Principles of Concurrency and Parallelism

127

Tuesday, March 27, 12

Business as Usual

Laoll 3> (el 3 ([

CS390C: Principles of Concurrency and Parallelism

128

Tuesday, March 27, 12

Business as Usual

L5 Lall = (3

CS390C: Principles of Concurrency and Parallelism 125

Tuesday, March 27, 12

Business as Usual

(T3~ (3Gl (3

CS390C: Principles of Concurrency and Parallelism 130

Tuesday, March 27, 12

Business as Usual

(3 (3 Gl (3

CS390C: Principles of Concurrency and Parallelism 131

Tuesday, March 27, 12

Business as Usual

(3 (3Gl (3

CS390C: Principles of Concurrency and Parallelism 132

Tuesday, March 27, 12

Business as Usual

(15— (all (el 3 ([3—

CS390C: Principles of Concurrency and Parallelism 133

Tuesday, March 27, 12

Business as Usual

(15— (all (el 3 ([3—

CS390C: Principles of Concurrency and Parallelism 134

Tuesday, March 27, 12

Business as Usual

(B (OB -

CS390C: Principles of Concurrency and Parallelism 134

Tuesday, March 27, 12

Business as Usual

CS390C: Principles of Concurrency and Parallelism

135

Tuesday, March 27, 12

Summary: Wait-free Contains

D
L[3=>{af 5=>{ biid 5=>{dl1] 5> el |

Use Mark bit + list ordering
1. Not marked - in the set
2. Marked or missing = not in the set

CS390C: Principles of Concurrency and Parallelism 136

Tuesday, March 27, 12

Lazx List

Lazy add() and remove() + Wait-free contains()

137

CS390C: Principles of Concurrency and Parallelism

Tuesday, March 27, 12

New Abstraction Map

e S(head) =
—{ x | there exists node a such that
ea reachable from head and

ea.item = X and
®2a is unmarked

~}

CS390C: Principles of Concurrency and Parallelism 138

Tuesday, March 27, 12

Invariant

e If not marked then item in the set
e and reachable from head

e and if not yet traversed it is reachable from pred

CS390C: Principles of Concurrency and Parallelism 135

Tuesday, March 27, 12

Evaluation

e Good:

— contains() doesn’t lock

— In fact, its wait-free!

— Good because typically high % contains()
— Uncontended calls don’t re-traverse

e Bad

— Contended add() and remove() calls do re-traverse
— Traffic jam if one thread delays

CS390C: Principles of Concurrency and Parallelism 140

Tuesday, March 27, 12

Traffic Jam

e Any concurrent data structure based on mutual
exclusion has a weakness
e If one thread
— Enters critical section
— And “eats the big muffin”

e Cache miss, page fault, descheduled ...
— Everyone else using that lock is stuck!

— Need to trust the scheduler....

CS390C: Principles of Concurrency and Parallelism 14l

Tuesday, March 27, 12

Reminder: Lock-Free Data

—e 21 LUCTUreES

e No matter what ...
— Guarantees minimal progress in any execution
— i.e. Some thread will always complete a method call
— Even if others halt at malicious times

— Implies that implementation can’t use locks

CS390C: Principles of Concurrency and Parallelism 152

Tuesday, March 27, 12

Reminder: Lock-Free Data

—e2 LLUCTUrES

e No matter what ...

— Guarantees minimal progress in any execution
— i.e. Some thread will always complete a method call
— Even if others halt at malicious times

— Implies that implementation can’t use locks

CS390C: Principles of Concurrency and Parallelism 152

Tuesday, March 27, 12

Lock-free Lists

e Next logical step
— Wiait-free contains()

— lock-free add() and remove()

e Use only compareAndSet()
— What could go wrong!?

CS390C: Principles of Concurrency and Parallelism

143

Tuesday, March 27, 12

Lock-free Lists

EEE FEEJFEE FEE FIE

Use CAS to verify pointer
IS correct

CS390C: Principles of Concurrency and Parallelism 144

Tuesday, March 27, 12

Lock-free Lists

Logical Removal

EEE FEEJFEE FEE FIE

Use CAS to verify pointer
IS correct

CS390C: Principles of Concurrency and Parallelism 144

Tuesday, March 27, 12

Lock-free Lists

Logical Removal

(I T3> 3= F=>{i 3={d)

Use CAS to verify pointer
IS correct

CS390C: Principles of Concurrency and Parallelism 144

Tuesday, March 27, 12

Lock-free Lists

Logical Removal

([~ cocRrEDE

Use CAS to verify pointer Physical Removal
IS correct

CS390C: Principles of Concurrency and Parallelism 144

Tuesday, March 27, 12

Lock-free Lists

Logical Removal

EECy rE

EREFPE

Use CAS to verify pointer Physical Removal
IS correct

Not enough!

