
CS390C: Principles of Concurrency and Parallelism

Principles of Concurrency and
Parallelism

 Lecture 8: Lock-free Data Structures

 3/19/12

slides adapted from The Art of Multiprocessor
Programming, Herlihy and Shavit

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 2

Last Lecture: Spin-Locks

CS

Resets lock
upon exit

spin
lock

critical
section

...

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 3

Today: Concurrent Objects

● Adding threads should not lower throughput
− Contention effects

− Mostly fixed by Queue locks

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 4

Today: Concurrent Objects
● Adding threads should not lower throughput
− Contention effects

− Mostly fixed by Queue locks

● Should increase throughput
− Not possible if inherently sequential

− Surprising things are parallelizable

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 5

Coarse-Grained Synchronization

● Each method locks the object
− Avoid contention using queue locks

− Easy to reason about
● In simple cases

● So, are we done?	

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 6

Coarse-Grained Synchronization
● Sequential bottleneck
− Threads “stand in line”

● Adding more threads
− Does not improve throughput
− Struggle to keep it from getting worse

● So why even use a multiprocessor?
− Well, some apps inherently parallel …

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 7

Fine-Grained Synchronization

● Instead of using a single lock …
● Split object into
− Independently-synchronized components

● Methods conflict when they access
− The same component …

− At the same time

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 8

Second:
Optimistic Synchronization

● Search without locking …
● If you find it, lock and check …
− OK: we are done

− Oops: start over

● Evaluation
− Usually cheaper than locking, but

− Mistakes are expensive

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 9

Third:
Lazy Synchronization

● Postpone hard work
● Removing components is tricky
− Logical removal

● Mark component to be deleted

− Physical removal
● Do what needs to be done

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 10

Fourth:
Lock-Free Synchronization

● Don’t use locks at all
− Use compareAndSet() & relatives …

● Advantages
− No Scheduler Assumptions/Support

● Disadvantages
− Complex

− Sometimes high overhead

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 11

Linked List

● Illustrate these patterns …
● Using a list-based Set
− Common application

− Building block for other apps

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 12

Set Interface

● Unordered collection of items
● No duplicates

● Methods
−add(x) put x in set

− remove(x) take x out of set

−contains(x) tests if x in set

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 13

List-Based Sets

public interface Set<T> {
 public boolean add(T x);
 public boolean remove(T x);
 public boolean contains(T x);
}

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 14

List Node

public class Node {
 public T item;
 public int key;
 public Node next;
}

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 15

The List-Based Set

a b c

Sorted with Sentinel nodes
(min & max possible keys)

-∞

+∞

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 16

Reasoning about Concurrent
Objects

● Invariant
− Property that always holds

● Established because
− True when object is created
− Truth preserved by each method

● Each step of each method

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 17

Specifically …

● Invariants preserved by
−add()
− remove()
−contains()

● Most steps are trivial
− Usually one step tricky

− Often linearization point
● point at which method’s effects can be safely made visible

Tuesday, March 27, 12

CS390C: Principles of Concurrency and ParallelismArt of Multiprocessor Programming 18

Interference

● Invariants make sense only if
− methods considered

− are the only modifiers

● Language encapsulation helps
− List nodes not visible outside class

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 19

Interference

● Freedom from interference needed even for
removed nodes
− Some algorithms traverse removed nodes

− Careful with malloc() & free()!
● Garbage collection helps here

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 20

Abstract Data Types

● Concrete representation:

● Abstract Type:
− {a, b}

a b

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 21

Abstract Data Types

● Meaning of rep given by abstraction map

− S() = {a,b}

a b

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 22

Rep Invariant

● Which concrete values meaningful?
− Sorted?

− Duplicates?

● Rep invariant
− Characterizes legal concrete reps

− Preserved by methods

− Relied on by methods

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 23

Blame Game

● Suppose
− add() leaves behind 2 copies of x

− remove() removes only 1

● Which is incorrect?
− If rep invariant says no duplicates

● add() is incorrect

− Otherwise
● remove() is incorrect

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 24

Rep Invariant (partly)

● Sentinel nodes
− tail reachable from head

● Sorted

● No duplicates

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 25

Abstraction Map

●S(head) =
− { x | there exists a such that
●a reachable from head and
●a.item = x

− }

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 26

Sequential List Based Set

a c d

b

a b c

Add()

Remove()

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 27

Coarse-Grained Locking

a b d

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 28

Coarse-Grained Locking

a b d

c

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 29

honk!

