’rinciples of Concurrency anc
Parallelism

Lecture 6: Posix
217112

CS390C: Principles of Concurrency and Parallelism

Tuesday, February 14, 12

Shared Memory

+ Threads communicate by reading and writing to shared memory
- Easier transition from sequential programs

- Don’t have to construct new communication abstractions

« But, implicit communication via shared-memory raises complex
issues of its own

- Data races: concurrent (unintended) access to the same
memory location

- How do we express concurrency and synchronization?
- As language primitives (Java, C#, ...)
- As library calls (Posix (Pthreads), Intel TBB)

CS390C: Principles of Concurrency and Parallelism

Tuesday, February 14, 12

Abstraction

= Shared Memory

= Every thread can observe actions of other threads on non-
thread-local data (e.g., heap)

= Data visible to multiple threads must be protected (synchronized)
to ensure the absence of data races

® A data race consists of two concurrent accesses to the same
shared data by two separate threads, at least one of which is
a write

* Thread safety

= Suppose a program creates n threads, each of which calls the
same procedure found in some library

= Suppose the library modifies some global (shared) data structure

= Concurrent modifications to this structure may lead to data
corruption

CS390C: Principles of Concurrency and Parallelism

Tuesday, February 14, 12

PThreads

* Exist within a process
= But, independent control flow

" share common process resources (like the heap and file
descriptors)

® changes made by one thread visible to others
® pointers have meaning across threads

® two threads can concurrently read and write to the same
memory location

* Maintain their own
* stack pointer
* Registers
* Pending and blocked signals
* Can be scheduled by the operating system

CS390C: Principles of Concurrency and Parallelism

Tuesday, February 14, 12

Structure

Programs can be decomposed into discrete (mostly) independent
tasks

The points where they overlap should be easily discerned and

amenable for protection

Three basic structures

master-worker (agenda or blackboard)

result-oriented (dataflow)
pipeline-oriented (specialist)

CS390C: Principles of Concurrency and Parallelism

Tuesday, February 14, 12

API

» Four major groups

- Management (create, destroy, join, ...)

- Mutexes (synchronization)

- Condition variables (synchronization defined in terms of

programmer-specified conditions)

- Barriers

» include pthread.h header to gain access to Pthreads

operations

CS390C: Principles of Concurrency and Parallelism

Tuesday, February 14, 12

Thread Creation

* Initially, your main () program comprises a single, default thread.
* pthread create creates a new thread and makes it executable. This routine
can be called any number of times from anywhere within your code.
* arguments:
O thread: An opaque, unique identifier for the new thread returned by the
subroutine.
O attr:An opaque attribute object that may be used to set thread attributes.
You can specify a thread attributes object, or NULL for the default values.
O start routine:the C routine that the thread will execute once it is
created.
O arg: A single argument that may be passed to start_routine. It must be passed
by reference as a pointer cast of type void. NULL may be used if no argument
is to be passed.

* The maximum number of threads that may be created by a process is

implementation dependent. 7
CS390C: Principles of Concurrency and Parallelism

Tuesday, February 14, 12

Example

#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5

void *PrintHello(void *threadid)

{
long tid;
tid = (long)threadid;
printf("Hello World! It's me, thread #%1d!\n", tid);
pthread exit (NULL);
}
int main (int argc, char *argv[])
{
pthread_t threads[NUM_THREADS];
int err;
long t;
for (t=0; t<NUM THREADS; t++){
printf("In main: creating thread %1d\n", t);
err = pthread create(&threads[t], NULL, PrintHello, (void *)t);
if (err){
printf ("ERROR; return code from pthread create() is %d\n", err);
exit(-1);
}
}
pthread exit(NULL);
}

CS390C: Principles of Concurrency and Parallelism

Tuesday, February 14, 12

Passing Arguments

long *taskids[NUM_ THREADS];

for(t=0; t<NUM THREADS; t++)

{
taskids[t] = (long *) malloc(sizeof(long));
*taskids[t] = t;
printf("Creating thread %1d\n", t);
err = pthread create(&threads[t], NULL, PrintHello,
(void *) taskids[t]);
}

CS390C: Principles of Concurrency and Parallelism

Tuesday, February 14, 12

Multiple Arguments

struct thread data{
int thread id;

sum;

char *message;

int

struct thread data thread data_ array[NUM THREADS];

void *PrintHello(void *threadarg)

struct thread data *my data;

my data = (struct thread data *) threadarg;

= my data->thread id;
my data->sum;

hello msg = my data->message;

int main (int argc, char *argv[])

thread data array[t].thread id = t;
thread data array[t].sum = sum;
thread data array[t].message = messages[t];

