
CS390C: Principles of Concurrency and Parallelism

Principles of Concurrency and
Parallelism

 Lecture 6: Posix

 2/7/12

Tuesday, February 14, 12

CS390C: Principles of Concurrency and Parallelism

Shared Memory

● Threads communicate by reading and writing to shared memory
● Easier transition from sequential programs

− Don’t have to construct new communication abstractions
● But, implicit communication via shared-memory raises complex

issues of its own

− Data races: concurrent (unintended) access to the same
memory location

● How do we express concurrency and synchronization?

− As language primitives (Java, C#, ...)
− As library calls (Posix (Pthreads), Intel TBB)

Tuesday, February 14, 12

CS390C: Principles of Concurrency and Parallelism

Abstraction

3

 Shared Memory

 Every thread can observe actions of other threads on non-
thread-local data (e.g., heap)

 Data visible to multiple threads must be protected (synchronized)
to ensure the absence of data races

• A data race consists of two concurrent accesses to the same
shared data by two separate threads, at least one of which is
a write

 Thread safety
 Suppose a program creates n threads, each of which calls the

same procedure found in some library

 Suppose the library modifies some global (shared) data structure
 Concurrent modifications to this structure may lead to data

corruption

Tuesday, February 14, 12

CS390C: Principles of Concurrency and Parallelism

PThreads

4

 Exist within a process

 But, independent control flow
 share common process resources (like the heap and file

descriptors)

• changes made by one thread visible to others

• pointers have meaning across threads

• two threads can concurrently read and write to the same
memory location

 Maintain their own
 stack pointer
 Registers
 Pending and blocked signals

 Can be scheduled by the operating system

Tuesday, February 14, 12

CS390C: Principles of Concurrency and Parallelism

Structure

5

Programs can be decomposed into discrete (mostly) independent
tasks

The points where they overlap should be easily discerned and
amenable for protection

Three basic structures

master-worker (agenda or blackboard)
result-oriented (dataflow)
pipeline-oriented (specialist)

Tuesday, February 14, 12

CS390C: Principles of Concurrency and Parallelism

API

● Four major groups
− Management (create, destroy, join, ...)

− Mutexes (synchronization)

− Condition variables (synchronization defined in terms of
programmer-specified conditions)

− Barriers

● include pthread.h header to gain access to Pthreads
operations

6

Tuesday, February 14, 12

CS390C: Principles of Concurrency and Parallelism

Thread Creation

7

• Initially, your main() program comprises a single, default thread.
• pthread_create creates a new thread and makes it executable. This routine

can be called any number of times from anywhere within your code.
• arguments:

◦ thread: An opaque, unique identifier for the new thread returned by the
subroutine.

◦ attr: An opaque attribute object that may be used to set thread attributes.
You can specify a thread attributes object, or NULL for the default values.

◦ start_routine: the C routine that the thread will execute once it is
created.

◦ arg: A single argument that may be passed to start_routine. It must be passed
by reference as a pointer cast of type void. NULL may be used if no argument
is to be passed.

• The maximum number of threads that may be created by a process is
implementation dependent.

Tuesday, February 14, 12

CS390C: Principles of Concurrency and Parallelism

Example

8

#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5

void *PrintHello(void *threadid)
{
 long tid;
 tid = (long)threadid;
 printf("Hello World! It's me, thread #%ld!\n", tid);
 pthread_exit(NULL);
}

int main (int argc, char *argv[])
{
 pthread_t threads[NUM_THREADS];
 int err;
 long t;
 for(t=0; t<NUM_THREADS; t++){
 printf("In main: creating thread %ld\n", t);
 err = pthread_create(&threads[t], NULL, PrintHello, (void *)t);
 if (err){
 printf("ERROR; return code from pthread_create() is %d\n", err);
 exit(-1);
 }
 }
 pthread_exit(NULL);
}