Coarse-Grained Locking

a b d

c
honk!

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 29

honk!

Coarse-Grained Locking

a b d

c

Simple but hotspot + bottleneck

honk!

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 30

Coarse-Grained Locking

● Easy, same as synchronized methods
● Simple, clearly correct
− Deserves respect!

● Works poorly with contention
− Queue locks help

− But bottleneck still an issue

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 31

Fine-grained Locking

● Requires careful thought

● Split object into pieces
− Each piece has own lock

− Methods that work on disjoint pieces need not
exclude each other

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 32

Hand-over-Hand locking

a b c

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 33

Hand-over-Hand locking

a b c

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 34

Hand-over-Hand locking

a b c

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 35

Hand-over-Hand locking

a b c

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 36

Hand-over-Hand locking

a b c

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 37

Removing a Node

a b c d

remove(b)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 38

Removing a Node

a b c d

remove(b)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 39

Removing a Node

a b c d

remove(b)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 40

Removing a Node

a b c d

remove(b)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 41

Removing a Node

a b c d

remove(b)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 42

Removing a Node

a c d

remove(b)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 42

Removing a Node

a c d

remove(b)
Why hold 2 locks?

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 43

Concurrent Removes

a b c d

remove(c)
remove(b)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 44

Concurrent Removes

a b c d

remove(b)
remove(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 45

Concurrent Removes

a b c d

remove(b)
remove(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 46

Concurrent Removes

a b c d

remove(b)
remove(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 47

Concurrent Removes

a b c d

remove(b)
remove(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 48

Concurrent Removes

a b c d

remove(b)
remove(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 49

Concurrent Removes

a b c d

remove(b)
remove(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 50

Concurrent Removes

a b c d

remove(b)
remove(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and ParallelismArt of Multiprocessor Programming 51

Concurrent Removes

a b c d

remove(b)
remove(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 52

Concurrent Removes

a b c d

remove(b)
remove(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 53

Uh, Oh

a c d

remove(b)
remove(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 54

Uh, Oh

a c d

Bad news, c not removed

remove(b)
remove(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 55

Problem

● To delete node c
− Swing node b’s next field to d

● Problem is,
− Someone deleting b concurrently could

 direct a pointer

 to c

ba c

ba c

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 56

Insight

● If a node is locked
− No one can delete node’s successor

● If a thread locks
− Node to be deleted
− And its predecessor

− Then it works

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 57

Hand-Over-Hand Again

a b c d

remove(b)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 58

Hand-Over-Hand Again

a b c d

remove(b)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 59

Hand-Over-Hand Again

a b c d

remove(b)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 60

Hand-Over-Hand Again

a b c d

remove(b) Found it!

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 61

Hand-Over-Hand Again

a b c d

remove(b) Found it!

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 62

Hand-Over-Hand Again

a c d

remove(b)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 63

Removing a Node

a b c d

remove(b)
remove(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 64

Removing a Node

a b c d

remove(b)
remove(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 65

Removing a Node

a b c d

remove(b)
remove(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 66

Removing a Node

a b c d

remove(b)
remove(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 67

Removing a Node

a b c d

remove(b)
remove(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 68

Removing a Node

a b c d

remove(b)
remove(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 69

Removing a Node

a b c d

remove(b)
remove(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 70

Removing a Node

a b c d

remove(b)
remove(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 71

Removing a Node

a b c d

Must acquire
Lock for b

remove(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 72

Removing a Node

a b c d

Cannot acquire
lock for b

remove(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 73

Removing a Node

a b c d

Wait!
remove(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 74

Removing a Node

a b d

Proceed to
remove(b)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 75

Removing a Node

a b d

remove(b)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 76

Removing a Node

a b d

remove(b)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 77

Removing a Node

a d

remove(b)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 78

Removing a Node

a d

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 79

Remove method

public boolean remove(Item item) {
 int key = item.hashCode();
 Node pred, curr;
 try {
 …
 } finally {
 curr.unlock();
 pred.unlock();
 }}

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 80

Remove method

try {
 pred = this.head;
 pred.lock();
 curr = pred.next;
 curr.lock();
 …
} finally { … }

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 81

Adding Nodes

● To add node e
− Must lock predecessor

− Must lock successor

● Neither can be deleted
− (Is successor lock actually required?)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 82

Rep Invariant

● Easy to check that
− tail always reachable from head

− Nodes sorted, no duplicates

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 83

Drawbacks

● Better than coarse-grained lock
− Threads can traverse in parallel

● Still not ideal
− Long chain of acquire/release
− Inefficient

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 84

Optimistic Synchronization

● Find nodes without locking
● Lock nodes

● Check that everything is OK

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 85

Optimistic: Traverse without
Locking

b d ea

add(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 85

Optimistic: Traverse without
Locking

b d ea

add(c) Aha!