144

CS390C: Principles of Concurrency and Parallelism

Tuesday, March 27, 12

Problem...

(I I 3= 3= 3> T F{]

CS390C: Principles of Concurrency and Parallelism

145

Tuesday, March 27, 12

Problem...

Logical Removal

R FEE L FEEFEE_FER

CS390C: Principles of Concurrency and Parallelism 145

Tuesday, March 27, 12

Problem...

Logical Removal

o o

Node added

CS390C: Principles of Concurrency and Parallelism 145

Tuesday, March 27, 12

EREFPE

Problem...

Logical Removal

Physical Removal

Node added

CS390C: Principles of Concurrency and Parallelism

145

Tuesday, March 27, 12

The Solution: Combine Bit anc
Pointer

(L_F=>(d" F=>(tF =>4~ 3> }

CS390C: Principles of Concurrency and Parallelism 146

Tuesday, March 27, 12

The Solution: Combine Bit anc
Pointer

L 3=>{d¥ 5>t 3> d7 5t |

Mark-Bit and Pointer
are CASed together
(AtomicMarkableReference)

CS390C: Principles of Concurrency and Parallelism 146

Tuesday, March 27, 12

The Solution: Combine Bit anc
Pointer

(1T 3~>(df 3> 3~ {7}

Mark-Bit and Pointer
are CASed together
(AtomicMarkableReference)

CS390C: Principles of Concurrency and Parallelism 146

Tuesday, March 27, 12

The Solution: Combine Bit anc
Pointer

Logical Removal =
Set Mark Bit

I__F=>{d" =t == 3>)

Mark-Bit and Pointer
are CASed together
(AtomicMarkableReference)

CS390C: Principles of Concurrency and Parallelism 146

Tuesday, March 27, 12

The Solution: Combine Bit anc
Pointer

Logical Removal =
Set Mark Bit

LL__=>{ld" 5={b

v

Ld g

Mark-Bit and Pointer zﬁgeCdA;}eNroizim
are CASed together Removel

(AtomicMarkableReference)

CS390C: Principles of Concurrency and Parallelism 146

Tuesday, March 27, 12

The Solution: Combine Bit anc
Pointer

Logical Removal =
Set Mark Bit

L

Physical
. . Removal Fail CAS: Node not
Mark-Bit and Pointer c¢as added after logical
R |
are CASed together e

(AtomicMarkableReference)

CS390C: Principles of Concurrency and Parallelism 146

Tuesday, March 27, 12

Solution

e Use AtomicMarkableReference
e Atomically

— Swing reference and
— Update flag
e Remove in two steps
— Set mark bit in next field

— Redirect predecessor’s pointer

CS390C: Principles of Concurrency and Parallelism 147

Tuesday, March 27, 12

Marking a Node

® AtomicMarkableReference class

— Java.util.concurrent.atomic package

f

Reference —

Iaddr'ess] F

.

mark bit

CS390C: Principles of Concurrency and Parallelism 143

Tuesday, March 27, 12

Extracting Reference & Mark

Object] [boolean[]

Returns mark at

Returns
array index O!

reference

CS390C: Principles of Concurrency and Parallelism 149

Tuesday, March 27, 12

Extracting Reference Only

boolean]

Value of
mark

CS390C: Principles of Concurrency and Parallelism 150

Tuesday, March 27, 12

Changing State

Public boolean compareAndSet (
Object expectedRef,
Object updateRef,
boolean expectedMark,
boolean updateMark);

CS390C: Principles of Concurrency and Parallelism 151

Tuesday, March 27, 12

Changing State

If this is the current
reference ...

[Object expect(Ref’,_Y

[boolean expect%k,_]

And this is the current
mark ...