{
taskid
sum =
}
{
err =
}

pthread create(&threads[t], NULL, PrintHello, (void *) &thread data array[t]);

10
CS390C: Principles of Concurrency and Parallelism

Tuesday, February 14, 12

Example

What’s wrong with the following?

int err;
long t;

for(t=0; t<NUM THREADS; t++)

{
printf("Creating thread %1ld\n", t);

err = pthread create(&threads[t], NULL, PrintHello, (void *) &t);

11
CS390C: Principles of Concurrency and Parallelism

Tuesday, February 14, 12

Joining and Detaching Threads

- pthread_create() pthread_join()

A

WORK pthread_exit()

12
CS390C: Principles of Concurrency and Parallelism

Tuesday, February 14, 12

Joining and Detaching

- pthread join() blocks the calling thread until
the specified threadid terminates

» A joining thread can match one pthread join()
call

» A thread created as detached can never be joined

» Use the attr argumentin a pthread create() call
to set joinable or detachable attributes

13
CS390C: Principles of Concurrency and Parallelism

Tuesday, February 14, 12

Example

#include <pthread.h>

#define NUM THREADS 4
void *BusyWork(void *t) { ... pthread exit((void*) t); }

int main (int argc, char *argv[])
{
pthread t thread[NUM_ THREADS];
pthread attr t attr;

pthread attr init(&attr);
pthread attr setdetachstate(&attr, PTHREAD CREATE JOINABLE);

for (t=0; t<NUM THREADS; t++) {
printf("Main: creating thread %1ld\n", t);
err = pthread create(&thread[t], &attr, BusyWork, (void *)t);
.o }
}
pthread attr destroy(&attr);
for (t=0; t<NUM THREADS; t++) {
err = pthread join(thread[t], &status);
printf("Main: completed join with thread %1d having a status
of %1d\n",t, (long)status);
}

printf("Main: program completed. Exiting.\n");
pthread exit(NULL);

} CS390C: Principles of Concurrency and Parallelism

14

Tuesday, February 14, 12

Race Conditions

THREAD 1 THREAD 2

a = data; b = data;
at+; b++;

data += a; data += b;

Assuming data = 0O initially, can data be | after the program
completes?

15
CS390C: Principles of Concurrency and Parallelism

Tuesday, February 14, 12

Mutexes

* Protect access to shared data
« Methodology

- Create and initialize a mutex variable

- Several threads attempt to lock the mutex

- One succeeds

- Owner manipulates data protected by mutex

- Owner unlocks

- Another thread acquires the mutex, and repeats

- Destroy the mutex

CS390C: Principles of Concurrency and Parallelism

16

Tuesday, February 14, 12

+ Challenges:

- make sure data is consistently protected by the same set of

mutexes

Mutexes

- make sure mutexes properly released

- ensure deadlock-freedom

- ensure progress (liveness)

CS390C: Principles of Concurrency and Parallelism

17

Tuesday, February 14, 12

Example

void *dotprod(void *arg)

{

/* Define and use local variables for convenience */

int i, start, end, len ; /*
long offset; Lock a mutex prior to updating the value
double mysum, *xX, *y; in the shared
offset = (long)arg; structure, and unlock it upon updating.
*/
len = dotstr.veclen; pthread mutex lock (&mutexsum);
start = offset*len; dotstr.sum += mysum;
end = start + len; pthread mutex unlock (&mutexsum);
X = dotstr.a;
y = dotstr.b; pthread exit((void*) 0);
}
/*

Perform the dot product and assign result
to the appropriate variable in the structure.

*/

mysum = 0;
for (i=start; i<end ; i++)
{
mysum += (x[1i] * y[1]);
} CS390C: Principles of Concurrency and Parallelism

Tuesday, February 14, 12

Example (cont)

int main (int argc, char *argv[])

{

long 1i;

double *a, *b;

void *status;
pthread attr t attr;

/* Assign storage and initialize values */
a = (double*) malloc (NUMTHRDS*VECLEN*sizeof(double));
b = (double*) malloc (NUMTHRDS*VECLEN*sizeof (double));

for (i=0; i<VECLEN*NUMTHRDS; i++)
{
a[i]=1.0;
b[i]=a[i];
}

dotstr.veclen = VECLEN;
dotstr.a = a;
dotstr.b = b;
dotstr.sum=0;

CS390C: Principles of Concurrency and Parallelism

19

Tuesday, February 14, 12

Example (cont)

pthread mutex init(&mutexsum, NULL);