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 86

Optimistic: Lock and Load

b d ea

add(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and ParallelismArt of Multiprocessor Programming 87

Optimistic: Lock and Load

b d ea

add(c)

c

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 88

What could go wrong?

b d ea

add(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 88

What could go wrong?

b d ea

add(c) Aha!

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 89

What could go wrong?

b d ea

add(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 90

What could go wrong?

b d ea

remove(b)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 91

What could go wrong?

b d ea

remove(b)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and ParallelismArt of Multiprocessor Programming 92

What could go wrong?

b d ea

add(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and ParallelismArt of Multiprocessor Programming 93

What could go wrong?

b d ea

add(c)

c

Tuesday, March 27, 12

CS390C: Principles of Concurrency and ParallelismArt of Multiprocessor Programming 94

What could go wrong?

d ea

add(c) Uh-oh

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 95

Validate – Part 1

b d ea

add(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 95

Validate – Part 1

b d ea

add(c) Yes, b still
reachable from

head

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 96

What Else Could Go Wrong?

b d ea

add(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 96

What Else Could Go Wrong?

b d ea

add(c) Aha!

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 97

What Else Coould Go Wrong?

b d ea

add(c)

add(b’)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 98

What Else Coould Go Wrong?

b d ea

add(c)

add(b’)b’

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 99

What Else Could Go Wrong?

b d ea

add(c)
b’

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 100

What Else Could Go Wrong?

b d ea

add(c)

c

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 101

Validate Part 2
(while holding locks)

b d ea

add(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 101

Validate Part 2
(while holding locks)

b d ea

add(c)
Yes, b still
points to d

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 102

Optimistic: Linearization Point

b d ea

add(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 102

Optimistic: Linearization Point

b d ea

add(c)

c

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 103

Same Abstraction Map

●S(head) =
− { x | there exists a such that
●a reachable from head and
●a.item = x

− }

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 104

Invariants

● Careful: we may traverse deleted nodes
● But we establish properties by
− Validation

− After we lock target nodes

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 105

Correctness

● If
− Nodes b and c both locked

− Node b still accessible

− Node c still successor to b

● Then
− Neither will be deleted

− OK to delete and return true

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 106

Unsuccessful Remove

a b d e

remove(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 106

Unsuccessful Remove

a b d e

remove(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 106

Unsuccessful Remove

a b d e

remove(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 106

Unsuccessful Remove

a b d e

remove(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 106

Unsuccessful Remove

a b d e

remove(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 106

Unsuccessful Remove

a b d e

remove(c)
Aha!

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 106

Unsuccessful Remove

a b d e

remove(c)
Aha!

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 107

Validate (1)

a b d e

remove(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 107

Validate (1)

a b d e

Yes, b still
reachable from

head

remove(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 108

Validate (2)

a b d e

remove(c)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 108

Validate (2)

a b d e

remove(c) Yes, b still points
to d

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 109

OK Computer

a b d e

remove(c) return false

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 110

Correctness

● If
− Nodes b and d both locked
− Node b still accessible
− Node d still successor to b

● Then
− Neither will be deleted
− No thread can add c after b
− OK to return false

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 111

Validation

private boolean
 validate(Node pred, Node curry) {
 Node node = head;
 while (node.key <= pred.key) {
 if (node == pred)
 return pred.next == curr;
 node = node.next;
 }
 return false;
}

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 112

Remove: searching

public boolean remove(Item item) {
 int key = item.hashCode();
 retry: while (true) {
 Node pred = this.head;
 Node curr = pred.next;
 while (curr.key <= key) {
 if (item == curr.item)
 break;
 pred = curr;
 curr = curr.next;
 } …