CS390C: Principles of Concurrency and Parallelism 152

Tuesday, March 27, 12

Changing State

...then change to this new
reference ...

|
Object updateRef,]

Iboolean updateMark);
... and this new

mark

CS390C: Principles of Concurrency and Parallelism 153

Tuesday, March 27, 12

Changing State

public boolean attemptMark(
Object expectedRef,
boolean updateMark);

CS390C: Principles of Concurrency and Parallelism 154

Tuesday, March 27, 12

Changing State

ject EXPECtEd RE', I

If this is the current
reference ...

CS390C: Principles of Concurrency and Parallelism 155

Tuesday, March 27, 12

Changing State

\boolean updateMark):|

.. then change to this
new mark.

CS390C: Principles of Concurrency and Parallelism

156

Tuesday, March 27, 12

Removing a Node

L[5 (e[5= (e[(] 7 (]]

Removing a Node

L[5 {a[5= (e[([5 {d]]

Removing a Node

Removing a Node

Removing a Node

L[5 (e[5= (e[(] 7 (]]

CS390C: Principles of Concurrency and Parallelism

Tuesday, March 27, 12

Removing a Node

L[5 (e[5= (e[5> (eli5—{d]]

CS390C: Principles of Concurrency and Parallelism

Tuesday, March 27, 12

Removing a Node

failed

(3=l Gl (e3>
S

CS390C: Principles of Concurrency and Parallelism

Tuesday, March 27, 12

Removing a Node

([5— (e3> (f3—(d[]

CS390C: Principles of Concurrency and Parallelism

Tuesday, March 27, 12

Removing a Node

([5— ([3—(d]

CS390C: Principles of Concurrency and Parallelism

Tuesday, March 27, 12

Removing a Node

CS390C: Principles of Concurrency and Parallelism

Tuesday, March 27, 12

Traversing the List

e Q:what do you do when you find a “logically”
deleted node in your path!?

e A:finish the job.
— CAS the predecessor’s next field

— Proceed (repeat as needed)

CS390C: Principles of Concurrency and Parallelism 161

Tuesday, March 27, 12

Lock-Free Traversal

(only Add and Remove)

Lock-Free Traversal

(only Add and Remove)

Lock-Free Traversal

(only Add and Remove)

7 L[I (el 3= (e 3L]

0%

CS390C: Principles of Concurrency and Parallelism

162

Tuesday, March 27, 12

Lock-Free Traversal

(only Add and Remove)

pred curr

7 L[I (el 3= (e 3L]

0%

CS390C: Principles of Concurrency and Parallelism

162

Tuesday, March 27, 12

Lock-Free Traversal

(only Add and Remove)

7 L[I (el 3= (e 3L]

0%

CS390C: Principles of Concurrency and Parallelism

162

Tuesday, March 27, 12

Lock-Free Traversal

(only Add and Remove)

CS390C: Principles of Concurrency and Parallelism 162

Tuesday, March 27, 12

Lock-Free Traversal

(only Add and Remove)

CS390C: Principles of Concurrency and Parallelism

162

Tuesday, March 27, 12

Lock-Free Traversal

(only Add and Remove)

Lock-Free Traversal

(only Add and Remove)

Lock-Free Traversal

(only Add and Remove)

Lock-Free Traversal

(only Add and Remove)

CS390C: Principles of Concurrency and Parallelism 162

Tuesday, March 27, 12

Lock-Free Traversal

(only Add and Remove)

162

Tuesday, March 27, 12

Lock-Free Traversal

(only Add and Remove)

162

Tuesday, March 27, 12

Performance

On 16 node shared memory machine
Benchmark throughput of Java List-based Set
algs. Vary 7% of Contains() method Calls.

CS390C: Principles of Concurrency and Parallelism 163

Tuesday, March 27, 12

1.2e+07

1e+07
8e+06
6e+06
4e+0
2e+(

h Contains Ratio

SE—— LA (AL

Ops/sec (90% reads/0 load)

K
e

/. =

T K
Kox

CS390C: Principles of Concurrency and Parallelism

Tuesday, March 27, 12

X Lock-free
Lazy list

Coarse Grained
Fine Lock-coupling

Low Contains Ratio

Ops/sec (50% reads/0 load)