/* Create threads to perform the dotproduct */
pthread attr init(&attr);
pthread attr setdetachstate(&attr, PTHREAD CREATE JOINABLE);

for(i=0; i<NUMTHRDS; i++)
{
/*
Each thread works on a different set of data.
The offset is specified by 'i'. The size of
the data for each thread is indicated by VECLEN.
*/
pthread create(&callThd[i], &attr, dotprod, (void *)i);
}

pthread attr destroy(&attr);

/* Wait on the other threads */
for(i=0; i<NUMTHRDS; i++)
{
pthread join(callThd[i], &status);

}

/* After joining, print out the results and cleanup */
printf ("Sum = %f \n", dotstr.sum);

free (a);

free (b);

pthread mutex destroy(&mutexsum);

pthread exit (NULL);

CS390C: Principles of Concurrency and Parallelism

Tuesday, February 14, 12

Condition Variables

+ Allows threads to automatically synchronize based on
the actual value of data

+ Avoids the need for threads to continually poll to
check if a condition is met

21
CS390C: Principles of Concurrency and Parallelism

Tuesday, February 14, 12

Example

#include <pthread.h>

#include <stdio.h>
#include <stdlib.h>

#define NUM_THREADS
#define TCOUNT 10
#define COUNT_LIMIT

int count = 0;

3

12

int thread ids[3] = {0,1,2};
pthread mutex t count mutex;
pthread cond t count threshold cv;

CS390C: Principles of Concurrency and Parallelism

22

Tuesday, February 14, 12

Example (cont)

void *inc_count(void *t)

{
int i;
long my id = (long)t;
for (i=0; i<TCOUNT; i++) {
pthread mutex lock(&count mutex);
count++;
/*
Check the value of count and signal waiting thread when condition is
reached. ©Note that this occurs while mutex is locked.
*/
if (count == COUNT LIMIT) {
pthread cond signal(&count threshold cv);
printf("inc_count(): thread %1d, count = %d Threshold reached.\n",
my id, count);
}
printf("inc_count(): thread %1d, count = %d, unlocking mutex\n",
my id, count);
pthread mutex unlock(&count mutex);
/* Do some "work" so threads can alternate on mutex lock */
sleep(1l);
} . | 23
pthread exit (NULL); CS390C: Principles of Concurrency and Parallelism
}

Tuesday, February 14, 12

Example (cont)

void *watch count(void *t)

{
long my id = (long)t;

printf("Starting watch count(): thread %1d\n", my id);

/*
Lock mutex and wait for signal. Note that the pthread cond wait
routine will automatically and atomically unlock mutex while it waits.
Also, note that if COUNT LIMIT is reached before this routine is run by
the waiting thread, the loop will be skipped to prevent pthread cond wait
from never returning.
*/
pthread mutex lock(&count mutex);
while (count<COUNT LIMIT) {
pthread cond wait(&count threshold cv, &count mutex);
printf("watch count(): thread %1d Condition signal received.\n", my id);
count += 125;
printf ("watch count(): thread %1d count now = %d.\n", my id, count);
}
pthread mutex unlock(&count mutex);
pthread exit (NULL);

24
CS390C: Principles of Concurrency and Parallelism

Tuesday, February 14, 12

Example (cont)

int main (int argc, char *argv[])

{
int i, rc;
long tl=1, t2=2, t3=3;
pthread t threads[3];
pthread attr_t attr;
/* Initialize mutex and condition variable objects */
pthread mutex init(&count mutex, NULL);
pthread cond init (&count threshold cv, NULL);
/* For portability, explicitly create threads in a joinable state */
pthread attr init(&attr);
pthread attr setdetachstate(&attr, PTHREAD CREATE JOINABLE) ;
pthread create(&threads[0], &attr, watch count, (void *)tl);
pthread create(&threads[1l], &attr, inc count, (void *)t2);
pthread create(&threads[2], &attr, inc _count, (void *)t3);
/* Wait for all threads to complete */
for (i=0; i<NUM THREADS; i++) {
pthread join(threads[i], NULL);
}
printf ("Main(): Waited on %d threads. Done.\n", NUM THREADS);
/* Clean up and exit */
pthread attr destroy(&attr);
pthread mutex destroy(&count mutex);
pthread cond destroy(&count threshold cv);
pthread exit (NULL);
} CS390C: Principles of Concurrency and Parallelism

25

Tuesday, February 14, 12

Analysis

* Why use Pthreads?

- portablity

- performance

» assuming optimized sequential code

+ and relatively little complex coordination

= no inter-thread optimizations

+ How do we quantify the effectiveness of a parallel
program in terms of its sequential components!?