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 113

On Exit from Loop

● If item is present
− curr holds item

− pred just before curr

● If item is absent
− curr has first higher key

− pred just before curr

● Assuming no synchronization problems

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 114

Remove Method

try {
 pred.lock(); curr.lock();
 if (validate(pred,curr) {
 if (curr.item == item) {
 pred.next = curr.next;
 return true;
 } else {
 return false;
 }}} finally {
! pred.unlock();
! curr.unlock();
 }}}

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 115

Optimistic List

● Limited hot-spots
− Targets of add(), remove(), contains()

− No contention on traversals

● Moreover
− Traversals are wait-free

− Food for thought …

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 116

So Far, So Good

● Much less lock acquisition/release
− Performance

− Concurrency

● Problems
− Need to traverse list twice

− contains() method acquires locks

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 117

Evaluation

● Optimistic is effective if
− cost of scanning twice without locks

is less than
− cost of scanning once with locks

● Drawback
− contains() acquires locks

− 90% of calls in many apps

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 118

Lazy List

● Like optimistic, except
− Scan once

−contains(x) never locks …

● Key insight
− Removing nodes causes trouble
− Do it “lazily”

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 119

Lazy List

● remove()
− Scans list (as before)

− Locks predecessor & current (as before)

● Logical delete
− Marks current node as removed (new!)

● Physical delete
− Redirects predecessor’s next (as before)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 120

Lazy Removal

aa b c d

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism

c

121

Lazy Removal

aa b d

Present in list

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism

c

122

Lazy Removal

aa b d

Logically deleted

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 123

Lazy Removal

aa b c d

Physically deleted

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 124

Lazy Removal

aa b d

Physically deleted

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 125

Lazy List

● All Methods
− Scan through locked and marked nodes

− Removing a node doesn’t slow down other method calls
…

● Must still lock pred and curr nodes.

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 126

Validation

● No need to rescan list!
● Check that pred is not marked

● Check that curr is not marked

● Check that pred points to curr

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 127

Business as Usual

a b c

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 128

Business as Usual

a b c

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 129

Business as Usual

a b c

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 130

Business as Usual

a b c

remove(b)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 131

Business as Usual

a b c

a not marked

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 132

Business as Usual

a b c

a still
points to b

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 133

Business as Usual

a b c

Logical
delete

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 134

Business as Usual

a b c

physical
delete

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 134

Business as Usual

a b c

physical
delete

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 135

Business as Usual

a b c

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 136

Summary: Wait-free Contains

a 0 0 0a b c 0e1d

Use Mark bit + list ordering
1. Not marked  in the set
2. Marked or missing  not in the set

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 137

Lazy List

a 0 0 0a b c 0e1d

Lazy add() and remove() + Wait-free contains()

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 138

New Abstraction Map

●S(head) =
− { x | there exists node a such that
●a reachable from head and
●a.item = x and
●a is unmarked

− }

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 139

Invariant

● If not marked then item in the set
● and reachable from head

● and if not yet traversed it is reachable from pred

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 140

Evaluation

● Good:
− contains() doesn’t lock
− In fact, its wait-free!
− Good because typically high % contains()
− Uncontended calls don’t re-traverse

● Bad
− Contended add() and remove() calls do re-traverse
− Traffic jam if one thread delays

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 141

Traffic Jam

● Any concurrent data structure based on mutual
exclusion has a weakness

● If one thread
− Enters critical section

− And “eats the big muffin”
● Cache miss, page fault, descheduled …

− Everyone else using that lock is stuck!

− Need to trust the scheduler….

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 142

Reminder: Lock-Free Data
Structures

● No matter what …
− Guarantees minimal progress in any execution

− i.e. Some thread will always complete a method call

− Even if others halt at malicious times
− Implies that implementation can’t use locks

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 142

Reminder: Lock-Free Data
Structures

● No matter what …
− Guarantees minimal progress in any execution

− i.e. Some thread will always complete a method call

− Even if others halt at malicious times
− Implies that implementation can’t use locks

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 143

Lock-free Lists

● Next logical step
− Wait-free contains()

− lock-free add() and remove()

● Use only compareAndSet()
− What could go wrong?

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 144

a 0 0 0a b c 0e

Use CAS to verify pointer
is correct

Lock-free Lists

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 144

a 0 0 0a b c 0e

Logical Removal

Use CAS to verify pointer
is correct

Lock-free Lists

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 144

a 0 0 0a b c 0e1c

Logical Removal

Use CAS to verify pointer
is correct

Lock-free Lists

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 144

a 0 0 0a b c 0e1c

Logical Removal

Physical RemovalUse CAS to verify pointer
is correct

Lock-free Lists

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 144

a 0 0 0a b c 0e1c

Logical Removal

Physical RemovalUse CAS to verify pointer
is correct

Not enough!