3.5e+06 |
PN
3e+06 - ES %x%% Lock-free
2.5e+06 %%% /l«-’% ‘Ifi\-' a Ry ? Lazy list
b - - % i
2e+06 s '/' = Y -
m-
+ - / - —
1.5e406 .;fi]
1e+606 -)
500000 - g :
T, "+t Coarse Grained
O - ,C\,I,C\,_C_@_ﬂfﬂ_l_e_ A A A ,@ A N A W W ,@

Fine Lock-coupling

5 10 15 20 25 30
threads

CS390C: Principles of Concurrency and Parallelism 165

Tuesday, March 27, 12

As Contains Ratio Increases

Ops/sec (32 threads/0 load)

N~
® O ®
+ + +
00O
DD

% Contains()

CS390C: Principles of Concurrency and Parallelism

Lock-free
Lazy list

Coarse 6Grained
Fine Lock-coupling

166

Tuesday, March 27, 12

Summary

e Coarse-grained locking
e Fine-grained locking
e Optimistic synchronization

e Lock-free synchronization

CS390C: Principles of Concurrency and Parallelism 167

Tuesday, March 27, 12

"To Lock or Not to Lock”

e Locking vs. Non-blocking: Extremist views on
both sides

e The answer: nobler to compromise, combine
locking and non-blocking

— Example: Lazy list combines blocking add() and
remove() and a wait-free contains()

— Remember: Blocking/non-blocking is a property of a
method

CS390C: Principles of Concurrency and Parallelism 168

Tuesday, March 27, 12

Example: Lock-free queue

Tail

Head

OE 8N 8-

Inserting into the tail of the queue requires two updates:

- updating the tail pointer
- updating the next pointer in the current last element

169
CS390C: Principles of Concurrency and Parallelism

Tuesday, March 27, 12

Example

+ Separate CAS operations won’t work because other
threads can interfere in between them

+ |dea:

- Ensure data structure is always in a consistent state even in
the middle of a multi-update step

- Failure should not prevent other threads from making
progress

- if thread B arrives to find structure is currently being modified by
A, it will finish the operation on behalf of A
= this allows B to make progress without waiting for A to finish
- when A continues, it will realize B already did the job for it.

170
CS390C: Principles of Concurrency and Parallelism

Tuesday, March 27, 12

Code

@ThreadSafe
public class LinkedQueue <E> {
private static class Node <E> {
final E item;
final AtomicReference<Node<E>> next;

public Node(E item, Node<E> next) {

this.item = item;
this.next = new AtomicReference <Node<E>> (next);

}

}
private final Node<E> dummy = new Node<E>(null, null);

private final AtomicReference<Node<E> head
new AtomicReference<Node<E>>(dummy) ;

private final AtomicReference<Node<E>> tail
new AtomicReference<Node<E>>(dummy) ;

171
CS390C: Principles of Concurrency and Parallelism

Tuesday, March 27, 12

Code

public boolean put(E item) {
Node<E> newNode = new Node<E>(item, null);
while (true) {
Node<E> curTail = tail.get();
Node<E> tailNext = curTail.next.get();
if (curTail == tail.get()) {
if (tailNext != null) { A
// Queue in intermediate state, advance tail

tail.compareAndSet(curTail, tailNext); B
} else {
// In guiescent state, try inserting new node
if (curTail.next.compareAndSet(null, newNode)) { C
// Insertion succeeded, try advancing tail

tail.compareAndSet(curTail, newNode); D
return true;

}

Taken from Goetz, Java Concurrency in Practice, 2006, Addison-Wesley

172
CS390C: Principles of Concurrency and Parallelism

Tuesday, March 27, 12

SOME RIGHTS RESERVED

This work is licensed under a

« You are free:
- to Share — to copy, distribute and transmit the work

- to Remix — to adapt the work

- Under the following conditions:

- Attribution. You must attribute the work to “The Art of
Multiprocessor Programming” (but not in any way that suggests that
the authors endorse you or your use of the work).

- Share Alike. If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a
compatible license.

For any reuse or distribution, you must make clear to others the
license terms of this work. The best way to do this is with a link
to

- http://creativecommons.org/licenses/by-sa/3.0/.

Any of the above conditions can be waived if you get permission
from the copyright holder.

I_Io'ﬁ]hing in this license impairs or restricts the author's moral
rights.

CS390C: Principles of Concurrency and Parallelism 173

Tuesday, March 27, 12

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