- speedup, overhead, decomposition

26
CS390C: Principles of Concurrency and Parallelism

Tuesday, February 14, 12

Amdahl's Law

Speedupenhanced(f S)=
(1—f)+ =

Here, f is the fraction of a computation that can be improved by a speedup S
When f'is small, optimizations will have little effect

Speedup _
parallel(f,n)= (1—f)+ 7

Here, f is the fraction of a sequential computation that can be improved by
executing on n cores:
infinitely parallelizable (no scheduling overhead); remaining totally sequential

Assumes computation problem doesn’t change with increase in cores; fraction

of a program that is parallelizable remains fixed.

27
CS390C: Principles of Concurrency and Parallelism

Tuesday, February 14, 12

Example

+ A program runs in 100 seconds on a machine;a
multiply operation consumes 80% of this time.

- How much do we need to improve the speed of the
multiply operator to make the program run 4 times faster?

+ A new processor is 20x faster on search queries than
an existing one. Queries account for 70% of the time
spent in a computation.

- What is the speedup gained by using the new processor?

28
CS390C: Principles of Concurrency and Parallelism

Tuesday, February 14, 12

Example

+ 90% of a calculation can be parallelized. What is the
maximum speedup on 5 processors?! |0 processors!?
1000 processors!?

* What if 99% of a calculation can be parallelized?

29
CS390C: Principles of Concurrency and Parallelism

Tuesday, February 14, 12

8.00

6.00

4.00

2.00

0.00

Speedup curves

0%

2%

9%

)

10%

/
W i

Y
A

—
(%]
«w
F <N
w
o
=4
L]

plotting sequential components
what happens when overheads are introduced?
how do we take problem size into account?

CS390C: Principles of Concurrency and Parallelism

30

Tuesday, February 14, 12

Corollaries

+ What do the previous examples tell you about the
main point of Amdahl’s law?

- performance of any system constrained by the speed of the
slowest component

- impact of performance improvement constrained by the
parts of the program not targeted for improvement.

31
CS390C: Principles of Concurrency and Parallelism

Tuesday, February 14, 12

On Multicores (assume perf(r) = sqrt(r))

L \Symmelri'c, n=16 250 " Symmetric, n = 256 : :
- 200 Ceef=0.99
= o re= 0 f=0.975
g 5 - = =09
210- 2150' m— = (.5
S gt =
2 2100}
[<5) (<5
X g foo
Al 50 -
2 B e L L E - :—g——r 1 L L
0 2 4 8 16 0 2 4 8 16 32 64 128 256
(a) rBCEs (b) rBCEs
16 — - o
Asymmetric, n =16 23l Asymmetric, n = 256
14
200 F
2127 =
dg;m L §150 -
g gl =
g8 3 100}
il 50 |
2 1 1 1 E s 1 1 1
(c) 0 2 4 8 16 0 2 4 8 16 32 64 128 256
rBCEs (d) rBCEs
32

CS390C: Principles of Concurrency and Parallelism

Tuesday, February 14, 12

Implications

» Critical to increase fraction of computation that is
parallelizable

+ Using more tightly-coupled computation units per
core can be beneficial

- increasing individual core performance is essential (even if
it increases the cost of each core)

- denser chips soften the impact of Amdhal’s law at scale

- Assymetric designs can lead to better speedups than
symmetric designs

33
CS390C: Principles of Concurrency and Parallelism

Tuesday, February 14, 12

Readings

« Pthreads tutorial:

- https://computing.linl.gov/tutorials/pthreads/#PthreadsAPI

- https://computing.linl.gov/tutorials/parallel _comp/

- Monitors and condition variables

- http://dl.acm.org/citation.cfm?id=361 16|

- Amdhal’s Law and multicores

- http://research.cs.wisc.edu/multifacet/papers/
ieeecomputer08 amdahl_multicore.pdf

34
CS390C: Principles of Concurrency and Parallelism

Tuesday, February 14, 12

https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/parallel_comp/
http://dl.acm.org/citation.cfm?id=361161
http://dl.acm.org/citation.cfm?id=361161
http://research.cs.wisc.edu/multifacet/papers/ieeecomputer08_amdahl_multicore.pdf
http://research.cs.wisc.edu/multifacet/papers/ieeecomputer08_amdahl_multicore.pdf
http://research.cs.wisc.edu/multifacet/papers/ieeecomputer08_amdahl_multicore.pdf
http://research.cs.wisc.edu/multifacet/papers/ieeecomputer08_amdahl_multicore.pdf