Lock-free Lists

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 145

Problem…

a 0 0 0a b c 0e

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 145

Problem…

a 0 0 0a b c 0e1c

Logical Removal

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 145

Problem…

a 0 0 0a b c 0e

Logical Removal

0d
Node added

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 145

Problem…

a 0 0 0a b c 0e

Logical Removal

Physical Removal

0d
Node added

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 146

The Solution: Combine Bit and
Pointer

a 0 0 0a b c 0e

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 146

The Solution: Combine Bit and
Pointer

a 0 0 0a b c 0e

Mark-Bit and Pointer
are CASed together
(AtomicMarkableReference)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 146

The Solution: Combine Bit and
Pointer

a 0 0 0a b c 0e

Mark-Bit and Pointer
are CASed together
(AtomicMarkableReference)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 146

The Solution: Combine Bit and
Pointer

a 0 0 0a b c 0e1c

Logical Removal =
Set Mark Bit

Mark-Bit and Pointer
are CASed together
(AtomicMarkableReference)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 146

The Solution: Combine Bit and
Pointer

a 0 0 0a b c 0e1c

Logical Removal =
Set Mark Bit

0d

Mark-Bit and Pointer
are CASed together
(AtomicMarkableReference)

Fail CAS: Node not
added after logical
Removal

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 146

The Solution: Combine Bit and
Pointer

a 0 0 0a b c 0e1c

Logical Removal =
Set Mark Bit

Physical
Removal
CAS

0d

Mark-Bit and Pointer
are CASed together
(AtomicMarkableReference)

Fail CAS: Node not
added after logical
Removal

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 147

Solution

● Use AtomicMarkableReference
● Atomically
− Swing reference and

− Update flag

● Remove in two steps
− Set mark bit in next field

− Redirect predecessor’s pointer

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 148

Marking a Node

● AtomicMarkableReference class

− Java.util.concurrent.atomic package

address F

mark bit

Reference

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 149

Extracting Reference & Mark

Public Object get(boolean[] marked);

Returns
reference

Returns mark at
array index 0!

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 150

Extracting Reference Only

public boolean isMarked();

Value of
mark

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 151

Changing State

Public boolean compareAndSet(
 Object expectedRef,
 Object updateRef,
 boolean expectedMark,
 boolean updateMark);

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 152

Changing State

Public boolean compareAndSet(
 Object expectedRef,
 Object updateRef,
 boolean expectedMark,
 boolean updateMark);

If this is the current
reference …

And this is the current
mark …

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 153

Changing State

Public boolean compareAndSet(
 Object expectedRef,
 Object updateRef,
 boolean expectedMark,
 boolean updateMark);

…then change to this new
reference …

… and this new
mark

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 154

Changing State

public boolean attemptMark(
 Object expectedRef,
 boolean updateMark);

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 155

Changing State

public boolean attemptMark(
 Object expectedRef,
 boolean updateMark);

If this is the current
reference …

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 156

Changing State

public boolean attemptMark(
 Object expectedRef,
 boolean updateMark);

.. then change to this
new mark.

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism

b

157

Removing a Node

a c d

remove c

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism

b

157

Removing a Node

a c d

remove c

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism

b

157

Removing a Node

a c d

remove c

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism

b

157

Removing a Node

a c d

remove c

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 158

Removing a Node

a b d

remove b

remove c

c

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 158

Removing a Node

a b d

remove b

remove c

c

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 158

Removing a Node

a b d

remove b

remove c

c

failed

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 159

Removing a Node

a b d

remove b

remove c

c

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 159

Removing a Node

a d

remove b

remove c

c

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 160

Removing a Node

a d

remove b

remove c

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 161

Traversing the List

● Q: what do you do when you find a “logically”
deleted node in your path?

