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Last Lecture: Spin-Locks

=
B 61} Y

A

spin critical Resets lock
/ lock section upon exit
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Today: Concurrent Objects

e Adding threads should not lower throughput
— Contention effects

— Mostly fixed by Queue locks
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Today: Concurrent Objects

e Adding threads should not lower throughput
— Contention effects

— Mostly fixed by Queue locks
e Should increase throughput

— Not possible if inherently sequential

— Surprising things are parallelizable
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Coarse-Grained Synchronization

e Each method locks the object
— Avoid contention using queue locks

— Easy to reason about

e In simple cases

e So, are we done!
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Coarse-Grained Synchronization

e Sequential bottleneck

— Threads “stand in line”

e Adding more threads

— Does not improve throughput

— Struggle to keep it from getting worse

e So why even use a multiprocessor?

— Well, some apps inherently parallel ...
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Fine-Grained Sznchroniza’rion

e Instead of using a single lock ...
e Split object into
— Independently-synchronized components

e Methods conflict when they access
— The same component ...

— At the same time
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Second:
Optimistic Synchronization

e Search without locking ...
e If you find it, lock and check ...

— OK: we are done
— Oops: start over
e Evaluation
— Usually cheaper than locking, but

— Mistakes are expensive
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Third:
Lazy Synchronization

e Postpone hard work

e Removing components is tricky

— Logical removal

e Mark component to be deleted

— Physical removal

e Do what needs to be done
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Fourth:
Lock-Free anchroniza‘rion

e Don’t use locks at all

— Use compareAndSet() & relatives ...
e Advantages

— No Scheduler Assumptions/Support
e Disadvantages

— Complex

— Sometimes high overhead
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Linked List

e |llustrate these patterns ...
e Using a list-based Set

— Common application

— Building block for other apps
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Set Interface

e Unordered collection of items
e No duplicates

e Methods
—add(x) put X in set
— remove(x) take X out of set
— contains(Xx) tests if X in set
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List-Based Sets

public interface Set<T> {
public boolean add(T x);
public boolean remove(T Xx);
public boolean contains(T Xx);

}
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List Node

public class Node {
public T item;
public int key;
public Node next;

}
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The List-Based Set

(B PE o CE PR
[+ ]

Sorted with Sentinel nodes
(min & max possible keys)
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Reasoning about Concurrent
Objects

e |nvariant
— Property that always holds
e Established because

— True when object is created

— Truth preserved by each method
e Each step of each method
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Specifically ...

e Invariants preserved by
—add()
—remove()
— contains()
e Most steps are trivial
— Usually one step tricky

— Often linearization point

e point at which method’s effects can be safely made visible

CS390C: Principles of Concurrency and Parallelism 17

Tuesday, March 27, 12



Interference

e Invariants make sense only if
— methods considered

— are the only modifiers

e Language encapsulation helps

— List nodes not visible outside class
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Interference

® Freedom from interference needed even for
removed nodes

— Some algorithms traverse removed nodes
— Careful with malloc() & free()!

e Garbage collection helps here
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Abstract Data Types

e Concrete representation:

L —{el 3=l 5—~(1]

e Abstract Type:
- {a,b}
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Abstract Data Types

e Meaning of rep given by abstraction map

= 3( ) = {a,b}

([O-td 33D
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Rep Invariant

e Which concrete values meaningful?
— Sorted?
— Duplicates!?
e Rep invariant
— Characterizes legal concrete reps
— Preserved by methods

— Relied on by methods
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Blame Game

e Suppose
— add() leaves behind 2 copies of x
= remove() removes only |

e Which is incorrect!?