Tuesday, February 14, 12

CS390C: Principles of Concurrency and Parallelism

Passing Arguments

9

long *taskids[NUM_THREADS];

for(t=0; t<NUM_THREADS; t++)
{
 taskids[t] = (long *) malloc(sizeof(long));
 *taskids[t] = t;
 printf("Creating thread %ld\n", t);
 err = pthread_create(&threads[t], NULL, PrintHello,
 (void *) taskids[t]);
 ...
}

Tuesday, February 14, 12

CS390C: Principles of Concurrency and Parallelism

Multiple Arguments

10

struct thread_data{
 int thread_id;
 int sum;
 char *message;
};

struct thread_data thread_data_array[NUM_THREADS];

void *PrintHello(void *threadarg)
{
 struct thread_data *my_data;
 ...
 my_data = (struct thread_data *) threadarg;
 taskid = my_data->thread_id;
 sum = my_data->sum;
 hello_msg = my_data->message;
 ...
}

int main (int argc, char *argv[])
{
 ...
 thread_data_array[t].thread_id = t;
 thread_data_array[t].sum = sum;
 thread_data_array[t].message = messages[t];
 err = pthread_create(&threads[t], NULL, PrintHello, (void *) &thread_data_array[t]);
 ...
}

Tuesday, February 14, 12

CS390C: Principles of Concurrency and Parallelism

Example

11

What’s wrong with the following?

int err;
long t;

for(t=0; t<NUM_THREADS; t++)
{
 printf("Creating thread %ld\n", t);
 err = pthread_create(&threads[t], NULL, PrintHello, (void *) &t);
 ...
}

Tuesday, February 14, 12

CS390C: Principles of Concurrency and Parallelism

Joining and Detaching Threads

12

Master
Thread

Worker
Thread

Worker
Thread

pthread_create() pthread_join()

 pthread_exit()WORK

Tuesday, February 14, 12

CS390C: Principles of Concurrency and Parallelism

Joining and Detaching

● pthread_join() blocks the calling thread until
the specified threadid terminates

● A joining thread can match one pthread_join()
call

● A thread created as detached can never be joined

● Use the attr argumentin a pthread_create() call
to set joinable or detachable attributes

13

Tuesday, February 14, 12

CS390C: Principles of Concurrency and Parallelism

Example

14

#include <pthread.h>
...
#define NUM_THREADS! 4

void *BusyWork(void *t) { ... pthread_exit((void*) t); }

int main (int argc, char *argv[])
{
 pthread_t thread[NUM_THREADS];
 pthread_attr_t attr;
 ...

 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 for(t=0; t<NUM_THREADS; t++) {
 printf("Main: creating thread %ld\n", t);
 err = pthread_create(&thread[t], &attr, BusyWork, (void *)t);
 ... }
 }
 pthread_attr_destroy(&attr);
 for(t=0; t<NUM_THREADS; t++) {
 err = pthread_join(thread[t], &status);
 ...
 printf("Main: completed join with thread %ld having a status
 of %ld\n",t,(long)status);
 }

printf("Main: program completed. Exiting.\n");
pthread_exit(NULL);
}

Tuesday, February 14, 12

CS390C: Principles of Concurrency and Parallelism

Race Conditions

15

THREAD 1 THREAD 2
a = data; b = data;
a++; b++;
data += a; data += b;

Assuming data = 0 initially, can data be 1 after the program
completes?

Tuesday, February 14, 12

CS390C: Principles of Concurrency and Parallelism

Mutexes
● Protect access to shared data

● Methodology

− Create and initialize a mutex variable

− Several threads attempt to lock the mutex

− One succeeds

− Owner manipulates data protected by mutex

− Owner unlocks

− Another thread acquires the mutex, and repeats

− Destroy the mutex

16

Tuesday, February 14, 12

CS390C: Principles of Concurrency and Parallelism

Mutexes

● Challenges:
− make sure data is consistently protected by the same set of

mutexes

− make sure mutexes properly released

− ensure deadlock-freedom

− ensure progress (liveness)