● A: finish the job.
− CAS the predecessor’s next field

− Proceed (repeat as needed)

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 162

Lock-Free Traversal
(only Add and Remove)

a b c d

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 162

Lock-Free Traversal
(only Add and Remove)

a b c d

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 162

Lock-Free Traversal
(only Add and Remove)

a b c d

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 162

Lock-Free Traversal
(only Add and Remove)

a b c d

pred curr

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 162

Lock-Free Traversal
(only Add and Remove)

a b c d

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 162

Lock-Free Traversal
(only Add and Remove)

a b c d

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 162

Lock-Free Traversal
(only Add and Remove)

a b c d

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 162

Lock-Free Traversal
(only Add and Remove)

a b c d

Uh-oh

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 162

Lock-Free Traversal
(only Add and Remove)

a b c d
CAS

Uh-oh

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 162

Lock-Free Traversal
(only Add and Remove)

a b c d
CAS

Uh-oh

pred curr

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 162

Lock-Free Traversal
(only Add and Remove)

a b c d

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 162

Lock-Free Traversal
(only Add and Remove)

a b c d

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 162

Lock-Free Traversal
(only Add and Remove)

a b c d

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 163

Performance

On 16 node shared memory machine
Benchmark throughput of Java List-based Set
algs. Vary % of Contains() method Calls.

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 164

High Contains Ratio

Lock-free
Lazy list

Coarse Grained
Fine Lock-coupling

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 165

Low Contains Ratio

Lock-free

Lazy list

Coarse Grained
Fine Lock-coupling

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 166

As Contains Ratio Increases

Lock-free
Lazy list

Coarse Grained
Fine Lock-coupling

% Contains()

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 167

Summary

● Coarse-grained locking
● Fine-grained locking

● Optimistic synchronization

● Lock-free synchronization

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 168

“To Lock or Not to Lock”

● Locking vs. Non-blocking: Extremist views on
both sides

● The answer: nobler to compromise, combine
locking and non-blocking
− Example: Lazy list combines blocking add() and

remove() and a wait-free contains()
− Remember: Blocking/non-blocking is a property of a

method

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism

Example: Lock-free queue

169

Head

Tail

 Nil

Inserting into the tail of the queue requires two updates:
 - updating the tail pointer
 - updating the next pointer in the current last element

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism

Example

● Separate CAS operations won’t work because other
threads can interfere in between them

● Idea:
− Ensure data structure is always in a consistent state even in

the middle of a multi-update step

− Failure should not prevent other threads from making
progress

● if thread B arrives to find structure is currently being modified by
A, it will finish the operation on behalf of A
− this allows B to make progress without waiting for A to finish
− when A continues, it will realize B already did the job for it.

170

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism

Code

171

@ThreadSafe
public class LinkedQueue <E> {
 private static class Node <E> {
 final E item;
 final AtomicReference<Node<E>> next;

 public Node(E item, Node<E> next) {
 this.item = item;
 this.next = new AtomicReference <Node<E>> (next);
 }
}

private final Node<E> dummy = new Node<E>(null, null);
private final AtomicReference<Node<E> head =
 new AtomicReference<Node<E>>(dummy);
private final AtomicReference<Node<E>> tail =
 new AtomicReference<Node<E>>(dummy);

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism

Code

172

public boolean put(E item) {
 Node<E> newNode = new Node<E>(item, null);
 while (true) {
 Node<E> curTail = tail.get();
 Node<E> tailNext = curTail.next.get();
 if (curTail == tail.get()) {
 if (tailNext != null) { A
 // Queue in intermediate state, advance tail
 tail.compareAndSet(curTail, tailNext); B
 } else {
 // In quiescent state, try inserting new node
 if (curTail.next.compareAndSet(null, newNode)) { C
 // Insertion succeeded, try advancing tail
 tail.compareAndSet(curTail, newNode); D
 return true;
 }
 }
 }
}

Taken from Goetz, Java Concurrency in Practice, 2006, Addison-Wesley

Tuesday, March 27, 12

CS390C: Principles of Concurrency and Parallelism 173

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

• You are free:
– to Share — to copy, distribute and transmit the work
– to Remix — to adapt the work

• Under the following conditions:
– Attribution. You must attribute the work to “The Art of

Multiprocessor Programming” (but not in any way that suggests that
the authors endorse you or your use of the work).

– Share Alike. If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a
compatible license.

• For any reuse or distribution, you must make clear to others the
license terms of this work. The best way to do this is with a link
to
– http://creativecommons.org/licenses/by-sa/3.0/.

• Any of the above conditions can be waived if you get permission
from the copyright holder.

• Nothing in this license impairs or restricts the author's moral
rights.

Tuesday, March 27, 12

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