— If rep invariant says no duplicates

e add() is incorrect

— Otherwise
e remove() is incorrect
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Rep Invariant (partly)

e Sentinel nodes

— tail reachable from head
e Sorted

e No duplicates

CS390C: Principles of Concurrency and Parallelism 24

Tuesday, March 27, 12



Abstraction Map

e S(head) =
—{ x | there exists a such that

ea reachable from head and
ea.item =X

~}
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Remove()

R
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Cogrse-Grained Locking

é6
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Cogrse-Grained Locking

o
(T9——>(a[ F¥— (dl )

honk! ]_

ITOTTK !
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—.Coarse-Grained Locking
?
="C

Simple but hotspot + bottleneck
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Coarse-Grained Locking

e Easy, same as synchronized methods
e Simple, clearly correct

— Deserves respect!

e Works poorly with contention
— Queue locks help

— But bottleneck still an issue

CS390C: Principles of Concurrency and Parallelism 30

Tuesday, March 27, 12



Fine-grained Locking

e Requires careful thought

e Split object into pieces
— Each piece has own lock

— Methods that work on disjoint pieces need not
exclude each other
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Hand-over-Hand locking

([ (ol 37— (e[ 3—(] ]
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Hand-over-Hand locking

Lo (e[ 57— ([ ]




Hand-over-Hand locking




Hand-over-Hand locking




Hand-over-Hand locking
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Removing a Node

L[5 (e[ 5= (e[ (] 7 (] ]

remove(b)

CS390C: Principles of Concurrency and Parallelism

37

Tuesday, March 27, 12




Removing a Node
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6

Removing a Node

6

remove(b)
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Removing a Node
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remove(b)

Removing a Node

6 O

seaenjiice

[ 3 {d ]
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Removing a Node

6

remove(b)

[ 3 {d ]
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Removing a Node

6
el (3]

OO
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Concurrent Removes




Concurrent Removes




Concurrent Removes




Concurrent Removes




Concurrent Removes




Concurrent Removes




Concurrent Removes




Concurrent Removes




Concurrent Removes

céwhefrMitbiesacesset frrRgrammingiclism 51

Tuesday, March 27, 12




Concurrent Removes
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Uh, Oh

SEagER [ 3 {d ]

remove(b)

g
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Uh, Oh

Bad news, ¢ not removed
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Problem

e Jo delete node ¢
— Swing node b’s next field to d

e Problem is, [Z|3_>

— Someone deleting b concurrently could

direct a pointer
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Insight

e If a node is locked
— No one can delete node’s successor
e If a thread locks

— Node to be deleted
— And its predecessor

— Then it works
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Hand-Over-Hand Again




Hand-Over-Hand Again




Hand-Over-Hand Again




Hand-Over-Hand Again
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Hand-Over-Hand Again
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Hand-Over-Hand Again

SEagER [ 3 {d ]

OO
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Removing a Node

L[5 (e[ 5= (e[ (] 7 (] ]

g
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Removing a Node

[[F=>{a[ 5= (e[ (] 7 (] ]
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Removing a Node

(5= (a[ (e[ ([ 5 (] ]
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Removing a Node
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remove(b)

Removing a Node
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remove(b)

Removing a Node
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Removing a Node
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Removing a Node

6 6
(ol 3 (o] 3> (e 3 (e[

g
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Removing a Node

Must acquire
Lock for b

71
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Removing a Node

Cannot acquire
lock for b

72

CS390C: Principles of Concurrency and Parallelism

Tuesday, March 27, 12




Removing a Node

6 6

[ g: %@D
@%%
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Proceed to
remove(b)

Removing a Node
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Removing a Node
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Removing a Node
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([5—

remove(b)

Removing a Node
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Removing a Node

([5— (d ]
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Remove method

public boolean remove(Item item) {
int key = item.hashCode();

Node pred,
try {

} finally {

curr.unlock()
pred.unlock()

+}

curr;

°
4
.
4
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Remove method

try {

pred = this.head;
pred.lock();

curr = pred.next;
curr.lock();