17

Tuesday, February 14, 12

CS390C: Principles of Concurrency and Parallelism

Example
void *dotprod(void *arg)
{

 /* Define and use local variables for convenience */

 int i, start, end, len ;
 long offset;
 double mysum, *x, *y;
 offset = (long)arg;

 len = dotstr.veclen;
 start = offset*len;
 end = start + len;
 x = dotstr.a;
 y = dotstr.b;

 /*
 Perform the dot product and assign result
 to the appropriate variable in the structure.
 */

 mysum = 0;
 for (i=start; i<end ; i++)
 {
 mysum += (x[i] * y[i]);
 }

 /*
 Lock a mutex prior to updating the value
 in the shared
 structure, and unlock it upon updating.
 */
 pthread_mutex_lock (&mutexsum);
 dotstr.sum += mysum;
 pthread_mutex_unlock (&mutexsum);

 pthread_exit((void*) 0);
}

Tuesday, February 14, 12

CS390C: Principles of Concurrency and Parallelism

Example (cont)

19

int main (int argc, char *argv[])
{
 long i;
 double *a, *b;
 void *status;
 pthread_attr_t attr;

 /* Assign storage and initialize values */
 a = (double*) malloc (NUMTHRDS*VECLEN*sizeof(double));
 b = (double*) malloc (NUMTHRDS*VECLEN*sizeof(double));

 for (i=0; i<VECLEN*NUMTHRDS; i++)
 {
 a[i]=1.0;
 b[i]=a[i];
 }

 dotstr.veclen = VECLEN;
 dotstr.a = a;
 dotstr.b = b;
 dotstr.sum=0;

Tuesday, February 14, 12

CS390C: Principles of Concurrency and Parallelism

Example (cont)
 pthread_mutex_init(&mutexsum, NULL);

 /* Create threads to perform the dotproduct */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

! for(i=0; i<NUMTHRDS; i++)
 {
! /*
! Each thread works on a different set of data.
! The offset is specified by 'i'. The size of
! the data for each thread is indicated by VECLEN.
! */
! pthread_create(&callThd[i], &attr, dotprod, (void *)i);
! }

 ! pthread_attr_destroy(&attr);

 /* Wait on the other threads */
! for(i=0; i<NUMTHRDS; i++)
 {
! pthread_join(callThd[i], &status);
! }

 /* After joining, print out the results and cleanup */
 printf ("Sum = %f \n", dotstr.sum);
 free (a);
 free (b);
 pthread_mutex_destroy(&mutexsum);
 pthread_exit(NULL);
}

Tuesday, February 14, 12

CS390C: Principles of Concurrency and Parallelism

Condition Variables

● Allows threads to automatically synchronize based on
the actual value of data

● Avoids the need for threads to continually poll to
check if a condition is met

21

Tuesday, February 14, 12

CS390C: Principles of Concurrency and Parallelism

Example

22

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

#define NUM_THREADS 3
#define TCOUNT 10
#define COUNT_LIMIT 12

int count = 0;
int thread_ids[3] = {0,1,2};
pthread_mutex_t count_mutex;
pthread_cond_t count_threshold_cv;

Tuesday, February 14, 12

CS390C: Principles of Concurrency and Parallelism

Example (cont)

23

void *inc_count(void *t)
{
 int i;
 long my_id = (long)t;

 for (i=0; i<TCOUNT; i++) {
 pthread_mutex_lock(&count_mutex);
 count++;

 /*
 Check the value of count and signal waiting thread when condition is
 reached. Note that this occurs while mutex is locked.
 */
 if (count == COUNT_LIMIT) {
 pthread_cond_signal(&count_threshold_cv);
 printf("inc_count(): thread %ld, count = %d Threshold reached.\n",
 my_id, count);
 }
 printf("inc_count(): thread %ld, count = %d, unlocking mutex\n",
! my_id, count);
 pthread_mutex_unlock(&count_mutex);