}mfinally { .. }
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Adding Nodes

e To add node e
— Must lock predecessor

— Must lock successor

e Neither can be deleted

— (Is successor lock actually required?)
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Rep Invariant

e Easy to check that
— tail always reachable from head

— Nodes sorted, no duplicates
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Drawbacks

e Better than coarse-grained lock
— Threads can traverse in parallel
e Still not ideal

— Long chain of acquire/release

— Inefficient
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Optimistic Synchronization

e Find nodes without locking
e Lock nodes
e Check that everything is OK

CS390C: Principles of Concurrency and Parallelism 84

Tuesday, March 27, 12



Optimistic: Traverse without
Locking

(13— (o[ (e[ (3L
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Optimistic: Traverse without
Locking

oyt
0%
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Optimistic: Lock and Load

%@-ﬁf&%\-
.
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Optimistic: Lock and Load

Oo
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What could go wrong?

(13— (o[ (e[ (3L
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What could go wrong?

=
0%
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What could go wrong?

6 6
(T3 ([ 3—+(E] -

m:

AU
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What could go wrong?

(53— @D (@3—CD

O o || Uh-oh
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Validate - Part 1

6 o6

(13— (o[ (e[ (3L

Oo
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Validate - Part 1

6
([3— @ 3—CD)

Yes, b still

reachable from
head
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Validate Part 2

(while holding locks)

G:-]—»@ﬁ-{%:—]—»
00'&
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Validate Part 2
(while holding locks)

@%@.

Yes, b still
points to d
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Optimistic: Linearization Point

102
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Optimistic: Linearization Point

Loe >

o
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Same Abstraction Map

e S(head) =
—{ x | there exists a such that

ea reachable from head and
ea.item =X

~}
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Invariants

e Careful: we may traverse deleted nodes

e But we establish properties by
— Validation

— After we lock target nodes
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Correctness

o If
— Nodes b and ¢ both locked
— Node b still accessible

— Node c still successor to b

e [hen
— Neither will be deleted

— OK to delete and return true
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Unsuccessful Remove




Unsuccessful Remove




Unsuccessful Remove
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Unsuccessful Remove

CB—»@B—EF}@—»
o Q

O
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Unsuccessful Remove
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Unsuccessful Remove
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Unsuccessful Remove
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Validate (1)

6 O
L[5 (e[ 5= (e[ > (d] 5 ([ ]
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Validate (1)

6 o6
(13— (a3 e[ 3~ (3L

Yes, b still

reachable from
head

107
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Validate (2)

6 6
[]3—»@3—{730@3—»
D
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Validate (2)

Yes, b still points
tod

108
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OK Computer
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Correctness

o If
— Nodes b and d both locked
— Node b still accessible
— Node d still successor to b

e Then
— Neither will be deleted
— No thread can add c after b
— OK to return false
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Validation

private boolean
validate(Node pred, Node curry) {
Node node = head;
while (node.key <= pred.key) {
if (node == pred)
return pred.next == curr;
node = node.next;

}

return false;

}
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Remove: searching

public boolean remove(Item item) {
int key = item.hashCode();
retry: while (true) {
Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {
if (item == curr.item)
break;
pred = curr;
curr = curr.next;

} o
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On Exit from Loop

e If item is present
— curr holds item

— pred just before curr

e If item is absent
— curr has first higher key

— pred just before curr

e Assuming no synchronization problems
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Remove Method

try {
pred.lock(); curr.lock();

if (validate(pred,curr) {
if (curr.item == item) {

pred.next = curr.next;

return true;

} else {

return false;

}}} finally {
pred.unlock();
curr.unlock();

}h}
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Optimistic List

e Limited hot-spots
— Targets of add(), remove(), contains()

— No contention on traversals

e Moreover
— Traversals are wait-free
— Food for thought ...
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So Far, So Good

® Much less lock acquisition/release
— Performance

— Concurrency

e Problems
— Need to traverse list twice

— contains() method acquires locks
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Evaluation

e Optimistic is effective if
— cost of scanning twice without locks
is less than

— cost of scanning once with locks

e Drawback
— contains() acquires locks

— 90% of calls in many apps
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Lazy List

e Like optimistic, except
— Scan once
— contains(x) never locks ...
e Key insight
— Removing nodes causes trouble

— Do it “lazily”
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Lazy List

e remove()
— Scans list (as before)

— Locks predecessor & current (as before)

e |ogical delete
— Marks current node as removed (new!)
e Physical delete

— Redirects predecessor’s next (as before)

CS390C: Principles of Concurrency and Parallelism 119

Tuesday, March 27, 12



Lazx Removal

(I [F=>{d[T3=>{IT3=(dT3=>{dl[3>
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Lazx Removal

Present in list
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Lazx Removal

Logically deleted
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Lazx Removal

[||#@w

Physically deleted
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Lazx Removal

[||+>@B»w

Physically deleted
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Lazy List

e All Methods

— Scan through locked and marked nodes

— Removing a node doesn’t slow down other method calls

e Must still lock pred and curr nodes.
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Validation

e No need to rescan list!

o C
o C
o C

NeC

NEC

NeC

Kt
 t

Kt

nat pred is not marked

nat curr is not marked

nat pred points to curr
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Business as Usual

Lall 3> (el 3= ([
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Business as Usual

Laoll 3> (el 3 ([
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Business as Usual

L5 Lall = (3
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Business as Usual

(T3~ (3Gl (3
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Business as Usual

(3 (3 Gl (3
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Business as Usual

(3 (3Gl (3
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Business as Usual

(15— (all (el 3 ([ 3—
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Business as Usual

(15— (all (el 3 ([ 3—
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Business as Usual

(B (OB -
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Business as Usual
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Summary: Wait-free Contains

D
L[ 3=>{af 5=>{ biid 5=>{dl1] 5> el |

Use Mark bit + list ordering
1. Not marked - in the set
2. Marked or missing = not in the set
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Lazx List

Lazy add() and remove() + Wait-free contains()

137
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New Abstraction Map

e S(head) =
—{ x | there exists node a such that
ea reachable from head and

ea.item = X and
®2a is unmarked

~}
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Invariant

e If not marked then item in the set
e and reachable from head

e and if not yet traversed it is reachable from pred
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Evaluation

e Good:

— contains() doesn’t lock

— In fact, its wait-free!

— Good because typically high % contains()
— Uncontended calls don’t re-traverse

e Bad

— Contended add() and remove() calls do re-traverse
— Traffic jam if one thread delays
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Traffic Jam

e Any concurrent data structure based on mutual
exclusion has a weakness
e If one thread
— Enters critical section
— And “eats the big muffin”

e Cache miss, page fault, descheduled ...
— Everyone else using that lock is stuck!

— Need to trust the scheduler....
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Reminder: Lock-Free Data

—e 21 LUCTUreES

e No matter what ...
— Guarantees minimal progress in any execution
— i.e. Some thread will always complete a method call
— Even if others halt at malicious times

— Implies that implementation can’t use locks
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Reminder: Lock-Free Data

—e2 LLUCTUrES

e No matter what ...

— Guarantees minimal progress in any execution
— i.e. Some thread will always complete a method call
— Even if others halt at malicious times

— Implies that implementation can’t use locks
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Lock-free Lists

e Next logical step
— Wiait-free contains()

— lock-free add() and remove()

e Use only compareAndSet()
— What could go wrong!?
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Lock-free Lists

EEE FEEJFEE FEE FIE

Use CAS to verify pointer
IS correct
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Lock-free Lists

Logical Removal

EEE FEEJFEE FEE FIE

Use CAS to verify pointer
IS correct
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Lock-free Lists

Logical Removal

(I T3> 3= F=>{i 3={d )

Use CAS to verify pointer
IS correct
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Lock-free Lists

Logical Removal

([~ cocRrEDE

Use CAS to verify pointer Physical Removal
IS correct
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Lock-free Lists

Logical Removal

EECy rE

EREFPE

Use CAS to verify pointer Physical Removal
IS correct

Not enough!