 /* Do some "work" so threads can alternate on mutex lock */
 sleep(1);
 }
 pthread_exit(NULL);
}

Tuesday, February 14, 12

CS390C: Principles of Concurrency and Parallelism

Example (cont)

24

void *watch_count(void *t)
{
 long my_id = (long)t;

 printf("Starting watch_count(): thread %ld\n", my_id);

 /*
 Lock mutex and wait for signal. Note that the pthread_cond_wait
 routine will automatically and atomically unlock mutex while it waits.
 Also, note that if COUNT_LIMIT is reached before this routine is run by
 the waiting thread, the loop will be skipped to prevent pthread_cond_wait
 from never returning.
 */
 pthread_mutex_lock(&count_mutex);
 while (count<COUNT_LIMIT) {
 pthread_cond_wait(&count_threshold_cv, &count_mutex);
 printf("watch_count(): thread %ld Condition signal received.\n", my_id);
 count += 125;
 printf("watch_count(): thread %ld count now = %d.\n", my_id, count);
 }
 pthread_mutex_unlock(&count_mutex);
 pthread_exit(NULL);
}

Tuesday, February 14, 12

CS390C: Principles of Concurrency and Parallelism

Example (cont)

25

int main (int argc, char *argv[])
{
 int i, rc;
 long t1=1, t2=2, t3=3;
 pthread_t threads[3];
 pthread_attr_t attr;

 /* Initialize mutex and condition variable objects */
 pthread_mutex_init(&count_mutex, NULL);
 pthread_cond_init (&count_threshold_cv, NULL);

 /* For portability, explicitly create threads in a joinable state */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
 pthread_create(&threads[0], &attr, watch_count, (void *)t1);
 pthread_create(&threads[1], &attr, inc_count, (void *)t2);
 pthread_create(&threads[2], &attr, inc_count, (void *)t3);

 /* Wait for all threads to complete */
 for (i=0; i<NUM_THREADS; i++) {
 pthread_join(threads[i], NULL);
 }
 printf ("Main(): Waited on %d threads. Done.\n", NUM_THREADS);

 /* Clean up and exit */
 pthread_attr_destroy(&attr);
 pthread_mutex_destroy(&count_mutex);
 pthread_cond_destroy(&count_threshold_cv);
 pthread_exit(NULL);

}

Tuesday, February 14, 12

CS390C: Principles of Concurrency and Parallelism

Analysis

● Why use Pthreads?
− portablity

− performance
● assuming optimized sequential code
● and relatively little complex coordination

− no inter-thread optimizations

● How do we quantify the effectiveness of a parallel
program in terms of its sequential components?
− speedup, overhead, decomposition

26

Tuesday, February 14, 12

Speedupenhanced(f,S)= 1
(1�f)+ f

S

Speedupparallel(f,n)= 1
(1�f)+ f

n

CS390C: Principles of Concurrency and Parallelism

Amdahl’s Law

27

Here, f is the fraction of a computation that can be improved by a speedup S
When f is small, optimizations will have little effect

Here, f is the fraction of a sequential computation that can be improved by
executing on n cores:
 infinitely parallelizable (no scheduling overhead); remaining totally sequential

Assumes computation problem doesn’t change with increase in cores; fraction
of a program that is parallelizable remains fixed.

Tuesday, February 14, 12

CS390C: Principles of Concurrency and Parallelism

Example

● A program runs in 100 seconds on a machine; a
multiply operation consumes 80% of this time.
− How much do we need to improve the speed of the

multiply operator to make the program run 4 times faster?

● A new processor is 20x faster on search queries than
an existing one. Queries account for 70% of the time
spent in a computation.
− What is the speedup gained by using the new processor?

28

Tuesday, February 14, 12

CS390C: Principles of Concurrency and Parallelism

Example

● 90% of a calculation can be parallelized. What is the
maximum speedup on 5 processors? 10 processors?
1000 processors?

● What if 99% of a calculation can be parallelized?