144
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Problem...

(I I 3= 3= 3> T F{ ]
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Problem...

Logical Removal

R FEE L FEEFEE_FER
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Problem...

Logical Removal

o o

Node added
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EREFPE

Problem...

Logical Removal

Physical Removal

Node added
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The Solution: Combine Bit anc
Pointer

(L_F=>(d" F=>(tF =>4~ 3> }
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The Solution: Combine Bit anc
Pointer

L 3=>{d¥ 5>t 3> d7 5t |

Mark-Bit and Pointer
are CASed together
(AtomicMarkableReference)
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The Solution: Combine Bit anc
Pointer

(1T 3~>(df 3> 3~ {7}

Mark-Bit and Pointer
are CASed together
(AtomicMarkableReference)
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The Solution: Combine Bit anc
Pointer

Logical Removal =
Set Mark Bit

I__F=>{d" =t == 3> )

Mark-Bit and Pointer
are CASed together
(AtomicMarkableReference)
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The Solution: Combine Bit anc
Pointer

Logical Removal =
Set Mark Bit

LL__=>{ld" 5={b

v

Ld g

Mark-Bit and Pointer zﬁgeCdA;}eNroizim
are CASed together Removel

(AtomicMarkableReference)
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The Solution: Combine Bit anc
Pointer

Logical Removal =
Set Mark Bit

L

Physical
. . Removal Fail CAS: Node not
Mark-Bit and Pointer c¢as added after logical
R |
are CASed together e

(AtomicMarkableReference)
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Solution

e Use AtomicMarkableReference
e Atomically

— Swing reference and
— Update flag
e Remove in two steps
— Set mark bit in next field

— Redirect predecessor’s pointer
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Marking a Node

® AtomicMarkableReference class

— Java.util.concurrent.atomic package

f

Reference —

Iaddr'ess ] F

.

mark bit
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Extracting Reference & Mark

Object ] [boolean[]

Returns mark at

Returns
array index O!

reference
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Extracting Reference Only

boolean]

Value of
mark
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Changing State

Public boolean compareAndSet (
Object expectedRef,
Object updateRef,
boolean expectedMark,
boolean updateMark);
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Changing State

If this is the current
reference ...

[Object expect(Ref’,_Y

[boolean expect%k,_]

And this is the current
mark ...
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Changing State

...then change to this new
reference ...

|
Object updateRef, ]

Iboolean updateMark);
... and this new

mark
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Changing State

public boolean attemptMark(
Object expectedRef,
boolean updateMark);
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Changing State

ject EXPECtEd RE', I

If this is the current
reference ...
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Changing State

\boolean updateMark):|

.. then change to this
new mark.
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Removing a Node

L[5 (e[ 5= (e[ (] 7 (] ]




Removing a Node

L[5 {a[ 5= (e[ ([ 5 {d] ]




Removing a Node




Removing a Node




Removing a Node

L[5 (e[ 5= (e[ (] 7 (] ]
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Removing a Node

L[5 (e[ 5= (e[5> (eli5—{d] ]
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Removing a Node

failed

(3=l Gl (e3>
S
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Removing a Node

([5— (e3> (f3—(d[]
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Removing a Node

([5— ([3—(d]
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Removing a Node
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Traversing the List

e Q:what do you do when you find a “logically”
deleted node in your path!?

e A:finish the job.
— CAS the predecessor’s next field

— Proceed (repeat as needed)
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Lock-Free Traversal

(only Add and Remove)




Lock-Free Traversal

(only Add and Remove)




Lock-Free Traversal

(only Add and Remove)

7 L[ I (el 3= (e 3L ]

0%
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Lock-Free Traversal

(only Add and Remove)

pred curr

7 L[ I (el 3= (e 3L ]

0%
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Lock-Free Traversal

(only Add and Remove)