29

Tuesday, February 14, 12

CS390C: Principles of Concurrency and Parallelism

Speedup curves

30

plotting sequential components
what happens when overheads are introduced?
how do we take problem size into account?

Tuesday, February 14, 12

CS390C: Principles of Concurrency and Parallelism

Corollaries

● What do the previous examples tell you about the
main point of Amdahl’s law?
− performance of any system constrained by the speed of the

slowest component

− impact of performance improvement constrained by the
parts of the program not targeted for improvement.

31

Tuesday, February 14, 12

CS390C: Principles of Concurrency and Parallelism

On Multicores (assume perf(r) = sqrt(r))

32

 July 2008 35

(a) (b) (c)

Figure 1. Varieties of multicore chips. (a) Symmetric multicore with 16 one-base core equivalent cores, (b) symmetric multicore
with four four-BCE cores, and (c) asymmetric multicore with one four-BCE core and 12 one-BCE cores. These figures omit important
structures such as memory interfaces, shared caches, and interconnects, and assume that area, not power, is a chip’s limiting
resource.

(a) (b)

(c) (d)

(e) (f)

20 4 8 16
r BCEs

Symmetric, n = 16

20 4 8 16 32 64 128 256

50

100

150

200

250

r BCEs

Sp
ee

du
p s

ym
m

et
ric

50

100

150

200

250

Sp
ee

du
p s

ym
m

et
ric

50

100

150

200

250

Sp
ee

du
p d

yn
am

ic

Sp
ee

du
p d

yn
am

ic

Symmetric, n = 256

2 4 8 16
r BCEs

Asymmetric, n = 16

20 4 8 16 32 64 128 256
r BCEs

Asymmetric, n = 256

2

0

0 4 8 16
2

4

6

8

10

12

14

16

Sp
ee

du
p s

ym
m

et
ric

2

4

6

8

10

12

14

16

Sp
ee

du
p s

ym
m

et
ric

2

4

6

8

10

12

14

16

r BCEs

Dynamic, n = 16

20 4 8 16 32 64 128 256
r BCEs

Dynamic, n = 256

f = 0.999
f = 0.99
f = 0.975
f = 0.9
f = 0.5

Figure 2. Speedup of (a, b) symmetric, (c, d) asymmetric, and (e, f) dynamic multicore chips with n = 16 BCEs (a, c, and e) or n = 256
BCEs (b, d, and f).

Tuesday, February 14, 12

CS390C: Principles of Concurrency and Parallelism

Implications

● Critical to increase fraction of computation that is
parallelizable

● Using more tightly-coupled computation units per
core can be beneficial
− increasing individual core performance is essential (even if

it increases the cost of each core)

− denser chips soften the impact of Amdhal’s law at scale

● Assymetric designs can lead to better speedups than
symmetric designs

33

Tuesday, February 14, 12

CS390C: Principles of Concurrency and Parallelism

Readings

● Pthreads tutorial:
− https://computing.llnl.gov/tutorials/pthreads/#PthreadsAPI

− https://computing.llnl.gov/tutorials/parallel_comp/

● Monitors and condition variables
− http://dl.acm.org/citation.cfm?id=361161

● Amdhal’s Law and multicores
− http://research.cs.wisc.edu/multifacet/papers/

ieeecomputer08_amdahl_multicore.pdf

34

Tuesday, February 14, 12

https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/parallel_comp/
http://dl.acm.org/citation.cfm?id=361161
http://dl.acm.org/citation.cfm?id=361161
http://research.cs.wisc.edu/multifacet/papers/ieeecomputer08_amdahl_multicore.pdf
http://research.cs.wisc.edu/multifacet/papers/ieeecomputer08_amdahl_multicore.pdf
http://research.cs.wisc.edu/multifacet/papers/ieeecomputer08_amdahl_multicore.pdf
http://research.cs.wisc.edu/multifacet/papers/ieeecomputer08_amdahl_multicore.pdf