7 L[ I (el 3= (e 3L ]

0%
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Lock-Free Traversal

(only Add and Remove)
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Lock-Free Traversal

(only Add and Remove)
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Lock-Free Traversal

(only Add and Remove)




Lock-Free Traversal

(only Add and Remove)




Lock-Free Traversal

(only Add and Remove)




Lock-Free Traversal

(only Add and Remove)

CS390C: Principles of Concurrency and Parallelism 162

Tuesday, March 27, 12



Lock-Free Traversal

(only Add and Remove)
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Lock-Free Traversal

(only Add and Remove)
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Performance

On 16 node shared memory machine
Benchmark throughput of Java List-based Set
algs. Vary 7% of Contains() method Calls.
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Low Contains Ratio

Ops/sec (50% reads/0 load)
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As Contains Ratio Increases

Ops/sec (32 threads/0 load)
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+ + +
00O
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% Contains()
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Summary

e Coarse-grained locking
e Fine-grained locking
e Optimistic synchronization

e Lock-free synchronization
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"To Lock or Not to Lock”

e Locking vs. Non-blocking: Extremist views on
both sides

e The answer: nobler to compromise, combine
locking and non-blocking

— Example: Lazy list combines blocking add() and
remove() and a wait-free contains()

— Remember: Blocking/non-blocking is a property of a
method
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Example: Lock-free queue

Tail

Head

OE 8N 8-

Inserting into the tail of the queue requires two updates:

- updating the tail pointer
- updating the next pointer in the current last element

169
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Example

+ Separate CAS operations won’t work because other
threads can interfere in between them

+ |dea:

- Ensure data structure is always in a consistent state even in
the middle of a multi-update step

- Failure should not prevent other threads from making
progress

- if thread B arrives to find structure is currently being modified by
A, it will finish the operation on behalf of A
= this allows B to make progress without waiting for A to finish
- when A continues, it will realize B already did the job for it.
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Code

@ThreadSafe
public class LinkedQueue <E> {
private static class Node <E> {
final E item;
final AtomicReference<Node<E>> next;

public Node(E item, Node<E> next) {

this.item = item;
this.next = new AtomicReference <Node<E>> (next);

}

}
private final Node<E> dummy = new Node<E>(null, null);

private final AtomicReference<Node<E> head
new AtomicReference<Node<E>>(dummy) ;

private final AtomicReference<Node<E>> tail
new AtomicReference<Node<E>>(dummy) ;
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Code

public boolean put(E item) {
Node<E> newNode = new Node<E>(item, null);
while (true) {
Node<E> curTail = tail.get();
Node<E> tailNext = curTail.next.get();
if (curTail == tail.get()) {
if (tailNext != null) { A
// Queue in intermediate state, advance tail

tail.compareAndSet(curTail, tailNext); B
} else {
// In guiescent state, try inserting new node
if (curTail.next.compareAndSet(null, newNode)) { C
// Insertion succeeded, try advancing tail

tail.compareAndSet(curTail, newNode); D
return true;

}

Taken from Goetz, Java Concurrency in Practice, 2006, Addison-Wesley
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SOME RIGHTS RESERVED

This work is licensed under a

« You are free:
- to Share — to copy, distribute and transmit the work

- to Remix — to adapt the work

- Under the following conditions:

- Attribution. You must attribute the work to “The Art of
Multiprocessor Programming” (but not in any way that suggests that
the authors endorse you or your use of the work).

- Share Alike. If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a
compatible license.

For any reuse or distribution, you must make clear to others the
license terms of this work. The best way to do this is with a link
to

- http://creativecommons.org/licenses/by-sa/3.0/.

Any of the above conditions can be waived if you get permission
from the copyright holder.

I\_Io'ﬁ]hing in this license impairs or restricts the author's moral
rights.
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